DIGITAL DESIGN

M. MORRIS MANO MICHAEL D. CILETTI

Digital Design

With an Introduction to the Verilog HDL

This page intentionally left blank

Digital Design

With an Introduction to the Verilog HDL

FIFTH EDITION

M. Morris Mano

Emeritus Professor of Computer Engineering
California State University, Los Angeles

Michael D. Ciletti

Emeritus Professor of Electrical and Computer Engineering
University of Colorado at Colorado Springs

PEARSON

Upper Saddle River Boston Columbus San Franciso New York
Indianapolis London Toronto Sydney Singapore Tokyo Montreal
Dubai Madrid Hong Kong Mexico City Munich Paris Amsterdam Cape Town

Vice President and Editorial Director, ECS: Cover Designer: Jayne Conte

Marcia J. Horton Cover Photo: Michael D. Ciletti
Executive Editor: Andrew Gilfillan Composition: Jouve India Private Limited
Vice-President, Production: Vince O’Brien Full-Service Project Management: Jouve India Private
Executive Marketing Manager: Tim Galligan Limited
Marketing Assistant: Jon Bryant Printer/Binder: Edwards Brothers
Permissions Project Manager: Karen Sanatar Typeface: Times Ten 10/12

Senior Managing Editor: Scott Disanno
Production Project Manager/Editorial Production
Manager: Greg Dulles

Copyright © 2013, 2007, 2002, 1991, 1984 Pearson Education, Inc., publishing as Prentice Hall, One Lake Street, Upper
Saddle River, New Jersey 07458. All rights reserved. Manufactured in the United States of America. This publication is
protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to
Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing
from the publisher.

Verilogger Pro and SynaptiCAD are trademarks of SynaptiCAD, Inc., Blacksburg, VA 24062-0608.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

About the cover: “Spider Rock in Canyon de Chelley,” Chinle, Arizona, USA, January 2011. Photograph courtesy of mdc
Images, LLC (www.mdcilettiphotography.com). Used by permission.

Library of Congress Cataloging-in-Publication Data

Mano, M. Morris, 1927—-

Digital design : with an introduction to the verilog hdl / M. Morris Mano, Michael D. Ciletti.—5th ed.

p.cm.

Includes index.

ISBN-13:978-0-13-277420-8

ISBN-10: 0-13-277420-8

1. Electronic digital computers— Circuits. 2. Logic circuits. 3. Logic design. 4. Digital integrated

circuits. I. Ciletti, Michael D. II. Title.

TK7888.3.M343 2011

621.39'5—dc23

2011039094

10987654321
P E A R S O N ISBN-13:978-0-13-277420-8
ISBN-10: 0-13-277420-8

www.mdcilettiphotography.com

Contents

Preface ix
1 Digital Systems and Binary Numbers 1
1.1 Digital Systems 1
1.2 Binary Numbers 3
1.3 Number-Base Conversions 6
1.4 Octal and Hexadecimal Numbers 8
1.5 Complements of Numbers 10
1.6 Signed Binary Numbers 14
1.7 Binary Codes 18
1.8 Binary Storage and Registers 27
1.9 Binary Logic 30
2 Boolean Algebra and Logic Gates 38
2.1 Introduction 38
2.2 Basic Definitions 38
2.3 Axiomatic Definition of Boolean Algebra 40
2.4 Basic Theorems and Properties of Boolean Algebra 43
2.5 Boolean Functions 46
2.6 Canonical and Standard Forms 51
2.7 Other Logic Operations 58
2.8 Digital Logic Gates 60
2.9 Integrated Circuits 66

vi Contents

3 Gate-Level Minimization 73
3.1 Introduction 73
3.2 The Map Method 73
3.3 Four-Variable K-Map 80
3.4 Product-of-Sums Simplification 84
3.5 Don‘t-Care Conditions 88
3.6 NAND and NOR Implementation 90
3.7 Other Two-Level Implementations 97
3.8 Exclusive-OR Function 103
3.9 Hardware Description Language 108
4 Combinational Logic 125
4.1 Introduction 125
4.2 Combinational Circuits 125
4.3 Analysis Procedure 126
4.4 Design Procedure 129
4.5 Binary Adder—Subtractor 133
4.6 Decimal Adder 144
4.7 Binary Multiplier 146
4.8 Magnitude Comparator 148
4.9 Decoders 150
410 Encoders 155
4.11 Multiplexers 158
412 HDL Models of Combinational Circuits 164
5 Synchronous Sequential Logic 190
5.1 Introduction 190
5.2 Sequential Circuits 190
5.3 Storage Elements: Latches 193
5.4 Storage Elements: Flip-Flops 196
5.5 Analysis of Clocked Sequential Circuits 204
5.6 Synthesizable HDL Models of Sequential Circuits 217
5.7 State Reduction and Assignment 231
5.8 Design Procedure 236
6 Registers and Counters 255
6.1 Registers 255
6.2 Shift Registers 258
6.3 Ripple Counters 266
6.4 Synchronous Counters 271
6.5 Other Counters 278
6.6 HDL for Registers and Counters 283

Contents vii
Memory and Programmable Logic 299
7.1 Introduction 299
7.2 Random-Access Memory 300
7.3 Memory Decoding 307
7.4 Error Detection and Correction 312
7.5 Read-Only Memory 315
7.6 Programmable Logic Array 321
7.7 Programmable Array Logic 325
7.8 Sequential Programmable Devices 329
Design at the Register
Transfer Level 351
8.1 Introduction 351
8.2 Register Transfer Level Notation 351
8.3 Register Transfer Level in HDL 354
8.4 Algorithmic State Machines (ASMs) 363
8.5 Design Example (ASMD Chart) 371
8.6 HDL Description of Design Example 381
8.7 Sequential Binary Multiplier 391
8.8 Control Logic 396
8.9 HDL Description of Binary Multiplier 402
8.10 Design with Multiplexers 411
8.11 Race-Free Design (Software Race Conditions) 422
8.12 Latch-Free Design (Why Waste Silicon?) 425
8.13 Other Language Features 426
Laboratory Experiments
with Standard ICs and FPGAs 438
9.1 Introduction to Experiments 438
9.2 Experiment 1: Binary and Decimal Numbers 443
9.3 Experiment 2: Digital Logic Gates 446
9.4 Experiment 3: Simplification of Boolean Functions 448
9.5 Experiment 4: Combinational Circuits 450
9.6 Experiment 5: Code Converters 452
9.7 Experiment 6: Design with Multiplexers 453
9.8 Experiment 7: Adders and Subtractors 455
9.9 Experiment 8: Flip-Flops 457
9.10 Experiment 9: Sequential Circuits 460
9.11 Experiment 10: Counters 461
9.12 Experiment 11: Shift Registers 463
9.13 Experiment 12: Serial Addition 466
9.14 Experiment 13: Memory Unit 467
9.15 Experiment 14: Lamp Handball 469

viii Contents

9.16 Experiment 15: Clock-Pulse Generator 473
9.17 Experiment 16: Parallel Adder and Accumulator 475
9.18 Experiment 17: Binary Multiplier 478
9.19 Verilog HDL Simulation Experiments
and Rapid Prototyping with FPGAs 480
10 Standard Graphic Symbols 488
10.1 Rectangular-Shape Symbols 488
10.2 Qualifying Symbols 491
10.3 Dependency Notation 493
10.4 Symbols for Combinational Elements 495
10.5 Symbols for Flip-Flops 497
10.6 Symbols for Registers 499
10.7 Symbols for Counters 502
10.8 Symbol for RAM 504
Appendix 507
Answers to Selected Problems 521
Index 539

Preface

Since the fourth edition of Digital Design,the commercial availability of devices using
digital technology to receive, manipulate, and transmit information seems to have
exploded. Cell phones and handheld devices of various kinds offer new, competing
features almost daily. Underneath the attractive graphical user interface of all of these
devices sits a digital system that processes data in a binary format. The theoretical
foundations of these systems have not changed much; indeed, one could argue that
the stability of the core theory, coupled with modern design tools, has promoted the
widespread response of manufacturers to the opportunities of the marketplace. Con-
sequently, our refinement of our text has been guided by the need to equip our grad-
uates with a solid understanding of digital machines and to introduce them to the
methodology of modern design.

This edition of Digital Design builds on the previous four editions, and the feedback
of the team of reviewers who helped set a direction for our presentation. The focus of
the text has been sharpened to more closely reflect the content of a foundation course
in digital design and the mainstream technology of today’s digital systems: CMOS
circuits. The intended audience is broad, embracing students of computer science, com-
puter engineering, and electrical engineering. The key elements that the book focuses
include (1) Boolean logic, (2) logic gates used by designers, (3) synchronous finite state
machines, and (4) datapath controller design—all from a perspective of designing dig-
ital systems. This focus led to elimination of material more suited for a course in elec-
tronics. So the reader will not find here content for asynchronous machines or
descriptions of bipolar transistors. Additionally, the widespread availability of web-
based ancillary material prompted us to limit our discussion of field programmable
gate arrays (FPGAs) to an introduction of devices offered by only one manufacturer,
rather than two. Today’s designers rely heavily on hardware description languages

X Preface

(HDLs), and this edition of the book gives greater attention to their use and presents
what we think is a clear development of a design methodology using the Verilog HDL.

MULTI-MODAL LEARNING

Digital Design supports a multimodal approach to learning. The so-called VARK char-
acterization of learning modalities identifies four major modes by which humans learn:
(V) visual, (A) aural, (R) reading, and (K) kinesthetic. In hindsight, we note that the
relatively high level of illustrations and graphical content of our text addresses the visual
(V) component of VARK; discussions and numerous examples address the reading (R)
component. Students who exploit the availability of free simulators to work assignments
are led through a kinesthetic (K) learning experience, including the positive feedback
and delight of designing a logic system that works. The remaining element of VARK, the
aural/auditory (A) experience, is left to the instructor. We have provided an abundance
of material and examples to support classroom lectures. Thus, a course in digital design,
using Digital Design, can provide a rich, balanced learning experience and address all
the modes identified by VARK.

For those who might still question the presentation and use of HDLs in a first course
in digital design, we note that industry has largely abandoned schematic-based design
entry, a style which emerged in the 1980s, during the nascent development of CAD tools
for integrated circuit (IC) design. Schematic entry creates a representation of functional-
ity that is implicit in the layout of the schematic. Unfortunately, it is difficult for anyone
in a reasonable amount of time to determine the functionality represented by the sche-
matic of a logic circuit without having been instrumental in its construction, or without
having additional documentation expressing the design intent. Consequently, industry
has migrated to HDLs (e.g., Verilog) to describe the functionality of a design and to serve
as the basis for documenting, simulating, testing, and synthesizing the hardware imple-
mentation of the design in a standard cell-based ASIC or an FPGA. The utility of a
schematic depends on the careful, detailed documentation of a carefully constructed
hierarchy of design modules. In the old paradigm, designers relied upon their years of
experience to create a schematic of a circuit to implement functionality. In today’s design
flow, designers using HDLs can express functionality directly and explicitly, without years
of accumulated experience, and use synthesis tools to generate the schematic as a by-
product, automatically. Industry practices arrived here because schematic entry dooms
us to inefficiency, if not failure, in understanding and designing large, complex ICs.

We note, again in this edition, that introducing HDLs in a first course in designing
digital circuits is not intended to replace fundamental understanding of the building blocks
of such circuits or to eliminate a discussion of manual methods of design. It is still essential
for a student to understand how hardware works. Thus, we retain a thorough treatment of
combinational and sequential logic devices. Manual design practices are presented, and
their results are compared with those obtained with a HDL-based paradigm. What we are
presenting, however, is an emphasis on how hardware is designed, to better prepare a
student for a career in today’s industry, where HDL-based design practices are dominant.

Preface Xi

FLEXIBILITY

The sequence of topics in the text can accommodate courses that adhere to traditional,
manual-based, treatments of digital design, courses that treat design using an HDL, and
courses that are in transition between or blend the two approaches. Because modern
synthesis tools automatically perform logic minimization, Karnaugh maps and related
topics in optimization can be presented at the beginning of a treatment of digital design,
or they can be presented after circuits and their applications are examined and simulated
with an HDL. The text includes both manual and HDL-based design examples. Our end-
of-chapter problems further facilitate this flexibility by cross referencing problems that
address a traditional manual design task with a companion problem that uses an HDL
to accomplish the task. Additionally, we link the manual and HDL-based approaches by
presenting annotated results of simulations in the text, in answers to selected problems
at the end of the text, and in the solutions manual.

NEW TO THIS EDITION

This edition of Digital Design uses the latest features of IEEE Standard 1364, but only
insofar as they support our pedagogical objectives. The revisions and updates to the
text include:

¢ Elimination of specialized circuit-level content not typically covered in a first
course in logic circuits and digital design (e.g., RTL, DTL, and emitter-coupled
logic circuits)

¢ Addition of “Web Search Topics” at the end of each chapter to point students to
additional subject matter available on the web

e Revision of approximately one-third of the problems at the end of the chapters

e A printed solution manual for entire text, including all new problems

e Streamlining of the discussion of Karnaugh maps

e Integration of treatment of basic CMOS technology with treatment of logic gates

¢ Inclusion of an appendix introducing semiconductor technology

DESIGN METHODLOGY

This text presents a systematic methodology for designing a state machine to control
the datapath of a digital system. Moreover, the framework in which this material is pre-
sented treats the realistic situation in which status signals from the datapath are used by
the controller, i.e., the system has feedback. Thus, our treatment provides a foundation
for designing complex and interactive digital systems. Although it is presented with an
emphasis on HDL-based design, the methodology is also applicable to manual-based
approaches to design.

xii

Preface

JUST ENOUGH HDL

We present only those elements of the Verilog language that are matched to the level and
scope of this text. Also, correct syntax does not guarantee that a model meets a functional
specification or that it can be synthesized into physical hardware. So, we introduce stu-
dents to a disciplined use of industry-based practices for writing models to ensure that a
behavioral description can be synthesized into physical hardware, and that the behavior
of the synthesized circuit will match that of the behavioral description. Failure to follow
this discipline can lead to software race conditions in the HDL models of such machines,
race conditions in the test bench used to verify them, and a mismatch between the results
of simulating a behavioral model and its synthesized physical counterpart. Similarly, fail-
ure to abide by industry practices may lead to designs that simulate correctly, but which
have hardware latches that are introduced into the design accidentally as a consequence
of the modeling style used by the designer. The industry-based methodology we present
leads to race-free and latch-free designs. It is important that students learn and follow
industry practices in using HDL models, independent of whether a student’s curriculum
has access to synthesis tools.

VERIFICATION

In industry, significant effort is expended to verify that the functionality of a circuit is
correct. Yet not much attention is given to verification in introductory texts on digital
design, where the focus is on design itself, and testing is perhaps viewed as a secondary
undertaking. Our experience is that this view can lead to premature “high-fives” and
declarations that “the circuit works beautifully.” Likewise, industry gains repeated returns
on its investment in an HDL model by ensuring that it is readable, portable, and reusable.
We demonstrate naming practices and the use of parameters to facilitate reusability and
portability. We also provide test benches for all of the solutions and exercises to (1) verify
the functionality of the circuit, (2) underscore the importance of thorough testing, and
(3) introduce students to important concepts, such as self-checking test benches. Advo-
cating and illustrating the development of a test plan to guide the development of a test
bench, we introduce test plans, albeit simply, in the text and expand them in the solutions
manual and in the answers to selected problems at the end of the text.

HDL CONTENT

We have ensured that all examples in the text and all answers in the solution manual
conform to accepted industry practices for modeling digital hardware. As in the previ-
ous edition, HDL material is inserted in separate sections so that it can be covered or
skipped as desired, does not diminish treatment of manual-based design, and does not
dictate the sequence of presentation. The treatment is at a level suitable for beginning
students who are learning digital circuits and a HDL at the same time. The text prepares

Preface xiii

students to work on signficant independent design projects and to succeed in a later
course in computer architecture and advanced digital design.

Instructor Resources

Instructors can download the following classroom-ready resources from the publisher’s
website for the text (www.pearsonhighered.com/mano):

e Source code and test benches for all Verilog HDL examples in the test

¢ All figures and tables in the text

e Source code for all HDL models in the solutions manual

¢ A downloadable solutions manual with graphics suitable for classroom presentation

HDL Simulators

The Companion Website identifies web URLs to two simulators provided by Synapti-
CAD. The first simulator is VeriLogger Pro, a traditional Verilog simulator that can be
used to simulate the HDL examples in the book and to verify the solutions of HDL
problems. This simulator accepts the syntax of the IEEE-1995 standard and will be
useful to those who have legacy models. As an interactive simulator, Verilogger Ex-
treme accepts the syntax of IEEE-2001 as well as IEEE-1995, allowing the designer to
simulate and analyze design ideas before a complete simulation model or schematic is
available. This technology is particularly useful for students because they can quickly
enter Boolean and D flip-flop or latch input equations to check equivalency or to ex-
periment with flip-flops and latch designs. Students can access the Companion Website
at www.pearsonhighered.com/mano.

Chapter Summary

The following is a brief summary of the topics that are covered in each chapter.

Chapter 1 presents the various binary systems suitable for representing information
in digital systems. The binary number system is explained and binary codes are illus-
trated. Examples are given for addition and subtraction of signed binary numbers and
decimal numbers in binary-coded decimal (BCD) format.

Chapter 2 introduces the basic postulates of Boolean algebra and shows the correla-
tion between Boolean expressions and their corresponding logic diagrams. All possible
logic operations for two variables are investigated, and the most useful logic gates used
in the design of digital systems are identified. This chapter also introduces basic CMOS
logic gates.

Chapter 3 covers the map method for simplifying Boolean expressions. The map
method is also used to simplify digital circuits constructed with AND-OR, NAND, or
NOR gates. All other possible two-level gate circuits are considered, and their method
of implementation is explained. Verilog HDL is introduced together with simple exam-
ples of gate-level models.

www.pearsonhighered.com/mano
www.pearsonhighered.com/mano

Xiv

Preface

Chapter 4 outlines the formal procedures for the analysis and design of combina-
tional circuits. Some basic components used in the design of digital systems, such as
adders and code converters, are introduced as design examples. Frequently used digital
logic functions such as parallel adders and subtractors, decoders, encoders, and multi-
plexers are explained, and their use in the design of combinational circuits is illustrated.
HDL examples are given in gate-level, dataflow, and behavioral models to show the
alternative ways available for describing combinational circuits in Verilog HDL. The
procedure for writing a simple test bench to provide stimulus to an HDL design is
presented.

Chapter 5 outlines the formal procedures for analyzing and designing clocked (syn-
chronous) sequential circuits. The gate structure of several types of flip-flops is presented
together with a discussion on the difference between level and edge triggering. Specific
examples are used to show the derivation of the state table and state diagram when
analyzing a sequential circuit. A number of design examples are presented with empha-
sis on sequential circuits that use D-type flip-flops. Behavioral modeling in Verilog HDL
for sequential circuits is explained. HDL Examples are given to illustrate Mealy and
Moore models of sequential circuits.

Chapter 6 deals with various sequential circuit components such as registers, shift
registers, and counters. These digital components are the basic building blocks from
which more complex digital systems are constructed. HDL descriptions of shift registers
and counter are presented.

Chapter 7 deals with random access memory (RAM) and programmable logic
devices. Memory decoding and error correction schemes are discussed. Combinational
and sequential programmable devices such as ROMs, PLAs, PALs, CPLDs, and FPGAs
are presented.

Chapter 8 deals with the register transfer level (RTL) representation of digital sys-
tems. The algorithmic state machine (ASM) chart is introduced. A number of examples
demonstrate the use of the ASM chart, ASMD chart, RTL representation, and HDL
description in the design of digital systems. The design of a finite state machine to con-
trol a datapath is presented in detail, including the realistic situation in which status
signals from the datapath are used by the state machine that controls it. This chapter is
the most important chapter in the book as it provides the student with a systematic
approach to more advanced design projects.

Chapter 9 outlines experiments that can be performed in the laboratory with hard-
ware that is readily available commercially. The operation of the ICs used in the
experiments is explained by referring to diagrams of similar components introduced
in previous chapters. Each experiment is presented informally and the student is
expected to design the circuit and formulate a procedure for checking its operation
in the laboratory. The lab experiments can be used in a stand-alone manner too and
can be accomplished by a traditional approach, with a breadboard and TTL circuits,
or with an HDL/synthesis approach using FPGAs. Today, software for synthesizing
an HDL model and implementing a circuit with an FPGA is available at no cost from
vendors of FPGAs, allowing students to conduct a significant amount of work in their
personal environment before using prototyping boards and other resources in a lab.

Preface XV

Circuit boards for rapid prototyping circuits with FPGAs are available at a nominal
cost, and typically include push buttons, switches, seven-segment displays, LCDs, key-
pads, and other I/O devices. With these resources, students can work prescribed lab
exercises or their own projects and get results immediately.

Chapter 10 presents the standard graphic symbols for logic functions recommended
by an ANSI/IEEE standard. These graphic symbols have been developed for small-scale
integration (SSI) and medium-scale integration (MSI) components so that the user can
recognize each function from the unique graphic symbol assigned. The chapter shows
the standard graphic symbols of the ICs used in the laboratory experiments.

ACKNOWLEDGMENTS

We are grateful to the reviewers of Digital Design, Se. Their expertise, careful reviews,
and suggestions helped shape this edition.

Dmitri Donetski, Stony Brook University

Ali Amini, California State University, Northridge
Mihaela Radu, Rose Hulman Institute of Technology
Stephen J Kuyath, University of North Carolina, Charlotte
Peter Pachowicz, George Mason University

David Jeff Jackson, University of Alabama

A. John Boye, University of Nebraska, Lincoln

William H. Robinson, Vanderbilt University

Dinesh Bhatia, University of Texas, Dallas

We also wish to express our gratitude to the editorial and publication team at Prentice
Hall/Pearson Education for supporting this edition of our text. We are grateful, too, for
the ongoing support and encouragement of our wives, Sandra and Jerilynn.

M. Morris MANO
Emeritus Professor of Computer Engineering
California State University, Los Angeles

MicHAEL D. CILETTI
Emeritus Professor of Electrical and Computer Engineering
University of Colorado at Colorado Springs

This page intentionally left blank

Chapter 1

Digital Systems and Binary Numbers

1.

1

DIGITAL SYSTEMS

Digital systems have such a prominent role in everyday life that we refer to the present
technological period as the digital age. Digital systems are used in communication, busi-
ness transactions, traffic control, spacecraft guidance, medical treatment, weather mon-
itoring, the Internet, and many other commercial, industrial, and scientific enterprises.
We have digital telephones, digital televisions, digital versatile discs, digital cameras,
handheld devices, and, of course, digital computers. We enjoy music downloaded to our
portable media player (e.g., iPod Touch™) and other handheld devices having high-
resolution displays. These devices have graphical user interfaces (GUIs), which enable
them to execute commands that appear to the user to be simple, but which, in fact,
involve precise execution of a sequence of complex internal instructions. Most, if not all,
of these devices have a special-purpose digital computer embedded within them. The
most striking property of the digital computer is its generality. It can follow a sequence
of instructions, called a program, that operates on given data. The user can specify and
change the program or the data according to the specific need. Because of this flexibil-
ity, general-purpose digital computers can perform a variety of information-processing
tasks that range over a wide spectrum of applications.

One characteristic of digital systems is their ability to represent and manipulate dis-
crete elements of information. Any set that is restricted to a finite number of elements
contains discrete information. Examples of discrete sets are the 10 decimal digits, the
26 letters of the alphabet, the 52 playing cards, and the 64 squares of a chessboard. Early
digital computers were used for numeric computations. In this case, the discrete ele-
ments were the digits. From this application, the term digital computer emerged. Dis-
crete elements of information are represented in a digital system by physical quantities

2

Chapter 1 Digital Systems and Binary Numbers

called signals. Electrical signals such as voltages and currents are the most common.
Electronic devices called transistors predominate in the circuitry that implements these
signals. The signals in most present-day electronic digital systems use just two discrete
values and are therefore said to be binary. A binary digit, called a bit, has two values: 0
and 1. Discrete elements of information are represented with groups of bits called binary
codes. For example, the decimal digits 0 through 9 are represented in a digital system
with a code of four bits (e.g., the number 7 is represented by 0111). How a pattern of
bits is interpreted as a number depends on the code system in which it resides. To make
this distinction, we could write (0111), to indicate that the pattern 0111 is to be inter-
preted in a binary system, and (0111), to indicate that the reference system is decimal.
Then 0111, =7, which is not the same as 0111y, or one hundred eleven. The subscript
indicating the base for interpreting a pattern of bits will be used only when clarification
is needed. Through various techniques, groups of bits can be made to represent discrete
symbols, not necessarily numbers, which are then used to develop the system in a digital
format. Thus, a digital system is a system that manipulates discrete elements of informa-
tion represented internally in binary form. In today’s technology, binary systems are most
practical because, as we will see, they can be implemented with electronic components.

Discrete quantities of information either emerge from the nature of the data being
processed or may be quantized from a continuous process. On the one hand, a payroll
schedule is an inherently discrete process that contains employee names, social security
numbers, weekly salaries, income taxes, and so on. An employee’s paycheck is processed
by means of discrete data values such as letters of the alphabet (names), digits (salary),
and special symbols (such as $). On the other hand, a research scientist may observe a
continuous process, but record only specific quantities in tabular form. The scientist is
thus quantizing continuous data, making each number in his or her table a discrete
quantity. In many cases, the quantization of a process can be performed automatically
by an analog-to-digital converter, a device that forms a digital (discrete) representation
of a analog (continuous) quantity.

The general-purpose digital computer is the best-known example of a digital system.
The major parts of a computer are a memory unit, a central processing unit, and input—
output units. The memory unit stores programs as well as input, output, and intermedi-
ate data. The central processing unit performs arithmetic and other data-processing
operations as specified by the program. The program and data prepared by a user are
transferred into memory by means of an input device such as a keyboard. An output
device, such as a printer, receives the results of the computations, and the printed results
are presented to the user. A digital computer can accommodate many input and output
devices. One very useful device is a communication unit that provides interaction with
other users through the Internet. A digital computer is a powerful instrument that can
perform not only arithmetic computations, but also logical operations. In addition, it can
be programmed to make decisions based on internal and external conditions.

There are fundamental reasons that commercial products are made with digital cir-
cuits. Like a digital computer, most digital devices are programmable. By changing the
program in a programmable device, the same underlying hardware can be used for many
different applications, thereby allowing its cost of development to be spread across a
wider customer base. Dramatic cost reductions in digital devices have come about

Section 1.2 Binary Numbers 3

because of advances in digital integrated circuit technology. As the number of transistors
that can be put on a piece of silicon increases to produce complex functions, the cost per
unit decreases and digital devices can be bought at an increasingly reduced price. Equip-
ment built with digital integrated circuits can perform at a speed of hundreds of millions
of operations per second. Digital systems can be made to operate with extreme reli-
ability by using error-correcting codes. An example of this strategy is the digital versa-
tile disk (DVD), in which digital information representing video, audio, and other data
is recorded without the loss of a single item. Digital information on a DVD is recorded
in such a way that, by examining the code in each digital sample before it is played back,
any error can be automatically identified and corrected.

A digital system is an interconnection of digital modules. To understand the opera-
tion of each digital module, it is necessary to have a basic knowledge of digital circuits
and their logical function. The first seven chapters of this book present the basic tools
of digital design, such as logic gate structures, combinational and sequential circuits, and
programmable logic devices. Chapter 8 introduces digital design at the register transfer
level (RTL) using a modern hardware description language (HDL). Chapter 9 concludes
the text with laboratory exercises using digital circuits.

A major trend in digital design methodology is the use of a HDL to describe and simulate
the functionality of a digital circuit. An HDL resembles a programming language and is
suitable for describing digital circuits in textual form. It is used to simulate a digital system
to verify its operation before hardware is built. It is also used in conjunction with logic syn-
thesis tools to automate the design process. Because it is important that students become
familiar with an HDL-based design methodology, HDL descriptions of digital circuits are
presented throughout the book. While these examples help illustrate the features of an HDL,
they also demonstrate the best practices used by industry to exploit HDLs. Ignorance of
these practices will lead to cute, but worthless, HDL models that may simulate a phenom-
enon, but that cannot be synthesized by design tools, or to models that waste silicon area or
synthesize to hardware that cannot operate correctly.

As previously stated, digital systems manipulate discrete quantities of information
that are represented in binary form. Operands used for calculations may be expressed
in the binary number system. Other discrete elements, including the decimal digits and
characters of the alphabet, are represented in binary codes. Digital circuits, also referred
to as logic circuits, process data by means of binary logic elements (logic gates) using
binary signals. Quantities are stored in binary (two-valued) storage elements (flip-flops).
The purpose of this chapter is to introduce the various binary concepts as a frame of
reference for further study in the succeeding chapters.

1.2 BINARY NUMBERS

A decimal number such as 7392 represents a quantity equal to 7 thousands, plus 3 hun-
dreds, plus 9 tens, plus 2 units. The thousands, hundreds, etc., are powers of 10 implied
by the position of the coefficients (symbols) in the number. To be more exact, 7392 is a
shorthand notation for what should be written as

7 X 10° + 3 X 102+ 9 x 10" + 2 x 10°

4

Chapter 1 Digital Systems and Binary Numbers

However, the convention is to write only the numeric coefficients and, from their posi-
tion, deduce the necessary powers of 10 with powers increasing from right to left. In
general, a number with a decimal point is represented by a series of coefficients:

asasasaraag. a—1a—,a-3

The coefficients a; are any of the 10 digits (0, 1,2, ... ,9), and the subscript value j gives
the place value and, hence, the power of 10 by which the coefficient must be multiplied.
Thus, the preceding decimal number can be expressed as

10%as + 10%a, + 10%a; + 10%a, + 10'a; + 10%, + 107 'a_; + 102a_, + 103a_4

withas=7a,=3,a;=9,and ay=2.

The decimal number system is said to be of base, or radix, 10 because it uses 10 digits
and the coefficients are multiplied by powers of 10. The binary system is a different
number system. The coefficients of the binary number system have only two possible
values: 0 and 1. Each coefficient g; is multiplied by a power of the radix, e.g., 2, and
the results are added to obtain the decimal equivalent of the number. The radix
point (e.g., the decimal point when 10 is the radix) distinguishes positive powers of
10 from negative powers of 10. For example, the decimal equivalent of the binary
number 11010.11 is 26.75, as shown from the multiplication of the coefficients by
powers of 2:

IX224+1X2P4+0X2+1x21+0x22+1x21+1x%x22=2675

There are many different number systems. In general, a number expressed in a base-r
system has coefficients multiplied by powers of r:

ap 1"+ a,_r" N+ v ayer?+tagertagtaqrt

ta,rt+ o ta,r "

The coefficients a; range in value from 0 to r — 1. To distinguish between numbers of
different bases, we enclose the coefficients in parentheses and write a subscript equal to
the base used (except sometimes for decimal numbers, where the content makes it obvi-
ous that the base is decimal). An example of a base-5 number is

(40212)s =4 X 53+ 0 x5 +2 x5 +1 x5 +2x 5= (5114)

The coefficient values for base 5 can be only 0, 1, 2, 3, and 4. The octal number system
is a base-8 system that has eight digits: 0,1,2,3,4,5,6, 7. An example of an octal number
is 127.4. To determine its equivalent decimal value, we expand the number in a power
series with a base of 8:

(1274)g =1 X 8 +2x 8 +7x 8 + 4 x 8! =(87.5),

Note that the digits 8 and 9 cannot appear in an octal number.

It is customary to borrow the needed r digits for the coefficients from the decimal
system when the base of the number is less than 10. The letters of the alphabet are used
to supplement the 10 decimal digits when the base of the number is greater than 10. For
example, in the hexadecimal (base-16) number system, the first 10 digits are borrowed

Section 1.2 Binary Numbers 5

from the decimal system. The letters A, B, C, D, E, and F are used for the digits 10, 11,
12,13, 14, and 15, respectively. An example of a hexadecimal number is

(B65F);s = 11 X 16> + 6 X 16> + 5 X 16! + 15 X 16" = (46,687);,

The hexadecimal system is used commonly by designers to represent long strings of bits
in the addresses, instructions, and data in digital systems. For example, B65F is used to
represent 1011011001010000.

As noted before, the digits in a binary number are called bits. When a bit is equal to
0, it does not contribute to the sum during the conversion. Therefore, the conversion
from binary to decimal can be obtained by adding only the numbers with powers of two
corresponding to the bits that are equal to 1. For example,

(110101), = 32 + 16 + 4 + 1 = (53)y9

There are four 1’s in the binary number. The corresponding decimal number is the sum
of the four powers of two. Zero and the first 24 numbers obtained from 2 to the power of
n are listed in Table 1.1. In computer work, 2!° is referred to as K (kilo), 2** as M (mega),
2% as G (giga),and 2*° as T (tera). Thus,4K = 2!> = 4,096 and 16M = 2** = 16,777,216.
Computer capacity is usually given in bytes. A byte is equal to eight bits and can accom-
modate (i.e., represent the code of) one keyboard character. A computer hard disk with
four gigabytes of storage has a capacity of 4G = 232 bytes (approximately 4 billion bytes).
A terabyte is 1024 gigabytes, approximately 1 trillion bytes.

Arithmetic operations with numbers in base r follow the same rules as for decimal
numbers. When a base other than the familiar base 10 is used, one must be careful to
use only the r-allowable digits. Examples of addition, subtraction, and multiplication of
two binary numbers are as follows:

augend: 101101 minuend: 101101 multiplicand: 1011
addend: +100111 subtrahend: = —100111 multiplier: X 101
sum: 1010100 difference: 000110 1011
0000
partial product: 1011
product: 110111
Table 1.1
Powers of Two
n 2" n 2" n 2"
0 1 8 256 16 65,536
1 2 9 512 17 131,072
2 4 10 1,024 (1K) 18 262,144
3 8 11 2,048 19 524,288
4 16 12 4,096 (4K) 20 1,048,576 (1M)
5 32 13 8,192 21 2,097152
6 64 14 16,384 22 4,194,304
7 128 15 32,768 23 8,388,608

6 Chapter 1 Digital Systems and Binary Numbers

The sum of two binary numbers is calculated by the same rules as in decimal, except
that the digits of the sum in any significant position can be only 0 or 1. Any carry
obtained in a given significant position is used by the pair of digits one significant posi-
tion higher. Subtraction is slightly more complicated. The rules are still the same as in
decimal, except that the borrow in a given significant position adds 2 to a minuend digit.
(A borrow in the decimal system adds 10 to a minuend digit.) Multiplication is simple:
The multiplier digits are always 1 or 0; therefore, the partial products are equal either
to a shifted (left) copy of the multiplicand or to 0.

1.3 NUMBER-BASE CONVERSIONS

Representations of a number in a different radix are said to be equivalent if they have
the same decimal representation. For example, (0011)g and (1001), are equivalent—both
have decimal value 9. The conversion of a number in base r to decimal is done by
expanding the number in a power series and adding all the terms as shown previously.
We now present a general procedure for the reverse operation of converting a decimal
number to a number in base r. If the number includes a radix point, it is necessary to
separate the number into an integer part and a fraction part, since each part must be
converted differently. The conversion of a decimal integer to a number in base r is done
by dividing the number and all successive quotients by r and accumulating the remain-
ders. This procedure is best illustrated by example.

EXAMPLE 1.1

Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer quotient of 20
and a remainder of % Then the quotient is again divided by 2 to give a new quotient and
remainder. The process is continued until the integer quotient becomes 0. The coefficients
of the desired binary number are obtained from the remainders as follows:

Integer Remainder Coefficient

Quotient
41/2 = 20 + ! a =1
20/2 = 10 + 0 a =0
10/2 = 5 + 0 a =0
5/2 = 2 + 1 az =1
2/2 = 1 + 0 a; = 0
1/2 = 0 + ! as =1

Therefore, the answer is (41)9 = (asasasazaiay), = (101001),.

Section 1.3 Number-Base Conversions 7

The arithmetic process can be manipulated more conveniently as follows:

Integer Remainder

41

20 1

10 0

5 0

2 1

1 0

0 1 101001 = answer

Conversion from decimal integers to any base-r system is similar to this example, except
that division is done by r instead of 2.

EXAMPLE 1.2

Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give
an integer quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an integer
quotient of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and
a remainder of 2. This process can be conveniently manipulated as follows:

153

19 1

2 3

0 2 = (231)g

The conversion of a decimal fraction to binary is accomplished by a method similar
to that used for integers. However, multiplication is used instead of division, and integers
instead of remainders are accumulated. Again, the method is best explained by example.

|

EXAMPLE 1.3

Convert (0.6875) to binary. First,0.6875 is multiplied by 2 to give an integer and a fraction.
Then the new fraction is multiplied by 2 to give a new integer and a new fraction. The process
is continued until the fraction becomes 0 or until the number of digits has sufficient
accuracy. The coefficients of the binary number are obtained from the integers as follows:

Integer Fraction Coefficient
0.6875 X 2 = 1 + 0.3750 aq, =1
0.3750 X 2 = 0 + 0.7500 a, =10
0.7500 X 2 = 1 + 0.5000 as =1
0.5000 X 2 = 1 + 0.0000 ay, =1

8 Chapter 1 Digital Systems and Binary Numbers

Therefore, the answer is (0.6875)1g = (0. a_; a_» a_3 a_4), = (0.1011),.

To convert a decimal fraction to a number expressed in base 7, a similar procedure is
used. However, multiplication is by r instead of 2, and the coefficients found from the
integers may range in value from 0 to r — 1 instead of 0 and 1.

[|

EXAMPLE 1.4

Convert (0.513)q to octal.

0.513 X 8 = 4.104
0.104 X 8 = 0.832
0.832 X 8 = 6.656
0.656 X 8 = 5.248
0248 X 8 = 1.984
0.984 X 8 = 7.872

The answer, to seven significant figures, is obtained from the integer part of the products:
(0.513)1p = (0.406517 ...)g

The conversion of decimal numbers with both integer and fraction parts is done by
converting the integer and the fraction separately and then combining the two answers.
Using the results of Examples 1.1 and 1.3, we obtain

(41.6875)1p = (101001.1011),
From Examples 1.2 and 1.4, we have

(153.513), = (231.406517)g

1.4 OCTAL AND HEXADECIMAL NUMBERS

The conversion from and to binary, octal, and hexadecimal plays an important role in digi-
tal computers, because shorter patterns of hex characters are easier to recognize than long
patterns of 1’s and 0’s. Since 2° = 8 and 2* = 16, each octal digit corresponds to three
binary digits and each hexadecimal digit corresponds to four binary digits. The first 16 num-
bers in the decimal, binary, octal, and hexadecimal number systems are listed in Table 1.2.

The conversion from binary to octal is easily accomplished by partitioning the binary
number into groups of three digits each, starting from the binary point and proceeding
to the left and to the right. The corresponding octal digit is then assigned to each group.
The following example illustrates the procedure:

(10 110 001 101 011 - 111 100 000 110), = (26153.7406)g
2 6 1 5 3 7 4 0 6

Section 1.4 Octal and Hexadecimal Numbers 9

Table 1.2
Numbers with Different Bases
Decimal Binary Octal Hexadecimal
(base 10) (base 2) (base 8) (base 16)
00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Conversion from binary to hexadecimal is similar, except that the binary number is
divided into groups of four digits:
(10 1100 0110 1011 - 1111 0010); = (2C6B.F2)4
2 C 6 B F 2

The corresponding hexadecimal (or octal) digit for each group of binary digits is easily
remembered from the values listed in Table 1.2.

Conversion from octal or hexadecimal to binary is done by reversing the preceding
procedure. Each octal digit is converted to its three-digit binary equivalent. Similarly,

each hexadecimal digit is converted to its four-digit binary equivalent. The procedure is
illustrated in the following examples:

(673.124)g = (110 111 011 - 001 010 100),
6 7 3 1 2 4

and

(306.D);s = (0011 0000 0110 - 1101),
3 0 6 D

Binary numbers are difficult to work with because they require three or four times
as many digits as their decimal equivalents. For example, the binary number 111111111111
is equivalent to decimal 4095. However, digital computers use binary numbers, and it is
sometimes necessary for the human operator or user to communicate directly with the

10 Chapter 1 Digital Systems and Binary Numbers

machine by means of such numbers. One scheme that retains the binary system in the
computer, but reduces the number of digits the human must consider, utilizes the rela-
tionship between the binary number system and the octal or hexadecimal system. By this
method, the human thinks in terms of octal or hexadecimal numbers and performs the
required conversion by inspection when direct communication with the machine is nec-
essary. Thus, the binary number 111111111111 has 12 digits and is expressed in octal as
7777 (4 digits) or in hexadecimal as FFF (3 digits). During communication between
people (about binary numbers in the computer), the octal or hexadecimal representa-
tion is more desirable because it can be expressed more compactly with a third or a
quarter of the number of digits required for the equivalent binary number. Thus, most
computer manuals use either octal or hexadecimal numbers to specify binary quantities.
The choice between them is arbitrary, although hexadecimal tends to win out, since it
can represent a byte with two digits.

1.5 COMPLEMENTS OF NUMBERS

Complements are used in digital computers to simplify the subtraction operation and for
logical manipulation. Simplifying operations leads to simpler, less expensive circuits to
implement the operations. There are two types of complements for each base-r system:
the radix complement and the diminished radix complement. The first is referred to as
the r’s complement and the second as the (r — 1)’s complement. When the value of the
base ris substituted in the name, the two types are referred to as the 2’s complement and
1’s complement for binary numbers and the 10’s complement and 9’s complement for
decimal numbers.

Diminished Radix Complement

Given a number N in base r having n digits, the (r — 1)’s complement of N, i.e., its
diminished radix complement, is defined as (+” — 1) — N. For decimal numbers, » = 10
andr — 1 = 9,sothe 9’s complement of Nis (10" — 1) — N. In this case, 10" represents
a number that consists of a single 1 followed by n 0’s. 10" — 1 is a number represented
by n 9’s. For example, if n = 4, we have 10* = 10,000 and 10* — 1 = 9999. It follows
that the 9’s complement of a decimal number is obtained by subtracting each digit from 9.
Here are some numerical examples:

The 9’s complement of 546700 is 999999 — 546700 = 453299.
The 9’s complement of 012398 is 999999 — 012398 = 987601.

For binary numbers, r =2 and r —1=1, so the 1’s complement of N is 2" —1) — N\.
Again,2" is represented by a binary number that consists of a 1 followed by n 0’s.2" — 1
is a binary number represented by n 1’s. For example, if n = 4, we have 2* = (10000),
and 2* — 1 = (1111),. Thus, the 1’s complement of a binary number is obtained by
subtracting each digit from 1. However, when subtracting binary digits from 1, we can

Section 1.5 Complements of Numbers 11

have either1 — 0 = 1or1 — 1 = 0, which causes the bit to change from 0 to 1 or from
1 to 0, respectively. Therefore, the 1’s complement of a binary number is formed by
changing 1’s to 0’s and 0’s to 1’s. The following are some numerical examples:

The 1’s complement of 1011000 is 0100111.
The 1’s complement of 0101101 is 1010010.

The (r — 1)’s complement of octal or hexadecimal numbers is obtained by subtracting
each digit from 7 or F (decimal 15), respectively.

Radix Complement

The r’s complement of an z-digit number N in base r is defined as r* — N for N # 0 and
as0for N = 0. Comparing with the (» — 1)’s complement, we note that the r’s complement
is obtained by adding 1 to the (r — 1)’s complement, since r* — N = [(r" —1) — N] + L.
Thus, the 10’s complement of decimal 2389 is 7610 + 1 = 7611 and is obtained by adding
1 tothe 9’s complement value. The 2’s complement of binary 101100is 010011 + 1 = 010100
and is obtained by adding 1 to the 1’s-complement value.

Since 10 is a number represented by a 1 followed by n 0’s,10" — N, which is the 10’s
complement of N, can be formed also by leaving all least significant 0’s unchanged,
subtracting the first nonzero least significant digit from 10, and subtracting all higher
significant digits from 9. Thus,

the 10’s complement of 012398 is 987602

and
the 10’s complement of 246700 is 753300

The 10’s complement of the first number is obtained by subtracting 8 from 10 in the least
significant position and subtracting all other digits from 9. The 10’s complement of the
second number is obtained by leaving the two least significant 0’s unchanged, subtract-
ing 7 from 10, and subtracting the other three digits from 9.

Similarly, the 2’s complement can be formed by leaving all least significant 0’s and
the first 1 unchanged and replacing 1’s with 0’s and 0’s with 1’s in all other higher sig-
nificant digits. For example,

the 2’s complement of 1101100 is 0010100

and

the 2’s complement of 0110111 is 1001001

The 2’s complement of the first number is obtained by leaving the two least significant
0’s and the first 1 unchanged and then replacing 1’s with 0’s and 0’s with 1’s in the other
four most significant digits. The 2’s complement of the second number is obtained by
leaving the least significant 1 unchanged and complementing all other digits.

12 Chapter 1 Digital Systems and Binary Numbers

In the previous definitions, it was assumed that the numbers did not have a radix point.
If the original number N contains a radix point, the point should be removed temporarily
in order to form the r’s or (r — 1)’s complement. The radix point is then restored to the
complemented number in the same relative position. It is also worth mentioning that the
complement of the complement restores the number to its original value. To see this
relationship, note that the 7’s complement of Nis " — N, so that the complement of the
complement is r* — (r" — N) = N and is equal to the original number.

Subtraction with Complements

The direct method of subtraction taught in elementary schools uses the borrow concept.
In this method, we borrow a 1 from a higher significant position when the minuend digit
is smaller than the subtrahend digit. The method works well when people perform sub-
traction with paper and pencil. However, when subtraction is implemented with digital
hardware, the method is less efficient than the method that uses complements.

The subtraction of two n-digit unsigned numbers M — N in base r can be done as
follows:

1. Add the minuend M to the s complement of the subtrahend N. Mathematically,
M+ @#"—N)=M-—-N+r".

2. If M = N, the sum will produce an end carry r", which can be discarded; what is
left is the result M — N.

3. If M < N, the sum does not produce an end carry and is equal to r" — (N — M),
which is the r’s complement of (N — M). To obtain the answer in a familiar form,
take the r’s complement of the sum and place a negative sign in front.

The following examples illustrate the procedure:

EXAMPLE 1.5

Using 10’s complement, subtract 72532 — 3250.

M= 72532

10’s complement of N = + 96750

Sum = 169282

Discard end carry 10° = — 100000

Answer = 69282
Note that M has five digits and N has only four digits. Both numbers must have the same
number of digits, so we write N as 03250. Taking the 10’s complement of N produces a
9 in the most significant position. The occurrence of the end carry signifies that M = N

and that the result is therefore positive.
[|

Section 1.5 Complements of Numbers 13

EXAMPLE 1.6

Using 10’s complement, subtract 3250 — 72532.

M = 03250
10’s complement of N = + 27468
Sum = 30718

There is no end carry. Therefore, the answer is —(10’s complement of 30718) = —69282.
Note that since 3250 < 72532, the result is negative. Because we are dealing with
unsigned numbers, there is really no way to get an unsigned result for this case. When
subtracting with complements, we recognize the negative answer from the absence
of the end carry and the complemented result. When working with paper and pencil,
we can change the answer to a signed negative number in order to put it in a famil-
iar form.
Subtraction with complements is done with binary numbers in a similar manner, using
the procedure outlined previously.
|

EXAMPLE 1.7

Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction
(a) X — Y and (b) Y — X by using 2’s complements.
(a) X = 1010100
2’s complement of Y = + 0111101
Sum = 10010001
Discard end carry 2’ = — 10000000

Answer: X — Y = 0010001

(b) Y= 1000011
2’s complement of X = + 0101100

Sum = 1101111

There is no end carry. Therefore, the answer is Y — X = —(2’s complement of 1101111) =

—0010001.
|

Subtraction of unsigned numbers can also be done by means of the (r — 1)’s com-
plement. Remember that the (r — 1)’s complement is one less than the r’s comple-
ment. Because of this, the result of adding the minuend to the complement of the
subtrahend produces a sum that is one less than the correct difference when an end
carry occurs. Removing the end carry and adding 1 to the sum is referred to as an
end-around carry.

14 Chapter 1 Digital Systems and Binary Numbers

EXAMPLE 1.8

Repeat Example 1.7 but this time using 1’s complement.

(a) X — Y = 1010100 — 1000011

X = 1010100

1’s complement of Y = + 0111100
Sum = 10010000

End-around carry = + 1
Answer: X — Y = 0010001

(b) Y — X = 1000011 — 1010100

Y = 1000011
1’s complement of X = + 0101011
Sum = 1101110
There is no end carry. Therefore, the answer is Y — X = —(1’s complement of 1101110) =

—0010001.
[|

Note that the negative result is obtained by taking the 1’s complement of the sum, since
this is the type of complement used. The procedure with end-around carry is also appli-
cable to subtracting unsigned decimal numbers with 9’s complement.

1.6 SIGNED BINARY NUMBERS

Positive integers (including zero) can be represented as unsigned numbers. However, to
represent negative integers, we need a notation for negative values. In ordinary arith-
metic, a negative number is indicated by a minus sign and a positive number by a plus
sign. Because of hardware limitations, computers must represent everything with binary
digits. It is customary to represent the sign with a bit placed in the leftmost position of
the number. The convention is to make the sign bit 0 for positive and 1 for negative.

It is important to realize that both signed and unsigned binary numbers consist of a
string of bits when represented in a computer. The user determines whether the number
is signed or unsigned. If the binary number is signed, then the leftmost bit represents the
sign and the rest of the bits represent the number. If the binary number is assumed to
be unsigned, then the leftmost bit is the most significant bit of the number. For example,
the string of bits 01001 can be considered as 9 (unsigned binary) or as +9 (signed binary)
because the leftmost bit is 0. The string of bits 11001 represents the binary equivalent of
25 when considered as an unsigned number and the binary equivalent of —9 when con-
sidered as a signed number. This is because the 1 that is in the leftmost position designates
a negative and the other four bits represent binary 9. Usually, there is no confusion in
interpreting the bits if the type of representation for the number is known in advance.

Section 1.6 Signed Binary Numbers 15

The representation of the signed numbers in the last example is referred to as the
signed-magnitude convention. In this notation, the number consists of a magnitude and
asymbol (+ or —) or a bit (0 or 1) indicating the sign. This is the representation of signed
numbers used in ordinary arithmetic. When arithmetic operations are implemented in
a computer, it is more convenient to use a different system, referred to as the signed-
complement system, for representing negative numbers. In this system, a negative num-
ber is indicated by its complement. Whereas the signed-magnitude system negates a
number by changing its sign, the signed-complement system negates a number by taking
its complement. Since positive numbers always start with 0 (plus) in the leftmost posi-
tion, the complement will always start with a 1, indicating a negative number. The
signed-complement system can use either the 1’s or the 2’s complement, but the 2’s
complement is the most common.

As an example, consider the number 9, represented in binary with eight bits. +9 is
represented with a sign bit of 0 in the leftmost position, followed by the binary equiva-
lent of 9, which gives 00001001. Note that all eight bits must have a value; therefore, 0’s
are inserted following the sign bit up to the first 1. Although there is only one way to
represent +9, there are three different ways to represent —9 with eight bits:

signed-magnitude representation: 10001001
signed-1’s-complement representation: 11110110
signed-2’s-complement representation: 11110111

In signed-magnitude, —9 is obtained from +9 by changing only the sign bit in the leftmost
position from 0 to 1. In signed-1’s-complement, —9 is obtained by complementing all the
bits of +9, including the sign bit. The signed-2’s-complement representation of —9 is
obtained by taking the 2’s complement of the positive number, including the sign bit.

Table 1.3 lists all possible four-bit signed binary numbers in the three representations.
The equivalent decimal number is also shown for reference. Note that the positive num-
bers in all three representations are identical and have 0 in the leftmost position. The
signed-2’s-complement system has only one representation for 0, which is always posi-
tive. The other two systems have either a positive 0 or a negative 0, something not
encountered in ordinary arithmetic. Note that all negative numbers have a 1 in the
leftmost bit position; that is the way we distinguish them from the positive numbers.
With four bits, we can represent 16 binary numbers. In the signed-magnitude and the
1’s-complement representations, there are eight positive numbers and eight negative
numbers, including two zeros. In the 2’s-complement representation, there are eight
positive numbers, including one zero, and eight negative numbers.

The signed-magnitude system is used in ordinary arithmetic, but is awkward when
employed in computer arithmetic because of the separate handling of the sign and the
magnitude. Therefore, the signed-complement system is normally used. The 1’s com-
plement imposes some difficulties and is seldom used for arithmetic operations. It is
useful as a logical operation, since the change of 1 to 0 or 0 to 1 is equivalent to a
logical complement operation, as will be shown in the next chapter. The discussion of
signed binary arithmetic that follows deals exclusively with the signed-2’s-complement

16 Chapter 1 Digital Systems and Binary Numbers

Table 1.3
Signed Binary Numbers
Signed-2’s Signed-1's Signed
Decimal Complement Complement Magnitude

+7 0111 0111 0111
+6 0110 0110 0110
+5 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
+2 0010 0010 0010
+1 0001 0001 0001
+0 0000 0000 0000
-0 — 1111 1000
-1 1111 1110 1001
-2 1110 1101 1010
-3 1101 1100 1011
—4 1100 1011 1100
-5 1011 1010 1101
-6 1010 1001 1110
=7 1001 1000 1111
-8 1000 — —

representation of negative numbers. The same procedures can be applied to the
signed-1’s-complement system by including the end-around carry as is done with
unsigned numbers.

Arithmetic Addition

The addition of two numbers in the signed-magnitude system follows the rules of
ordinary arithmetic. If the signs are the same, we add the two magnitudes and give
the sum the common sign. If the signs are different, we subtract the smaller magni-
tude from the larger and give the difference the sign of the larger magnitude. For
example, (+25) + (=37) = —(37 — 25) = —12is done by subtracting the smaller mag-
nitude, 25, from the larger magnitude, 37 and appending the sign of 37 to the result.
This is a process that requires a comparison of the signs and magnitudes and then per-
forming either addition or subtraction. The same procedure applies to binary numbers
in signed-magnitude representation. In contrast, the rule for adding numbers in the
signed-complement system does not require a comparison or subtraction, but only
addition. The procedure is very simple and can be stated as follows for binary numbers:

The addition of two signed binary numbers with negative numbers represented in
signed-2’s-complement form is obtained from the addition of the two numbers, includ-
ing their sign bits. A carry out of the sign-bit position is discarded.

Section 1.6 Signed Binary Numbers 17

Numerical examples for addition follow:

+ 6 00000110 - 6 11111010
+13 00001101 +13 00001101
+19 00010011 + 7 00000111
+ 6 00000110 - 6 11111010
—13 11110011 —13 11110011
- 7 11111001 —19 11101101

Note that negative numbers must be initially in 2’s-complement form and that if the sum
obtained after the addition is negative, it is in 2’s-complement form. For example, —7 is
represented as 11111001, which is the 2s complement of +7.

In each of the four cases, the operation performed is addition with the sign bit
included. Any carry out of the sign-bit position is discarded, and negative results are
automatically in 2’s-complement form.

In order to obtain a correct answer, we must ensure that the result has a sufficient
number of bits to accommodate the sum. If we start with two n-bit numbers and the sum
occupies n + 1 bits, we say that an overflow occurs. When one performs the addition with
paper and pencil, an overflow is not a problem, because we are not limited by the width
of the page. We just add another 0 to a positive number or another 1 to a negative number
in the most significant position to extend the number to n + 1 bits and then perform the
addition. Overflow is a problem in computers because the number of bits that hold a
number is finite, and a result that exceeds the finite value by 1 cannot be accommodated.

The complement form of representing negative numbers is unfamiliar to those used
to the signed-magnitude system. To determine the value of a negative number in signed-2’s
complement, it is necessary to convert the number to a positive number to place it in a
more familiar form. For example, the signed binary number 11111001 is negative because
the leftmost bit is 1. Its 2’s complement is 00000111, which is the binary equivalent of
+7. We therefore recognize the original negative number to be equal to —7.

Arithmetic Subtraction
Subtraction of two signed binary numbers when negative numbers are in 2’s-complement
form is simple and can be stated as follows:

Take the 2’s complement of the subtrahend (including the sign bit) and add it to the
minuend (including the sign bit). A carry out of the sign-bit position is discarded.

This procedure is adopted because a subtraction operation can be changed to an addi-
tion operation if the sign of the subtrahend is changed, as is demonstrated by the
following relationship:

(£A4) = (+B) = (£A) + (-B);

(£A) — =B) = (£A) + (+B).
But changing a positive number to a negative number is easily done by taking the 2’s
complement of the positive number. The reverse is also true, because the complement

18

1.

Chapter 1 Digital Systems and Binary Numbers

of a negative number in complement form produces the equivalent positive number. To
see this, consider the subtraction (—6) — (—13) = +7. In binary with eight bits, this
operation is written as (11111010 — 11110011). The subtraction is changed to addition
by taking the 2’s complement of the subtrahend (—13), giving (+13). In binary, this is
11111010 + 00001101 = 100000111. Removing the end carry, we obtain the correct
answer: 00000111 (+7).

It is worth noting that binary numbers in the signed-complement system are added
and subtracted by the same basic addition and subtraction rules as unsigned numbers.
Therefore, computers need only one common hardware circuit to handle both types of
arithmetic. This consideration has resulted in the signed-complement system being used
in virtually all arithmetic units of computer systems. The user or programmer must
interpret the results of such addition or subtraction differently, depending on whether
it is assumed that the numbers are signed or unsigned.

BINARY CODES

Digital systems use signals that have two distinct values and circuit elements that
have two stable states. There is a direct analogy among binary signals, binary circuit
elements, and binary digits. A binary number of n digits, for example, may be repre-
sented by n binary circuit elements, each having an output signal equivalent to 0 or 1.
Digital systems represent and manipulate not only binary numbers, but also many
other discrete elements of information. Any discrete element of information that is
distinct among a group of quantities can be represented with a binary code (i.e., a
pattern of 0’s and 1’s). The codes must be in binary because, in today’s technology,
only circuits that represent and manipulate patterns of 0’s and 1’s can be manufac-
tured economically for use in computers. However, it must be realized that binary
codes merely change the symbols, not the meaning of the elements of information
that they represent. If we inspect the bits of a computer at random, we will find that
most of the time they represent some type of coded information rather than binary
numbers.

An n-bit binary code is a group of » bits that assumes up to 2" distinct combinations
of 1’s and 0’s, with each combination representing one element of the set that is being
coded. A set of four elements can be coded with two bits, with each element assigned
one of the following bit combinations: 00, 01, 10, 11. A set of eight elements requires a
three-bit code and a set of 16 elements requires a four-bit code. The bit combination of
an n-bit code is determined from the count in binary from 0 to 2" — 1. Each element
must be assigned a unique binary bit combination, and no two elements can have the
same value; otherwise, the code assignment will be ambiguous.

Although the minimum number of bits required to code 2" distinct quantities is 7,
there is no maximum number of bits that may be used for a binary code. For example,
the 10 decimal digits can be coded with 10 bits, and each decimal digit can be assigned
a bit combination of nine 0’s and a 1. In this particular binary code, the digit 6 is assigned
the bit combination 0001000000.

Section 1.7 Binary Codes 19

Binary-Coded Decimal Code

Although the binary number system is the most natural system for a computer because
it is readily represented in today’s electronic technology, most people are more accus-
tomed to the decimal system. One way to resolve this difference is to convert decimal
numbers to binary, perform all arithmetic calculations in binary, and then convert the
binary results back to decimal. This method requires that we store decimal numbers in
the computer so that they can be converted to binary. Since the computer can accept
only binary values, we must represent the decimal digits by means of a code that contains
1’s and 0’s. It is also possible to perform the arithmetic operations directly on decimal
numbers when they are stored in the computer in coded form.

A binary code will have some unassigned bit combinations if the number of elements
in the set is not a multiple power of 2. The 10 decimal digits form such a set. A binary
code that distinguishes among 10 elements must contain at least four bits, but 6 out of
the 16 possible combinations remain unassigned. Different binary codes can be obtained
by arranging four bits into 10 distinct combinations. The code most commonly used for
the decimal digits is the straight binary assignment listed in Table 1.4. This scheme is
called binary-coded decimal and is commonly referred to as BCD. Other decimal codes
are possible and a few of them are presented later in this section.

Table 1.4 gives the four-bit code for one decimal digit. A number with k& decimal
digits will require 4k bits in BCD. Decimal 396 is represented in BCD with 12 bits as
0011 1001 0110, with each group of 4 bits representing one decimal digit. A decimal
number in BCD is the same as its equivalent binary number only when the number is
between 0 and 9. A BCD number greater than 10 looks different from its equivalent
binary number, even though both contain 1’s and 0’s. Moreover, the binary combina-
tions 1010 through 1111 are not used and have no meaning in BCD. Consider decimal
185 and its corresponding value in BCD and binary:

(185);0 = (0001 1000 0101)gcp = (10111001),

Table 1.4
Binary-Coded Decimal (BCD)
Decimal BCD
Symbol Digit
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

20

Chapter 1 Digital Systems and Binary Numbers

The BCD value has 12 bits to encode the characters of the decimal value, but the equiv-
alent binary number needs only 8 bits. It is obvious that the representation of a BCD
number needs more bits than its equivalent binary value. However, there is an advantage
in the use of decimal numbers, because computer input and output data are generated
by people who use the decimal system.

It is important to realize that BCD numbers are decimal numbers and not binary
numbers, although they use bits in their representation. The only difference between a
decimal number and BCD is that decimals are written with the symbols 0,1,2, ... ,9
and BCD numbers use the binary code 0000,0001,0010, ... ,1001.The decimal value
is exactly the same. Decimal 10 is represented in BCD with eight bits as 0001 0000 and
decimal 15 as 0001 0101. The corresponding binary values are 1010 and 1111 and have
only four bits.

BCD Addition

Consider the addition of two decimal digits in BCD, together with a possible carry
from a previous less significant pair of digits. Since each digit does not exceed 9, the
sum cannot be greater than 9 + 9 + 1 = 19, with the 1 being a previous carry. Sup-
pose we add the BCD digits as if they were binary numbers. Then the binary sum will
produce a result in the range from 0 to 19. In binary, this range will be from 0000 to
10011, but in BCD, it is from 0000 to 1 1001, with the first (i.e., leftmost) 1 being a
carry and the next four bits being the BCD sum. When the binary sum is equal to or
less than 1001 (without a carry), the corresponding BCD digit is correct. However,
when the binary sum is greater than or equal to 1010, the result is an invalid BCD
digit. The addition of 6 = (0110), to the binary sum converts it to the correct digit and
also produces a carry as required. This is because a carry in the most significant bit
position of the binary sum and a decimal carry differ by 16 — 10 = 6. Consider the
following three BCD additions:

4 0100 4 0100 8 1000
+5 40101 +8 +1000 +9 1001
9 1001 12 1100 17 10001

+0110 +0110

10010 10111

In each case, the two BCD digits are added as if they were two binary numbers. If the
binary sum is greater than or equal to 1010, we add 0110 to obtain the correct BCD sum
and a carry. In the first example, the sum is equal to 9 and is the correct BCD sum. In
the second example, the binary sum produces an invalid BCD digit. The addition of 0110
produces the correct BCD sum, 0010 (i.e., the number 2), and a carry. In the third
example, the binary sum produces a carry. This condition occurs when the sum is greater
than or equal to 16. Although the other four bits are less than 1001, the binary sum
requires a correction because of the carry. Adding 0110, we obtain the required BCD
sum 0111 (i.e., the number 7) and a BCD carry.

Section 1.7 Binary Codes 21

The addition of two n-digit unsigned BCD numbers follows the same procedure.
Consider the addition of 184 + 576 = 760 in BCD:

BCD 1 1
0001 1000 0100 184
+0101 0111 0110 +576
Binary sum 0111 10000 1010
Add 6 0110 0110
BCD sum 0111 0110 0000 760

The first, least significant pair of BCD digits produces a BCD digit sum of 0000 and a
carry for the next pair of digits. The second pair of BCD digits plus a previous carry
produces a digit sum of 0110 and a carry for the next pair of digits. The third pair of
digits plus a carry produces a binary sum of 0111 and does not require a correction.

Decimal Arithmetic

The representation of signed decimal numbers in BCD is similar to the representation
of signed numbers in binary. We can use either the familiar signed-magnitude system or
the signed-complement system. The sign of a decimal number is usually represented
with four bits to conform to the four-bit code of the decimal digits. It is customary to
designate a plus with four 0’s and a minus with the BCD equivalent of 9, which is 1001.

The signed-magnitude system is seldom used in computers. The signed-complement
system can be either the 9’s or the 10’s complement, but the 10’s complement is the one
most often used. To obtain the 10’s complement of a BCD number, we first take the 9’s
complement and then add 1 to the least significant digit. The 9’s complement is calcu-
lated from the subtraction of each digit from 9.

The procedures developed for the signed-2’s-complement system in the previous
section also apply to the signed-10’s-complement system for decimal numbers. Addition
is done by summing all digits, including the sign digit, and discarding the end carry. This
operation assumes that all negative numbers are in 10’s-complement form. Consider the
addition (+375) + (—240) = +135, done in the signed-complement system:

0 375
+9 760
0 135

The 9 in the leftmost position of the second number represents a minus, and 9760 is
the 10’s complement of 0240. The two numbers are added and the end carry is dis-
carded to obtain +135. Of course, the decimal numbers inside the computer, including
the sign digits, must be in BCD. The addition is done with BCD digits as described
previously.

The subtraction of decimal numbers, either unsigned or in the signed-10’s-complement
system, is the same as in the binary case: Take the 10’s complement of the subtrahend and
add it to the minuend. Many computers have special hardware to perform arithmetic

22 Chapter 1 Digital Systems and Binary Numbers

calculations directly with decimal numbers in BCD. The user of the computer can specify
programmed instructions to perform the arithmetic operation with decimal numbers
directly, without having to convert them to binary.

Other Decimal Codes

Binary codes for decimal digits require a minimum of four bits per digit. Many different
codes can be formulated by arranging four bits into 10 distinct combinations. BCD and
three other representative codes are shown in Table 1.5. Each code uses only 10 out of
a possible 16 bit combinations that can be arranged with four bits. The other six unused
combinations have no meaning and should be avoided.

BCD and the 2421 code are examples of weighted codes. In a weighted code, each bit
position is assigned a weighting factor in such a way that each digit can be evaluated by
adding the weights of all the 1’s in the coded combination. The BCD code has weights
of 8,4,2,and 1, which correspond to the power-of-two values of each bit. The bit assign-
ment 0110, for example, is interpreted by the weights to represent decimal 6 because
8X0+4X1+2X1+1X0=6.The bit combination 1101, when weighted by the
respective digits 2421, gives the decimal equivalent of 2X1+4X1+2X0+1X1="7
Note that some digits can be coded in two possible ways in the 2421 code. For instance,
decimal 4 can be assigned to bit combination 0100 or 1010, since both combinations add
up to a total weight of 4.

Table 1.5
Four Different Binary Codes for the Decimal Digits
Decimal BCD
Digit 8421 2421 Excess-3 8,4, -2, -1
0 0000 0000 0011 0000
1 0001 0001 0100 0111
2 0010 0010 0101 0110
3 0011 0011 0110 0101
4 0100 0100 0111 0100
5 0101 1011 1000 1011
6 0110 1100 1001 1010
7 0111 1101 1010 1001
8 1000 1110 1011 1000
9 1001 1111 1100 1111
1010 0101 0000 0001
Unused 1011 0110 0001 0010
bit 1100 0111 0010 0011
combi- 1101 1000 1101 1100
nations 1110 1001 1110 1101

1111 1010 1111 1110

Section 1.7 Binary Codes 23

BCD adders add BCD values directly, digit by digit, without converting the numbers
to binary. However, it is necessary to add 6 to the result if it is greater than 9. BCD
adders require significantly more hardware and no longer have a speed advantage of
conventional binary adders [5].

The 2421 and the excess-3 codes are examples of self-complementing codes. Such
codes have the property that the 9’s complement of a decimal number is obtained
directly by changing 1’s to 0’s and 0’s to 1’s (i.e., by complementing each bit in the pat-
tern). For example, decimal 395 is represented in the excess-3 code as 0110 1100 1000.
The 9’s complement of 604 is represented as 1001 0011 0111, which is obtained simply
by complementing each bit of the code (as with the 1’s complement of binary numbers).

The excess-3 code has been used in some older computers because of its self-
complementing property. Excess-3 is an unweighted code in which each coded com-
bination is obtained from the corresponding binary value plus 3. Note that the BCD
code is not self-complementing.

The 8,4, —2, —1 code is an example of assigning both positive and negative weights
to a decimal code. In this case, the bit combination 0110 is interpreted as decimal 2 and
is calculated from 8 X 0 + 4 X 1 + (=2) X 1 + (=1) X 0 = 2.

Gray Code

The output data of many physical systems are quantities that are continuous. These
data must be converted into digital form before they are applied to a digital system.
Continuous or analog information is converted into digital form by means of an ana-
log-to-digital converter. It is sometimes convenient to use the Gray code shown in
Table 1.6 to represent digital data that have been converted from analog data. The
advantage of the Gray code over the straight binary number sequence is that only
one bit in the code group changes in going from one number to the next. For example,
in going from 7 to 8, the Gray code changes from 0100 to 1100. Only the first bit
changes, from 0 to 1; the other three bits remain the same. By contrast, with binary
numbers the change from 7 to 8 will be from 0111 to 1000, which causes all four bits
to change values.

The Gray code is used in applications in which the normal sequence of binary numbers
generated by the hardware may produce an error or ambiguity during the transition from
one number to the next. If binary numbers are used, a change, for example, from 0111 to
1000 may produce an intermediate erroneous number 1001 if the value of the rightmost
bit takes longer to change than do the values of the other three bits. This could have seri-
ous consequences for the machine using the information. The Gray code eliminates this
problem, since only one bit changes its value during any transition between two numbers.

A typical application of the Gray code is the representation of analog data by a con-
tinuous change in the angular position of a shaft. The shaft is partitioned into segments,
and each segment is assigned a number. If adjacent segments are made to correspond
with the Gray-code sequence, ambiguity is eliminated between the angle of the shaft
and the value encoded by the sensor.

24

Chapter 1 Digital Systems and Binary Numbers

Table 1.6
Gray Code

Gray Decimal
Code Equivalent
0000 0
0001 1
0011 2
0010 3
0110 4
0111 5
0101 6
0100 7
1100 8
1101 9
1111 10
1110 11
1010 12
1011 13
1001 14
1000 15

ASCII Character Code

Many applications of digital computers require the handling not only of numbers, but
also of other characters or symbols, such as the letters of the alphabet. For instance,
consider a high-tech company with thousands of employees. To represent the names
and other pertinent information, it is necessary to formulate a binary code for the let-
ters of the alphabet. In addition, the same binary code must represent numerals and
special characters (such as $). An alphanumeric character set is a set of elements that
includes the 10 decimal digits, the 26 letters of the alphabet, and a number of special
characters. Such a set contains between 36 and 64 elements if only capital letters are
included, or between 64 and 128 elements if both uppercase and lowercase letters are
included. In the first case, we need a binary code of six bits, and in the second, we need
a binary code of seven bits.

The standard binary code for the alphanumeric characters is the American Standard
Code for Information Interchange (ASCII), which uses seven bits to code 128 charac-
ters, as shown in Table 1.7 The seven bits of the code are designated by b; through b,
with b; the most significant bit. The letter A, for example, is represented in ASCII as
1000001 (column 100, row 0001). The ASCII code also contains 94 graphic characters
that can be printed and 34 nonprinting characters used for various control functions.
The graphic characters consist of the 26 uppercase letters (A through Z), the 26 lower-
case letters (a through z), the 10 numerals (0 through 9), and 32 special printable char-
acters, such as %, *, and §.

Section 1.7 Binary Codes 25

Table 1.7
American Standard Code for Information Interchange (ASCII)
bsbebs

bsbsb,b; 000 001 010 011 100 101 110 111
0000 NUL DLE SP 0 @ P p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 «“ 2 B R b T
0011 ETX DC3 # 3 C S c S
0100 EOT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F A" f v
0111 BEL ETB ¢ 7 G w g w
1000 BS CAN (8 H X h X
1001 HT EM) 9 I Y i y
1010 LF SUB * : J zZ j VA
1011 VT ESC + ; K [k {
1100 FF FS , < L \ 1 |
1101 CR GS - = M] m }
1110 SO RS . > N A n ~
1111 SI UsS / ? O - o DEL

Control Characters

NUL Null DLE Data-link escape

SOH Start of heading DC1 Device control 1

STX Start of text DC2 Device control 2

ETX End of text DC3 Device control 3

EOT End of transmission DC4 Device control 4

ENQ Enquiry NAK Negative acknowledge

ACK Acknowledge SYN Synchronous idle

BEL Bell ETB End-of-transmission block

BS Backspace CAN Cancel

HT Horizontal tab EM End of medium

LF Line feed SUB Substitute

VT Vertical tab ESC Escape

FF Form feed FS File separator

CR Carriage return GS Group separator

SO Shift out RS Record separator

SI Shift in [ON] Unit separator

SP Space DEL Delete

The 34 control characters are designated in the ASCII table with abbreviated names. They
are listed again below the table with their functional names. The control characters are used
for routing data and arranging the printed text into a prescribed format. There are three types
of control characters: format effectors, information separators, and communication-control

26

Chapter 1 Digital Systems and Binary Numbers

characters. Format effectors are characters that control the layout of printing. They include
the familiar word processor and typewriter controls such as backspace (BS), horizontal tabu-
lation (HT), and carriage return (CR). Information separators are used to separate the data
into divisions such as paragraphs and pages. They include characters such as record separator
(RS) and file separator (FS). The communication-control characters are useful during
the transmission of text between remote devices so that it can be distinguished from other
messages using the same communication channel before it and after it. Examples of
communication-control characters are STX (start of text) and ETX (end of text), which are
used to frame a text message transmitted through a communication channel.

ASCII is a seven-bit code, but most computers manipulate an eight-bit quantity
as a single unit called a byte. Therefore, ASCII characters most often are stored one
per byte. The extra bit is sometimes used for other purposes, depending on the appli-
cation. For example, some printers recognize eight-bit ASCII characters with the
most significant bit set to 0. An additional 128 eight-bit characters with the most
significant bit set to 1 are used for other symbols, such as the Greek alphabet or italic
type font.

Error-Detecting Code

To detect errors in data communication and processing, an eighth bit is sometimes added
to the ASCII character to indicate its parity. A parity bit is an extra bit included with a
message to make the total number of 1’s either even or odd. Consider the following two
characters and their even and odd parity:

With even parity With odd parity
ASCII A = 1000001 01000001 11000001
ASCII'T = 1010100 11010100 01010100

In each case, we insert an extra bit in the leftmost position of the code to produce an
even number of 1’s in the character for even parity or an odd number of 1’s in the char-
acter for odd parity. In general, one or the other parity is adopted, with even parity being
more common.

The parity bit is helpful in detecting errors during the transmission of information
from one location to another. This function is handled by generating an even parity bit
at the sending end for each character. The eight-bit characters that include parity bits
are transmitted to their destination. The parity of each character is then checked at the
receiving end. If the parity of the received character is not even, then at least one bit has
changed value during the transmission. This method detects one, three, or any odd com-
bination of errors in each character that is transmitted. An even combination of errors,
however, goes undetected, and additional error detection codes may be needed to take
care of that possibility.

What is done after an error is detected depends on the particular application. One
possibility is to request retransmission of the message on the assumption that the error
was random and will not occur again. Thus, if the receiver detects a parity error, it sends

Section 1.8 Binary Storage and Registers 27

back the ASCII NAK (negative acknowledge) control character consisting of an even-
parity eight bits 10010101. If no error is detected, the receiver sends back an ACK
(acknowledge) control character, namely, 00000110. The sending end will respond to an
NAK by transmitting the message again until the correct parity is received. If, after a
number of attempts, the transmission is still in error, a message can be sent to the oper-
ator to check for malfunctions in the transmission path.

1.8 BINARY STORAGE AND REGISTERS

The binary information in a digital computer must have a physical existence in some
medium for storing individual bits. A binary cell is a device that possesses two stable
states and is capable of storing one bit (0 or 1) of information. The input to the cell
receives excitation signals that set it to one of the two states. The output of the cell is
a physical quantity that distinguishes between the two states. The information stored
in a cell is 1 when the cell is in one stable state and 0 when the cell is in the other stable
state.

Registers

A registeris a group of binary cells. A register with # cells can store any discrete quantity
of information that contains # bits. The state of a register is an n-tuple of 1’s and 0’s, with
each bit designating the state of one cell in the register. The content of a register is a
function of the interpretation given to the information stored in it. Consider, for example,
a 16-bit register with the following binary content:

1100001111001001

A register with 16 cells can be in one of 2'° possible states. If one assumes that the con-
tent of the register represents a binary integer, then the register can store any binary
number from 0 to 2!® — 1. For the particular example shown, the content of the register
is the binary equivalent of the decimal number 50,121. If one assumes instead that the
register stores alphanumeric characters of an eight-bit code, then the content of the
register is any two meaningful characters. For the ASCII code with an even parity placed
in the eighth most significant bit position, the register contains the two characters C (the
leftmost eight bits) and I (the rightmost eight bits). If, however, one interprets the con-
tent of the register to be four decimal digits represented by a four-bit code, then the
content of the register is a four-digit decimal number. In the excess-3 code, the register
holds the decimal number 9,096. The content of the register is meaningless in BCD,
because the bit combination 1100 is not assigned to any decimal digit. From this exam-
ple,itis clear that a register can store discrete elements of information and that the same
bit configuration may be interpreted differently for different types of data depending
on the application.

28

Chapter 1 Digital Systems and Binary Numbers

Register Transfer

A digital system is characterized by its registers and the components that perform data
processing. In digital systems, a register transfer operation is a basic operation that con-
sists of a transfer of binary information from one set of registers into another set of
registers. The transfer may be direct, from one register to another, or may pass through
data-processing circuits to perform an operation. Figure 1.1 illustrates the transfer of infor-
mation among registers and demonstrates pictorially the transfer of binary information
from a keyboard into a register in the memory unit. The input unit is assumed to have a
keyboard, a control circuit, and an input register. Each time a key is struck, the control
circuit enters an equivalent eight-bit alphanumeric character code into the input register.
We shall assume that the code used is the ASCII code with an odd-parity bit. The informa-
tion from the input register is transferred into the eight least significant cells of a processor
register. After every transfer, the input register is cleared to enable the control to insert a
new eight-bit code when the keyboard is struck again. Each eight-bit character transferred
to the processor register is preceded by a shift of the previous character to the next eight
cells on its left. When a transfer of four characters is completed, the processor register is
full, and its contents are transferred into a memory register. The content stored in the

MEMORY UNIT
J o H
t t t t i Memory
01001010010011111100100011001110 Register

PROCESSOR UNIT

| 8 cells |<—| 8 cells |<—| 8 cells |<—| 8 cells gt:;s:tsz?r

INPUT UNIT Input

8 cells Register

CONTROL

Keyboard

@O

FIGURE 1.1
Transfer of information among registers

Section 1.8 Binary Storage and Registers 29

memory register shown in Fig. 1.1 came from the transfer of the characters “J,” “O,” “H.,”
and “N” after the four appropriate keys were struck.

To process discrete quantities of information in binary form, a computer must be
provided with devices that hold the data to be processed and with circuit elements that
manipulate individual bits of information. The device most commonly used for holding
data is a register. Binary variables are manipulated by means of digital logic circuits.
Figure 1.2 illustrates the process of adding two 10-bit binary numbers. The memory unit,
which normally consists of millions of registers, is shown with only three of its registers.
The part of the processor unit shown consists of three registers—RI, R2, and R3—
together with digital logic circuits that manipulate the bits of R/ and R2 and transfer into
R3 a binary number equal to their arithmetic sum. Memory registers store information
and are incapable of processing the two operands. However, the information stored in
memory can be transferred to processor registers, and the results obtained in processor
registers can be transferred back into a memory register for storage until needed again.
The diagram shows the contents of two operands transferred from two memory registers

MEMORY UNIT

Sum

0000000000}

Operand 1

}0011100001

Operand 2

}0001000010|

I0001000010|R1

Digital logic
circuits for —>0100100011|R3
binary addition

I0011100001|R2

PROCESSOR UNIT

FIGURE 1.2
Example of binary information processing

30

1.

Chapter 1 Digital Systems and Binary Numbers

into R/ and R2.The digital logic circuits produce the sum, which is transferred to register
R3.The contents of R3 can now be transferred back to one of the memory registers.

The last two examples demonstrated the information-flow capabilities of a digital
system in a simple manner. The registers of the system are the basic elements for storing
and holding the binary information. Digital logic circuits process the binary information
stored in the registers. Digital logic circuits and registers are covered in Chapters 2
through 6. The memory unit is explained in Chapter 7 The description of register oper-
ations at the register transfer level and the design of digital systems are covered in
Chapter 8.

BINARY LOGIC

Binary logic deals with variables that take on two discrete values and with operations
that assume logical meaning. The two values the variables assume may be called by dif-
ferent names (true and false, yes and no, etc.), but for our purpose, it is convenient to
think in terms of bits and assign the values 1 and 0. The binary logic introduced in this
section is equivalent to an algebra called Boolean algebra. The formal presentation of
Boolean algebra is covered in more detail in Chapter 2. The purpose of this section is
to introduce Boolean algebra in a heuristic manner and relate it to digital logic circuits
and binary signals.

Definition of Binary Logic

Binary logic consists of binary variables and a set of logical operations. The variables are
designated by letters of the alphabet, such as A, B, C, x, y, z, etc., with each variable hav-
ing two and only two distinct possible values: 1 and 0. There are three basic logical oper-
ations: AND, OR, and NOT. Each operation produces a binary result, denoted by z.

1. AND:This operation is represented by a dot or by the absence of an operator. For
example,x+y = zorxy = zisread “x AND yis equal to z.” The logical operation
AND is interpreted to mean that z = 1 ifand onlyif x = 1 and y = 1; otherwise
z = 0. (Remember that x, y, and z are binary variables and can be equal either to
1 or 0, and nothing else.) The result of the operation x - y is z.

2. OR:This operation is represented by a plus sign. For example, x + y = z is read
“x OR y is equal to z,” meaning that z = 1ifx = lorify = lorif bothx =1
andy = 1. If bothx = 0and y = 0, then z = 0.

3. NOT: This operation is represented by a prime (sometimes by an overbar). For
example, x' = z (or X = z) is read “not x is equal to z,” meaning that z is what x
is not. In other words, if x = 1, then z = 0, but if x = 0, then z = 1. The NOT
operation is also referred to as the complement operation, since it changes a 1 to
0 and a 0 to 1, i.e., the result of complementing 1 is 0, and vice versa.

Binary logic resembles binary arithmetic, and the operations AND and OR have
similarities to multiplication and addition, respectively. In fact, the symbols used for

Section 1.9 Binary Logic 31

Table 1.8
Truth Tables of Logical Operations
AND NOT
x | x'
1
110

AND and OR are the same as those used for multiplication and addition. However,
binary logic should not be confused with binary arithmetic. One should realize that an
arithmetic variable designates a number that may consist of many digits. A logic vari-
able is always either 1 or 0. For example, in binary arithmetic, we have 1 + 1 = 10 (read
“one plus one is equal to 2”), whereas in binary logic, we have 1 + 1 = 1 (read “one
OR one is equal to one”).

For each combination of the values of x and y, there is a value of z specified by the
definition of the logical operation. Definitions of logical operations may be listed in a
compact form called fruth tables. A truth table is a table of all possible combinations of
the variables, showing the relation between the values that the variables may take and
the result of the operation. The truth tables for the operations AND and OR with vari-
ables x and y are obtained by listing all possible values that the variables may have when
combined in pairs. For each combination, the result of the operation is then listed in a
separate row. The truth tables for AND, OR, and NOT are given in Table 1.8. These
tables clearly demonstrate the definition of the operations.

Logic Gates

Logic gates are electronic circuits that operate on one or more input signals to pro-
duce an output signal. Electrical signals such as voltages or currents exist as analog
signals having values over a given continuous range, say, 0 to 3 V, but in a digital
system these voltages are interpreted to be either of two recognizable values, 0 or 1.
Voltage-operated logic circuits respond to two separate voltage levels that represent a
binary variable equal to logic 1 or logic 0. For example, a particular digital system may
define logic 0 as a signal equal to 0 V and logic 1 as a signal equal to 3 V. In practice,
each voltage level has an acceptable range, as shown in Fig. 1.3. The input terminals of
digital circuits accept binary signals within the allowable range and respond at the
output terminals with binary signals that fall within the specified range. The intermedi-
ate region between the allowed regions is crossed only during a state transition. Any
desired information for computing or control can be operated on by passing binary
signals through various combinations of logic gates, with each signal representing a
particular binary variable. When the physical signal is in a particular range it is inter-
preted to be eithera O or a 1.

32 Chapter 1 Digital Systems and Binary Numbers

Volts
3
Signal
range for
logic 1
T
Transition occurs
between these limits
1 l
Signal
range for
logic 0

FIGURE 1.3
Signal levels for binary logic values

x —])z:xw x:DLHY >O '
X X
y — y

(a) Two-input AND gate (b) Two-input OR gate (c) NOT gate or inverter
FIGURE 1.4
Symbols for digital logic circuits

The graphic symbols used to designate the three types of gates are shown in Fig. 1.4.
The gates are blocks of hardware that produce the equivalent of logic-1 or logic-0 output
signals if input logic requirements are satisfied. The input signals x and y in the AND and
OR gates may exist in one of four possible states: 00, 10, 11, or 01. These input signals
are shown in Fig. 1.5 together with the corresponding output signal for each gate. The
timing diagrams illustrate the idealized response of each gate to the four input signal
combinations. The horizontal axis of the timing diagram represents the time, and the
vertical axis shows the signal as it changes between the two possible voltage levels. In
reality, the transitions between logic values occur quickly, but not instantaneously. The
low level represents logic 0, the high level logic 1. The AND gate responds with a logic
1 output signal when both input signals are logic 1. The OR gate responds with a logic
1 output signal if any input signal is logic 1. The NOT gate is commonly referred to as
an inverter. The reason for this name is apparent from the signal response in the timing
diagram, which shows that the output signal inverts the logic sense of the input signal.

Problems 33

AND:x -y 0 0 1 0 0

OR:x +y 0 1 1 1 0

NOT: x’ 1 0 0 1 1

FIGURE 1.5
Input-output signals for gates

-——__“\F:ABC
—

(a) Three-input AND gate (b) Four-input OR gate

G=A+B+C+D

O

[SEQY RN

FIGURE 1.6
Gates with multiple inputs

AND and OR gates may have more than two inputs. An AND gate with three inputs
and an OR gate with four inputs are shown in Fig. 1.6. The three-input AND gate
responds with logic 1 output if all three inputs are logic 1. The output produces logic 0
if any input is logic 0. The four-input OR gate responds with logic 1 if any input is logic
1; its output becomes logic 0 only when all inputs are logic 0.

PROBLEMS

(Answers to problems marked with * appear at the end of the text.)

1.1

1.2*

1.3

1.4

1.5%

1.6*

List the octal and hexadecimal numbers from 16 to 32. Using A and B for the last two
digits, list the numbers from 8 to 28 in base 12.

What is the exact number of bytes in a system that contains (a) 32K bytes, (b) 64M bytes,
and (c) 6.4G bytes?

Convert the following numbers with the indicated bases to decimal:
(a)* (4310)s (b)* (198)1
(c) (435)s (d) (345)6

What is the largest binary number that can be expressed with 16 bits? What are the equiv-
alent decimal and hexadecimal numbers?

Determine the base of the numbers in each case for the following operations to be correct:
(a) 142=5 (b) 54/4=13 (c) 24+17=40.

The solutions to the quadratic equation x> — 11x +22 =0 are x =3 and x = 6. What is the
base of the numbers?

34 Chapter 1 Digital Systems and Binary Numbers

1.7*
1.8

1.9

1.12%

Convert the hexadecimal number 64CD to binary, and then convert it from binary to octal.

Convert the decimal number 431 to binary in two ways: (a) convert directly to binary;
(b) convert first to hexadecimal and then from hexadecimal to binary. Which method is faster?

Express the following numbers in decimal:

(a)* (10110.0101), (b)* (16.5)44
(c)* (26.24) (d) (DADA.B)s
(e) (1010.1101),

Convert the following binary numbers to hexadecimal and to decimal: (a) 1.10010,
(b) 110.010. Explain why the decimal answer in (b) is 4 times that in (a).

Perform the following division in binary: 111011 + 101.

Add and multiply the following numbers without converting them to decimal.
(a) Binary numbers 1011 and 101.
(b) Hexadecimal numbers 2E and 34.

Do the following conversion problems:

(a) Convert decimal 27315 to binary.

(b) Calculate the binary equivalent of 2/3 out to eight places. Then convert from binary to
decimal. How close is the result to 2/3?

(c) Convert the binary result in (b) into hexadecimal. Then convert the result to decimal.
Is the answer the same?

Obtain the 1’s and 2’s complements of the following binary numbers:

(a) 00010000 (b) 00000000

(c) 11011010 (d) 10101010

(e) 10000101 (f) 11111111

Find the 9’s and the 10’s complement of the following decimal numbers:
(a) 25,478,036 (b) 63,325,600

(¢) 25,000,000 (d) 00,000,000.

(a) Find the 16’s complement of C3DF.

(b) Convert C3DF to binary.

(c) Find the 2’s complement of the result in (b).

(d) Convert the answer in (c) to hexadecimal and compare with the answer in (a).

Perform subtraction on the given unsigned numbers using the 10’s complement of the
subtrahend. Where the result should be negative, find its 10’s complement and affix a minus
sign. Verify your answers.

(a) 4,637 —2,579 (b) 125-1,800

(c) 2,043 4361 (d) 1,631 —745

Perform subtraction on the given unsigned binary numbers using the 2’s complement of the
subtrahend. Where the result should be negative, find its 2’s complement and affix a minus sign.
(a) 10011 —10010 (b) 100010 — 100110

(c) 1001 —110101 (d) 101000 — 10101

* The following decimal numbers are shown in sign-magnitude form: +9,286 and +801.

Convert them to signed-10’s-complement form and perform the following operations
(note that the sum is +10,627 and requires five digits and a sign).

(a) (+9,286) + (+801) (b) (+9,286) + (—801)

(c) (—9,286) + (+801) (d) (—9,286) + (—801)

1.20

1.21

Problems 35

Convert decimal +49 and +29 to binary, using the signed-2’s-complement representation
and enough digits to accommodate the numbers. Then perform the binary equivalent of
(+29) + (—49), (-29) + (+49), and (-29) + (—49). Convert the answers back to decimal and
verify that they are correct.

If the numbers (+9,742),, and (+641),, are in signed magnitude format, their sum is (+10,383),,
and requires five digits and a sign. Convert the numbers to signed-10’s-complement form and
find the following sums:

(a) (+9,742) + (+641) (b) (+9,742) + (—641)

(c) (=9,742) + (+641) (d) (-9,742) + (—641)

Convert decimal 6,514 to both BCD and ASCII codes. For ASCII, an even parity bit is to
be appended at the left.

Represent the unsigned decimal numbers 791 and 658 in BCD, and then show the steps
necessary to form their sum.

Formulate a weighted binary code for the decimal digits, using the following weights:
(a)* 6,3,1,1
(b) 6,4,2,1

Represent the decimal number 6,248 in (a) BCD, (b) excess-3 code, (c) 2421 code, and
(d) a 6311 code.

Find the 9’s complement of decimal 6,248 and express it in 2421 code. Show that the result
is the 1’s complement of the answer to (c) in CR_PROBIlem 1.25. This demonstrates that
the 2421 code is self-complementing.

Assign a binary code in some orderly manner to the 52 playing cards. Use the minimum
number of bits.

Write the expression “G. Boole” in ASCII, using an eight-bit code. Include the period and
the space. Treat the leftmost bit of each character as a parity bit. Each eight-bit code should
have odd parity. (George Boole was a 19th-century mathematician. Boolean algebra,
introduced in the next chapter, bears his name.)

* Decode the following ASCII code:

1010011 11101001100101 11101101100101 0100000 1001010 1101111 1100010 1110011.

The following is a string of ASCII characters whose bit patterns have been converted into
hexadecimal for compactness: 73 F4 E5 76 ES 4A EF 62 73. Of the eight bits in each pair
of digits, the leftmost is a parity bit. The remaining bits are the ASCII code.

(a) Convert the string to bit form and decode the ASCII.

(b) Determine the parity used: odd or even?

* How many printing characters are there in ASCII? How many of them are special char-

acters (not letters or numerals)?

* What bit must be complemented to change an ASCII letter from capital to lowercase and

vice versa?

* The state of a 12-bit register is 100010010111. What is its content if it represents

(a) Three decimal digits in BCD?

(b) Three decimal digits in the excess-3 code?
(c) Three decimal digits in the 84-2-1 code?
(d) A binary number?

36 Chapter 1 Digital Systems and Binary Numbers

1.34 List the ASCII code for the 10 decimal digits with an even parity bit in the leftmost
position.

1.35 By means of a timing diagram similar to Fig. 1.5, show the signals of the outputs f and g in
Fig. P1.35 as functions of the three inputs a, b, and c. Use all eight possible combinations
of a,b,and c.

abc

jf
S

FIGURE P1.35

1.36 By means of a timing diagram similar to Fig. 1.5, show the signals of the outputs f and g in
Fig. P1.36 as functions of the two inputs a and b. Use all four possible combinations of a

and b.
a b
D>
7
D
FIGURE P1.36
REFERENCES

CAVANAGH, J. J. 1984. Digital Computer Arithmetic. New York: McGraw-Hill.

Mano, M. M. 1988. Computer Engineering: Hardware Design. Englewood Cliffs, NJ:

Prentice-Hall.

3. NELsoN, V. P, H. T. NAGLE, J. D. Irwin, and B. D. CarroLL. 1997. Digital Logic Circuit
Analysis and Design. Upper Saddle River, NJ: Prentice Hall.

4. Scumip, H. 1974. Decimal Computation. New York: John Wiley.

5. Karz, R. H. and BorrieLLo, G. 2004. Contemporary Logic Design,?2nd ed. Upper Saddle

River, NJ: Prentice-Hall.

N =

Web Search Topics 37

WEB SEARCH TOPICS

BCD code
ASCII

Storage register
Binary logic
BCD addition
Binary codes
Binary numbers
Excess-3 code

Chapter 2

Boolean Algebra and Logic Gates

2.1

INTRODUCTION

2.2

Because binary logic is used in all of today’s digital computers and devices, the cost of
the circuits that implement it is an important factor addressed by designers—be they
computer engineers, electrical engineers, or computer scientists. Finding simpler and
cheaper, but equivalent, realizations of a circuit can reap huge payoffs in reducing the
overall cost of the design. Mathematical methods that simplify circuits rely primarily on
Boolean algebra. Therefore, this chapter provides a basic vocabulary and a brief founda-
tion in Boolean algebra that will enable you to optimize simple circuits and to under-
stand the purpose of algorithms used by software tools to optimize complex circuits
involving millions of logic gates.

BASIC DEFINITIONS

38

Boolean algebra, like any other deductive mathematical system, may be defined with a
set of elements, a set of operators, and a number of unproved axioms or postulates. A set
of elements is any collection of objects, usually having a common property. If S is a set,
and x and y are certain objects, then the notation x € S means that x is a member of the
set S and y ¢ S means that y is not an element of S. A set with a denumerable number
of elements is specified by braces: A = {1, 2, 3, 4} indicates that the elements of set A
are the numbers 1,2, 3, and 4. A binary operator defined on a set S of elements is a rule
that assigns, to each pair of elements from S, a unique element from S. As an example,
consider the relation a*b = c¢. We say that * is a binary operator if it specifies a rule
for finding ¢ from the pair (g, b) and also if a, b, ¢ € S. However, * is not a binary operator
ifa,beS,andifceS.

Section 2.2 Basic Definitions 39

The postulates of a mathematical system form the basic assumptions from which it
is possible to deduce the rules, theorems, and properties of the system. The most com-
mon postulates used to formulate various algebraic structures are as follows:

1.

Closure. A set S is closed with respect to a binary operator if, for every pair of
elements of S, the binary operator specifies a rule for obtaining a unique element
of S. For example, the set of natural numbers N = {1,2,3,4, ...} is closed with
respect to the binary operator + by the rules of arithmetic addition, since, for any
a, b e N, there is a unique ¢ € N such that @ + b = c. The set of natural numbers
is not closed with respect to the binary operator — by the rules of arithmetic
subtraction, because 2 — 3 = —1and 2,3 e N, but (—1) ¢ N.

2. Associative law. A binary operator * on a set S is said to be associative whenever

(x*y)*z = x*(y*z) forallx,y, z,e S

Commutative law. A binary operator * on a set S is said to be commutative when-
ever

x*y = y*xforallx,yeS

Identity element. A set § is said to have an identity element with respect to a binary
operation * on S if there exists an element e € S with the property that

e*x = x*e = xforeveryxe$§
Example: The element 0 is an identity element with respect to the binary operator
+ on the set of integers I = {...,—3,-2,-1,0,1,2,3,...}, since
x+0=0+x=xforanyxel

The set of natural numbers, N, has no identity element, since 0 is excluded from the set.

Inverse. A set S having the identity element e with respect to a binary operator *
is said to have an inverse whenever, for every x € S, there exists an element y e §
such that

x*y =e

Example: In the set of integers, 1, and the operator +, with e = 0, the inverse of
an element a is (—a), since a + (—a) = 0.

Distributive law. If * and - are two binary operators on a set S, * is said to be dis-
tributive over - whenever

x*(y-z) = (x*y)-(x*2)

A field is an example of an algebraic structure. A field is a set of elements, together with
two binary operators, each having properties 1 through 5 and both operators combining
to give property 6. The set of real numbers, together with the binary operators + and -,

40 Chapter 2 Boolean Algebra and Logic Gates

forms the field of real numbers. The field of real numbers is the basis for arithmetic and
ordinary algebra. The operators and postulates have the following meanings:

The binary operator + defines addition.

The additive identity is 0.

The additive inverse defines subtraction.

The binary operator - defines multiplication.

The multiplicative identity is 1.

Fora # 0, the multiplicative inverse of a = 1/a defines division (i.e.,a-1/a = 1).
The only distributive law applicable is that of - over +:

a+(b+c)=1(a-b)+ (a-c)

2.3 AXIOMATIC DEFINITION
OF BOOLEAN ALGEBRA

In 1854, George Boole developed an algebraic system now called Boolean algebra. In
1938, Claude E. Shannon introduced a two-valued Boolean algebra called switching
algebra that represented the properties of bistable electrical switching circuits. For the
formal definition of Boolean algebra, we shall employ the postulates formulated by
E. V. Huntington in 1904.

Boolean algebra is an algebraic structure defined by a set of elements, B, together
with two binary operators, +and -, provided that the following (Huntington) postulates
are satisfied:

1.

6.

(a) The structure is closed with respect to the operator +.
(b) The structure is closed with respect to the operator -.

. (a) The element 0 is an identity element with respect to +; that is, x + 0 =

0+x=x.
(b) The element 1 is an identity element with respect to -; thatis,x-1 = 1-x = x.

. (a) The structure is commutative with respect to +; thatis,x + y =y + x.

(b) The structure is commutative with respect to -; thatis,x-y = y-x.

. (a) The operator - is distributive over +; thatis,x*(y + z) = (x-y) + (x*z2).

(b) The operator + is distributive over -;thatis,x + (y+z) = (x + y)* (x + 2).

. Foreveryelementx € B, thereexistsanelementx’ € B (called the complement of x)

such that (a) x + x" = land (b) x-x" = 0.
There exist at least two elements x, y e B such that x # y.

Comparing Boolean algebra with arithmetic and ordinary algebra (the field of real
numbers), we note the following differences:

1. Huntington postulates do not include the associative law. However, this law holds for

2.

Boolean algebra and can be derived (for both operators) from the other postulates.

The distributive law of + over * (i.e., x + (y+z) = (x + y)* (x + z)) is valid for
Boolean algebra, but not for ordinary algebra.

Section 2.3 Axiomatic Definition of Boolean Algebra 11

3. Boolean algebra does not have additive or multiplicative inverses; therefore, there
are no subtraction or division operations.

4. Postulate 5 defines an operator called the complement that is not available in
ordinary algebra.

5. Ordinary algebra deals with the real numbers, which constitute an infinite set of
elements. Boolean algebra deals with the as yet undefined set of elements, B, but
in the two-valued Boolean algebra defined next (and of interest in our subse-
quent use of that algebra), B is defined as a set with only two elements, 0 and 1.

Boolean algebra resembles ordinary algebra in some respects. The choice of the
symbols + and - isintentional, to facilitate Boolean algebraic manipulations by persons
already familiar with ordinary algebra. Although one can use some knowledge from
ordinary algebra to deal with Boolean algebra, the beginner must be careful not to
substitute the rules of ordinary algebra where they are not applicable.

It is important to distinguish between the elements of the set of an algebraic structure
and the variables of an algebraic system. For example, the elements of the field of real
numbers are numbers, whereas variables such as a, b, c, etc., used in ordinary algebra,
are symbols that stand for real numbers. Similarly, in Boolean algebra, one defines the
elements of the set B, and variables such as x, y, and z are merely symbols that represent
the elements. At this point, it is important to realize that, in order to have a Boolean
algebra, one must show that

1. the elements of the set B,
2. the rules of operation for the two binary operators, and

3. the set of elements, B, together with the two operators, satisfy the six Huntington
postulates.

One can formulate many Boolean algebras, depending on the choice of elements of
B and the rules of operation. In our subsequent work, we deal only with a two-valued
Boolean algebra (i.c., a Boolean algebra with only two elements). Two-valued Boolean
algebra has applications in set theory (the algebra of classes) and in propositional logic.
Our interest here is in the application of Boolean algebra to gate-type circuits commonly
used in digital devices and computers.

Two-Valued Boolean Algebra

A two-valued Boolean algebra is defined on a set of two elements, B = {0, 1}, with rules
for the two binary operators + and - as shown in the following operator tables (the rule
for the complement operator is for verification of postulate 5):

X y Xy Xy x+ty x | x
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1

42 Chapter 2 Boolean Algebra and Logic Gates

These rules are exactly the same as the AND, OR, and NOT operations, respectively,
defined in Table 1.8. We must now show that the Huntington postulates are valid for the
set B = {0, 1} and the two binary operators + and - .

1.

2.

That the structure is closed with respect to the two operators is obvious from the
tables, since the result of each operation is either 1 or O and 1, 0 € B.

From the tables, we see that

() 0+0=0 0+1=1+0=1,

b)y1-1=1 1-0=0-1=0.

This establishes the two identity elements, O for + and 1 for -, as defined by
postulate 2.

. The commutative laws are obvious from the symmetry of the binary operator tables.

. (a) The distributive law x-(y + z) = (x-y) + (x-z) can be shown to hold from

the operator tables by forming a truth table of all possible values of x, y, and z. For
each combination, we derive x - (y + z) and show that the value is the same as the
value of (x-y) + (x-z):

X y z y+z x-(y+2) Xy |x-z|(x-y)+(x-2)
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

(b) The distributive law of + over - can be shown to hold by means of a truth table
similar to the one in part (a).

. From the complement table, it is easily shown that

(a)x +x"=1,since0 +0" =0+1=1landl +1'"=1+0=1.
(b) x-x" = 0,since 0-0' =01 =0and1-1"=1-0=0.
Thus, postulate 1 is verified.

. Postulate 6 is satisfied because the two-valued Boolean algebra has two elements,

1and O,with 1 # 0.

We have just established a two-valued Boolean algebra having a set of two elements,
1 and 0, two binary operators with rules equivalent to the AND and OR operations, and
a complement operator equivalent to the NOT operator. Thus, Boolean algebra has been
defined in a formal mathematical manner and has been shown to be equivalent to the
binary logic presented heuristically in Section 1.9. The heuristic presentation is helpful
in understanding the application of Boolean algebra to gate-type circuits. The formal

Section 2.4 Basic Theorems and Properties of Boolean Algebra 43

presentation is necessary for developing the theorems and properties of the algebraic
system. The two-valued Boolean algebra defined in this section is also called “switching
algebra” by engineers. To emphasize the similarities between two-valued Boolean alge-
bra and other binary systems, that algebra was called “binary logic” in Section 1.9. From
here on, we shall drop the adjective “two-valued” from Boolean algebra in subsequent
discussions.

BASIC THEOREMS AND PROPERTIES
OF BOOLEAN ALGEBRA

Duality

In Section 2.3, the Huntington postulates were listed in pairs and designated by part
(a) and part (b). One part may be obtained from the other if the binary operators and
the identity elements are interchanged. This important property of Boolean algebra is
called the duality principle and states that every algebraic expression deducible from
the postulates of Boolean algebra remains valid if the operators and identity elements
are interchanged. In a two-valued Boolean algebra, the identity elements and the ele-
ments of the set B are the same: 1 and 0. The duality principle has many applications. If
the dual of an algebraic expression is desired, we simply interchange OR and AND
operators and replace 1’s by 0’s and 0’s by 1’s.

Basic Theorems

Table 2.1 lists six theorems of Boolean algebra and four of its postulates. The notation
is simplified by omitting the binary operator whenever doing so does not lead to
confusion. The theorems and postulates listed are the most basic relationships in Boolean

Table 2.1

Postulates and Theorems of Boolean Algebra

Postulate 2 (a) x+0=x (b) x-1=x
Postulate 5 (a) x+x'=1 (b) x-x' =
Theorem 1 (a) X +x=x (b) X-x =
Theorem 2 (a) x+1=1 (b) x-0

Theorem 3, involution x) =x

Postulate 3, commutative (a) x+y=y+x (b) Xy = yx
Theorem 4, associative @ x+@+z)=x+y +z (b) x(yz) = (xy)z
Postulate 4, distributive (a) x(y +z) =xy +xz b)) x+yz=x+y)x+2)
Theorem 5, DeMorgan (a) (x +y) =x'y’ (b) (xy) =x" +y’
Theorem 6, absorption (a) X +txy=x (b) x(x +y)=x

44 Chapter 2 Boolean Algebra and Logic Gates

algebra. The theorems, like the postulates, are listed in pairs; each relation is the dual of
the one paired with it. The postulates are basic axioms of the algebraic structure and
need no proof. The theorems must be proven from the postulates. Proofs of the theorems
with one variable are presented next. At the right is listed the number of the postulate
which justifies that particular step of the proof.

THEOREM 1(a): x + x = x.

Statement Justification
x+x=(x+x)-1 postulate 2(b)
= (x + X)(x + x') 5(a)
=x + xx’ 4(b)
=x+0 5(b)
=x 2(a)

THEOREM 1(b): x-x = x.

Statement Justification
x-x=xx+0 postulate 2(a)
= xx + xx’ 5(b)
= x(x + x') 4(a)
=x-1 5(a)
=Xx 2(b)

Note that theorem 1(b) is the dual of theorem 1(a) and that each step of the proof
in part (b) is the dual of its counterpart in part (a). Any dual theorem can be similarly
derived from the proof of its corresponding theorem.

THEOREM 2(a): x + 1 = 1.

Statement Justification
x+1=1-(x+1) postulate 2(b)
=x+x)(x+1) 5(a)
=x+x'-1 4(b)
=x+x' 2(b)
=1 5(a)

THEOREM 2(b): x -0 = 0 by duality.

THEOREM 3: (x')" = x.From postulate 5, we have x + x’ = land x-x' = 0, which
together define the complement of x. The complement of x" is x and is also (x')".

Section 2.4 Basic Theorems and Properties of Boolean Algebra 45

Therefore, since the complement is unique, we have (x’)’ = x. The theorems involv-
ing two or three variables may be proven algebraically from the postulates and the
theorems that have already been proven. Take, for example, the absorption theorem:

THEOREM 6(a): x + xy = x.

Statement Justification
x+xy=x-1+xy postulate 2(b)
=x(1 +y) 4(a)
=x(y +1) 3(a)
=x-1 2(a)
=X 2(b)

THEOREM 6(b): x(x + y) = x by duality.

The theorems of Boolean algebra can be proven by means of truth tables. In truth
tables, both sides of the relation are checked to see whether they yield identical results
for all possible combinations of the variables involved. The following truth table verifies
the first absorption theorem:

TT xy | x+xy
0o 0 0
01 0 o0
1]0 0 1
1)1 ! 1

The algebraic proofs of the associative law and DeMorgan’s theorem are long and will
not be shown here. However, their validity is easily shown with truth tables. For example,
the truth table for the first DeMorgan’s theorem, (x + y)’ = x'y’, is as follows:

’ ’

X yl|x+y (x+y) x|y | xy
0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0|1 0
1 1 1 0 0|0 0

Operator Precedence

The operator precedence for evaluating Boolean expressions is (1) parentheses,
(2) NOT, (3) AND, and (4) OR. In other words, expressions inside parentheses must be
evaluated before all other operations. The next operation that holds precedence is the
complement, and then follows the AND and, finally, the OR. As an example, consider
the truth table for one of DeMorgan’s theorems. The left side of the expression is
(x + y)'. Therefore, the expression inside the parentheses is evaluated first and the

46

2.5

Chapter 2 Boolean Algebra and Logic Gates

result then complemented. The right side of the expression is x'y’, so the complement
of x and the complement of y are both evaluated first and the result is then ANDed.
Note that in ordinary arithmetic, the same precedence holds (except for the comple-
ment) when multiplication and addition are replaced by AND and OR, respectively.

BOOLEAN FUNCTIONS

Boolean algebra is an algebra that deals with binary variables and logic operations. A
Boolean function described by an algebraic expression consists of binary variables, the
constants 0 and 1, and the logic operation symbols. For a given value of the binary variables,
the function can be equal to either 1 or 0. As an example, consider the Boolean function

Fi=x+y'z

The function F; is equal to 1 if x is equal to 1 or if both y' and z are equal to 1. F; is equal
to 0 otherwise. The complement operation dictates that when y’ = 1,y = 0. Therefore,
Fi=1ifx=1orify = 0and z = 1. A Boolean function expresses the logical rela-
tionship between binary variables and is evaluated by determining the binary value of
the expression for all possible values of the variables.

A Boolean function can be represented in a truth table. The number of rows in the
truth table is 2", where n is the number of variables in the function. The binary combina-
tions for the truth table are obtained from the binary numbers by counting from 0
through 2" — 1. Table 2.2 shows the truth table for the function F;. There are eight pos-
sible binary combinations for assigning bits to the three variables x, y, and z. The column
labeled F; contains either O or 1 for each of these combinations. The table shows that
the function is equal to 1 when x = 1 or when yz = 01 and is equal to 0 otherwise.

A Boolean function can be transformed from an algebraic expression into a circuit
diagram composed of logic gates connected in a particular structure. The logic-circuit
diagram (also called a schematic) for F; is shown in Fig.2.1. There is an inverter for input
y to generate its complement. There is an AND gate for the term y’z and an OR gate

Table 2.2
Truth Tables for F; and F,

><
<
N
g
v

_ = = OO O O
e == e R)
_ O = O = O = O
e e e = =)
(= R = =)

Section 2.5 Boolean Functions 47

)

FIGURE 2.1
Gate implementation of F; = x + y'z

that combines x with yz. In logic-circuit diagrams, the variables of the function are taken
as the inputs of the circuit and the binary variable F; is taken as the output of the circuit.
The schematic expresses the relationship between the output of the circuit and its inputs.
Rather than listing each combination of inputs and outputs, it indicates how to compute
the logic value of each output from the logic values of the inputs.

There is only one way that a Boolean function can be represented in a truth table.
However, when the function is in algebraic form, it can be expressed in a variety of ways,
all of which have equivalent logic. The particular expression used to represent the function
will dictate the interconnection of gates in the logic-circuit diagram. Conversely, the inter-
connection of gates will dictate the logic expression. Here is a key fact that motivates our
use of Boolean algebra: By manipulating a Boolean expression according to the rules of
Boolean algebra, it is sometimes possible to obtain a simpler expression for the same
function and thus reduce the number of gates in the circuit and the number of inputs to
the gate. Designers are motivated to reduce the complexity and number of gates because
their effort can significantly reduce the cost of a circuit. Consider, for example, the fol-
lowing Boolean function:

F,=x"y'z + x'yz + xy’

A schematic of an implementation of this function with logic gates is shown in
Fig. 2.2(a). Input variables x and y are complemented with inverters to obtain x’ and
y'. The three terms in the expression are implemented with three AND gates. The
OR gate forms the logical OR of the three terms. The truth table for F; is listed in
Table 2.2. The function is equal to 1 when xyz = 001 or 011 or when xy = 10 (irre-
spective of the value of z) and is equal to 0 otherwise. This set of conditions produces
four 1’s and four 0’s for F.

Now consider the possible simplification of the function by applying some of the
identities of Boolean algebra:

E=x"y'z+x'yz +xy' =x'z(y' +y) +xy' =x'z +xy'

The function is reduced to only two terms and can be implemented with gates as shown
in Fig. 2.2(b). It is obvious that the circuit in (b) is simpler than the one in (a), yet both
implement the same function. By means of a truth table, it is possible to verify that the
two expressions are equivalent. The simplified expression is equal to 1 when xz = 01 or
when xy = 10. This produces the same four 1’s in the truth table. Since both expressions

48 Chapter 2 Boolean Algebra and Logic Gates

>
>

L]
&

(a) F =x"y'z + x'yz + xy’

P>
—

J U

(b) F, =xy' +x'z

FIGURE 2.2
Implementation of Boolean function F, with gates

produce the same truth table, they are equivalent. Therefore, the two circuits have the
same outputs for all possible binary combinations of inputs of the three variables. Each
circuit implements the same identical function, but the one with fewer gates and fewer
inputs to gates is preferable because it requires fewer wires and components. In general,
there are many equivalent representations of a logic function. Finding the most eco-
nomic representation of the logic is an important design task.

Algebraic Manipulation

When a Boolean expression is implemented with logic gates, each term requires a gate
and each variable within the term designates an input to the gate. We define a literal to
be a single variable within a term, in complemented or uncomplemented form. The
function of Fig. 2.2(a) has three terms and eight literals, and the one in Fig. 2.2(b) has
two terms and four literals. By reducing the number of terms, the number of literals, or
both in a Boolean expression, it is often possible to obtain a simpler circuit. The manip-
ulation of Boolean algebra consists mostly of reducing an expression for the purpose of
obtaining a simpler circuit. Functions of up to five variables can be simplified by the
map method described in the next chapter. For complex Boolean functions and many

Section 2.5 Boolean Functions 49

different outputs, designers of digital circuits use computer minimization programs that
are capable of producing optimal circuits with millions of logic gates. The concepts intro-
duced in this chapter provide the framework for those tools. The only manual method
available is a cut-and-try procedure employing the basic relations and other manipulation
techniques that become familiar with use, but remain, nevertheless, subject to human
error. The examples that follow illustrate the algebraic manipulation of Boolean algebra
to acquaint the reader with this important design task.

EXAMPLE 2.1

Simplify the following Boolean functions to a minimum number of literals.

L x(x' +y)=xx" +xy =0+ xy = xy.
2. xtx'y=x+x)x+y)=1lx+y)=x+y.
3. x+y)x+ty)y=x+txy+txy +yy =x(1+y+y)=nx
4. xy +x'z+yz=xy +x'z + yz(x + x')

=xy +x'z +xyz + x'yz

=xy(1 +z2) +x'z(1 +y)

=xy + x'z.
5. (x + y)(x" + 2)(y + 2) = (x + y)(x' + z), by duality from function 4.

|

Functions 1 and 2 are the dual of each other and use dual expressions in correspond-
ing steps. An easier way to simplify function 3 is by means of postulate 4(b) from
Table 2.1: (x + y)(x + y') = x + yy’ = x.The fourth function illustrates the fact that
an increase in the number of literals sometimes leads to a simpler final expression.
Function 5 is not minimized directly, but can be derived from the dual of the steps used
to derive function 4. Functions 4 and 5 are together known as the consensus theorem.

Complement of a Function

The complement of a function F is ' and is obtained from an interchange of 0’s for 1’s
and 1’s for 0’s in the value of F. The complement of a function may be derived algebraically
through DeMorgan’s theorems, listed in Table 2.1 for two variables. DeMorgan’s theo-
rems can be extended to three or more variables. The three-variable form of the first
DeMorgan’s theorem is derived as follows, from postulates and theorems listed in Table 2.1:

A+B+C) =A+x) letB+C=x
= A'x' by theorem 5(a) (DeMorgan)
= A'(B + C)’ substitute B + C = x
= A'(B'C’') by theorem 5(a) (DeMorgan)
= A'B'C’ by theorem 4(b) (associative)

50 Chapter 2 Boolean Algebra and Logic Gates

DeMorgan’s theorems for any number of variables resemble the two-variable case in
form and can be derived by successive substitutions similar to the method used in the
preceding derivation. These theorems can be generalized as follows:

(A+B+C+D+ —I—F')’ = A'B'C'D'... F'
(ABCD ... F)) =A"+B'"+C'"+D'"+ --- + F
The generalized form of DeMorgan’s theorems states that the complement of a func-

tion is obtained by interchanging AND and OR operators and complementing each
literal.

EXAMPLE 2.2

Find the complement of the functions F; = x'yz’ + x'y’zand F, = x(y'z" + yz). By
applying DeMorgan’s theorems as many times as necessary, the complements are
obtained as follows:
Fi = (x'yz" +x'y'2)" = (x'yz) (x'y'2)" = (x +y' +)x +y + 27)
=[x’z +y9)]" =x"+ 'z +y) =x"+ (') ()
=x'++90" +2)
— x! + yZI + y,Z
|

A simpler procedure for deriving the complement of a function is to take the dual of
the function and complement each literal. This method follows from the generalized
forms of DeMorgan’s theorems. Remember that the dual of a function is obtained from
the interchange of AND and OR operators and 1’s and 0’s.

EXAMPLE 2.3

Find the complement of the functions F; and F, of Example 2.2 by taking their duals
and complementing each literal.
1. Fi=x"yz' +x'y'z.
The dual of Fyis (x' + y + z')(x' + y' + 2).
Complement each literal: (x + y" + z)(x +y + z') = F|.
2. F,=x(y'z" + y2).
The dual of Frisx + (y' + z')(y + 2).
Complement each literal: x" + (y + z)(y' + z') = F;.

Section 2.6 Canonical and Standard Forms 51

2.6 CANONICAL AND STANDARD FORMS

Minterms and Maxterms

A binary variable may appear either in its normal form (x) or in its complement form (x").
Now consider two binary variables x and y combined with an AND operation. Since each
variable may appear in either form, there are four possible combinations: x'y’, x'y, xy’,
and xy. Each of these four AND terms is called a minterm, or a standard product. In a
similar manner, n variables can be combined to form 2" minterms. The 2" different min-
terms may be determined by a method similar to the one shown in Table 2.3 for three
variables. The binary numbers from 0 to 2" — 1 are listed under the n variables. Each
minterm is obtained from an AND term of the n variables, with each variable being
primed if the corresponding bit of the binary number is a 0 and unprimed if a 1. A symbol
for each minterm is also shown in the table and is of the form m;, where the subscript j
denotes the decimal equivalent of the binary number of the minterm designated.

In a similar fashion, n variables forming an OR term, with each variable being primed
or unprimed, provide 2" possible combinations, called maxterms, or standard sums. The
eight maxterms for three variables, together with their symbolic designations, are listed
in Table 2.3. Any 2" maxterms for n variables may be determined similarly. It is impor-
tant to note that (1) each maxterm is obtained from an OR term of the »n variables, with
each variable being unprimed if the corresponding bit is a 0 and primed if a 1, and (2)
each maxterm is the complement of its corresponding minterm and vice versa.

A Boolean function can be expressed algebraically from a given truth table by form-
ing a minterm for each combination of the variables that produces a 1 in the function
and then taking the OR of all those terms. For example, the function f; in Table 2.4 is
determined by expressing the combinations 001, 100, and 111 as x'y’z, xy’z, and xyz,
respectively. Since each one of these minterms results in f; = 1, we have

fi=xy'z+xy'z' +xyz =my + my + my

Table 2.3
Minterms and Maxterms for Three Binary Variables
Minterms Maxterms

X y z Term Designation Term Designation
0 0 0 x'y'z! my xtytz Mo
0 0 1 x'y'z my x+y+7z M,
0 1 0 x'yz' m, x+y +z M,
0 1 1 x'yz my x+y +z M;
1 0 0 xy'z' my x'"+y+z M,
1 0 1 xy'z ms x'"+y+z M;
1 1 0 xyz' mg x'"+y +z Mg
1 1 1 xyz my x"+y + 2z M,

52

Chapter 2 Boolean Algebra and Logic Gates

Table 2.4

Functions of Three Variables
X y z Function f; Function f,
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Similarly, it may be easily verified that
fHh=x'yz +xy'z + xyz' + xyz = mz + ms + mg + my

These examples demonstrate an important property of Boolean algebra: Any Boolean
function can be expressed as a sum of minterms (with “sum” meaning the ORing of terms).

Now consider the complement of a Boolean function. It may be read from the truth
table by forming a minterm for each combination that produces a 0 in the function and
then ORing those terms. The complement of f; is read as

o

fi=xy'z +x'yz' +x'yz + xy'z + xyz’
If we take the complement of f, we obtain the function f;:

i=x+y+2)x+y +2)x" +y+z2H)X +y +2)
= MO'MZ'MS'MS'M6

Similarly, it is possible to read the expression for f, from the table:

L= +y+)x+y+z2)x+y +2)" +y+2)
= MOM1M2M4

These examples demonstrate a second property of Boolean algebra: Any Boolean func-
tion can be expressed as a product of maxterms (with “product” meaning the ANDing
of terms). The procedure for obtaining the product of maxterms directly from the truth
table is as follows: Form a maxterm for each combination of the variables that produces
a 0 in the function, and then form the AND of all those maxterms. Boolean functions
expressed as a sum of minterms or product of maxterms are said to be in canonical form.

Sum of Minterms

Previously, we stated that, for n binary variables, one can obtain 2" distinct minterms and
that any Boolean function can be expressed as a sum of minterms. The minterms whose
sum defines the Boolean function are those which give the 1’s of the function in a

Section 2.6 Canonical and Standard Forms 53

truth table. Since the function can be either 1 or 0 for each minterm, and since there are
2" minterms, one can calculate all the functions that can be formed with n variables to
be 2%". It is sometimes convenient to express a Boolean function in its sum-of-minterms
form. If the function is not in this form, it can be made so by first expanding the expres-
sion into a sum of AND terms. Each term is then inspected to see if it contains all the
variables. If it misses one or more variables, it is ANDed with an expression such as
x + x', where x is one of the missing variables. The next example clarifies this procedure.

EXAMPLE 2.4

Express the Boolean function ' = A + B'C as a sum of minterms. The function has
three variables: A, B, and C.The first term A is missing two variables; therefore,

A =AB + B') = AB + AB’
This function is still missing one variable, so
A=AB(C+ C")+ AB'(C + (')
= ABC + ABC' + AB'C + AB'C’
The second term B'C is missing one variable; hence,
B'C=B'C(A+ A'"y=AB'C+ A'B'C
Combining all terms, we have
F=A+ B'C
= ABC + ABC' + AB'C + AB'C' + A'B'C
But AB'C appears twice, and according to theorem 1 (x + x = x), it is possible to

remove one of those occurrences. Rearranging the minterms in ascending order, we
finally obtain

F=A'B'C+ AB'C + AB'C + ABC' + ABC
m1+m4+m5+m6+m7

When a Boolean function is in its sum-of-minterms form, it is sometimes convenient to
express the function in the following brief notation:

F(A,B,C) = %(1,4,5,6,7)

The summation symbol X stands for the ORing of terms; the numbers following it are
the indices of the minterms of the function. The letters in parentheses following F form
a list of the variables in the order taken when the minterm is converted to an AND term.
An alternative procedure for deriving the minterms of a Boolean function is to obtain
the truth table of the function directly from the algebraic expression and then read the
minterms from the truth table. Consider the Boolean function given in Example 2.4:

F=A+B'C

The truth table shown in Table 2.5 can be derived directly from the algebraic expres-
sion by listing the eight binary combinations under variables A, B, and C and inserting

54

Chapter 2 Boolean Algebra and Logic Gates

Table 2.5

Truth Table for F = A + B'C
A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

1’s under F for those combinations for which A = 1 and BC = 01. From the truth table,
we can then read the five minterms of the function tobe 1,4, 5,6, and 7.

Product of Maxterms

EXAMPLE 2.5

Each of the 22" functions of n binary variables can be also expressed as a product of
maxterms. To express a Boolean function as a product of maxterms, it must first be
brought into a form of OR terms. This may be done by using the distributive law,
X + yz = (x + y)(x + z). Then any missing variable x in each OR term is ORed with
xx'. The procedure is clarified in the following example.

Express the Boolean function FF = xy + x'z as a product of maxterms. First, convert
the function into OR terms by using the distributive law:
F=xy+x'z=(xy+x")(xy+ 2z
=@ +x) +x)x +)+ 2)
= +y)(x+2)0+2)
The function has three variables: x, y, and z. Each OR term is missing one variable;
therefore,

X'+y=x"+y+tzz'=x' +y+2)x' +y+2z)
xtz=x+tz+yy =@x+y+2)x+y +2)
yvtz=y+tz+x'=x+y+z2)x +y+2)

Combining all the terms and removing those which appear more than once, we finally
obtain
F=@x+y+2x+y +2)x" +y+2)x" +y+2z')
= MM, M Ms

Section 2.6 Canonical and Standard Forms 55

A convenient way to express this function is as follows:
F(x,y,z) = 11(0, 2,4, 5)

The product symbol, I, denotes the ANDing of maxterms; the numbers are the indices
of the maxterms of the function.

Conversion between Canonical Forms

The complement of a function expressed as the sum of minterms equals the sum of min-
terms missing from the original function. This is because the original function is expressed
by those minterms which make the function equal to 1, whereas its complement is a 1 for
those minterms for which the function is a 0. As an example, consider the function

F(A,B,C) = %(1,4,5,6,7)
This function has a complement that can be expressed as
F’(A,B, C) - 2(0, 2, 3) = my + ny + ms

Now, if we take the complement of F' by DeMorgan’s theorem, we obtain F in a differ-
ent form:

F = (mo + my + m3)' == mE)'m'z'mé = MOM2M3 = H(O, 2, 3)
The last conversion follows from the definition of minterms and maxterms as shown in
Table 2.3. From the table, it is clear that the following relation holds:

r—

That is, the maxterm with subscript j is a complement of the minterm with the same
subscript j and vice versa.

The last example demonstrates the conversion between a function expressed in sum-
of-minterms form and its equivalent in product-of-maxterms form. A similar argument
will show that the conversion between the product of maxterms and the sum of minterms
is similar. We now state a general conversion procedure: To convert from one canonical
form to another, interchange the symbols 3 and IT and list those numbers missing from
the original form. In order to find the missing terms, one must realize that the total number
of minterms or maxterms is 2", where 7 is the number of binary variables in the function.

A Boolean function can be converted from an algebraic expression to a product of
maxterms by means of a truth table and the canonical conversion procedure. Consider,
for example, the Boolean expression

F=xy+x'z
First, we derive the truth table of the function, as shown in Table 2.6. The 1’s under Fin
the table are determined from the combination of the variables for which xy = 11 or

xz = 01. The minterms of the function are read from the truth table to be 1,3, 6, and 7.
The function expressed as a sum of minterms is

F(x,y,z) = 2(1,3,6,7)

56

Chapter 2 Boolean Algebra and Logic Gates

Table 2.6
Truth Table for F = xy + x'z
X y F
0 0 0 0 Minterms
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1 Maxterms
1 1 1 1

Since there is a total of eight minterms or maxterms in a function of three variables, we
determine the missing terms to be 0, 2,4, and 5. The function expressed as a product of
maxterms is

F(x,y,z) = 11(0, 2,4, 5)

the same answer as obtained in Example 2.5.

Standard Forms

The two canonical forms of Boolean algebra are basic forms that one obtains from read-
ing a given function from the truth table. These forms are very seldom the ones with the
least number of literals, because each minterm or maxterm must contain, by definition,
all the variables, either complemented or uncomplemented.

Another way to express Boolean functions is in standard form. In this configuration,
the terms that form the function may contain one, two, or any number of literals. There
are two types of standard forms: the sum of products and products of sums.

The sum of products is a Boolean expression containing AND terms, called product
terms, with one or more literals each. The sum denotes the ORing of these terms. An
example of a function expressed as a sum of products is

Fi=y +xy+x'yz’

The expression has three product terms, with one, two, and three literals. Their sum is,
in effect, an OR operation.

The logic diagram of a sum-of-products expression consists of a group of AND gates
followed by a single OR gate. This configuration pattern is shown in Fig. 2.3(a). Each
product term requires an AND gate, except for a term with a single literal. The logic sum
is formed with an OR gate whose inputs are the outputs of the AND gates and the
single literal. It is assumed that the input variables are directly available in their comple-
ments, so inverters are not included in the diagram. This circuit configuration is referred
to as a two-level implementation.

Section 2.6 Canonical and Standard Forms 57

== >
) =D

(a) Sum of Products (b) Product of Sums

FIGURE 2.3
Two-level implementation

A —]
A — B —

C— _T\ Fy

C——— F)
b D —| / —
v > o

E_
(a)AB + C(D + E) (b)AB + CD + CE

FIGURE 2.4
Three- and two-level implementation

A product of sums is a Boolean expression containing OR terms, called sum terms.
Each term may have any number of literals. The product denotes the ANDing of these
terms. An example of a function expressed as a product of sums is

F=x(y +2)x" +y+2z)

This expression has three sum terms, with one, two, and three literals. The product is an
AND operation. The use of the words product and sum stems from the similarity of the
AND operation to the arithmetic product (multiplication) and the similarity of the OR
operation to the arithmetic sum (addition). The gate structure of the product-of-sums
expression consists of a group of OR gates for the sum terms (except for a single literal),
followed by an AND gate, as shown in Fig. 2.3(b). This standard type of expression
results in a two-level structure of gates.

A Boolean function may be expressed in a nonstandard form. For example, the function

F; = AB + C(D + E)

is neither in sum-of-products nor in product-of-sums form. The implementation of this
expression is shown in Fig.2.4(a) and requires two AND gates and two OR gates. There
are three levels of gating in this circuit. It can be changed to a standard form by using
the distributive law to remove the parentheses:

F;=AB + C(D + E) = AB + CD + CE

58

2.7

Chapter 2 Boolean Algebra and Logic Gates

The sum-of-products expression is implemented in Fig. 2.4(b). In general, a two-level
implementation is preferred because it produces the least amount of delay through the
gates when the signal propagates from the inputs to the output. However, the number
of inputs to a given gate might not be practical.

OTHER LOGIC OPERATIONS

When the binary operators AND and OR are placed between two variables, x and y,
they form two Boolean functions, x - y and x + y, respectively. Previously we stated that
there are 2" functions for n binary variables. Thus, for two variables, n = 2, and the
number of possible Boolean functions is 16. Therefore, the AND and OR functions
are only 2 of a total of 16 possible functions formed with two binary variables. It would
be instructive to find the other 14 functions and investigate their properties.

The truth tables for the 16 functions formed with two binary variables are listed in
Table 2.7 Each of the 16 columns, Fj to F;s, represents a truth table of one possible func-
tion for the two variables, x and y. Note that the functions are determined from the
16 binary combinations that can be assigned to F. The 16 functions can be expressed
algebraically by means of Boolean functions, as is shown in the first column of Table 2.8.
The Boolean expressions listed are simplified to their minimum number of literals.

Although each function can be expressed in terms of the Boolean operators AND,
OR, and NOT, there is no reason one cannot assign special operator symbols for express-
ing the other functions. Such operator symbols are listed in the second column of
Table 2.8. However, of all the new symbols shown, only the exclusive-OR symbol, @,
is in common use by digital designers.

Each of the functions in Table 2.8 is listed with an accompanying name and a com-
ment that explains the function in some way.! The 16 functions listed can be subdivided
into three categories:

1. Two functions that produce a constant 0 or 1.

2. Four functions with unary operations: complement and transfer.

3. Ten functions with binary operators that define eight different operations: AND,
OR, NAND, NOR, exclusive-OR, equivalence, inhibition, and implication.

Table 2.7

Truth Tables for the 16 Functions of Two Binary Variables
x y | Fb FR F, F3 F, F; Fs F, Fg Fo Fio Fyu Fiz Fi3 Fiy Fis
0 0 0 O o o o o o0 1 1 1 1 1 1 1 1
0 1 o o o o 1t 1t 1 1 O O O O 1 1 1 1
1 0 o o 1 1 o0 o0 1 1 o0 O 1 1 o0 O 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

IThe symbol " is also used to indicate the exclusive or operator, e.g., x'y. The symbol for the AND function is
sometimes omitted from the product of two variables, e.g., xy.

Section 2.7 Other Logic Operations 59

Table 2.8
Boolean Expressions for the 16 Functions of Two Variables
Operator
Boolean Functions Symbol Name Comments
Fp,=0 Null Binary constant 0
F =xy x-y AND xandy
F, = xy’ x/y Inhibition x, but not y
F;=x Transfer X
Fy=x'y v/x Inhibition y, but not x
Fs=y Transfer y
Fo=xy +x'y x®y Exclusive-OR x or y, but not both
F,=x+y X +y OR xory
Fg=(x +y) xly NOR Not-OR
Fo=xy +x'y’ x®@y) Equivalence x equals y
Fy=y' y' Complement Not y
Fo=x+y' xCy Implication If y, then x
Fi, = x' x' Complement Not x
Fs=x"+y xDy Implication If x, then y
Fiy = (xy)’ xTy NAND Not-AND
Fis=1 Identity Binary constant 1

Constants for binary functions can be equal to only 1 or 0. The complement function
produces the complement of each of the binary variables. A function that is equal to an
input variable has been given the name transfer, because the variable x or y is transferred
through the gate that forms the function without changing its value. Of the eight binary
operators, two (inhibition and implication) are used by logicians, but are seldom used
in computer logic. The AND and OR operators have been mentioned in conjunction
with Boolean algebra. The other four functions are used extensively in the design of
digital systems.

The NOR function is the complement of the OR function, and its name is an
abbreviation of not-OR. Similarly, NAND is the complement of AND and is an
abbreviation of not-AND.The exclusive-OR, abbreviated XOR, is similar to OR, but
excludes the combination of both x and y being equal to 1;it holds only when x and y
differ in value. (It is sometimes referred to as the binary difference operator.) Equiv-
alence is a function that is 1 when the two binary variables are equal (i.e., when both
are 0 or both are 1). The exclusive-OR and equivalence functions are the comple-
ments of each other. This can be easily verified by inspecting Table 2.7: The truth
table for exclusive-OR is Fg and for equivalence is Fy, and these two functions are
the complements of each other. For this reason, the equivalence function is called
exclusive-NOR, abbreviated XNOR.

60

2.8

Chapter 2 Boolean Algebra and Logic Gates

Boolean algebra, as defined in Section 2.2, has two binary operators, which we have
called AND and OR, and a unary operator, NOT (complement). From the definitions,
we have deduced a number of properties of these operators and now have defined other
binary operators in terms of them. There is nothing unique about this procedure. We
could have just as well started with the operator NOR (), for example, and later
defined AND, OR, and NOT in terms of it. There are, nevertheless, good reasons for
introducing Boolean algebra in the way it has been introduced. The concepts of “and,”
“or,” and “not” are familiar and are used by people to express everyday logical ideas.
Moreover, the Huntington postulates reflect the dual nature of the algebra, emphasizing
the symmetry of + and - with respect to each other.

DIGITAL LOGIC GATES

Since Boolean functions are expressed in terms of AND, OR, and NOT operations, it is
easier to implement a Boolean function with these type of gates. Still, the possibility of
constructing gates for the other logic operations is of practical interest. Factors to be
weighed in considering the construction of other types of logic gates are (1) the feasibil-
ity and economy of producing the gate with physical components, (2) the possibility of
extending the gate to more than two inputs, (3) the basic properties of the binary oper-
ator,such as commutativity and associativity, and (4) the ability of the gate to implement
Boolean functions alone or in conjunction with other gates.

Of the 16 functions defined in Table 2.8, two are equal to a constant and four are
repeated. There are only 10 functions left to be considered as candidates for logic gates.
Two—inhibition and implication—are not commutative or associative and thus are
impractical to use as standard logic gates. The other eight —complement, transfer, AND,
OR, NAND, NOR, exclusive-OR, and equivalence —are used as standard gates in
digital design.

The graphic symbols and truth tables of the eight gates are shown in Fig. 2.5. Each
gate has one or two binary input variables, designated by x and y, and one binary output
variable, designated by F. The AND, OR, and inverter circuits were defined in Fig. 1.6.
The inverter circuit inverts the logic sense of a binary variable, producing the NOT, or
complement, function. The small circle in the output of the graphic symbol of an inverter
(referred to as a bubble) designates the logic complement. The triangle symbol by itself
designates a buffer circuit. A buffer produces the transfer function, but does not produce
a logic operation, since the binary value of the output is equal to the binary value of the
input. This circuit is used for power amplification of the signal and is equivalent to two
inverters connected in cascade.

The NAND function is the complement of the AND function, as indicated by a
graphic symbol that consists of an AND graphic symbol followed by a small circle. The
NOR function is the complement of the OR function and uses an OR graphic symbol
followed by a small circle. NAND and NOR gates are used extensively as standard logic
gates and are in fact far more popular than the AND and OR gates. This is because
NAND and NOR gates are easily constructed with transistor circuits and because digital
circuits can be easily implemented with them.

Section 2.8 Digital Logic Gates

Graphic Algebraic Truth
Name symbol function table
x yl| F
X — _ 0 0] O
AND y }F F=x-y o 1! o
1 0] 0
1 1] 1
x yl| F
OR x _ 0 0/ 0
y :DiF F=xty 0 11
1 0] 1
1 1] 1
x| F
Inverter x—Do— F F=x T 1
110
x| F
Buffer _D— =]
X F F=x ol o
111
x yl| F
* 0 0| 1
F F= !
NAND y (xy) o 1l 1
1 0] 1
1 1] 0
x yl| F
X , 0 0o 1
F=(x+
NOR i %F (x +) o 1l o
1 0] 0
1 1] 0
x y| F
Exclusive-OR X F=xy +x'y 0 0] O
(XOR) y £ —x®y 0 1 1
1 0] 1
1 1] 0
x yl| F
Exclusi(;lre—NOR X - F=xy+xy' 0o ol 1
. y :):) > =(xDy) 0 1/ 0
equivalence 1 ol o
1 1] 1
FIGURE 2.5

Digital logic gates

61

62 Chapter 2 Boolean Algebra and Logic Gates

The exclusive-OR gate has a graphic symbol similar to that of the OR gate, except
for the additional curved line on the input side. The equivalence, or exclusive-NOR, gate
is the complement of the exclusive-OR, as indicated by the small circle on the output
side of the graphic symbol.

Extension to Multiple Inputs

The gates shown in Fig. 2.5—except for the inverter and buffer —can be extended to
have more than two inputs. A gate can be extended to have multiple inputs if the binary
operation it represents is commutative and associative. The AND and OR operations,
defined in Boolean algebra, possess these two properties. For the OR function, we have

x+y=y+x (commutative)
and

(x+y)+z=x+(y+2z) =x+y+z (associative)

which indicates that the gate inputs can be interchanged and that the OR function can
be extended to three or more variables.

The NAND and NOR functions are commutative, and their gates can be extended
to have more than two inputs, provided that the definition of the operation is modified
slightly. The difficulty is that the NAND and NOR operators are not associative
(ie.,(x | y) | z # x| (v | 2)),as shown in Fig. 2.6 and the following equations:

xiylz=[x+y) +z]' =+yz =xz" +yz
x|l =k+O+)] =x'(+2z)=xy+xz

To overcome this difficulty, we define the multiple NOR (or NAND) gate as a
complemented OR (or AND) gate. Thus, by definition, we have

x| lylz=@x+y+2)
x1Ty1z=(xyz)

The graphic symbols for the three-input gates are shown in Fig. 2.7 In writing cascaded
NOR and NAND operations, one must use the correct parentheses to signify the proper
sequence of the gates. To demonstrate this principle, consider the circuit of Fig. 2.7(c).
The Boolean function for the circuit must be written as

F = [(ABC)'(DE)']' = ABC + DE

The second expression is obtained from one of DeMorgan’s theorems. It also shows that
an expression in sum-of-products form can be implemented with NAND gates. (NAND
and NOR gates are discussed further in Section 3.7)

The exclusive-OR and equivalence gates are both commutative and associative and
can be extended to more than two inputs. However, multiple-input exclusive-OR gates
are uncommon from the hardware standpoint. In fact, even a two-input function is usu-
ally constructed with other types of gates. Moreover, the definition of the function must
be modified when extended to more than two variables. Exclusive-OR is an odd function
(i.e.,it is equal to 1 if the input variables have an odd number of 1’s). The construction

Section 2.8 Digital Logic Gates 63

@dydz=(+yz

: o>
>

xdlz)=x"(y+2)

FIGURE 2.6
Demonstrating the nonassociativity of the NOR operator: (x | y) | z = x | (y | 2)

x x —]
y (x+y+z) y—} (xyz)’
z z—

(a) 3-input NOR gate (b) 3-input NAND gate
A —
B EE—
C EE—

} F=[(ABC)' - (DE)']' = ABC + DE

D
E EE—

(c) Cascaded NAND gates

FIGURE 2.7
Multiple-input and cascaded NOR and NAND gates

of a three-input exclusive-OR function is shown in Fig. 2.8. This function is normally
implemented by cascading two-input gates, as shown in (a). Graphically, it can be
represented with a single three-input gate, as shown in (b). The truth table in (c) clearly
indicates that the output Fis equal to 1 if only one input is equal to 1 or if all three inputs
are equal to 1 (i.e., when the total number of 1’s in the input variables is odd). (Exclusive-
OR gates are discussed further in Section 3.9.)

Positive and Negative Logic

The binary signal at the inputs and outputs of any gate has one of two values, except
during transition. One signal value represents logic 1 and the other logic 0. Since two
signal values are assigned to two logic values, there exist two different assignments of

64 Chapter 2 Boolean Algebra and Logic Gates

X y z F
y
_ 0 0 0 0
. / F=x®y®dz 0 0 1 1
0 1 0 1
(a) Using 2-input gates 0o 1 1 0
1 0 0 1
1 0 1 0
N 1 1 0 0
7= D>—r-reye: 111
b4
(b) -input gate (c) Truth table
FIGURE 2.8
Three-input exclusive-OR gate
Logic Signal Logic Signal
value value value value
1 I H 0 I H
0 L 1 L
(a) Positive logic (b) Negative logic

FIGURE 2.9
Signal assignment and logic polarity

signal level to logic value, as shown in Fig. 2.9. The higher signal level is designated by
H and the lower signal level by L. Choosing the high-level H to represent logic 1 defines
a positive logic system. Choosing the low-level L to represent logic 1 defines a negative
logic system. The terms positive and negative are somewhat misleading, since both sig-
nals may be positive or both may be negative. It is not the actual values of the signals
that determine the type of logic, but rather the assignment of logic values to the relative
amplitudes of the two signal levels.

Hardware digital gates are defined in terms of signal values such as H and L. It is up
to the user to decide on a positive or negative logic polarity. Consider, for example, the
electronic gate shown in Fig. 2.10(b). The truth table for this gate is listed in Fig. 2.10(a).
It specifies the physical behavior of the gate when H is 3V and L is 0 V. The truth table
of Fig. 2.10(c) assumes a positive logic assignment, with H = 1 and L = 0. This truth
table is the same as the one for the AND operation. The graphic symbol for a positive
logic AND gate is shown in Fig. 2.10(d).

Now consider the negative logic assignment for the same physical gate with L = 1
and H = 0. The result is the truth table of Fig. 2.10(e). This table represents the OR
operation, even though the entries are reversed. The graphic symbol for the negative-
logic OR gate is shown in Fig. 2.10(f). The small triangles in the inputs and output

Section 2.8 Digital Logic Gates 65

x oy z
X
st o |
H L L y gate
H H H
mble (b) Gate block diagram
with H and L
x y z
0 0 0
0 1 0 .
1 0 0 —]
z
ik p—

(c) Truth table for (d) Positive logic AND gate
positive logic

=
<
[a}

SO
O = O
O ==

X
z
o
(e) Truth table for (f) Negative logic OR gate
negative logic

FIGURE 2.10
Demonstration of positive and negative logic

designate a polarity indicator, the presence of which along a terminal signifies that
negative logic is assumed for the signal. Thus, the same physical gate can operate either
as a positive-logic AND gate or as a negative-logic OR gate.

The conversion from positive logic to negative logic and vice versa is essentially
an operation that changes 1’s to 0’s and 0’s to 1’s in both the inputs and the output
of a gate. Since this operation produces the dual of a function, the change of all ter-
minals from one polarity to the other results in taking the dual of the function. The
upshot is that all AND operations are converted to OR operations (or graphic sym-
bols) and vice versa. In addition, one must not forget to include the polarity-indicator
triangle in the graphic symbols when negative logic is assumed. In this book, we will
not use negative logic gates and will assume that all gates operate with a positive logic
assignment.

66

2.9

Chapter 2 Boolean Algebra and Logic Gates

INTEGRATED CIRCUITS

An integrated circuit (IC) is fabricated on a die of a silicon semiconductor crystal, called
a chip, containing the electronic components for constructing digital gates. The complex
chemical and physical processes used to form a semiconductor circuit are not a subject
of this book. The various gates are interconnected inside the chip to form the required
circuit. The chip is mounted in a ceramic or plastic container, and connections are welded
to external pins to form the integrated circuit. The number of pins may range from 14
on a small IC package to several thousand on a larger package. Each IC has a numeric
designation printed on the surface of the package for identification. Vendors provide
data books, catalogs, and Internet websites that contain descriptions and information
about the ICs that they manufacture.

Levels of Integration

Digital ICs are often categorized according to the complexity of their circuits, as mea-
sured by the number of logic gates in a single package. The differentiation between those
chips which have a few internal gates and those having hundreds of thousands of gates
is made by customary reference to a package as being either a small-, medium-, large-,
or very large-scale integration device.

Small-scale integration (SS1) devices contain several independent gates in a single
package. The inputs and outputs of the gates are connected directly to the pins in the
package. The number of gates is usually fewer than 10 and is limited by the number of
pins available in the IC.

Medium-scale integration (MSI) devices have a complexity of approximately 10 to
1,000 gates in a single package. They usually perform specific elementary digital opera-
tions. MSI digital functions are introduced in Chapter 4 as decoders, adders, and multi-
plexers and in Chapter 6 as registers and counters.

Large-scale integration (LSI) devices contain thousands of gates in a single package.
They include digital systems such as processors, memory chips, and programmable logic
devices. Some LSI components are presented in Chapter 7.

Very large-scale integration (VLSI) devices now contain millions of gates within a
single package. Examples are large memory arrays and complex microcomputer chips.
Because of their small size and low cost, VLSI devices have revolutionized the computer
system design technology, giving the designer the capability to create structures that
were previously uneconomical to build.

Digital Logic Families

Digital integrated circuits are classified not only by their complexity or logical operation,
but also by the specific circuit technology to which they belong. The circuit technology
is referred to as a digital logic family. Each logic family has its own basic electronic
circuit upon which more complex digital circuits and components are developed. The
basic circuit in each technology is a NAND, NOR, or inverter gate. The electronic

Section 2.9 Integrated Circuits 67

components employed in the construction of the basic circuit are usually used to name
the technology. Many different logic families of digital integrated circuits have been
introduced commercially. The following are the most popular:

TTL transistor—transistor logic;

ECL emitter-coupled logic;

MOS metal-oxide semiconductor;

CMOS complementary metal-oxide semiconductor.

TTL is a logic family that has been in use for 50 years and is considered to be stan-
dard. ECL has an advantage in systems requiring high-speed operation. MOS is suitable
for circuits that need high component density, and CMOS is preferable in systems
requiring low power consumption, such as digital cameras, personal media players, and
other handheld portable devices. Low power consumption is essential for VLSI design;
therefore, CMOS has become the dominant logic family, while TTL and ECL continue
to decline in use. The most important parameters distinguishing logic families are listed
below; CMOS integrated circuits are discussed briefly in the appendix.

Fan-out specifies the number of standard loads that the output of a typical gate can
drive without impairing its normal operation. A standard load is usually defined as the
amount of current needed by an input of another similar gate in the same family.

Fan-in is the number of inputs available in a gate.

Power dissipation is the power consumed by the gate that must be available from the
power supply.

Propagation delay is the average transition delay time for a signal to propagate from
input to output. For example, if the input of an inverter switches from 0 to 1, the output
will switch from 1 to 0, but after a time determined by the propagation delay of the
device. The operating speed is inversely proportional to the propagation delay.

Noise margin is the maximum external noise voltage added to an input signal that
does not cause an undesirable change in the circuit output.

Computer-Aided Design of VLSI Circuits

Integrated circuits having submicron geometric features are manufactured by optically
projecting patterns of light onto silicon wafers. Prior to exposure, the wafers are coated
with a photoresistive material that either hardens or softens when exposed to light.
Removing extraneous photoresist leaves patterns of exposed silicon. The exposed
regions are then implanted with dopant atoms to create a semiconductor material hav-
ing the electrical properties of transistors and the logical properties of gates. The design
process translates a functional specification or description of the circuit (i.e., what it must
do) into a physical specification or description (how it must be implemented in silicon).

The design of digital systems with VLSI circuits containing millions of transistors and
gates is an enormous and formidable task. Systems of this complexity are usually impos-
sible to develop and verify without the assistance of computer-aided design (CAD)

68

Chapter 2 Boolean Algebra and Logic Gates

tools, which consist of software programs that support computer-based representations
of circuits and aid in the development of digital hardware by automating the design
process. Electronic design automation (EDA) covers all phases of the design of inte-
grated circuits. A typical design flow for creating VLSI circuits consists of a sequence of
steps beginning with design entry (e.g., entering a schematic) and culminating with the
generation of the database that contains the photomask used to fabricate the IC. There
are a variety of options available for creating the physical realization of a digital circuit
in silicon. The designer can choose between an application-specific integrated circuit
(ASIC), a field-programmable gate array (FPGA), a programmable logic device (PLD),
and a full-custom IC. With each of these devices comes a set of CAD tools that provide
the necessary software to facilitate the hardware fabrication of the unit. Each of these
technologies has a market niche determined by the size of the market and the unit cost
of the devices that are required to implement a design.

Some CAD systems include an editing program for creating and modifying schematic
diagrams on a computer screen. This process is called schematic capture or schematic
entry. With the aid of menus, keyboard commands, and a mouse, a schematic editor can
draw circuit diagrams of digital circuits on the computer screen. Components can be
placed on the screen from a list in an internal library and can then be connected with
lines that represent wires. The schematic entry software creates and manages a database
containing the information produced with the schematic. Primitive gates and functional
blocks have associated models that allow the functionality (i.e., logical behavior) and
timing of the circuit to be verified. Verification is performed by applying inputs to the
circuit and using a logic simulator to determine and display the outputs in text or wave-
form format.

An important development in the design of digital systems is the use of a hardware
description language (HDL). Such a language resembles a computer programming
language, but is specifically oriented to describing digital hardware. It represents logic
diagrams and other digital information in textual form to describe the functionality
and structure of a circuit. Moreover, the HDL description of a circuit’s functionality
can be abstract, without reference to specific hardware, thereby freeing a designer to
devote attention to higher level functional detail (e.g., under certain conditions the
circuit must detect a particular pattern of 1’s and 0’s in a serial bit stream of data) rather
than transistor-level detail. HDL-based models of a circuit or system are simulated to
check and verify its functionality before it is submitted to fabrication, thereby reducing
the risk and waste of manufacturing a circuit that fails to operate correctly. In tandem
with the emergence of HDL-based design languages, tools have been developed to
automatically and optimally synthesize the logic described by an HDL model of a
circuit. These two advances in technology have led to an almost total reliance by indus-
try on HDL-based synthesis tools and methodologies for the design of the circuits of
complex digital systems. Two HDLs— Verilog and VHDL —have been approved as
standards by the Institute of Electronics and Electrical Engineers (IEEE) and are in
use by design teams worldwide. The Verilog HDL is introduced in Section 3.10, and
because of its importance, we include several exercises and design problems based on
Verilog throughout the book.

Problems 69

PROBLEMS

(Answers to problems marked with * appear at the end of the text.)

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8
29

2.10

2.11

2.12

Demonstrate the validity of the following identities by means of truth tables:

(a) DeMorgan’s theorem for three variables: (x + y + z)’ = x'y'z" and (xyz)' =
x"+y + 2z

(b) The distributive law: x + yz = (x + y)(x + 2)

(c) The distributive law: x(y + z) = xy + xz

(d) The associative law:x +(y+z)=(x+y)+z

(e) The associative law and x(yz) = (xy)z

Simplify the following Boolean expressions to a minimum number of literals:

(a)* xy+xy’ (B (x +y) (x +y')

(c)* xyz+x'y+xyz' (d)* (A + B)' (A" + B")’

(e) (a+b+c')a b +c) (f) a’bc+abc’ +abc+a'bc’
Simplify the following Boolean expressions to a minimum number of literals:
(a)* ABC + A'B + ABC' (b)* x'yz+xz

(©" (x +y)'(x" +y) (d)* xy+x(wz +wz')

(e)* (BC' + A'D) (AB' + CD') () (a'+c)(@a+b +c')
Reduce the following Boolean expressions to the indicated number of literals:
(a)* A'C' + ABC + AC' to three literals

®)* (x'y' +z2) +z+xy+wz to three literals

(c)* A'B(D' + C'D) + B(A + A'CD) to one literal

(d)* A"+ C)(A"+ C")(A+ B+ C'D) to four literals

() ABC'D+A'BD+ABCD to two literals

Draw logic diagrams of the circuits that implement the original and simplified expressions
in Problem 2.2.

Draw logic diagrams of the circuits that implement the original and simplified expressions
in Problem 2.3.

Draw logic diagrams of the circuits that implement the original and simplified expressions
in Problem 2.4.

Find the complement of F=wx + yz; then show that FF' = 0Oand F+ F' = 1.

Find the complement of the following expressions:

(a)* xy' +x'y ®) (a+c)(a+d’)(a"+b+c")

(c) z+tz/(v'w+uxy)

Given the Boolean functions F; and F,, show that

(a) The Boolean function E = F| + F, contains the sum of the minterms of F; and F,.

(b) The Boolean function G = F|F, contains only the minterms that are common to F;
and F,.

List the truth table of the function:
(a)* F=xy+txy' +y'z (b) F=bc+a'c’

We can perform logical operations on strings of bits by considering each pair of correspond-
ing bits separately (called bitwise operation). Given two eight-bit strings A = 10110001
and B =10101100, evaluate the eight-bit result after the following logical operations:
(a)* AND (b) OR (c)* XOR (d)* NOT A (e) NOT B

70 Chapter 2 Boolean Algebra and Logic Gates

2.13 Draw logic diagrams to implement the following Boolean expressions:
(@ y=[(u+x") (y +2)]
) y=@u @ y) +x
() y=@' +x")(y+2z')
(d) y=u(x @ z)+y’
(e) y=u+yz+uxy
f) y=u+tx+x"(uty’)

2.14 Implement the Boolean function

(a)

(b)*

(©)
(d)
(e)

F=xy + x'y" + y'z
With AND, OR, and inverter gates
With OR and inverter gates
With AND and inverter gates
With NAND and inverter gates
With NOR and inverter gates

2.15%* Simplify the following Boolean functions 7 and 7, to a minimum number of literals:

A B 4 T T,
0 0 0 | 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 0 1

2.16 The logical sum of all minterms of a Boolean function of » variables is 1.
(a) Prove the previous statement for n=3.
(b) Suggest a procedure for a general proof.

2.17 Obtain the truth table of the following functions, and express each function in sum-of-min-
terms and product-of-maxterms form:

()"

(©

(b+cd)(c+bd) (b) (cd+b'c+bd")(b+d)
(c"+d)(b+c") (d) bd' +acd’' +ab'c+a’c’

2.18 For the Boolean function

(a)
(b)
(o)
(d)

(e)

F=xy'z+x'y'z+wxy+ wx'y + wxy

Obtain the truth table of F/

Draw the logic diagram, using the original Boolean expression.

Use Boolean algebra to simplify the function to a minimum number of literals.
Obtain the truth table of the function from the simplified expression and show that
it is the same as the one in part (a).

Draw the logic diagram from the simplified expression, and compare the total number
of gates with the diagram of part (b).

Problems 71

2.19* Express the following function as a sum of minterms and as a product of maxterms:
F(A,B,C,D) = B'D + AD + BD
2.20 Express the complement of the following functions in sum-of-minterms form:
(a) F(A,B,C, D)= 2>(2,4,710,12,14)
(b) Fx, y, 2)=1I(3,5,7)
2.21 Convert each of the following to the other canonical form:
(a) F(x,y,2)=2(1,3,5)
(b) F(A, B, C,D)=TI(3,5,8,11)
2.22% Convert each of the following expressions into sum of products and product of sums:
(@) (u+xw)(x+u'v)
(®) x" + x(x +y)(y + 2')
2.23 Draw the logic diagram corresponding to the following Boolean expressions without sim-
plifying them:
(a) BC'+ AB + ACD
(b) (A + B)(C+ D)A' + B+ D)
(¢) (AB+ A'B")(CD’" + C'D)
(d) A+CD+(A+D")C'+D)
2.24 Show that the dual of the exclusive-OR is equal to its complement.

2.25 By substituting the Boolean expression equivalent of the binary operations as defined in
Table 2.8, show the following:
(a) The inhibition operation is neither commutative nor associative.
(b) The exclusive-OR operation is commutative and associative.

2.26 Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.

2.27 Write the Boolean equations and draw the logic diagram of the circuit whose outputs are
defined by the following truth table:

Table P2.27

fi f, a b c
1 1 0 0 0
0 1 0 0 1
1 0 0 1 0
1 1 0 1 1
1 0 1 0 0
0 1 1 0 1
1 0 1 1 1

2.28 Write Boolean expressions and construct the truth tables describing the outputs of the
circuits described by the logic diagrams in Fig. P2.28.

2.29 Determine whether the following Boolean equation is true or false.

xry/ + x/Z + xlzr — xrz/ + y/Zr + xrz

72 Chapter 2 Boolean Algebra and Logic Gates

— >
"1 :
=D e }D pE=

(@) (b)
FIGURE P2.28

2.30 Write the following Boolean expressions in sum of products form:
(b +d)(a +b +)
2.37 Write the following Boolean expression in product of sums form:
a'b +a'c" + abc

REFERENCES
1. Bootk, G. 1854. An Investigation of the Laws of Thought. New York: Dover.
2 DIETMEYER, D. L. 1988. Logic Design of Digital Systems, 3rd ed. Boston: Allyn and Bacon.

3. HuntinGToN, E. V. Sets of independent postulates for the algebra of logic. Trans. Am. Math.
Soc.,5 (1904): 288-3009.

4. IEEE Standard Hardware Description Language Based on the Verilog Hardware Descrip-
tion Language, Language Reference Manual (LRM), IEEE Std.1364-1995, 1996, 2001,
2005, The Institute of Electrical and Electronics Engineers, Piscataway, NJ.

5. IEEE Standard VHDL Language Reference Manual (LRM), IEEE Std. 1076-1987, 1988,
The Institute of Electrical and Electronics Engineers, Piscataway, NJ.

6. Mano, M. M. and C. R. KimE. 2000. Logic and Computer Design Fundamentals, 2nd ed.
Upper Saddle River, NJ: Prentice Hall.

7. SuannNoN, C. E. A symbolic analysis of relay and switching circuits. Trans. AIEE, 57 (1938):
713-723.

WEB SEARCH TOPICS

Algebraic field
Boolean logic
Boolean gates
Bipolar transistor
Field-effect transistor
Emitter-coupled logic
TTL logic

CMOS logic

CMOS process

Chapter 3
Gate-Level Minimization

3.1 INTRODUCTION

Gate-level minimization is the design task of finding an optimal gate-level implementa-
tion of the Boolean functions describing a digital circuit. This task is well understood,
but is difficult to execute by manual methods when the logic has more than a few inputs.
Fortunately, computer-based logic synthesis tools can minimize a large set of Boolean
equations efficiently and quickly. Nevertheless, it is important that a designer understand
the underlying mathematical description and solution of the problem. This chapter serves
as a foundation for your understanding of that important topic and will enable you to
execute a manual design of simple circuits, preparing you for skilled use of modern
design tools. The chapter will also introduce a hardware description language that is used
by modern design tools.

3.2 THE MAP METHOD

The complexity of the digital logic gates that implement a Boolean function is directly
related to the complexity of the algebraic expression from which the function is imple-
mented. Although the truth table representation of a function is unique, when it is expressed
algebraically it can appear in many different, but equivalent, forms. Boolean expressions may
be simplified by algebraic means as discussed in Section 2.4. However, this procedure of
minimization is awkward because it lacks specific rules to predict each succeeding step in
the manipulative process. The map method presented here provides a simple, straightforward
procedure for minimizing Boolean functions. This method may be regarded as a pictorial
form of a truth table. The map method is also known as the Karnaugh map or K-map.

73

74 Chapter 3 Gate-Level Minimization

A K-map is a diagram made up of squares, with each square representing one minterm
of the function that is to be minimized. Since any Boolean function can be expressed as a
sum of minterms, it follows that a Boolean function is recognized graphically in the map
from the area enclosed by those squares whose minterms are included in the function. In
fact, the map presents a visual diagram of all possible ways a function may be expressed
in standard form. By recognizing various patterns, the user can derive alternative algebraic
expressions for the same function, from which the simplest can be selected.

The simplified expressions produced by the map are always in one of the two standard
forms: sum of products or product of sums. It will be assumed that the simplest algebraic
expression is an algebraic expression with a minimum number of terms and with the
smallest possible number of literals in each term. This expression produces a circuit
diagram with a minimum number of gates and the minimum number of inputs to each
gate. We will see subsequently that the simplest expression is not unique: It is sometimes
possible to find two or more expressions that satisfy the minimization criteria. In that
case, either solution is satisfactory.

Two-Variable K-Map

The two-variable map is shown in Fig. 3.1(a). There are four minterms for two variables;
hence, the map consists of four squares, one for each minterm. The map is redrawn in
(b) to show the relationship between the squares and the two variables x and y. The 0
and 1 marked in each row and column designate the values of variables. Variable x
appears primed in row 0 and unprimed in row 1. Similarly, y appears primed in column
0 and unprimed in column 1.

If we mark the squares whose minterms belong to a given function, the two-variable
map becomes another useful way to represent any one of the 16 Boolean functions of
two variables. As an example, the function xy is shown in Fig. 3.2(a). Since xy is equal to
ms, a 1 is placed inside the square that belongs to m;. Similarly, the function x + y is
represented in the map of Fig. 3.2(b) by three squares marked with 1’s. These squares
are found from the minterms of the function:

my+m +my=x'y+xy txy=x-+y

y
—_—
N 0 1
m, my
my nmy O x'y" | x'y
m, [z
my ms X311 xy' Xy

() (b)
FIGURE 3.1
Two-variable K-map

Section 3.2 The Map Method 75

y y
y —_— —_
x 0 1 X J 0 1
m, m my my y
0 0 11—
m, [z m, my
x41 1 X411 1 1
(a) xy (b)x+y

FIGURE 3.2
Representation of functions in the map

The three squares could also have been determined from the intersection of variable
x in the second row and variable y in the second column, which encloses the area
belonging to x or y. In each example, the minterms at which the function is asserted are
marked with a 1.

Three-Variable K-Map

A three-variable K-map is shown in Fig. 3.3. There are eight minterms for three binary
variables; therefore, the map consists of eight squares. Note that the minterms are
arranged, not in a binary sequence, but in a sequence similar to the Gray code (Table 1.6).
The characteristic of this sequence is that only one bit changes in value from one adjacent
column to the next. The map drawn in part (b) is marked with numbers in each row and
each column to show the relationship between the squares and the three variables. For
example, the square assigned to m5 corresponds to row 1 and column 01. When these two
numbers are concatenated, they give the binary number 101, whose decimal equivalent
is 5. Each cell of the map corresponds to a unique minterm, so another way of looking at
square ms = xy'z is to consider it to be in the row marked x and the column belonging
to y'z (column 01). Note that there are four squares in which each variable is equal to 1
and four in which each is equal to 0. The variable appears unprimed in the former four

yz _
* 00 01 11 10
}’HU ml ﬂ13 mz
my m ms my 0)x'y'z" | x'y'z | x'yz | x'yz’
my ms m;, mg
nmy ms my mg X9l xy'z' | xy'z | xyz | xyz’'
———

(a) (®)

FIGURE 3.3
Three-variable K-map

76 Chapter 3 Gate-Level Minimization

squares and primed in the latter. For convenience, we write the variable with its letter
symbol under the four squares in which it is unprimed.

To understand the usefulness of the map in simplifying Boolean functions, we must
recognize the basic property possessed by adjacent squares: Any two adjacent squares
in the map differ by only one variable, which is primed in one square and unprimed in
the other. For example, ms and m; lie in two adjacent squares. Variable y is primed in
ms and unprimed in m;, whereas the other two variables are the same in both squares.
From the postulates of Boolean algebra, it follows that the sum of two minterms in
adjacent squares can be simplified to a single product term consisting of only two liter-
als. To clarify this concept, consider the sum of two adjacent squares such as ms and m-:

ms + m; = xy'z + xyz = xz(y'+y) = xz

Here, the two squares differ by the variable y, which can be removed when the sum of
the two minterms is formed. Thus, any two minterms in adjacent squares (vertically or
horizontally, but not diagonally, adjacent) that are ORed together will cause a removal
of the dissimilar variable. The next four examples explain the procedure for minimizing
a Boolean function with a K-map.

EXAMPLE 3.1

Simplify the Boolean function

F(x,y,z) = 2(2,3,4,5)

First, a 1 is marked in each minterm square that represents the function. This is shown
in Fig. 3.4, in which the squares for minterms 010,011,100, and 101 are marked with 1’s.
The next step is to find possible adjacent squares. These are indicated in the map by two
shaded rectangles, each enclosing two 1’s. The upper right rectangle represents the area
enclosed by x'y. This area is determined by observing that the two-square area is in row
0, corresponding to x’, and the last two columns, corresponding to y. Similarly, the lower
left rectangle represents the product term xy’. (The second row represents x and the
two left columns represent y'.) The sum of four minterms can be replaced by a sum of

yz _L x'y
* 00 01 1 10
m, my my m,
0 1 1
my ms my mg
x91 1 1
-
f z
xy

FIGURE 3.4
Map for Example 3.1, F(x, y, z2) = 2(2, 3, 4, 5) = x'y + xy’

EXAMPLE 3.2

Section 3.2 The Map Method 77

only two product terms. The logical sum of these two product terms gives the simplified
expression

F=x'y +xy’
|
In certain cases, two squares in the map are considered to be adjacent even though
they do not touch each other. In Fig. 3.3(b), m, is adjacent to m, and my is adjacent to

my because their minterms differ by one variable. This difference can be readily verified
algebraically:

[J—

my+my =x'y'z' +x'yz' =x'z'(y +y)=x'7
my +mg=xy'z' + xyz' = xz' +(y' +y)=xz7’
Consequently, we must modify the definition of adjacent squares to include this and

other similar cases. We do so by considering the map as being drawn on a surface in
which the right and left edges touch each other to form adjacent squares.

Simplify the Boolean function
F(x,y,2) =32(3,4,6,7)

The map for this function is shown in Fig. 3.5. There are four squares marked with 1’s,
one for each minterm of the function. Two adjacent squares are combined in the third
column to give a two-literal term yz. The remaining two squares with 1’s are also adja-
cent by the new definition. These two squares, when combined, give the two-literal term
xz'. The simplified function then becomes

F=yz +xz7’
y
yz .
x 00 01 11 10
my my ms ”’2// yz
0 1 —
my ms my mg
x<1 1 1 1
-
Z ’
xy'z' xyz

Note:xy'z' + xyz' = xz'

FIGURE 3.5
Map for Example 3.2, F (x, y, z) = (3, 4, 6, 7) = yz + xZ' [

78

EXAMPLE 3.3

Chapter 3 Gate-Level Minimization

Consider now any combination of four adjacent squares in the three-variable map.
Any such combination represents the logical sum of four minterms and results in an
expression with only one literal. As an example, the logical sum of the four adjacent
minterms 0, 2, 4, and 6 reduces to the single literal term z":

A

mo + my +my +mg=x'y'z" +x'yz' +xy'z' + xyz’
=Xz’ y) Fx’)
=x'z' +xz' =7/(x" +x) =7
The number of adjacent squares that may be combined must always represent a
number that is a power of two, such as 1, 2,4, and 8. As more adjacent squares are com-
bined, we obtain a product term with fewer literals.
One square represents one minterm, giving a term with three literals.
Two adjacent squares represent a term with two literals.
Four adjacent squares represent a term with one literal.

Eight adjacent squares encompass the entire map and produce a function that is
always equal to 1.

Simplify the Boolean function
F(x,y,z) = 2(0,2,4,5,6)

The map for Fis shown in Fig. 3.6. First, we combine the four adjacent squares in the
first and last columns to give the single literal term z'. The remaining single square,
representing minterm 5, is combined with an adjacent square that has already been used
once. This is not only permissible, but rather desirable, because the two adjacent squares
give the two-literal term xy’ and the single square represents the three-literal minterm
xy'z. The simplified function is
F=z +xy
y

yz —_— A

o X 00 01 11 10

yz ’
\ mg m ms m, yz
L —
my, ms m; mg
xq1 1 1 1
N —
’ Z
xy

Note:y'z' +yz' =7’

FIGURE 3.6
Map for Example 3.3, F(x, y, z) = %(0, 2,4, 5,6) = z' + xy’

Section 3.2 The Map Method 79

If a function is not expressed in sum-of-minterms form, it is possible to use the map to
obtain the minterms of the function and then simplify the function to an expression with a
minimum number of terms. It is necessary, however, to make sure that the algebraic expres-
sion is in sum-of-products form. Each product term can be plotted in the map in one, two,
or more squares. The minterms of the function are then read directly from the map.

EXAMPLE 3.4

For the Boolean function

F=A'C+ A'B+ AB'C + BC

(a) Express this function as a sum of minterms.
(b) Find the minimal sum-of-products expression.

Note that Fis a sum of products. Three product terms in the expression have two literals
and are represented in a three-variable map by two squares each. The two squares cor-
responding to the first term, A'C, are found in Fig. 3.7 from the coincidence of A’ (first
row) and C (two middle columns) to give squares 001 and 011. Note that, in marking
1’s in the squares, it is possible to find a 1 already placed there from a preceding term.
This happens with the second term, A’ B, which has 1’s in squares 011 and 010. Square
011 is common with the first term, A'C, though, so only one 1 is marked in it. Continu-
ing in this fashion, we determine that the term AB’C belongs in square 101, correspond-
ing to minterm 5, and the term BC has two 1’s in squares 011 and 111. The function has
a total of five minterms, as indicated by the five 1’s in the map of Fig. 3.7. The minterms
are read directly from the map to be 1,2, 3,5, and 7. The function can be expressed in
sum-of-minterms form as

F(A,B,C) = 3(1,2,3,5,7)

The sum-of-products expression, as originally given, has too many terms. It can be
simplified, as shown in the map, to an expression with only two terms:

F=C+ A'B
c B
B ’
A 00 01 11 10 A'B
m, my my m,
0 1 1 1
my ms m; mg
A{1l 1 1
P —
C

FIGURE 3.7
Map of Example 3.4, A’'C + A'B + AB'C + BC = C + A'B

80

3.

3

Chapter 3 Gate-Level Minimization

FOUR-VARIABLE K-MAP

The map for Boolean functions of four binary variables (w, x, y, z) is shown in Fig. 3.8.
In Fig. 3.8(a) are listed the 16 minterms and the squares assigned to each. In Fig. 3.8(b),
the map is redrawn to show the relationship between the squares and the four variables.
The rows and columns are numbered in a Gray code sequence, with only one digit
changing value between two adjacent rows or columns. The minterm corresponding to
each square can be obtained from the concatenation of the row number with the column
number. For example, the numbers of the third row (11) and the second column (01),
when concatenated, give the binary number 1101, the binary equivalent of decimal 13.
Thus, the square in the third row and second column represents minterm ;3.

The map minimization of four-variable Boolean functions is similar to the method
used to minimize three-variable functions. Adjacent squares are defined to be squares
next to each other. In addition, the map is considered to lie on a surface with the top
and bottom edges, as well as the right and left edges, touching each other to form adja-
cent squares. For example, m and m, form adjacent squares, as do m; and n1y;. The
combination of adjacent squares that is useful during the simplification process is easily
determined from inspection of the four-variable map:

One square represents one minterm, giving a term with four literals.
Two adjacent squares represent a term with three literals.

Four adjacent squares represent a term with two literals.

Eight adjacent squares represent a term with one literal.

Sixteen adjacent squares produce a function that is always equal to 1.

No other combination of squares can simplify the function. The next two examples
show the procedure used to simplify four-variable Boolean functions.

y
vz —_—
wx 00 01 11 10
My ny ny n,
mg m s m, 00 [w'x'y'z'|w'x'y'z | wx'yz |w'x'yz’
my ms m, mg
my ms my mg 0l |w'xy'z" | wxy'z | wxyz | wxyz’
X
My myy mys My
myp my3 mys myy 11| wxy'z" | wxy'z | wxyz | wxyz’
w
nig my myy My
mg my my myg 10| wx'y'z" | wx'y'z | wx'yz [wx'yz’
-

(a) (b)

FIGURE 3.8
Four-variable map

Section 3.3 Four-Variable K-Map 81

EXAMPLE 3.5

Simplify the Boolean function
F(w,x,y,z) = 2(0,1,2,4,5,6,8,9,12, 13, 14)

Since the function has four variables, a four-variable map must be used. The minterms
listed in the sum are marked by 1’s in the map of Fig. 3.9. Eight adjacent squares marked
with 1’s can be combined to form the one literal term y’. The remaining three 1’s on the
right cannot be combined to give a simplified term; they must be combined as two or
four adjacent squares. The larger the number of squares combined, the smaller is the
number of literals in the term. In this example, the top two 1’s on the right are combined
with the top two 1’s on the left to give the term w’z’. Note that it is permissible to use
the same square more than once. We are now left with a square marked by 1 in the third
row and fourth column (square 1110). Instead of taking this square alone (which will
give a term with four literals), we combine it with squares already used to form an area
of four adjacent squares. These squares make up the two middle rows and the two end
columns, giving the term xz'. The simplified function is

F=y +wz +xz/

y
yZ —_—
" 00 0 11 10
w'y'z' m, n, m, my
s 1 1
\ wlyzl
my mg m, myg
01 1 1 1
x
M my3 mys myy
1] 1 1 1— /
X'z’ xyz
W mg ny myy KoT
10 1 1
PR —
, z
y
Note:w'y'z' + w'yz' =w'z’
xy'z" + xyz' = xz'
FIGURE 3.9
Map for Example 3.5, F(w, x, y, z) = %(0,1,2,4,5,6,8,9,12,13, 14) =
y+wz + xz' m

EXAMPLE 3.6

Simplify the Boolean function
F=A'B'C'+ B'CD'"+ A’'BCD' + AB'C’

The area in the map covered by this function consists of the squares marked with 1’s in
Fig. 3.10. The function has four variables and, as expressed, consists of three terms with

82

Chapter 3 Gate-Level Minimization

A'B'C’
C
ABD CD —_——
A'B'C'D’ 00 01 11 10
\mo my ms ny ~— A/B/CD/
00> 1 1 1
my ms m, mg
01 1 A'CD’
My KO s My B
11
A
Zs my myy KOT
10 1 1 1
~ ~
™ ap'cp’

AB'C'D’ _b—\ AB'C

Note: A'B'C'D" + A'B'CD' = A'B'D’
AB'C'D' + AB'CD' = AB'D'
A'B'D' + AB'D' = B'D’
A'B'C' + AB'C' = B'C’
FIGURE 3.10
Map for Example 3.6, A’B'C’ + B'CD’ + A’BCD’ + AB'C’ = B'D' + B'C' + A'CD’

three literals each and one term with four literals. Each term with three literals is repre-
sented in the map by two squares. For example, A'B'C’ is represented in squares 0000
and 0001. The function can be simplified in the map by taking the 1’s in the four corners
to give the term B'D . This is possible because these four squares are adjacent when the
map is drawn in a surface with top and bottom edges, as well as left and right edges,
touching one another. The two left-hand 1’s in the top row are combined with the two
1’s in the bottom row to give the term B’ C". The remaining 1 may be combined in a two-
square area to give the term A'CD’. The simplified function is

F=B'D"+B'C"+ A'CD’

Prime Implicants

In choosing adjacent squares in a map, we must ensure that (1) all the minterms of the
function are covered when we combine the squares, (2) the number of terms in the
expression is minimized, and (3) there are no redundant terms (i.e., minterms already
covered by other terms). Sometimes there may be two or more expressions that satisfy
the simplification criteria. The procedure for combining squares in the map may be made
more systematic if we understand the meaning of two special types of terms. A prime
implicant is a product term obtained by combining the maximum possible number of
adjacent squares in the map. If a minterm in a square is covered by only one prime
implicant, that prime implicant is said to be essential.

Section 3.3 Four-Variable K-Map 83

The prime implicants of a function can be obtained from the map by combining all
possible maximum numbers of squares. This means that a single 1 on a map represents
a prime implicant if it is not adjacent to any other 1’s. Two adjacent 1’s form a prime
implicant, provided that they are not within a group of four adjacent squares. Four
adjacent 1’s form a prime implicant if they are not within a group of eight adjacent
squares, and so on. The essential prime implicants are found by looking at each square
marked with a 1 and checking the number of prime implicants that cover it. The prime
implicant is essential if it is the only prime implicant that covers the minterm.

Consider the following four-variable Boolean function:

F(A,B,C,D) = 3(0,2,3,5,7,8,9, 10, 11, 13, 15)

The minterms of the function are marked with 1’s in the maps of Fig. 3.11. The partial
map (Fig. 3.11(a)) shows two essential prime implicants, each formed by collapsing four
cells into a term having only two literals. One term is essential because there is only one
way to include minterm m, within four adjacent squares. These four squares define the
term B'D’. Similarly, there is only one way that minterm m5 can be combined with four
adjacent squares, and this gives the second term BD.The two essential prime implicants
cover eight minterms. The three minterms that were omitted from the partial map
(m3, mg, and my;) must be considered next.

Figure 3.11(b) shows all possible ways that the three minterms can be covered with
prime implicants. Minterm 5 can be covered with either prime implicant CD or prime
implicant B'C. Minterm m9 can be covered with either AD or AB'. Minterm my; is
covered with any one of the four prime implicants. The simplified expression is obtained
from the logical sum of the two essential prime implicants and any two prime implicants

C C
AB 00 01 11 10 AB 00 01 11 10
m m, my m, A'B'CD’ m, m, my m,
00 -1 1 00 1 1 1
A'B'C'D' / — - o o CD \m_‘\ ms my mg
AD 01 1
BD i_ 1 1 \ \K\
My my3 ms myy B 3 s 15 My B'C
11 1 1 11 N~ 1 1
A A
g my my myy g {7 1 My
10 1 1 10 / 1 1 1 1
AB'CD’
AB'C'D' D D
Note: A'B'C'D' + A'B'CD’' = A'B'D’ AB'

AB'C'D' + AB'CD' = AB'D’
A'B'D' + AB'D" = B'D'

(a) Essential prime implicants (b) Prime implicants CD, B'C,
BD and B'D’ AD, and AB’
FIGURE 3.11

Simplification using prime implicants

84

Chapter 3 Gate-Level Minimization

that cover minterms m3, m9, and mq;. There are four possible ways that the function can
be expressed with four product terms of two literals each:

F=BD +B'D'"+CD + AD
=BD + B'D" + CD + AB’
=BD + B'D'+ B'C+ AD
=BD + B'D" + B'C + AB’

The previous example has demonstrated that the identification of the prime implicants in
the map helps in determining the alternatives that are available for obtaining a simplified
expression.

The procedure for finding the simplified expression from the map requires that we
first determine all the essential prime implicants. The simplified expression is obtained
from the logical sum of all the essential prime implicants, plus other prime implicants
that may be needed to cover any remaining minterms not covered by the essential prime
implicants. Occasionally, there may be more than one way of combining squares, and
each combination may produce an equally simplified expression.

Five-Variable Map

3.4

Maps for more than four variables are not as simple to use as maps for four or fewer
variables. A five-variable map needs 32 squares and a six-variable map needs 64 squares.
When the number of variables becomes large, the number of squares becomes excessive
and the geometry for combining adjacent squares becomes more involved.

Maps for more than four variables are difficult to use and will not be considered here.

PRODUCT-OF-SUMS SIMPLIFICATION

The minimized Boolean functions derived from the map in all previous examples were
expressed in sum-of-products form. With a minor modification, the product-of-sums
form can be obtained.

The procedure for obtaining a minimized function in product-of-sums form follows
from the basic properties of Boolean functions. The 1’s placed in the squares of the
map represent the minterms of the function. The minterms not included in the standard
sum-of-products form of a function denote the complement of the function. From this
observation, we see that the complement of a function is represented in the map by
the squares not marked by 1’s. If we mark the empty squares by 0’s and combine them
into valid adjacent squares, we obtain a simplified sum-of-products expression of the
complement of the function (i.e., of F’). The complement of F’ gives us back the func-
tion F in product-of-sums form (a consequence of DeMorgan’s theorem). Because of
the generalized DeMorgan’s theorem, the function so obtained is automatically in
product-of-sums form. The best way to show this is by example.

Section 3.4 Product-of-Sums Simplification 85

EXAMPLE 3.7

Simplify the following Boolean function into (a) sum-of-products form and
(b) product-of-sums form:

F(A,B,C,D) = 2(0,1,2,5,8,9,10)
The 1’s marked in the map of Fig. 3.12 represent all the minterms of the function. The
squares marked with 0’s represent the minterms not included in F and therefore denote

the complement of F. Combining the squares with 1’s gives the simplified function in
sum-of-products form:

(a) F=B'D' +B'C' +A'C'D

If the squares marked with 0’s are combined, as shown in the diagram, we obtain
the simplified complemented function:

F'=AB + CD + BD'

Applying DeMorgan’s theorem (by taking the dual and complementing each
literal as described in Section 2.4), we obtain the simplified function in product-
of-sums form:

(b) F=(A"+B")(C'+D')(B"+ D)
|

The gate-level implementation of the simplified expressions obtained in Example 3.7 is
shown in Fig. 3.13. The sum-of-products expression is implemented in (a) with a group of
AND gates, one for each AND term. The outputs of the AND gates are connected to the
inputs of a single OR gate. The same function is implemented in (b) in its product-of-sums

Cc
CcD —_———
AB 00 01 11 10
cD
my, my my nmy | —
ol 1 1 o1 |,BcD
BC'D’
\ m, ms m, mg
orT~0 1 0 0
my my; mys myy B
11| o 0 0] o
A m, m, m m
8 9 11 10
0] 1 1 0 1 \AB
—

Note: BC'D' + BCD' = BD'
FIGURE 3.12
Map for Example 3.7, F (A, B, C, D) = 3(0,1, 2, 5,8, 9,10) = B'D' + B'C’' + A'C'D =
(A" + B')(C' + D')(B' + D)

86

B’

Chapter 3 Gate-Level Minimization

w
5

%
%

=D DD

(@ F=B'D' + B'C' + A'C'D (b)F=(A"+B')(C +D')(B +D)

FIGURE 3.13
Gate implementations of the function of Example 3.7

Table 3.1

Truth Table of Function F
X y z F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

form with a group of OR gates, one for each OR term. The outputs of the OR gates are
connected to the inputs of a single AND gate. In each case, it is assumed that the input
variables are directly available in their complement, so inverters are not needed. The con-
figuration pattern established in Fig. 3.13 is the general form by which any Boolean function
is implemented when expressed in one of the standard forms. AND gates are connected
to a single OR gate when in sum-of-products form; OR gates are connected to a single
AND gate when in product-of-sums form. Either configuration forms two levels of gates.
Thus, the implementation of a function in a standard form is said to be a two-level imple-
mentation. The two-level implementation may not be practical, depending on the number
of inputs to the gates.

Example 3.7 showed the procedure for obtaining the product-of-sums simplifica-
tion when the function is originally expressed in the sum-of-minterms canonical form.
The procedure is also valid when the function is originally expressed in the product-
of-maxterms canonical form. Consider, for example, the truth table that defines the
function F in Table 3.1. In sum-of-minterms form, this function is expressed as

F(x,y,z) = 2(1,3,4,6)

Section 3.4 Product-of-Sums Simplification 87

y
vz PR G,
X 00 01 11 10
my m my m, ,
of o |t | 14T *°
my ms my mg
x{1] 1 0 0 1

FIGURE 3.14
Map for the function of Table 3.1

In product-of-maxterms form, it is expressed as
F(x,y,z) = 11(0,2,5,7)

In other words, the 1’s of the function represent the minterms and the 0’s represent
the maxterms. The map for this function is shown in Fig. 3.14. One can start simplify-
ing the function by first marking the 1’s for each minterm that the function is a 1. The
remaining squares are marked by 0’s. If, instead, the product of maxterms is initially
given, one can start marking 0’s in those squares listed in the function; the remaining
squares are then marked by 1’s. Once the 1’s and 0’s are marked, the function can be
simplified in either one of the standard forms. For the sum of products, we combine
the 1’s to obtain

F=x'z+xz'

For the product of sums, we combine the 0’s to obtain the simplified complemented
function

F' =xz +x'7

which shows that the exclusive-OR function is the complement of the equivalence func-
tion (Section 2.6). Taking the complement of F’, we obtain the simplified function in
product-of-sums form:

F=x"+2z2)(x+ 2)

To enter a function expressed in product-of-sums form into the map, use the comple-
ment of the function to find the squares that are to be marked by 0’s. For example, the
function

F=A"+B +C)B+ D)
can be entered into the map by first taking its complement, namely,

F'=ABC + B'D’

88 Chapter 3 Gate-Level Minimization

and then marking 0’s in the squares representing the minterms of F'. The remaining
squares are marked with 1’s.

3.5 DON'T-CARE CONDITIONS

The logical sum of the minterms associated with a Boolean function specifies the con-
ditions under which the function is equal to 1. The function is equal to 0 for the rest of
the minterms. This pair of conditions assumes that all the combinations of the values
for the variables of the function are valid. In practice, in some applications the function
is not specified for certain combinations of the variables. As an example, the four-bit
binary code for the decimal digits has six combinations that are not used and conse-
quently are considered to be unspecified. Functions that have unspecified outputs for
some input combinations are called incompletely specified functions. In most applica-
tions, we simply don’t care what value is assumed by the function for the unspecified
minterms. For this reason, it is customary to call the unspecified minterms of a function
don’t-care conditions. These don’t-care conditions can be used on a map to provide
further simplification of the Boolean expression.

A don’t-care minterm is a combination of variables whose logical value is not speci-
fied. Such a minterm cannot be marked with a 1 in the map, because it would require
that the function always be a 1 for such a combination. Likewise, putting a 0 on the
square requires the function to be 0. To distinguish the don’t-care condition from 1’s and
0’s, an X is used. Thus, an X inside a square in the map indicates that we don’t care
whether the value of 0 or 1 is assigned to F for the particular minterm.

In choosing adjacent squares to simplify the function in a map, the don’t-care min-
terms may be assumed to be either 0 or 1. When simplifying the function, we can choose
to include each don’t-care minterm with either the 1’s or the 0’s, depending on which
combination gives the simplest expression.

EXAMPLE 3.8

Simplify the Boolean function

F(w,x,vy,2) = 2(1,3,7,11, 15)
which has the don’t-care conditions

d(w,x,y,z) = 2(0,2,5)

The minterms of F are the variable combinations that make the function equal to 1. The
minterms of d are the don’t-care minterms that may be assigned either O or 1. The map
simplification is shown in Fig. 3.15. The minterms of F are marked by 1’s, those of d are
marked by X’s, and the remaining squares are filled with 0’s. To get the simplified expres-
sion in sum-of-products form, we must include all five 1’s in the map, but we may or may
not include any of the X’s, depending on the way the function is simplified. The term yz
covers the four minterms in the third column. The remaining minterm, 71, can be combined

Section 3.5 Don’t-Care Conditions 89

y y
yz —_ A Yz —_ A
wx 00 01 1 10 wx 00 01 11 10
mU ml m3 mz mU ml m3 mz
00 X 1 1 X 00 X 1 1 X
wix' —] Wz —F—
ny ms ny Mg my mg m, mg
01 0 X 1 0 01 0 X 1 0
X X
my, s s my, my my3 s My
11 0 0 1 0 11 0 0 1 0
w w
mg my my my, mg my my my
10 0 0 1 0 10 0 0 1 0
F——
z
Z
yz yz
(@) F=yz +w'x' () F=yz+w'z

FIGURE 3.15
Example with don’t-care conditions

with minterm m; to give the three-literal term w'x’z. However, by including one or
two adjacent X’s we can combine four adjacent squares to give a two-literal term. In
Fig. 3.15(a), don’t-care minterms 0 and 2 are included with the 1’s, resulting in the simpli-
fied function

F=yz+wkx'

In Fig. 3.15(b), don’t-care minterm 5 is included with the 1’s, and the simplified func-
tion is now

F=yz+w'z

Either one of the preceding two expressions satisfies the conditions stated for this
example.
|

The previous example has shown that the don’t-care minterms in the map are ini-
tially marked with X’s and are considered as being either 0 or 1. The choice between 0
and 1 is made depending on the way the incompletely specified function is simplified.
Once the choice is made, the simplified function obtained will consist of a sum of min-
terms that includes those minterms which were initially unspecified and have been
chosen to be included with the 1’s. Consider the two simplified expressions obtained
in Example 3.8:

F(w,x,y,z) = yz + w'x" = 3(0,1,2,3,7,11, 15)
F(w,x,y,z) =yz +w'z = 2(1,3,5,7,11,15)

Both expressions include minterms 1, 3,7 11, and 15 that make the function F equal
to 1. The don’t-care minterms 0, 2, and 5 are treated differently in each expression.

90

3.6

Chapter 3 Gate-Level Minimization

The first expression includes minterms 0 and 2 with the 1’s and leaves minterm 5 with
the 0’s. The second expression includes minterm 5 with the 1’s and leaves minterms 0
and 2 with the 0’s. The two expressions represent two functions that are not algebra-
ically equal. Both cover the specified minterms of the function, but each covers dif-
ferent don’t-care minterms. As far as the incompletely specified function is concerned,
either expression is acceptable because the only difference is in the value of F for the
don’t-care minterms.

It is also possible to obtain a simplified product-of-sums expression for the function
of Fig. 3.15. In this case, the only way to combine the 0’s is to include don’t-care minterms
0 and 2 with the 0’s to give a simplified complemented function:

F' =7z +wy’
Taking the complement of F'’ gives the simplified expression in product-of-sums form:
F(w,x,y,z) = z(w" +y) = X(1,3,5,7,11,15)

In this case, we include minterms 0 and 2 with the 0’s and minterm 5 with the 1’s.

NAND AND NOR IMPLEMENTATION

Digital circuits are frequently constructed with NAND or NOR gates rather than with
AND and OR gates. NAND and NOR gates are easier to fabricate with electronic
components and are the basic gates used in all IC digital logic families. Because of the
prominence of NAND and NOR gates in the design of digital circuits, rules and proce-
dures have been developed for the conversion from Boolean functions given in terms
of AND, OR, and NOT into equivalent NAND and NOR logic diagrams.

NAND Circuits

The NAND gate is said to be a universal gate because any logic circuit can be imple-
mented with it. To show that any Boolean function can be implemented with NAND
gates, we need only show that the logical operations of AND, OR, and complement can
be obtained with NAND gates alone. This is indeed shown in Fig. 3.16. The complement
operation is obtained from a one-input NAND gate that behaves exactly like an inverter.
The AND operation requires two NAND gates. The first produces the NAND operation
and the second inverts the logical sense of the signal. The OR operation is achieved
through a NAND gate with additional inverters in each input.

A convenient way to implement a Boolean function with NAND gates is to obtain
the simplified Boolean function in terms of Boolean operators and then convert the
function to NAND logic. The conversion of an algebraic expression from AND, OR, and
complement to NAND can be done by simple circuit manipulation techniques that
change AND-OR diagrams to NAND diagrams.

To facilitate the conversion to NAND logic, it is convenient to define an alternative
graphic symbol for the gate. Two equivalent graphic symbols for the NAND gate are
shown in Fig. 3.17. The AND-invert symbol has been defined previously and consists

Section 3.6 NAND and NOR Implementation 91

Inverter x {>c x'
x
y —

X

OR } (xy) =x+y

y

FIGURE 3.16
Logic operations with NAND gates

x ’ x r r ’ !
y — (xyz) y x'+y' +7' = (xyz)
I — Z

(a) AND-invert (b) Invert-OR

FIGURE 3.17
Two graphic symbols for a three-input NAND gate

of an AND graphic symbol followed by a small circle negation indicator referred to as
a bubble. Alternatively, it is possible to represent a NAND gate by an OR graphic
symbol that is preceded by a bubble in each input. The invert-OR symbol for the
NAND gate follows DeMorgan’s theorem and the convention that the negation indica-
tor (bubble) denotes complementation. The two graphic symbols’ representations are
useful in the analysis and design of NAND circuits. When both symbols are mixed in
the same diagram, the circuit is said to be in mixed notation.

Two-Level Implementation

The implementation of Boolean functions with NAND gates requires that the functions
be in sum-of-products form. To see the relationship between a sum-of-products expres-
sion and its equivalent NAND implementation, consider the logic diagrams drawn in
Fig. 3.18. All three diagrams are equivalent and implement the function

F=AB + CD

The function is implemented in Fig. 3.18(a) with AND and OR gates. In Fig. 3.18(b), the
AND gates are replaced by NAND gates and the OR gate is replaced by a NAND gate
with an OR-invert graphic symbol. Remember that a bubble denotes complementation
and two bubbles along the same line represent double complementation, so both can be
removed. Removing the bubbles on the gates of (b) produces the circuit of (a). Therefore,
the two diagrams implement the same function and are equivalent.

92 Chapter 3 Gate-Level Minimization

A —]
B_
F
C —
D_
(a)
A — A —]
. L
: D—-
- D
D— D —
(b) (c)

FIGURE 3.18
Three ways to implement F= AB+ CD

In Fig. 3.18(c), the output NAND gate is redrawn with the AND-invert graphic symbol.
In drawing NAND logic diagrams, the circuit shown in either Fig. 3.18(b) or (c) is accept-
able.The one in Fig. 3.18(b) is in mixed notation and represents a more direct relationship
to the Boolean expression it implements. The NAND implementation in Fig. 3.18(c) can
be verified algebraically. The function it implements can easily be converted to sum-of-
products form by DeMorgan’s theorem:

F = ((AB)'(CD)")’ = AB + CD

EXAMPLE 3.9

Implement the following Boolean function with NAND gates:
F(x7y5 Z) = (1’27354’597)

The first step is to simplify the function into sum-of-products form. This is done by
means of the map of Fig. 3.19(a), from which the simplified function is obtained:

F=xy' +x'y+z

The two-level NAND implementation is shown in Fig. 3.19(b) in mixed notation. Note
that input z must have a one-input NAND gate (an inverter) to compensate for the
bubble in the second-level gate. An alternative way of drawing the logic diagram is given
in Fig. 3.19(¢c). Here, all the NAND gates are drawn with the same graphic symbol. The
inverter with input z has been removed, but the input variable is complemented and
denoted by z'.

[|

Section 3.6 NAND and NOR Implementation 93

yz S SR
X 00 01 11 10
my my ms m,
0|l o 1 1 1 ——xy
my ms my mg
x i1 1 1 1 F=xy +x'y+z
——

L D
D ;

=D

(®) (©)
FIGURE 3.19
Solution to Example 3.9

The procedure described in the previous example indicates that a Boolean function
can be implemented with two levels of NAND gates. The procedure for obtaining the
logic diagram from a Boolean function is as follows:

1. Simplify the function and express it in sum-of-products form.

2. Draw a NAND gate for each product term of the expression that has at least two
literals. The inputs to each NAND gate are the literals of the term. This procedure
produces a group of first-level gates.

3. Draw a single gate using the AND-invert or the invert-OR graphic symbol in the
second level, with inputs coming from outputs of first-level gates.

4. A term with a single literal requires an inverter in the first level. However, if the
single literal is complemented, it can be connected directly to an input of the second-
level NAND gate.

Multilevel NAND Circuits

The standard form of expressing Boolean functions results in a two-level implementation.
There are occasions, however, when the design of digital systems results in gating structures
with three or more levels. The most common procedure in the design of multilevel circuits
is to express the Boolean function in terms of AND, OR, and complement operations. The
function can then be implemented with AND and OR gates. After that, if necessary, it can
be converted into an all-NAND circuit. Consider, for example, the Boolean function

F=A(CD + B) + BC'

94

Chapter 3 Gate-Level Minimization

& > T QO

)
L

(a) AND-OR gates

B ——— |
— 1

FIGURE 3.20
Implementing F = A(CD + B) + BC’

(b) NAND gates

Although it is possible to remove the parentheses and reduce the expression into a standard
sum-of-products form, we choose to implement it as a multilevel circuit for illustration. The
AND-OR implementation is shown in Fig. 3.20(a). There are four levels of gating in the
circuit. The first level has two AND gates. The second level has an OR gate followed by an
AND gate in the third level and an OR gate in the fourth level. A logic diagram with a pat-
tern of alternating levels of AND and OR gates can easily be converted into a NAND circuit
with the use of mixed notation, shown in Fig. 3.20(b). The procedure is to change every AND
gate to an AND-invert graphic symbol and every OR gate to an invert-OR graphic symbol.
The NAND circuit performs the same logic as the AND-OR diagram as long as there are
two bubbles along the same line. The bubble associated with input B causes an extra comple-
mentation, which must be compensated for by changing the input literal to B".

The general procedure for converting a multilevel AND-OR diagram into an all-NAND
diagram using mixed notation is as follows:

1. Convert all AND gates to NAND gates with AND-invert graphic symbols.

2. Convert all OR gates to NAND gates with invert-OR graphic symbols.

3. Check all the bubbles in the diagram. For every bubble that is not compensated
by another small circle along the same line, insert an inverter (a one-input NAND
gate) or complement the input literal.

As another example, consider the multilevel Boolean function

F=(AB' + A'B)(C + D)

Section 3.6 NAND and NOR Implementation 95

B —| }F

(a) AND-OR gates

S) e

(b) NAND gates

FIGURE 3.21
Implementing F = (AB’ + A'B) (C + D’)

The AND-OR implementation of this function is shown in Fig. 3.21(a) with three levels
of gating. The conversion to NAND with mixed notation is presented in Fig. 3.21(b) of
the diagram. The two additional bubbles associated with inputs C and D' cause these
two literals to be complemented to C" and D. The bubble in the output NAND gate
complements the output value, so we need to insert an inverter gate at the output in
order to complement the signal again and get the original value back.

NOR Implementation

The NOR operation is the dual of the NAND operation. Therefore, all procedures and
rules for NOR logic are the duals of the corresponding procedures and rules developed
for NAND logic. The NOR gate is another universal gate that can be used to implement
any Boolean function. The implementation of the complement, OR, and AND operations
with NOR gates is shown in Fig. 3.22. The complement operation is obtained from a one-
input NOR gate that behaves exactly like an inverter. The OR operation requires two NOR
gates, and the AND operation is obtained with a NOR gate that has inverters in each input.

The two graphic symbols for the mixed notation are shown in Fig. 3.23. The OR-invert
symbol defines the NOR operation as an OR followed by a complement. The invert-AND
symbol complements each input and then performs an AND operation. The two symbols
designate the same NOR operation and are logically identical because of DeMorgan’s
theorem.

96

Chapter 3 Gate-Level Minimization

Inverter x {>c x'

OR ;:[>c {>c x+y
—

AND (x"+y) =xy

y {>c
FIGURE 3.22

Logic operations with NOR gates

X) x—d
y (x+y+2z) y—0q x'y'z =(x+y+z)
z 77—

(a) OR-invert (b) Invert-AND

FIGURE 3.23
Two graphic symbols for the NOR gate

A two-level implementation with NOR gates requires that the function be simplified
into product-of-sums form. Remember that the simplified product-of-sums expression
is obtained from the map by combining the 0’s and complementing. A product-of-sums
expression is implemented with a first level of OR gates that produce the sum terms
followed by a second-level AND gate to produce the product. The transformation from
the OR-AND diagram to a NOR diagram is achieved by changing the OR gates to
NOR gates with OR-invert graphic symbols and the AND gate to a NOR gate with an
invert-AND graphic symbol. A single literal term going into the second-level gate must
be complemented. Figure 3.24 shows the NOR implementation of a function expressed
as a product of sums:

F= (A + B)(C + D)E

The OR-AND pattern can easily be detected by the removal of the bubbles along the
same line. Variable E is complemented to compensate for the third bubble at the input
of the second-level gate.

The procedure for converting a multilevel AND-OR diagram to an all-NOR diagram
is similar to the one presented for NAND gates. For the NOR case, we must convert
each OR gate to an OR-invert symbol and each AND gate to an invert-AND symbol.
Any bubble that is not compensated by another bubble along the same line needs an
inverter, or the complementation of the input literal.

The transformation of the AND-OR diagram of Fig.3.21(a) into a NOR diagram is
shown in Fig. 3.25. The Boolean function for this circuit is

F=(AB' + A'B)(C + D)

Section 3.7 Other Two-Level Implementations 97

] >)

FIGURE 3.24
Implementing F = (A + B)(C + D)E

A'—9

B —

F
- —4

B'—9

C
D/

FIGURE 3.25
Implementing F = (AB" + A’B)(C + D’) with NOR gates

The equivalent AND-OR diagram can be recognized from the NOR diagram by remov-
ing all the bubbles. To compensate for the bubbles in four inputs, it is necessary to
complement the corresponding input literals.

3.7 OTHER TWO-LEVEL IMPLEMENTATIONS

The types of gates most often found in integrated circuits are NAND and NOR gates.
For this reason, NAND and NOR logic implementations are the most important from
a practical point of view. Some (but not all) NAND or NOR gates allow the possibility
of a wire connection between the outputs of two gates to provide a specific logic func-
tion. This type of logic is called wired logic. For example, open-collector TTL NAND
gates, when tied together, perform wired-AND logic. The wired-AND logic performed
with two NAND gates is depicted in Fig. 3.26(a). The AND gate is drawn with the lines
going through the center of the gate to distinguish it from a conventional gate. The
wired-AND gate is not a physical gate, but only a symbol to designate the function
obtained from the indicated wired connection. The logic function implemented by the
circuit of Fig. 3.26(a) is

F=(AB) --- (CD)' = (AB + CD)' = (A" + B")(C' + D')
and is called an AND-OR-INVERT function.

98

A_
B_

Chapter 3 Gate-Level Minimization

A
B

[
‘) ¢

9— F=(AB + CD)' [}7 F=[(A+B)(C+D)]

D — D
(a) Wired-AND in open-collector (b) Wired-OR in ECL gates
TTL NAND gates.
(AND-OR-INVERT) (OR-AND-INVERT)
FIGURE 3.26
Wired logic

(a) Wired-AND logic with two NAND gates
(b) Wired-OR in emitter-coupled logic (ECL) gates

Similarly, the NOR outputs of ECL gates can be tied together to perform a wired-OR
function. The logic function implemented by the circuit of Fig. 3.26(b) is

F=(A+B) +(C+D) =[(A+B)C+D)]

and is called an OR-AND-INVERT function.

A wired-logic gate does not produce a physical second-level gate, since it is just a wire
connection. Nevertheless, for discussion purposes, we will consider the circuits of Fig. 3.26
as two-level implementations. The first level consists of NAND (or NOR) gates and the
second level has a single AND (or OR) gate. The wired connection in the graphic symbol
will be omitted in subsequent discussions.

Nondegenerate Forms

It will be instructive from a theoretical point of view to find out how many two-level com-
binations of gates are possible. We consider four types of gates: AND, OR, NAND, and
NOR. If we assign one type of gate for the first level and one type for the second level, we
find that there are 16 possible combinations of two-level forms. (The same type of gate can
be in the first and second levels, as in a NAND-NAND implementation.) Eight of these
combinations are said to be degenerate forms because they degenerate to a single opera-
tion. This can be seen from a circuit with AND gates in the first level and an AND gate in
the second level. The output of the circuit is merely the AND function of all input variables.
The remaining eight nondegenerate forms produce an implementation in sum-of-products
form or product-of-sums form. The eight nondegenerate forms are as follows:

AND-OR OR-AND
NAND-NAND NOR-NOR
NOR-OR NAND-AND

OR-NAND AND-NOR

Section 3.7 Other Two-Level Implementations 929

The first gate listed in each of the forms constitutes a first level in the implementation.
The second gate listed is a single gate placed in the second level. Note that any two forms
listed on the same line are duals of each other.

The AND-OR and OR-AND forms are the basic two-level forms discussed in
Section 3.4. The NAND-NAND and NOR-NOR forms were presented in Section 3.5.
The remaining four forms are investigated in this section.

AND-OR-INVERT Implementation

A —
B_

C_

B o

[s
=D = It D=

The two forms, NAND-AND and AND-NOR, are equivalent and can be treated
together. Both perform the AND-OR-INVERT function, as shown in Fig. 3.27. The
AND-NOR form resembles the AND—OR form, but with an inversion done by the
bubble in the output of the NOR gate. It implements the function

F=(AB + CD + E)’

By using the alternative graphic symbol for the NOR gate, we obtain the diagram of
Fig. 3.27(b). Note that the single variable E is not complemented, because the only
change made is in the graphic symbol of the NOR gate. Now we move the bubble from
the input terminal of the second-level gate to the output terminals of the first-level gates.
An inverter is needed for the single variable in order to compensate for the bubble.
Alternatively, the inverter can be removed, provided that input E is complemented. The
circuit of Fig. 3.27(c) is a NAND-AND form and was shown in Fig. 3.26 to implement
the AND-OR-INVERT function.

An AND-OR implementation requires an expression in sum-of-products form. The
AND-OR-INVERT implementation is similar, except for the inversion. Therefore, if the
complement of the function is simplified into sum-of-products form (by combining the 0’s
in the map), it will be possible to implement " with the AND—OR part of the function.
When F’ passes through the always present output inversion (the INVERT part), it will

(a) AND-NOR (b) AND-NOR (¢) NAND-AND

FIGURE 3.27
AND-OR-INVERT circuits, F = (AB + CD + E)’

100 Chapter 3 Gate-Level Minimization

generate the output F of the function. An example for the AND-OR-INVERT imple-
mentation will be shown subsequently.

OR-AND-INVERT Implementation

The OR-NAND and NOR-OR forms perform the OR-AND-INVERT function, as
shown in Fig. 3.28. The OR-NAND form resembles the OR-AND form, except for the
inversion done by the bubble in the NAND gate. It implements the function

F=[(A + B)(C + D)E]

By using the alternative graphic symbol for the NAND gate, we obtain the diagram
of Fig. 3.28(b). The circuit in Fig. 3.28(c) is obtained by moving the small circles from the
inputs of the second-level gate to the outputs of the first-level gates. The circuit of Fig.
3.28(c) is a NOR-OR form and was shown in Fig. 3.26 to implement the OR-AND-
INVERT function.

The OR-AND-INVERT implementation requires an expression in product-of-sums
form. If the complement of the function is simplified into that form, we can implement
F" with the OR-AND part of the function. When F’ passes through the INVERT part,
we obtain the complement of F’, or F,in the output.

Tabular Summary and Example

Table 3.2 summarizes the procedures for implementing a Boolean function in any one
of the four 2-level forms. Because of the INVERT part in each case, it is convenient to
use the simplification of F’ (the complement) of the function. When F’ is implemented
in one of these forms, we obtain the complement of the function in the AND-OR or
OR-AND form. The four 2-level forms invert this function, giving an output that is the
complement of F". This is the normal output F.

T
D e S e

(a) OR-NAND (b) OR-NAND (c) NOR-OR

FIGURE 3.28
OR-AND-INVERT circuits, F = [(A + B)(C + D)E]

Section 3.7 Other Two-Level Implementations 101

Table 3.2
Implementation with Other Two-Level Forms
Equivalent
Nondegenerate Form Implements Simplify To Get
the F an Output
(a) (b)* Function into of
AND-NOR NAND-AND AND-OR-INVERT Sum-of-products
form by combining
0’s in the map. F
OR-NAND NOR-OR OR-AND-INVERT Product-of-sums
form by combining
1’s in the map and
then complementing. F

*Form (b) requires an inverter for a single literal term.

EXAMPLE 3.10

Implement the function of Fig. 3.29(a) with the four 2-level forms listed in Table 3.2.
The complement of the function is simplified into sum-of-products form by combining
the 0’s in the map:

F'=x'y +xy' +z
The normal output for this function can be expressed as
F=x'y +xy +2)

which is in the AND-OR-INVERT form. The AND-NOR and NAND-AND imple-
mentations are shown in Fig. 3.29(b). Note that a one-input NAND, or inverter, gate is
needed in the NAND-AND implementation, but not in the AND-NOR case. The
inverter can be removed if we apply the input variable z’ instead of z.

The OR-AND-INVERT forms require a simplified expression of the complement
of the function in product-of-sums form. To obtain this expression, we first combine the
1’s in the map:

F=x'y'z +xyz’
Then we take the complement of the function:

FF=x+y+2& +y +2)

102 Chapter 3 Gate-Level Minimization

vz SR SR
x 00 01 11 10
my, mny my m, Pt ’
F= +
0| 1 0 0 0 F,_xfi xyf
vy —] =x'y+xy +z
my ms m mg xyzl
x{1] o 0 0 114
——

(a) Map simplification in sum of products
x, } x, }
Y — D —
x —] X —]
’ F ’
Yy — Yy —

—F
L

AND-NOR NAND-AND
(b)F=('y +xy +2)

x
z z
X x
b4 b4
OR-NAND NOR-OR
O F=[x+y+2)(x +y +2)]
FIGURE 3.29

Other two-level implementations

The normal output F can now be expressed in the form
F=[(x+y+C +y +2)]

which is the OR-AND-INVERT form. From this expression, we can implement the
function in the OR-NAND and NOR-OR forms, as shown in Fig. 3.29(c).

Section 3.8 Exclusive-OR Function 103

3.8 EXCLUSIVE-OR FUNCTION

The exclusive-OR (XOR), denoted by the symbol @, is a logical operation that performs
the following Boolean operation:

x®y =xy' +x'y

The exclusive-OR is equal to 1 if only x is equal to 1 or if only y is equal to 1 (i.e.,x and y
differ in value), but not when both are equal to 1 or when both are equal to 0. The exclusive-
NOR, also known as equivalence, performs the following Boolean operation:

(x®y) =xy +x'y’

The exclusive-NOR is equal to 1 if both x and y are equal to 1 or if both are equal to 0.
The exclusive-NOR can be shown to be the complement of the exclusive-OR by means
of a truth table or by algebraic manipulation:

@x®@y) =@ +xy) = +yx+y)=xy+xy

The following identities apply to the exclusive-OR operation:

x®0=x
x®1=x'
x®x =0
x®x'=1

x®y =x'®y=(xDy)

Any of these identities can be proven with a truth table or by replacing the @ operation
by its equivalent Boolean expression. Also, it can be shown that the exclusive-OR oper-
ation is both commutative and associative; that is,

AD®DB=B®A
and

(A®B)®C=ASBOC) = AOGBOC

This means that the two inputs to an exclusive-OR gate can be interchanged without
affecting the operation. It also means that we can evaluate a three-variable exclusive-OR
operation in any order, and for this reason, three or more variables can be expressed
without parentheses. This would imply the possibility of using exclusive-OR gates with
three or more inputs. However, multiple-input exclusive-OR gates are difficult to fabri-
cate with hardware. In fact, even a two-input function is usually constructed with other
types of gates. A two-input exclusive-OR function is constructed with conventional gates
using two inverters, two AND gates,and an OR gate, as shown in Fig. 3.30(a). Figure 3.30(b)
shows the implementation of the exclusive-OR with four NAND gates. The first NAND
gate performs the operation (xy)’ = (x' + y’). The other two-level NAND circuit
produces the sum of products of its inputs:

X' +y)+ +y)y=xy +xy=xy

104 Chapter 3 Gate-Level Minimization

[>O
[>o

—] D>

T Y

y
(a) Exclusive-OR with AND-OR-NOT gates
x |
y }
(b) Exclusive-OR with NAND gates
FIGURE 3.30

Exclusive-OR implementations

Only a limited number of Boolean functions can be expressed in terms of exclusive-OR
operations. Nevertheless, this function emerges quite often during the design of digital
systems. It is particularly useful in arithmetic operations and error detection and correc-
tion circuits.

0Odd Function

The exclusive-OR operation with three or more variables can be converted into an
ordinary Boolean function by replacing the @ symbol with its equivalent Boolean
expression. In particular, the three-variable case can be converted to a Boolean expres-
sion as follows:

A®B®C = (AB' + A'B)C' + (AB + A'B")C
= AB'C' + A'BC' + ABC + A'B'C
= 3(1,2,4,7)
The Boolean expression clearly indicates that the three-variable exclusive-OR function is
equal to 1 if only one variable is equal to 1 or if all three variables are equal to 1. Contrary
to the two-variable case, in which only one variable must be equal to 1,in the case of three

or more variables the requirement is that an odd number of variables be equal to 1. As a
consequence, the multiple-variable exclusive-OR operation is defined as an odd function.

Section 3.8 Exclusive-OR Function 105

The Boolean function derived from the three-variable exclusive-OR operation is
expressed as the logical sum of four minterms whose binary numerical values are 001,010,
100, and 111. Each of these binary numbers has an odd number of 1’s. The remaining four
minterms not included in the function are 000,011, 101, and 110, and they have an even
number of 1’s in their binary numerical values. In general, an n-variable exclusive-OR
function is an odd function defined as the logical sum of the 2"/2 minterms whose binary
numerical values have an odd number of 1s.

The definition of an odd function can be clarified by plotting it in a map. Figure 3.31(a)
shows the map for the three-variable exclusive-OR function. The four minterms of the
function are a unit distance apart from each other. The odd function is identified from
the four minterms whose binary values have an odd number of 1’s. The complement of
an odd function is an even function. As shown in Fig. 3.31(b), the three-variable even
function is equal to 1 when an even number of its variables is equal to 1 (including the
condition that none of the variables is equal to 1).

The three-input odd function is implemented by means of two-input exclusive-OR
gates, as shown in Fig. 3.32(a). The complement of an odd function is obtained by replac-
ing the output gate with an exclusive-NOR gate, as shown in Fig. 3.32(b).

Consider now the four-variable exclusive-OR operation. By algebraic manipulation,
we can obtain the sum of minterms for this function:

A®B®C®D = (AB' + A'B)®(CD' + C'D)
= (AB' + A'B)(CD + C'D'") + (AB + A'B')(CD' + C'D)
= 3(1,2,4,7,8,11,13, 14)

B B

BC . BC N
ANC 00 o1 11 10 ANC 0 o1 11 10
ny my my m, my ny ms m,
0 1 1 0 1 1
m, ms m, myg my, s my mg
Agl 1 1 A9l 1 1
—— ——
C C
(a) Odd function F=ADB® C (b) Even function F= (A© B ® C)’
FIGURE 3.31

Map for a three-variable exclusive-OR function

o> IO

C———F— c
(a) 3-input odd function (b) 3-input even function

FIGURE 3.32
Logic diagram of odd and even functions

106 Chapter 3 Gate-Level Minimization

C C
CD CD —_—
ABN_00 01 11 10 ABN 00 01 11 10
mg ny ny ny y ny ny m,
00 1 1 00 1 1
my ms m; mg ny ms m; mg
01 1 1 01 1 1
my, myy ms my B My M3 ms my B
11 1 1 11 1 1
A A
mg my my my, g my my, my
10 1 1 10 1 1
D D
(a) Odd function F=A®BO CSD (b) Even function F= (A©@BO CD D)’
FIGURE 3.33

Map for a four-variable exclusive-OR function

There are 16 minterms for a four-variable Boolean function. Half of the minterms
have binary numerical values with an odd number of 1’s; the other half of the minterms
have binary numerical values with an even number of 1’s. In plotting the function in the
map, the binary numerical value for a minterm is determined from the row and column
numbers of the square that represents the minterm. The map of Fig. 3.33(a) is a plot of
the four-variable exclusive-OR function. This is an odd function because the binary
values of all the minterms have an odd number of 1’s. The complement of an odd func-
tion is an even function. As shown in Fig. 3.33(b), the four-variable even function is equal
to 1 when an even number of its variables is equal to 1.

Parity Generation and Checking

Exclusive-OR functions are very useful in systems requiring error detection and cor-
rection codes. As discussed in Section 1.6, a parity bit is used for the purpose of
detecting errors during the transmission of binary information. A parity bit is an extra
bit included with a binary message to make the number of 1’s either odd or even. The
message, including the parity bit, is transmitted and then checked at the receiving end
for errors. An error is detected if the checked parity does not correspond with the
one transmitted. The circuit that generates the parity bit in the transmitter is called
a parity generator. The circuit that checks the parity in the receiver is called a parity
checker.

As an example, consider a three-bit message to be transmitted together with an
even-parity bit. Table 3.3 shows the truth table for the parity generator. The three
bits—x, y, and z —constitute the message and are the inputs to the circuit. The parity
bit P is the output. For even parity, the bit P must be generated to make the total
number of 1’s (including P) even. From the truth table, we see that P constitutes an

Section 3.8 Exclusive-OR Function 107

Table 3.3
Even-Parity-Generator Truth Table
Three-Bit Message Parity Bit
X y z P
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

=

x y
y P C
z

(a) 3-bit even parity generator (b) 4-bit even parity checker

FIGURE 3.34
Logic diagram of a parity generator and checker

odd function because it is equal to 1 for those minterms whose numerical values have
an odd number of 1’s. Therefore, P can be expressed as a three-variable exclusive-OR
function:

P=x®ydz

The logic diagram for the parity generator is shown in Fig. 3.34(a).

The three bits in the message, together with the parity bit, are transmitted to their
destination, where they are applied to a parity-checker circuit to check for possible
errors in the transmission. Since the information was transmitted with even parity, the
four bits received must have an even number of 1’s. An error occurs during the trans-
mission if the four bits received have an odd number of 1’s,indicating that one bit has
changed in value during transmission. The output of the parity checker, denoted by
C, will be equal to 1 if an error occurs —that is, if the four bits received have an odd
number of 1’s. Table 3.4 is the truth table for the even-parity checker. From it, we see
that the function C consists of the eight minterms with binary numerical values hav-
ing an odd number of 1’s. The table corresponds to the map of Fig. 3.33(a), which

108

3.9

Chapter 3 Gate-Level Minimization

Table 3.4
Even-Parity-Checker Truth Table
Four Bits Parity Error
Received Check
X y z P C
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

represents an odd function. The parity checker can be implemented with exclusive-
OR gates:

C=x®y®z;®P

The logic diagram of the parity checker is shown in Fig. 3.34(b).

It is worth noting that the parity generator can be implemented with the circuit of
Fig. 3.34(b) if the input P is connected to logic 0 and the output is marked with P. This is
because z ® 0 = z, causing the value of z to pass through the gate unchanged. The advan-
tage of this strategy is that the same circuit can be used for both parity generation and
checking.

It is obvious from the foregoing example that parity generation and checking circuits
always have an output function that includes half of the minterms whose numerical values
have either an odd or even number of 1’s. As a consequence, they can be implemented
with exclusive-OR gates. A function with an even number of 1’s is the complement of an
odd function. It is implemented with exclusive-OR gates, except that the gate associated
with the output must be an exclusive-NOR to provide the required complementation.

HARDWARE DESCRIPTION LANGUAGE

Manual methods for designing logic circuits are feasible only when the circuit is small.
For anything else (i.e., a practical circuit), designers use computer-based design tools.
Coupled with the correct-by-construction methodology, computer-based design tools

Section 3.9 Hardware Description Language 109

leverage the creativity and the effort of a designer and reduce the risk of producing a
flawed design. Prototype integrated circuits are too expensive and time consuming to
build, so all modern design tools rely on a hardware description language to describe,
design, and test a circuit in software before it is ever manufactured.

A hardware description language (HDL) is a computer-based language that describes
the hardware of digital systems in a textual form. It resembles an ordinary computer
programming language, such as C, but is specifically oriented to describing hardware
structures and the behavior of logic circuits. It can be used to represent logic diagrams,
truth tables, Boolean expressions, and complex abstractions of the behavior of a digital
system. One way to view an HDL is to observe that it describes a relationship between
signals that are the inputs to a circuit and the signals that are the outputs of the circuit.
For example, an HDL description of an AND gate describes how the logic value of the
gate’s output is determined by the logic values of its inputs.

As a documentation language, an HDL is used to represent and document digital
systems in a form that can be read by both humans and computers and is suitable as
an exchange language between designers. The language content can be stored,
retrieved, edited, and transmitted easily and processed by computer software in
an efficient manner.

HDLs are used in several major steps in the design flow of an integrated circuit:
design entry, functional simulation or verification, logic synthesis, timing verification,
and fault simulation.

Design entry creates an HDL-based description of the functionality that is to be
implemented in hardware. Depending on the HDL, the description can be in a variety
of forms: Boolean logic equations, truth tables, a netlist of interconnected gates, or an
abstract behavioral model. The HDL model may also represent a partition of a larger
circuit into smaller interconnected and interacting functional units.

Logic simulation displays the behavior of a digital system through the use of a com-
puter. A simulator interprets the HDL description and either produces readable output,
such as a time-ordered sequence of input and output signal values, or displays wave-
forms of the signals. The simulation of a circuit predicts how the hardware will behave
before it is actually fabricated. Simulation detects functional errors in a design without
having to physically create and operate the circuit. Errors that are detected during a
simulation can be corrected by modifying the appropriate HDL statements. The stimu-
lus (i.e., the logic values of the inputs to a circuit) that tests the functionality of the design
is called a fest bench. Thus, to simulate a digital system, the design is first described in
an HDL and then verified by simulating the design and checking it with a test bench,
which is also written in the HDL. An alternative and more complex approach relies on
formal mathematical methods to prove that a circuit is functionally correct. We will focus
exclusively on simulation.

Logic synthesis is the process of deriving a list of physical components and their
interconnections (called a netlist) from the model of a digital system described in an
HDL. The netlist can be used to fabricate an integrated circuit or to lay out a printed
circuit board with the hardware counterparts of the gates in the list. Logic synthesis is
similar to compiling a program in a conventional high-level language. The difference is

110

Chapter 3 Gate-Level Minimization

that, instead of producing an object code, logic synthesis produces a database describing
the elements and structure of a circuit. The database specifies how to fabricate a physi-
cal integrated circuit that implements in silicon the functionality described by statements
made in an HDL. Logic synthesis is based on formal exact procedures that implement
digital circuits and addresses that part of a digital design which can be automated with
computer software. The design of today’s large, complex circuits is made possible by
logic synthesis software.

Timing verification confirms that the fabricated, integrated circuit will operate at a
specified speed. Because each logic gate in a circuit has a propagation delay, a signal
transition at the input of a circuit cannot immediately cause a change in the logic value
of the output of a circuit. Propagation delays ultimately limit the speed at which
a circuit can operate. Timing verification checks each signal path to verify that it is
not compromised by propagation delay. This step is done after logic synthesis specifies
the actual devices that will compose a circuit and before the circuit is released for
production.

In VLSI circuit design, fault simulation compares the behavior of an ideal circuit with
the behavior of a circuit that contains a process-induced flaw. Dust and other particu-
lates in the atmosphere of the clean room can cause a circuit to be fabricated with a
fault. A circuit with a fault will not exhibit the same functionality as a fault-free circuit.
Fault simulation is used to identify input stimuli that can be used to reveal the difference
between the faulty circuit and the fault-free circuit. These test patterns will be used to
test fabricated devices to ensure that only good devices are shipped to the customer.
Test generation and fault simulation may occur at different steps in the design process,
but they are always done before production in order to avoid the disaster of producing
a circuit whose internal logic cannot be tested.

Companies that design integrated circuits use proprietary and public HDLs. In the
public domain, there are two standard HDLs that are supported by the IEEE: VHDL
and Verilog. VHDL is a Department of Defense-mandated language. (The V in VHDL
stands for the first letter in VHSIC, an acronym for very high-speed integrated circuit.)
Verilog began as a proprietary HDL of Cadence Design Systems, but Cadence trans-
ferred control of Verilog to a consortium of companies and universities known as Open
Verilog International (OVI) as a step leading to its adoption as an IEEE standard.
VHDL is more difficult to learn than Verilog. Because Verilog is an easier language than
VHDL to describe, learn, and use, we have chosen it for this book. However, the Verilog
HDL descriptions listed throughout the book are not just about Verilog, but also serve
to introduce a design methodology based on the concept of computer-aided modeling
of digital systems by means of a typical hardware description language. Our emphasis
will be on the modeling, verification, and synthesis (both manual and automated) of
Verilog models of circuits having specified behavior. The Verilog HDL was initially
approved as a standard HDL in 1995; revised and enhanced versions of the language
were approved in 2001 and 2005. We will address only those features of Verilog, includ-
ing the latest standard, that support our discussion of HDL-based design methodology
for integrated circuits.

Section 3.9 Hardware Description Language 111

Module Declaration

The language reference manual for the Verilog HDL presents a syntax that describes
precisely the constructs that can be used in the language. In particular, a Verilog
model is composed of text using keywords, of which there are about 100. Keywords
are predefined lowercase identifiers that define the language constructs. Examples of
keywords are module, endmodule, input, output, wire, and, or, and not. For clarity,
keywords will be displayed in boldface in the text in all examples of code and wher-
ever it is appropriate to call attention to their use. Any text between two forward
slashes (/) and the end of the line is interpreted as a comment and will have no effect
on a simulation using the model. Multiline comments begin with /* and terminate
with */. Blank spaces are ignored, but they may not appear within the text of a key-
word, a user-specified identifier, an operator, or the representation of a number. Ver-
ilog is case sensitive, which means that uppercase and lowercase letters are
distinguishable (e.g., not is not the same as NOT). The term module refers to the text
enclosed by the keyword pair module . .. endmodule. A module is the fundamental
descriptive unit in the Verilog language. It is declared by the keyword module and
must always be terminated by the keyword endmodule.

Combinational logic can be described by a schematic connection of gates, by a set of
Boolean equations, or by a truth table. Each type of description can be developed in
Verilog. We will demonstrate each style, beginning with a simple example of a Verilog
gate-level description to illustrate some aspects of the language.

The HDL description of the circuit of Fig. 3.35 is shown in HDL Example 3.1. The
first line of text is a comment (optional) providing useful information to the reader. The
second line begins with the keyword module and starts the declaration (description) of
the module; the last line completes the declaration with the keyword endmodule. The
keyword module is followed by a name and a list of ports. The name (Simple_Circuit in
this example) is an identifier. Identifiers are names given to modules, variables (e.g., a
signal), and other elements of the language so that they can be referenced in the design.
In general, we choose meaningful names for modules. Identifiers are composed of alpha-
numeric characters and the underscore (_), and are case sensitive. Identifiers must start
with an alphabetic character or an underscore, but they cannot start with a number.

FIGURE 3.35
Circuit to demonstrate an HDL

112

Chapter 3 Gate-Level Minimization

HDL Example 3.1 (Combinational Logic Modeled with Primitives)

/I Verilog model of circuit of Figure 3.35. IEEE 1364—1995 Syntax
module Simple_Circuit (A, B, C, D, E);

output D, E;
input A, B, C;
wire wi1;
and G1 (w1, A, B); // Optional gate instance name
not G2 (E, C);
or G3 (D, w1, E);
endmodule

The port list of a module is the interface between the module and its environment.
In this example, the ports are the inputs and outputs of the circuit. The logic values of
the inputs to a circuit are determined by the environment; the logic values of the outputs
are determined within the circuit and result from the action of the inputs on the circuit.
The port list is enclosed in parentheses, and commas are used to separate elements of
the list. The statement is terminated with a semicolon (;). In our examples, all keywords
(which must be in lowercase) are printed in bold for clarity, but that is not a requirement
of the language. Next, the keywords input and output specify which of the ports are
inputs and which are outputs. Internal connections are declared as wires. The circuit in
this example has one internal connection, at terminal w/, and is declared with the key-
word wire. The structure of the circuit is specified by a list of (predefined) primitive
gates, each identified by a descriptive keyword (and, not, or). The elements of the list
are referred to as instantiations of a gate, each of which is referred to as a gate instance.
Each gate instantiation consists of an optional name (such as GI, G2, etc.) followed by
the gate output and inputs separated by commas and enclosed within parentheses. The
output of a primitive gate is always listed first, followed by the inputs. For example, the
OR gate of the schematic is represented by the or primitive, is named G3, and has out-
put D and inputs wl and E. (Note: The output of a primitive must be listed first, but the
inputs and outputs of a module may be listed in any order.) The module description ends
with the keyword endmodule. Each statement must be terminated with a semicolon, but
there is no semicolon after endmodule.

Itis important to understand the distinction between the terms declaration and instan-
tiation. A Verilog module is declared. Its declaration specifies the input—output behavior
of the hardware that it represents. Predefined primitives are not declared, because their
definition is specified by the language and is not subject to change by the user. Primitives
are used (i.e., instantiated), just as gates are used to populate a printed circuit board.
We'll see that once a module has been declared, it may be used (instantiated) within a
design. Note that Simple_Circuit is not a computational model like those developed in
an ordinary programming language: The sequential ordering of the statements instanti-
ating gates in the model has no significance and does not specify a sequence of compu-
tations. A Verilog model is a descriptive model. Simple_Circuit describes what primitives
form a circuit and how they are connected. The input—output behavior of the circuit is

Section 3.9 Hardware Description Language 113

Table 3.5
Output of Gates after Delay

Input Output

Time Units

(ns) ABC EwlD
Initial — 000 1 01
Change — 111 1 01
10 111 0 01
20 111 0 01
30 111 0 10
40 111 0 10
50 111 0 11

implicitly specified by the description because the behavior of each logic gate is defined.
Thus, an HDL-based model can be used to simulate the circuit that it represents.

Gate Delays

All physical circuits exhibit a propagation delay between the transition of an input and a
resulting transition of an output. When an HDL model of a circuit is simulated, it is some-
times necessary to specify the amount of delay from the input to the output of its gates.
In Verilog, the propagation delay of a gate is specified in terms of fime units and by the
symbol #. The numbers associated with time delays in Verilog are dimensionless. The
association of a time unit with physical time is made with the ‘timescale compiler direc-
tive. (Compiler directives start with the (') back quote, or grave accent, symbol.) Such a
directive is specified before the declaration of a module and applies to all numerical
values of time in the code that follows. An example of a timescale directive is

‘timescale 1ns/100ps

The first number specifies the unit of measurement for time delays. The second number
specifies the precision for which the delays are rounded off, in this case to 0.1 ns. If no
timescale is specified, a simulator may display dimensionless values or default to a certain
time unit, usually 1ns (=107 s). Our examples will use only the default time unit.

HDL Example 3.2 repeats the description of the simple circuit of Example 3.1, but
with propagation delays specified for each gate. The and, or, and not gates have a time
delay of 30, 20, and 10 ns, respectively. If the circuit is simulated and the inputs change
from A,B,C = 0to A, B, C = 1, the outputs change as shown in Table 3.5 (calculated
by hand or generated by a simulator). The output of the inverter at E changes from 1 to
0 after a 10-ns delay. The output of the AND gate at wi changes from O to 1 after a 30-ns
delay. The output of the OR gate at D changes from 1 to 0 at t = 30 ns and then changes
back to 1 at + = 50 ns. In both cases, the change in the output of the OR gate results
from a change in its inputs 20 ns earlier. It is clear from this result that although output
D eventually returns to a final value of 1 after the input changes, the gate delays produce
a negative spike that lasts 20 ns before the final value is reached.

114 Chapter 3 Gate-Level Minimization

HDL Example 3.2 (Gate-Level Model with Propagation Delays)

/I Verilog model of simple circuit with propagation delay

module Simple_Circuit_prop_delay (A, B, C, D, E);

output D, E;

input A, B, C;

wire w1,

and #(30) G1 (w1, A, B);

not #(10) G2 (E, C);

or #(20) G3 (D, w1, E);
endmodule

In order to simulate a circuit with an HDL, it is necessary to apply inputs to the circuit
so that the simulator will generate an output response. An HDL description that provides
the stimulus to a design is called a test bench. The writing of test benches is explained in
more detail at the end of Section 4.12. Here, we demonstrate the procedure with a simple
example without dwelling on too many details. HDL Example 3.3 shows a test bench for
simulating the circuit with delay. (Note the distinguishing name Simple_Circuit_prop_
delay.) In its simplest form, a test bench is a module containing a signal generator and
an instantiation of the model that is to be verified. Note that the test bench (z_Simple_
Circuit_prop_delay) has no input or output ports, because it does not interact with its
environment. In general, we prefer to name the test bench with the prefix z_ concatenated
with the name of the module that is to be tested by the test bench, but that choice is left
to the designer. Within the test bench, the inputs to the circuit are declared with keyword
reg and the outputs are declared with the keyword wire. The module Simple_Circuit_
prop_delay is instantiated with the instance name M1. Every instantiation of a module
must include a unique instance name. Note that using a test bench is similar to testing
actual hardware by attaching signal generators to the inputs of a circuit and attaching

HDL Example 3.3 (Test Bench)

/I Test bench for Simple_Circuit_prop_delay

module t_Simple_Circuit_prop_delay;
wire D, E;
reg A, B, C;

Simple_Circuit_prop_delay M1 (A, B, C, D, E); // Instance name required
initial
begin
A =1b0; B =1'b0; C = 1'b0;
#100 A=1b1; B =1b1; C=1Db1;
end

initial #200 $finish;
endmodule

Section 3.9 Hardware Description Language 115

0.0 ns 58.0 ns 116.0 ns 174.0 ns

Name IR T T T TN T T A T T T N N TN T AN S T T T T T TN T T N T N B B
A I
B I
C I
D L |
E
FIGURE 3.36

Simulation output of HDL Example 3.3

probes (wires) to the outputs of the circuit. (The interaction between the signal genera-
tors of the stimulus module and the instantiated circuit module is illustrated in Fig. 4.36.)

Hardware signal generators are not used to verify an HDL model: The entire simula-
tion exercise is done with software models executing on a digital computer under the
direction of an HDL simulator. The waveforms of the input signals are abstractly modeled
(generated) by Verilog statements specifying waveform values and transitions. The initial
keyword is used with a set of statements that begin executing when the simulation is ini-
tialized; the signal activity associated with initial terminates execution when the last state-
ment has finished executing. The initial statements are commonly used to describe
waveforms in a test bench. The set of statements to be executed is called a block statement
and consists of several statements enclosed by the keywords begin and end. The action
specified by the statements begins when the simulation is launched, and the statements
are executed in sequence, left to right, from top to bottom, by a simulator in order to
provide the input to the circuit. Initially, A, B, C = 0. (A, B, and C are each set to 1'b0,
which signifies one binary digit with a value of 0.) After 100 ns, the inputs change to
A, B, C = 1. After another 100 ns, the simulation terminates at time 200 ns. A second
initial statement uses the $finish system task to specify termination of the simulation. If a
statement is preceded by a delay value (e.g., #100), the simulator postpones executing the
statement until the specified time delay has elapsed. The timing diagram of waveforms
that result from the simulation is shown in Figure 3.36. The total simulation generates
waveforms over an interval of 200 ns. The inputs A, B, and C change from 0 to 1 after 100
ns. Output E is unknown for the first 10 ns (denoted by shading),and output D is unknown
for the first 30 ns. Output E goes from 1 to 0 at 110 ns. Output D goes from 1 to 0 at 130
ns and back to 1 at 150 ns, just as we predicted in Table 3.5.

Boolean Expressions

Boolean equations describing combinational logic are specified in Verilog with a con-
tinuous assignment statement consisting of the keyword assign followed by a Boolean
expression. To distinguish arithmetic operators from logical operators, Verilog uses the
symbols (&), (/), and (~) for AND, OR, and NOT (complement), respectively. Thus, to

116 Chapter 3 Gate-Level Minimization
describe the simple circuit of Fig. 3.35 with a Boolean expression, we use the statement
assign D = (A && B)| |(!C);

HDL Example 3.4 describes a circuit that is specified with the following two Boolean
expressions:

E=A+ BC+ B'D

F = B'C + BC'D’
The equations specify how the logic values E and F are determined by the values of
A, B, C, and D.

HDL Example 3.4 (Combinational Logic Modeled with Boolean Equations)

/I Verilog model: Circuit with Boolean expressions

module Circuit_Boolean_CA (E, F, A, B, C, D);
output E, F;
input A, B, C, D;

assignE = A || (B && C) || ((!B) && D);
assign F = ((!B) && C) || (B && (IC) && (!D));
endmodule

The circuit has two outputs E and F and four inputs A, B, C, and D.The two assign
statements describe the Boolean equations. The values of £ and F during simulation are
determined dynamically by the values of A, B, C,and D.The simulator detects when the
test bench changes a value of one or more of the inputs. When this happens, the simula-
tor updates the values of E and F. The continuous assignment mechanism is so named
because the relationship between the assigned value and the variables is permanent. The
mechanism acts just like combinational logic, has a gate-level equivalent circuit, and is
referred to as implicit combinational logic.

We have shown that a digital circuit can be described with HDL statements, just as
it can be drawn in a circuit diagram or specified with a Boolean expression. A third
alternative is to describe combinational logic with a truth table.

User-Defined Primitives

The logic gates used in Verilog descriptions with keywords and, or, etc., are defined by
the system and are referred to as system primitives. (Caution: Other languages may use
these words differently.) The user can create additional primitives by defining them in
tabular form. These types of circuits are referred to as user-defined primitives (UDPs).
One way of specifying a digital circuit in tabular form is by means of a truth table. UDP
descriptions do not use the keyword pair module . . . endmodule. Instead, they are
declared with the keyword pair primitive . .. endprimitive. The best way to demonstrate
a UDP declaration is by means of an example.

Section 3.9 Hardware Description Language 117

HDL Example 3.5 defines a UDP with a truth table. It proceeds according to the
following general rules:

e It is declared with the keyword primitive, followed by a name and port list.

e There can be only one output, and it must be listed first in the port list and declared
with keyword output.

 There can be any number of inputs. The order in which they are listed in the input

declaration must conform to the order in which they are given values in the table that

follows.

The truth table is enclosed within the keywords table and endtable.

* The values of the inputs are listed in order, ending with a colon (:). The output is al-
ways the last entry in a row and is followed by a semicolon ().

 The declaration of a UDP ends with the keyword endprimitive.

HDL Example 3.5 (User-Defined Primitive)

/I Verilog model: User-defined Primitive
primitive UDP_02467 (D, A, B, C);

output D;
input A, B, C;
/[Truth table for D 5f (A, B, C) 5 (0, 2, 4, 6, 7);
table
/! A B C D /I Column header comment
0 0 0 1;
0 0 1 0;
0 1 0 1;
0 1 1 0;
1 0 0 1;
1 0 1 0;
1 1 0 1;
1 1 1 1;
endtable

endprimitive
/I Instantiate primitive
/I Verilog model: Circuit instantiation of Circuit_ UDP_02467

module Circuit_with_UDP_02467 (e, f, a, b, c, d);

output e f;

input a,bcd

UDP_02467 (e, a, b, c);

and (f, e, d); /I Option gate instance name omitted

endmodule

118

Chapter 3 Gate-Level Minimization

UDP_02467 «F E
FIGURE 3.37

Schematic for Circuit with_UDP_02467

Note that the variables listed on top of the table are part of a comment and are shown
only for clarity. The system recognizes the variables by the order in which they are listed
in the input declaration. A user-defined primitive can be instantiated in the construction
of other modules (digital circuits), just as the system primitives are used. For example,
the declaration

Circuit_with_UDP_02467 (E, F, A, B, C, D);

will produce a circuit that implements the hardware shown in Figure 3.37

Although Verilog HDL uses this kind of description for UDPs only, other HDLs and
computer-aided design (CAD) systems use other procedures to specify digital circuits
in tabular form. The tables can be processed by CAD software to derive an efficient gate
structure of the design. None of Verilog’s predefined primitives describes sequential
logic. The model of a sequential UDP requires that its output be declared as a reg data
type, and that a column be added to the truth table to describe the next state. So the
columns are organized as inputs : state : next state.

In this section, we introduced the Verilog HDL and presented simple examples to
illustrate alternatives for modeling combinational logic. A more detailed presentation
of Verilog HDL can be found in the next chapter. The reader familiar with combina-
tional circuits can go directly to Section 4.12 to continue with this subject.

PROBLEMS

(Answers to problems marked with * appear at the end of the text.)

3.1* Simplify the following Boolean functions, using three-variable maps:

(a) F(x,y,z) = 2(0,2,4,5) (b) F(x,y,z) = 2(0,2,4,5,6)

(©) F(x.y,z) = 2(0,1,2,3,5) (d) Fx,y,z) = 2(1,2,3,7)
3.2 Simplify the following Boolean functions, using three-variable maps:

(a)*F (x,y,z) = 2(0,1,5,7) ®)*Fx,y,2) = 2(1,2,3,6,7)

(©) F(x,y,z) =%(2,3,4,5) (d) F(x,y,z) = X(1,2,3,5,6,7)

(e) F(x,y,z) =2(0,2,4,6) (f) F(x,y,z) = 2(3,4,5,6,7)
3.3* Simplify the following Boolean expressions, using three-variable maps:

(@) xy + x'y'z' +x'yz’ d)* x'y" + yz + x'yz’

(©)* F(x,y,z) =x'y +yz' +y'z’ (d) F(x,y,z) = x'yz + xy'z' + xy'z

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

Problems 119

Simplify the following Boolean functions, using Karnaugh maps:

()" F(x,y,2) = 2(2,3,6,7) (b)*F (A, B, C, D) = 2(4,6,7, 15)

()" F(A,B,C, D)= X(3,7,11,13,14,15) (d)* F(w, x, y, 2) = 2(2, 3, 12, 13, 14, 15)
(e) F(w,x,y,z) = X(11,12,13,14,15) (f) F(w,x,y,z) = X(8,10,12,13,14)
Simplify the following Boolean functions, using four-variable maps:

(a)* Fw,x,y,2) = 2(1,4,5,6,12, 14, 15)

(b) F(A,B,C,D)=3(2306712,13 14)

(¢) F(w,x,y,z) = 2(1,3,4,5,6,7,9,11,13,15)

(d)* F(A,B,C,D) = %(0,2,4,5,6,7,8,10, 13, 15)

Simplify the following Boolean expressions, using four-variable maps:

(a)* A'B'C'D' + AC'D’ + B'CD' + A'BCD + BC'D

(B)" x'z + wiay” + wx'y + xy’)

(c) A'B'C'D + AB'D + A'BC' + ABCD + AB'C

(dy A'B'C'D' + BC'D + A'C'D + A'BCD + ACD’

Simplify the following Boolean expressions, using four-variable maps:

(@ wz+xz+x'y+wx'z

(b) AD' + B'C'D + BCD' + BC'D

(c)* AB'C+ B'C'D' + BCD + ACD' + A'B'C + A'BC'D

(d) wxy + xz + wx'z + w'x

Find the minterms of the following Boolean expressions by first plotting each function in
a map:

(a)* xy +yz +xy'z (b)* C'D + ABC' + ABD' + A'B'D

() wyz + w'x' + wxz’ (d) A'B+ A'CD + B'CD + BC'D'
Find all the prime implicants for the following Boolean functions, and determine which

are essential:
(a)* F(w,x,y,z) = 2(0,2,4,5,6,7,8,10,13, 15)

(b)* F(A,B,C,D)=1%1(0,2,3,5,7,8,10, 11, 14, 15)
(c) F(A,B,C, D) =1%(2,3,4,506,7,9,11,12,13)
(d) F(w,x,yz)=2(1,3,6,7,8,9,12,13,14,15)
(e) F(A B C D) =2%(0,1,2,57,8,9,10,13,15)
(f) F(w,x,yz)=2%(0,1,2,5,7,8,10,15)

Simplify the following Boolean functions by first finding the essential prime implicants:
(a) F(w,x,yz)=2(0,2,5728,10,12,13,14, 15)
(b) F(A B, C D)= 3%(0,2,3,5,7,8,10,11, 14, 15)
(c)* F(A, B, C, D) = %(1,3,4,5,10, 11, 12, 13, 14, 15)
(d F(wxyz)=2(01,4,56,79,11,14,15)

(e) F(A B CD)=2%(01,3,7,8,9,10,13,15)

(f) F(w,xyz)=2(0,1,2,4,56,7,10,15)

Convert the following Boolean function from a sum-of-products form to a simplified
product-of-sums form.
F(x,y,z) = 2(0,1,2,5,8,10,13)

120

Chapter 3 Gate-Level Minimization

3.12

3.14

3.17*

3.19

3.20

3.21

3.22
3.23

Simplify the following Boolean functions:

(a)* F(A,B,C,D) =1I(1,3,5,7,13,15)

(b) F(A,B,C, D) =11(1,3,6,9,11,12,14)

Simplify the following expressions to (1) sum-of-products and (2) products-of-sums:

(@) x'z' +y'z' +yz' +xy

(b) ACD’' + C'D + AB' + ABCD

(¢ (A/+ B +D')(A' + B +C")(A" + B + C)(B" + C + D)

(d) BCD' + ABC' + ACD

Give three possible ways to express the following Boolean function with eight or fewer literals:
F= A'BC'D + AB'CD + A'B'C' + ACD’

Simplify the following Boolean function F, together with the don’t-care conditions d, and

then express the simplified function in sum-of-minterms form:

(a) F(x,yz) = 3(0,1,4,5,6) (b)* F(A, B, C, D) = 3(0,6,8,13,14)
d(xyz) = 3(2,3,7) d(A, B, C, D) = 3(2,4,10)

(c) F(A B, C D)= 3(56,7,12,14,15) (d) F(A B, C D) = 3(4,12,7,2,10,)
d(A, B, C, D) = 3(3,9,11,15) d(A, B, C, D) = 3(0,6,8)

Simplify the following functions, and implement them with two-level NAND gate circuits:
(a) F(A,B,C,D)=AC'D'+ A'C + ABC + AB'C + A'C'D’
(b) F(A,B,C,D) =A'B'C'D + CD + AC'D
(c) F(AB,C)=(A"+C"+D")(A"+C")(C"+D")
(d F(A,B,C,D)=A"+B+ D'+ B'C
Draw a NAND logic diagram that implements the complement of the following function:

F(A,B,C,D) =%(0,1,2,3,6,10,11, 14)
Draw a logic diagram using only two-input NOR gates to implement the following function:

F(A,B,C,D) = (A®B)'(C® D)
Simplify the following functions, and implement them with two-level NOR gate circuits:
(@) F=wx' +y'z' +w'yz’
(b) F(w,x,y,z) =2(0,3,12,15)
(© Fx,y,2) =[x+ y)x=2)]
Draw the multiple-level NOR circuit for the following expression:
CD(B + C)A + (BC' + DE")
Draw the multiple-level NAND circuit for the following expression:
w(x +y+2z)+xyz

Convert the logic diagram of the circuit shown in Fig. 4.4 into a multiple-level NAND circuit.

Implement the following Boolean function F, together with the don’t-care conditions d,
using no more than two NOR gates:

F(A,B,C, D) = %(2,4,10,12,14,)
d(A,B,C, D) =%(0,1,5,8)
Assume that both the normal and complement inputs are available.

3.24

3.25

3.26

3.27
3.28

3.29

3.30*

3.31

3.32

3.33

3.34

Problems 121

Implement the following Boolean function F, using the two-level forms of logic (a) NAND-
AND, (b) AND-NOR, (c) OR-NAND, and (d) NOR-OR:

F(A,B,C,D) = 3(0,4,8,9,10,11, 12, 14)

List the eight degenerate two-level forms and show that they reduce to a single operation.
Explain how the degenerate two-level forms can be used to extend the number of inputs
to a gate.

With the use of maps, find the simplest sum-of-products form of the function F = fg, where
f=abc' +c'd+a'cd + b'cz’
and
g=(a+b+c +d)b +c" +d)(a +c+d)
Show that the dual of the exclusive-OR is also its complement.

Derive the circuits for a three-bit parity generator and four-bit parity checker using an odd
parity bit.

Implement the following four Boolean expressions with three half adders:

D=A®B®C
E=A'"BC+ AB'C
F=ABC' + (A" + B")C
G = ABC
Implement the following Boolean expression with exclusive-OR and AND gates:
F=AB'CD' + A'BCD' + AB'C'D + A'BC'D
Write a Verilog gate-level description of the circuit shown in
(a) Fig.3.20(a) (b) Fig.3.20(b) (c) Fig.3.21(a)
(d) Fig.3.21(b) (e) Fig.3.24 (f) Fig.3.25

Using continuous assignment statements, write a Verilog description of the circuit

shown in

(a) Fig.3.20(a) (b) Fig.3.20(b) (c) Fig.3.21(a)

(d) Fig.3.21(b) (e) Fig.3.24 (f) Fig.3.25

The exclusive-OR circuit of Fig. 3.30(a) has gates with a delay of 3 ns for an inverter, a 6 ns

delay for an AND gate, and a 8 ns delay for an OR gate. The input of the circuit goes from

xy=00toxy=01

(a) Determine the signals at the output of each gate from 7 =0to ¢ =50 ns.

(b) Write a Verilog gate-level description of the circuit, including the delays.

(c) Write a stimulus module (i.e., a test bench similar to HDL Example 3.3), and simulate
the circuit to verify the answer in part (a).

Using continuous assignments, write a Verilog description of the circuit specified by the
following Boolean functions:

Out 1= (A + B')C'(C+ D)
Out 2 = (C'D + BCD + CD')(A’ + B)
Out3 = (AB + C)D + B'C

Write a test bench and simulate the circuit’s behavior.

122 Chapter 3 Gate-Level Minimization

3.35* Find the syntax errors in the following declarations (note that names for primitive gates
are optional):

module Exmpl-3(A, B, C, D, F) /I Line 1
inputs A, B, C, Output D, F, /I Line 2
output B /I Line 3
and g1(A, B, D); /I Line 4
not (D, A, C), /I Line 5
OR (F, B; C); /I Line 6

endmodule; /I Line 7

3.36 Draw the logic diagram of the digital circuit specified by the following Verilog description:

(a) module Circuit_A (A, B, C, D, F);
input A, B, C,D;

output F;

wire w, X, Y, Z, a, d;

or (x, B, C, d);

and (y, a,C);

and (w, z ,B);

and (z,y, A);

or (F x, w);

not (a, A);

not (d, D);
endmodule

(b) module Circuit_B (F1, F2, F3, A0, A1, BO, B1);
output F1, F2, F3;
input A0, A1, BO, B1;

nor (F1, F2, F3);

or (F2, w1, w2, w3);
and (F3, w4, wb);
and (w1, w6, B1);

or (w2, wb, w7, BO);
and (w3, w7, BO, B1);
not (w6, A1);

not (w7, AO);

xor (w4, A1, B1);
xnor (w5, AO, BO);

endmodule

(¢) module Circuit_C (y1, y2, y3, a, b);
output y1, y2, y3;
input a, b;

assignyl=al| b;

and (y2, a, b);

assign y3 = a && b;
endmodule

3.37

3.38

3.39

References 123

A majority logic function is a Boolean function that is equal to 1 if the majority of the
variables are equal to 1, equal to 0 otherwise.

(a) Write a truth table for a four-bit majority function.

(b) Write a Verilog user-defined primitive for a four-bit majority function.

Simulate the behavior of Circuit_with_UDP_02467, using the stimulus waveforms shown
in Fig. P3.38.

A
T I I [[[] t.ns
10 20 30 40 50 60 70 80
B
T T T T] t,ns
10 20 30 40 50 60 70 80
C
] t,ns
10 20 30 40 50 60 70 80
D
T T T T] t,ns
10 20 30 40 50 60 70 80

FIGURE P3.38
Stimulus waveforms for Problem 3.38

Using primitive gates, write a Verilog model of a circuit that will produce two outputs,
s and ¢, equal to the sum and carry produced by adding two binary input bits a and b (e.g.,
s=1and c=0ifa=0and b =1). (Hint: Begin by developing a truth table for s and c.)

REFERENCES
1. BHASKER, J. 1997. A Verilog HDL Primer. Allentown, PA: Star Galaxy Press.
2 CiLeTTI, M. D. 1999. Modeling, Synthesis and Rapid Prototyping with the Verilog HD L.

Upper Saddle River, NJ: Prentice Hall.

HiLw, F. J., and G. R. PETERSON. 1981. Introduction to Switching Theory and Logical Design,
3rd ed. New York: John Wiley.

IEEE Standard Hardware Description Language Based on the Verilog Hardware Descrip-
tion Language (IEEE Std. 1364-1995). 1995. New York: The Institute of Electrical and
Electronics Engineers.

KarNAUGH, M. A Map Method for Synthesis of Combinational Logic Circuits. Transactions
of AIEE, Communication and Electronics. 72, part I (Nov. 1953): 593-99.

Komnavr, Z. 1978. Switching and Automata Theory,2nd ed. New York: McGraw-Hill.

124 Chapter 3 Gate-Level Minimization

7. ManNo, M. M. and C. R. KiME. 2004. Logic and Computer Design Fundamentals, 3rd ed.
Upper Saddle River, NJ: Prentice Hall.

8. McCLUSKEY, E. J. 1986. Logic Design Principles. Englewood Cliffs, NJ: Prentice-Hall.

9. PALNITKAR, S. 1996. Verilog HD L: A Guide to Digital Design and Synthesis. Mountain View,
CA: SunSoft Press (a Prentice Hall title).

WEB SEARCH TOPICS

Boolean minimization
Karnaugh map

Wired logic
Emitter-coupled logic
Open-collector logic
Quine McCluskey method
Expresso software
Consensus theorem
Don’t-care conditions

Chapter 4

Combinational Logic

4.1

INTRODUCTION

4.2

Logic circuits for digital systems may be combinational or sequential. A combinational
circuit consists of logic gates whose outputs at any time are determined from only the
present combination of inputs. A combinational circuit performs an operation that can
be specified logically by a set of Boolean functions. In contrast, sequential circuits
employ storage elements in addition to logic gates. Their outputs are a function of the
inputs and the state of the storage elements. Because the state of the storage elements
is a function of previous inputs, the outputs of a sequential circuit depend not only on
present values of inputs, but also on past inputs, and the circuit behavior must be speci-
fied by a time sequence of inputs and internal states. Sequential circuits are the building
blocks of digital systems and are discussed in Chapters 5 and 8.

COMBINATIONAL CIRCUITS

A combinational circuit consists of an interconnection of logic gates. Combinational
logic gates react to the values of the signals at their inputs and produce the value of the
output signal, transforming binary information from the given input data to a required
output data. A block diagram of a combinational circuit is shown in Fig. 4.1. The n input
binary variables come from an external source; the m output variables are produced by
the internal combinational logic circuit and go to an external destination. Each input
and output variable exists physically as an analog signal whose values are interpreted
to be a binary signal that represents logic 1 and logic 0. (Note: Logic simulators show
only 0’s and 1’s, not the actual analog signals.) In many applications, the source and

125

126

4.3

Chapter 4 Combinational Logic

e — —
— —

n inputs —> Combinational > m outputs

circuit
—_— >

FIGURE 4.1
Block diagram of combinational circuit

destination are storage registers. If the registers are included with the combinational
gates, then the total circuit must be considered to be a sequential circuit.

For n input variables, there are 2" possible combinations of the binary inputs. For each
possible input combination, there is one possible value for each output variable. Thus, a
combinational circuit can be specified with a truth table that lists the output values for
each combination of input variables. A combinational circuit also can be described by
m Boolean functions, one for each output variable. Each output function is expressed
in terms of the n input variables.

In Chapter 1, we learned about binary numbers and binary codes that represent discrete
quantities of information. The binary variables are represented physically by electric volt-
ages or some other type of signal. The signals can be manipulated in digital logic gates to
perform required functions. In Chapter 2, we introduced Boolean algebra as a way to
express logic functions algebraically. In Chapter 3, we learned how to simplify Boolean
functions to achieve economical (simpler) gate implementations. The purpose of the cur-
rent chapter is to use the knowledge acquired in previous chapters to formulate systematic
analysis and design procedures for combinational circuits. The solution of some typical
examples will provide a useful catalog of elementary functions that are important for the
understanding of digital systems. We'll address three tasks: (1) Analyze the behavior of a
given logic circuit, (2) synthesize a circuit that will have a given behavior, and (3) write
hardware description language (HDL) models for some common circuits.

There are several combinational circuits that are employed extensively in the design
of digital systems. These circuits are available in integrated circuits and are classified as
standard components. They perform specific digital functions commonly needed in the
design of digital systems. In this chapter, we introduce the most important standard
combinational circuits, such as adders, subtractors, comparators, decoders, encoders, and
multiplexers. These components are available in integrated circuits as medium-scale
integration (MSI) circuits. They are also used as standard cells in complex very large-
scale integrated (VLSI) circuits such as application-specific integrated circuits (ASICs).
The standard cell functions are interconnected within the VLSI circuit in the same way
that they are used in multiple-IC MSI design.

ANALYSIS PROCEDURE

The analysis of a combinational circuit requires that we determine the function that the
circuit implements. This task starts with a given logic diagram and culminates with a set
of Boolean functions, a truth table, or, possibly, an explanation of the circuit operation.

Section 4.3 Analysis Procedure 127

If the logic diagram to be analyzed is accompanied by a function name or an explanation
of what it is assumed to accomplish, then the analysis problem reduces to a verification
of the stated function. The analysis can be performed manually by finding the Boolean
functions or truth table or by using a computer simulation program.

The first step in the analysis is to make sure that the given circuit is combinational
and not sequential. The diagram of a combinational circuit has logic gates with no
feedback paths or memory elements. A feedback path is a connection from the output
of one gate to the input of a second gate whose output forms part of the input to the
first gate. Feedback paths in a digital circuit define a sequential circuit and must be
analyzed by special methods and will not be considered here.

Once the logic diagram is verified to be that of a combinational circuit, one can proceed
to obtain the output Boolean functions or the truth table. If the function of the circuit is
under investigation, then it is necessary to interpret the operation of the circuit from the
derived Boolean functions or truth table. The success of such an investigation is enhanced
if one has previous experience and familiarity with a wide variety of digital circuits.

To obtain the output Boolean functions from a logic diagram, we proceed as follows:

1. Label all gate outputs that are a function of input variables with arbitrary symbols—
but with meaningful names. Determine the Boolean functions for each gate output.

2. Label the gates that are a function of input variables and previously labeled gates
with other arbitrary symbols. Find the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.

4. By repeated substitution of previously defined functions, obtain the output
Boolean functions in terms of input variables.

The analysis of the combinational circuit of Fig. 4.2 illustrates the proposed proce-
dure. We note that the circuit has three binary inputs—A, B, and C—and two binary
outputs— F; and F,. The outputs of various gates are labeled with intermediate symbols.
The outputs of gates that are a function only of input variables are 7 and 75. Output
F, can easily be derived from the input variables. The Boolean functions for these three
outputs are

F, = AB + AC + BC
T,=A+B+C

T, = ABC
Next, we consider outputs of gates that are a function of already defined symbols:
T; = F,T,
F=T;+T,

To obtain F; as a function of A, B, and C, we form a series of substitutions as follows:
F,=T;+ T,=F,T, + ABC = (AB + AC+ BC)'(A+ B+ C) + ABC
=(A"+B")(A'"+C")B' +C")Y(A+ B+ C) + ABC
= (A" + B'C")(AB' + AC' + BC' + B'C) + ABC
= A'BC' + A'B'C + AB'C' + ABC

128 Chapter 4 Combinational Logic

T,

Fy

vi®

e
F/

A_
B_

A_
C_

B —]
c —1

FIGURE 4.2

Logic diagram for analysis example

v Y
)

If we want to pursue the investigation and determine the information transformation
task achieved by this circuit, we can draw the circuit from the derived Boolean expres-
sions and try to recognize a familiar operation. The Boolean functions for F; and F,
implement a circuit discussed in Section 4.5. Merely finding a Boolean representation
of a circuit doesn’t provide insight into its behavior, but in this example we will observe
that the Boolean equations and truth table for F; and F, match those describing the
functionality of what we call a full adder.

The derivation of the truth table for a circuit is a straightforward process once the
output Boolean functions are known. To obtain the truth table directly from the logic
diagram without going through the derivations of the Boolean functions, we proceed as
follows:

1. Determine the number of input variables in the circuit. For »n inputs, form the 2"
possible input combinations and list the binary numbers from 0 to (2" — 1) in a
table.

2. Label the outputs of selected gates with arbitrary symbols.

3. Obtain the truth table for the outputs of those gates which are a function of the
input variables only.

4. Proceed to obtain the truth table for the outputs of those gates which are a func-
tion of previously defined values until the columns for all outputs are determined.

Section 4.4 Design Procedure 129

Table 4.1
Truth Table for the Logic Diagram of Fig. 4.2

A B C|FR F, T, T,

wl
e

_— = = O O OO
= O O = OO0
— O R O~ O RO
el e R e R e N]
SO OROR R,k
—_ e R R e = O
OO oo OoO0O
S OO RR O =P, O
—ooRrRORRP~,O

This process is illustrated with the circuit of Fig. 4.2. In Table 4.1, we form the
eight possible combinations for the three input variables. The truth table for F, is
determined directly from the values of A, B, and C, with F, equal to 1 for any com-
bination that has two or three inputs equal to 1. The truth table for F5 is the comple-
ment of F,. The truth tables for 7} and T, are the OR and AND functions of the
input variables, respectively. The values for 75 are derived from 77 and F3:T3 is equal
to 1 when both T and F3 are equal to 1, and 73 is equal to 0 otherwise. Finally, F; is
equal to 1 for those combinations in which either 7, or 75 or both are equal to 1.
Inspection of the truth table combinations for A, B, C, F;, and F, shows that it is
identical to the truth table of the full adder given in Section 4.5 for x, y, z, S, and C,
respectively.

Another way of analyzing a combinational circuit is by means of logic simulation.
This is not practical, however, because the number of input patterns that might be
needed to generate meaningful outputs could be very large. But simulation has a very
practical application in verifying that the functionality of a circuit actually matches its
specification. In Section 4.12, we demonstrate the logic simulation and verification of
the circuit of Fig. 4.2, using Verilog HDL.

4.4 DESIGN PROCEDURE

The design of combinational circuits starts from the specification of the design objective
and culminates in a logic circuit diagram or a set of Boolean functions from which the
logic diagram can be obtained. The procedure involves the following steps:

1. From the specifications of the circuit, determine the required number of inputs
and outputs and assign a symbol to each.

2. Derive the truth table that defines the required relationship between inputs and
outputs.

130 Chapter 4 Combinational Logic

3. Obtain the simplified Boolean functions for each output as a function of the input
variables.

4. Draw the logic diagram and verify the correctness of the design (manually or by
simulation).

A truth table for a combinational circuit consists of input columns and output
columns. The input columns are obtained from the 2" binary numbers for the » input
variables. The binary values for the outputs are determined from the stated specifica-
tions. The output functions specified in the truth table give the exact definition of the
combinational circuit. It is important that the verbal specifications be interpreted
correctly in the truth table, as they are often incomplete, and any wrong interpretation
may result in an incorrect truth table.

The output binary functions listed in the truth table are simplified by any available
method, such as algebraic manipulation, the map method, or a computer-based sim-
plification program. Frequently, there is a variety of simplified expressions from
which to choose. In a particular application, certain criteria will serve as a guide in
the process of choosing an implementation. A practical design must consider such
constraints as the number of gates, number of inputs to a gate, propagation time of
the signal through the gates, number of interconnections, limitations of the driving
capability of each gate (i.e., the number of gates to which the output of the circuit
may be connected), and various other criteria that must be taken into consideration
when designing integrated circuits. Since the importance of each constraint is dictated
by the particular application, it is difficult to make a general statement about what
constitutes an acceptable implementation. In most cases, the simplification begins by
satisfying an elementary objective, such as producing the simplified Boolean func-
tions in a standard form. Then the simplification proceeds with further steps to meet
other performance criteria.

Code Conversion Example

The availability of a large variety of codes for the same discrete elements of information
results in the use of different codes by different digital systems. It is sometimes necessary
to use the output of one system as the input to another. A conversion circuit must be
inserted between the two systems if each uses different codes for the same information.
Thus, a code converter is a circuit that makes the two systems compatible even though
each uses a different binary code.

To convert from binary code A to binary code B, the input lines must supply the
bit combination of elements as specified by code A and the output lines must gener-
ate the corresponding bit combination of code B. A combinational circuit performs
this transformation by means of logic gates. The design procedure will be illustrated
by an example that converts binary coded decimal (BCD) to the excess-3 code for the
decimal digits.

The bit combinations assigned to the BCD and excess-3 codes are listed in Table 1.5
(Section 1.7). Since each code uses four bits to represent a decimal digit, there must

Section 4.4 Design Procedure 131

Table 4.2
Truth Table for Code Conversion Example
Input BCD Output Excess-3 Code

A B C D w X y z
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0

be four input variables and four output variables. We designate the four input binary
variables by the symbols A, B, C, and D, and the four output variables by w, x, y, and
z.The truth table relating the input and output variables is shown in Table 4.2. The bit
combinations for the inputs and their corresponding outputs are obtained directly
from Section 1.7. Note that four binary variables may have 16 bit combinations, but
only 10 are listed in the truth table. The six bit combinations not listed for the input
variables are don’t-care combinations. These values have no meaning in BCD and we
assume that they will never occur in actual operation of the circuit. Therefore, we are
at liberty to assign to the output variables either a 1 or a 0, whichever gives a simpler
circuit.

The maps in Fig. 4.3 are plotted to obtain simplified Boolean functions for the
outputs. Each one of the four maps represents one of the four outputs of the circuit
as a function of the four input variables. The 1’s marked inside the squares are
obtained from the minterms that make the output equal to 1. The 1’s are obtained
from the truth table by going over the output columns one at a time. For example,
the column under output z has five 1’s; therefore, the map for z has five 1’s, each
being in a square corresponding to the minterm that makes z equal to 1. The six
don’t-care minterms 10 through 15 are marked with an X. One possible way to sim-
plify the functions into sum-of-products form is listed under the map of each variable.
(See Chapter 3.)

A two-level logic diagram for each output may be obtained directly from the Boolean
expressions derived from the maps. There are various other possibilities for a logic diagram
that implements this circuit. The expressions obtained in Fig. 4.3 may be manipulated
algebraically for the purpose of using common gates for two or more outputs. This manip-
ulation, shown next, illustrates the flexibility obtained with multiple-output systems when

132 Chapter 4 Combinational Logic

C C

CD —_— CD —_—
AB 00 01 11 10 AB 00 01 11 10
My m ms ny my m s nm,
00 1 1 00 1 1
m, ms m, mg my ms m myg
01 1 1 01 1 1
i) my3 ms myy B My my3 mys my B
11 X X X X 11 X X X X
A A
s my my My mg my my, My
10 1 X X 10 1 X X
—_— —_—
D D
=D y=CD+C'D’
CD < CD ¢
—_—
my, m, my m, my, my my m,
00 1 1 1 00
my ms m, myg my ms m myg
01 1 1 01 1 1 1
My My nys Ko B [Cv) (413 (s My B
11 X X X X 11 X X X X
A ng my My My A g My My My
10 1 X X 10 1 1 X X
—_— —_—
D D
x=B'C+ B'D+ BC'D' w=A+ BC+ BD

FIGURE 4.3
Maps for BCD-to-excess-3 code converter

implemented with three or more levels of gates:

z=D'

y=CD+ C'D'"=CD + (C+ D)’

x=B'C+B'D+ BC'D'"=B'(C+ D)+ BC'D'

=B'(C+ D)+ B(C+ D)’

w=A+BC+ BD=A+ B(C+ D)
The logic diagram that implements these expressions is shown in Fig. 4.4. Note that the OR
gate whose output is C + D has been used to implement partially each of three outputs.

Not counting input inverters, the implementation in sum-of-products form requires

seven AND gates and three OR gates. The implementation of Fig. 4.4 requires four AND
gates, four OR gates, and one inverter. If only the normal inputs are available, the first

Section 4.5 Binary Adder-Subtractor 133

D’

D>
e D ,
] DDty
C+D
B
X

Do
A w
FIGURE 4.4

Logic diagram for BCD-to-excess-3 code converter

implementation will require inverters for variables B, C, and D, and the second
implementation will require inverters for variables B and D. Thus, the three-level logic
circuit requires fewer gates, all of which in turn require no more than two inputs.

4.5 BINARY ADDER-SUBTRACTOR

Digital computers perform a variety of information-processing tasks. Among the func-
tions encountered are the various arithmetic operations. The most basic arithmetic
operation is the addition of two binary digits. This simple addition consists of four pos-
sible elementary operations: 0 + 0 = 0,0+ 1 =1,1 + 0 =1,and 1 + 1 = 10. The
first three operations produce a sum of one digit, but when both augend and addend
bits are equal to 1, the binary sum consists of two digits. The higher significant bit of this
result is called a carry. When the augend and addend numbers contain more significant
digits, the carry obtained from the addition of two bits is added to the next higher order
pair of significant bits. A combinational circuit that performs the addition of two bits is
called a half adder. One that performs the addition of three bits (two significant bits and
a previous carry) is a full adder. The names of the circuits stem from the fact that two
half adders can be employed to implement a full adder.

134

Chapter 4 Combinational Logic

A binary adder—subtractor is a combinational circuit that performs the arithmetic
operations of addition and subtraction with binary numbers. We will develop this
circuit by means of a hierarchical design. The half adder design is carried out first, from
which we develop the full adder. Connecting n full adders in cascade produces a binary
adder for two n-bit numbers. The subtraction circuit is included in a complementing
circuit.

Half Adder

From the verbal explanation of a half adder, we find that this circuit needs two binary
inputs and two binary outputs. The input variables designate the augend and addend
bits; the output variables produce the sum and carry. We assign symbols x and y to the
two inputs and S (for sum) and C (for carry) to the outputs. The truth table for the half
adder is listed in Table 4.3. The C output is 1 only when both inputs are 1. The S output
represents the least significant bit of the sum.

The simplified Boolean functions for the two outputs can be obtained directly from
the truth table. The simplified sum-of-products expressions are

S=x'y +xy’
C =xy

The logic diagram of the half adder implemented in sum of products is shown in
Fig.4.5(a). It can be also implemented with an exclusive-OR and an AND gate as shown
in Fig. 4.5(b). This form is used to show that two half adders can be used to construct a
full adder.

Table 4.3

Half Adder
X C s
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

x'— X — 4 s
Yy — y]

C
y—{ J ¢
(@) S=xy' +x'y b)S=xDy
C=uxy C=xy
FIGURE 4.5

Implementation of half adder

Section 4.5 Binary Adder-Subtractor 135

Full Adder

Addition of n-bit binary numbers requires the use of a full adder, and the process of addi-
tion proceeds on a bit-by-bit basis, right to left, beginning with the least significant bit. After
the least significant bit, addition at each position adds not only the respective bits of the
words, but must also consider a possible carry bit from addition at the previous position.

A full adder is a combinational circuit that forms the arithmetic sum of three bits. It
consists of three inputs and two outputs. Two of the input variables, denoted by x and y,
represent the two significant bits to be added. The third input, z, represents the carry from
the previous lower significant position. Two outputs are necessary because the arithmetic
sum of three binary digits ranges in value from 0 to 3, and binary representation of 2 or 3
needs two bits. The two outputs are designated by the symbols S for sum and C for carry.
The binary variable S gives the value of the least significant bit of the sum. The binary
variable C gives the output carry formed by adding the input carry and the bits of the
words. The truth table of the full adder is listed in Table 4.4. The eight rows under the input
variables designate all possible combinations of the three variables. The output variables
are determined from the arithmetic sum of the input bits. When all input bits are 0, the
output is 0. The S output is equal to 1 when only one input is equal to 1 or when all three
inputs are equal to 1. The C output has a carry of 1 if two or three inputs are equal to 1.

The input and output bits of the combinational circuit have different interpretations
at various stages of the problem. On the one hand, physically, the binary signals of the
inputs are considered binary digits to be added arithmetically to form a two-digit sum
at the output. On the other hand, the same binary values are considered as variables of
Boolean functions when expressed in the truth table or when the circuit is implemented
with logic gates. The maps for the outputs of the full adder are shown in Fig. 4.6. The
simplified expressions are

S — xry/z + x/yzl + xy/zr + xyz
C=xy+xz+yz

The logic diagram for the full adder implemented in sum-of-products form is shown
in Fig. 4.7 It can also be implemented with two half adders and one OR gate, as shown

Table 4.4

Full Adder
X y z C s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

136 Chapter 4 Combinational Logic

yz _{}— yz _{J_
x 00 o0l 11 10 . 00 01 11 10
m m my m, my my ms my
0 1 1 0 1
my mg m; mg my ms my mg
x41 1 1 x51 1 1 1
—_— —_—
z z
(a)S=x"y'z +x'yz' +xy'z' +xyz (b)C=xy +xz +yz

FIGURE 4.6
K-Maps for full adder

X'—
5
Y
T
, Y
X —
-
=
-
s DD
x — i
-
zZ' —]
D
Z —
X —
D—
Z_

FIGURE 4.7
Implementation of full adder in sum-of-products form

in Fig. 4.8. The S output from the second half adder is the exclusive-OR of z and the
output of the first half adder, giving

S=z® (xDy)

=2+ xly) + oz’ +xy)
2 (xy" +x'y) +z(xy +x'y)
— xyrzr + xryzr + xyz + xryrz

The carry output is
C

z(xy' +x'y) +xy =xy'z + x'yz + xy

Binary Adder

A binary adder is a digital circuit that produces the arithmetic sum of two binary num-
bers. It can be constructed with full adders connected in cascade, with the output carry
from each full adder connected to the input carry of the next full adder in the chain.

Section 4.5 Binary Adder-Subtractor 137

(x®Dy)z+xy

FIGURE 4.8
Implementation of full adder with two half adders and an OR gate

Addition of n-bit numbers requires a chain of » full adders or a chain of one-half adder
and n—1 full adders. In the former case, the input carry to the least significant position
is fixed at 0. Figure 4.9 shows the interconnection of four full-adder (FA) circuits to
provide a four-bit binary ripple carry adder. The augend bits of A and the addend bits
of B are designated by subscript numbers from right to left, with subscript O denoting
the least significant bit. The carries are connected in a chain through the full adders. The
input carry to the adder is C, and it ripples through the full adders to the output carry
C,4. The S outputs generate the required sum bits. An n-bit adder requires n full adders,
with each output carry connected to the input carry of the next higher order full adder.

To demonstrate with a specific example, consider the two binary numbers A = 1011
and B = 0011. Their sum S = 1110 is formed with the four-bit adder as follows:

Subscript i 3 2 1 o

Input carry 0 1 1 0 (@F

Augend 1 0 1 1 A;

Addend 0 0 1 1 B;

Sum 1 1 1 0 S;

Output carry 0 0 1 1 Cii

The bits are added with full adders, starting from the least significant position (subscript
0), to form the sum bit and carry bit. The input carry C, in the least significant position
must be 0. The value of C;; in a given significant position is the output carry of the full
adder. This value is transferred into the input carry of the full adder that adds the bits
one higher significant position to the left. The sum bits are thus generated starting from
the rightmost position and are available as soon as the corresponding previous carry
bit is generated. All the carries must be generated for the correct sum bits to appear at
the outputs.

The four-bit adder is a typical example of a standard component. It can be used in
many applications involving arithmetic operations. Observe that the design of this circuit

138 Chapter 4 Combinational Logic

B, A, B, A, B, A By, A,
C3 C2 Cl
FA FA FA FA le——
Cy 83 S $ So
FIGURE 4.9

Four-bit adder

by the classical method would require a truth table with 2° = 512 entries, since there
are nine inputs to the circuit. By using an iterative method of cascading a standard func-
tion, it is possible to obtain a simple and straightforward implementation.

Carry Propagation

The addition of two binary numbers in parallel implies that all the bits of the augend
and addend are available for computation at the same time. As in any combinational
circuit, the signal must propagate through the gates before the correct output sum is
available in the output terminals. The total propagation time is equal to the propagation
delay of a typical gate, times the number of gate levels in the circuit. The longest propa-
gation delay time in an adder is the time it takes the carry to propagate through the full
adders. Since each bit of the sum output depends on the value of the input carry, the
value of S; at any given stage in the adder will be in its steady-state final value only after
the input carry to that stage has been propagated. In this regard, consider output S5 in
Fig.4.9. Inputs A; and Bj; are available as soon as input signals are applied to the adder.
However, input carry C; does not settle to its final value until C, is available from the
previous stage. Similarly, C, has to wait for C; and so on down to C. Thus, only after
the carry propagates and ripples through all stages will the last output S5 and carry C,
settle to their final correct value.

The number of gate levels for the carry propagation can be found from the circuit
of the full adder. The circuit is redrawn with different labels in Fig. 4.10 for convenience.
The input and output variables use the subscript i to denote a typical stage of the adder.
The signals at P; and G; settle to their steady-state values after they propagate through
their respective gates. These two signals are common to all half adders and depend on
only the input augend and addend bits. The signal from the input carry C; to the output
carry C;1 propagates through an AND gate and an OR gate, which constitute two gate
levels. If there are four full adders in the adder, the output carry C, would have
2 X 4 = 8 gate levels from C to C,. For an n-bit adder, there are 2n gate levels for the
carry to propagate from input to output.

Section 4.5 Binary Adder-Subtractor 139

Half adder Half adder

Ci+1

FIGURE 4.10
Full adder with P and G shown

The carry propagation time is an important attribute of the adder because it limits
the speed with which two numbers are added. Although the adder —or, for that matter,
any combinational circuit—will always have some value at its output terminals, the
outputs will not be correct unless the signals are given enough time to propagate through
the gates connected from the inputs to the outputs. Since all other arithmetic operations
are implemented by successive additions, the time consumed during the addition process
is critical. An obvious solution for reducing the carry propagation delay time is to
employ faster gates with reduced delays. However, physical circuits have a limit to their
capability. Another solution is to increase the complexity of the equipment in such a
way that the carry delay time is reduced. There are several techniques for reducing the
carry propagation time in a parallel adder. The most widely used technique employs the
principle of carry lookahead logic.

Consider the circuit of the full adder shown in Fig. 4.10. If we define two new binary
variables

Pi = A,@ Bi
Gi - AiBi
the output sum and carry can respectively be expressed as
Si - Pi D Ci
Civ1 = G + PG
G, is called a carry generate, and it produces a carry of 1 when both A; and B; are 1,
regardless of the input carry C;. P; is called a carry propagate, because it determines
whether a carry into stage i will propagate into stage i + 1 (i.e., whether an assertion of
C; will propagate to an assertion of C;).
We now write the Boolean functions for the carry outputs of each stage and substitute
the value of each C; from the previous equations:
Cy = input carry
Ci = Gy + PyCy

140

Chapter 4 Combinational Logic

C2:G1+P1C1:G1+P1(G0+POC0):G1+P1G0+P1POC0
C3:G2+P2C2:G2+P2G1+P2P1G0:P2P1POCO

Since the Boolean function for each output carry is expressed in sum-of-products form,
each function can be implemented with one level of AND gates followed by an OR gate
(or by a two-level NAND). The three Boolean functions for C;, C,, and C; are imple-
mented in the carry lookahead generator shown in Fig. 4.11. Note that this circuit can
add in less time because C3 does not have to wait for C, and C; to propagate;in fact, C;
is propagated at the same time as C; and C,. This gain in speed of operation is achieved
at the expense of additional complexity (hardware).

The construction of a four-bit adder with a carry lookahead scheme is shown in Fig. 4.12.
Each sum output requires two exclusive-OR gates. The output of the first exclusive-OR
gate generates the P; variable, and the AND gate generates the G, variable. The carries
are propagated through the carry lookahead generator (similar to that in Fig. 4.11) and
applied as inputs to the second exclusive-OR gate. All output carries are generated after

G

P,

Gy

&)

%;%W

Py

G

PO Cl

Gy

Co

FIGURE 4.11
Logic diagram of carry lookahead generator

Section 4.5 Binary Adder-Subtractor

B

As ®
—
L

nn
—
.

pnn D
—
.

penn D

Co

FIGURE 4.12

Four-bit adder with carry lookahead

Ps

Gs

Py

Gy

Go

G

Carry
Lookahead
Generator

on

G

G

G

7

141

a delay through two levels of gates. Thus, outputs §; through S3 have equal propagation
delay times. The two-level circuit for the output carry Cy is not shown. This circuit can
easily be derived by the equation-substitution method.

Binary Subtractor

The subtraction of unsigned binary numbers can be done most conveniently by means
of complements, as discussed in Section 1.5. Remember that the subtraction A — B can
be done by taking the 2’s complement of B and adding it to A. The 2’s complement can
be obtained by taking the 1’s complement and adding 1 to the least significant pair of
bits. The 1’s complement can be implemented with inverters, and a 1 can be added to

the sum through the input carry.

142

Chapter 4 Combinational Logic

BS AS BZ AZ Bl Al B() A()

C, G c, e G

FA FA FA FA

FIGURE 4.13
Four-bit adder-subtractor (with overflow detection)

The circuit for subtracting A — B consists of an adder with inverters placed between
each data input B and the corresponding input of the full adder. The input carry Cy must
be equal to 1 when subtraction is performed. The operation thus performed becomes A,
plus the 1’s complement of B, plus 1. This is equal to A plus the 2’s complement of B.
For unsigned numbers, that gives A — B if A = B or the 2’s complement of (B — A)
if A < B. For signed numbers, the resultis A — B, provided that there is no overflow.
(See Section 1.6.)

The addition and subtraction operations can be combined into one circuit with one
common binary adder by including an exclusive-OR gate with each full adder. A four-bit
adder—subtractor circuit is shown in Fig. 4.13. The mode input M controls the operation.
When M = 0, the circuit is an adder, and when M = 1, the circuit becomes a subtractor.
Each exclusive-OR gate receives input M and one of the inputs of B.When M = 0, we
have B® 0 = B. The full adders receive the value of B, the input carry is 0, and the
circuit performs A plus B.When M = 1, wehave B®1 = B’ and C;, = 1. The B inputs
are all complemented and a 1 is added through the input carry. The circuit performs the
operation A plus the 2’s complement of B. (The exclusive-OR with output V is for
detecting an overflow.)

It is worth noting that binary numbers in the signed-complement system are added
and subtracted by the same basic addition and subtraction rules as are unsigned num-
bers. Therefore, computers need only one common hardware circuit to handle both types
of arithmetic. The user or programmer must interpret the results of such addition or
subtraction differently, depending on whether it is assumed that the numbers are signed
or unsigned.

Section 4.5 Binary Adder-Subtractor 143

Overflow

When two numbers with n digits each are added and the sum is a number occupying
n + 1 digits, we say that an overflow occurred. This is true for binary or decimal num-
bers, signed or unsigned. When the addition is performed with paper and pencil, an
overflow is not a problem, since there is no limit by the width of the page to write down
the sum. Overflow is a problem in digital computers because the number of bits that
hold the number is finite and a result that contains n + 1 bits cannot be accommodated
by an n-bit word. For this reason, many computers detect the occurrence of an overflow,
and when it occurs, a corresponding flip-flop is set that can then be checked by the user.

The detection of an overflow after the addition of two binary numbers depends on
whether the numbers are considered to be signed or unsigned. When two unsigned
numbers are added, an overflow is detected from the end carry out of the most signifi-
cant position. In the case of signed numbers, two details are important: the leftmost bit
always represents the sign, and negative numbers are in 2’s-complement form. When
two signed numbers are added, the sign bit is treated as part of the number and the end
carry does not indicate an overflow.

An overflow cannot occur after an addition if one number is positive and the other
is negative, since adding a positive number to a negative number produces a result
whose magnitude is smaller than the larger of the two original numbers. An overflow
may occur if the two numbers added are both positive or both negative. To see how this
can happen, consider the following example: Two signed binary numbers, +70 and +80,
are stored in two eight-bit registers. The range of numbers that each register can accom-
modate is from binary +127 to binary —128. Since the sum of the two numbers is +150,
it exceeds the capacity of an eight-bit register. This is also true for —70 and —80. The two
additions in binary are shown next, together with the last two carries:

carries: 01 carries: 10
+70 0 1000110 -70 1 0111010
+80 0 1010000 —80 1 0110000
+150 1 0010110 —150 0 1101010

Note that the eight-bit result that should have been positive has a negative sign bit (i.e.,
the eighth bit) and the eight-bit result that should have been negative has a positive sign
bit. If, however, the carry out of the sign bit position is taken as the sign bit of the result,
then the nine-bit answer so obtained will be correct. But since the answer cannot be
accommodated within eight bits, we say that an overflow has occurred.

An overflow condition can be detected by observing the carry into the sign bit position
and the carry out of the sign bit position. If these two carries are not equal, an overflow
has occurred. This is indicated in the examples in which the two carries are explicitly
shown. If the two carries are applied to an exclusive-OR gate, an overflow is detected
when the output of the gate is equal to 1. For this method to work correctly, the 2’s comple-
ment of a negative number must be computed by taking the 1’s complement and adding 1.
This takes care of the condition when the maximum negative number is complemented.

144 Chapter 4 Combinational Logic

The binary adder—subtractor circuit with outputs C and V is shown in Fig. 4.13.If the
two binary numbers are considered to be unsigned, then the C bit detects a carry after
addition or a borrow after subtraction. If the numbers are considered to be signed, then
the V bit detects an overflow. If V = 0 after an addition or subtraction, then no overflow
occurred and the n-bit result is correct. If V = 1, then the result of the operation contains
n + 1 bits, but only the rightmost n bits of the number fit in the space available, so an
overflow has occurred. The (xn + 1) th bit is the actual sign and has been shifted out of
position.

4.6 DECIMAL ADDER

Computers or calculators that perform arithmetic operations directly in the decimal
number system represent decimal numbers in binary coded form. An adder for such
a computer must employ arithmetic circuits that accept coded decimal numbers and
present results in the same code. For binary addition, it is sufficient to consider a
pair of significant bits together with a previous carry. A decimal adder requires a
minimum of nine inputs and five outputs, since four bits are required to code each
decimal digit and the circuit must have an input and output carry. There is a wide
variety of possible decimal adder circuits, depending upon the code used to repre-
sent the decimal digits. Here we examine a decimal adder for the BCD code. (See
Section 1.7.)

BCD Adder

Consider the arithmetic addition of two decimal digits in BCD, together with an input
carry from a previous stage. Since each input digit does not exceed 9, the output sum
cannot be greater than 9 + 9 + 1 = 19, the 1 in the sum being an input carry. Sup-
pose we apply two BCD digits to a four-bit binary adder. The adder will form the sum
in binary and produce a result that ranges from 0 through 19. These binary numbers
are listed in Table 4.5 and are labeled by symbols K, Zg, Z,4, Z,, and Z;. K is the carry,
and the subscripts under the letter Z represent the weights 8, 4,2, and 1 that can be
assigned to the four bits in the BCD code. The columns under the binary sum list the
binary value that appears in the outputs of the four-bit binary adder. The output sum
of two decimal digits must be represented in BCD and should appear in the form
listed in the columns under “BCD Sum.” The problem is to find a rule by which the
binary sum is converted to the correct BCD digit representation of the number in the
BCD sum.

In examining the contents of the table, it becomes apparent that when the binary sum
is equal to or less than 1001, the corresponding BCD number is identical, and therefore
no conversion is needed. When the binary sum is greater than 1001, we obtain an invalid
BCD representation. The addition of binary 6 (0110) to the binary sum converts it to
the correct BCD representation and also produces an output carry as required.

Section 4.6 Decimal Adder 145

Table 4.5
Derivation of BCD Adder
Binary Sum BCD Sum Decimal

K zg zZ, Z, I C S5 S S 5

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 2
0 0 0 1 1 0 0 0 1 1 3
0 0 1 0 0 0 0 1 0 0 4
0 0 1 0 1 0 0 1 0 1 5
0 0 1 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 1 0 0 0 0 1 0 0 0 8
0 1 0 0 1 0 1 0 0 1 9
0 1 0 1 0 1 0 0 0 0 10
0 1 0 1 1 1 0 0 0 1 11
0 1 1 0 0 1 0 0 1 0 12
0 1 1 0 1 1 0 0 1 1 13
0 1 1 1 0 1 0 1 0 0 14
0 1 1 1 1 1 0 1 0 1 15
1 0 0 0 0 1 0 1 1 0 16
1 0 0 0 1 1 0 1 1 1 17
1 0 0 1 0 1 1 0 0 0 18
1 0 0 1 1 1 1 0 0 1 19

The logic circuit that detects the necessary correction can be derived from the
entries in the table. It is obvious that a correction is needed when the binary sum has
an output carry K = 1. The other six combinations from 1010 through 1111 that need
a correction have a 1 in position Zg. To distinguish them from binary 1000 and 1001,
which also have a 1 in position Zg, we specify further that either Z, or Z, must have
a 1. The condition for a correction and an output carry can be expressed by the Bool-
ean function

C=K-+ ZSZ4 + ZSZZ

When C = 1, itis necessary to add 0110 to the binary sum and provide an output carry
for the next stage.

A BCD adder that adds two BCD digits and produces a sum digit in BCD is shown
in Fig. 4.14. The two decimal digits, together with the input carry, are first added in the
top four-bit adder to produce the binary sum. When the output carry is equal to 0, noth-
ing is added to the binary sum. When it is equal to 1, binary 0110 is added to the binary
sum through the bottom four-bit adder. The output carry generated from the bottom

146

4.7

Chapter 4 Combinational Logic

Addend Augend
Carr o Carr
outy K 4-bit binary adder ~ ¥

—
Output /7—
—e

4-bit binary adder

RN

Sg S4 Sz Sl

FIGURE 4.14
Block diagram of a BCD adder

adder can be ignored, since it supplies information already available at the output carry
terminal. A decimal parallel adder that adds n decimal digits needs n BCD adder stages.
The output carry from one stage must be connected to the input carry of the next higher
order stage.

BINARY MULTIPLIER

Multiplication of binary numbers is performed in the same way as multiplication of
decimal numbers. The multiplicand is multiplied by each bit of the multiplier, starting
from the least significant bit. Each such multiplication forms a partial product. Succes-
sive partial products are shifted one position to the left. The final product is obtained
from the sum of the partial products.

To see how a binary multiplier can be implemented with a combinational circuit,
consider the multiplication of two 2-bit numbers as shown in Fig. 4.15. The multiplicand

Section 4.7 Binary Multiplier 147

A
By Bo ’ B, B,
A, Ay | |
ABy ABy
(& & G Co Ay B, B,
HA HA
G G ¢ Cy

FIGURE 4.15
Two-bit by two-bit binary multiplier

bits are By and B, the multiplier bits are A; and A, and the product is C3C,C;C,. The
first partial product is formed by multiplying BB, by A,. The multiplication of two bits
such as Ay and B produces a 1 if both bits are 1; otherwise, it produces a 0. This is iden-
tical to an AND operation. Therefore, the partial product can be implemented with
AND gates as shown in the diagram. The second partial product is formed by multiply-
ing BB, by A; and shifting one position to the left. The two partial products are added
with two half-adder (HA) circuits. Usually, there are more bits in the partial products
and it is necessary to use full adders to produce the sum of the partial products. Note
that the least significant bit of the product does not have to go through an adder, since
it is formed by the output of the first AND gate.

A combinational circuit binary multiplier with more bits can be constructed in a
similar fashion. A bit of the multiplier is ANDed with each bit of the multiplicand in as
many levels as there are bits in the multiplier. The binary output in each level of AND
gates is added with the partial product of the previous level to form a new partial prod-
uct. The last level produces the product. For J multiplier bits and K multiplicand bits, we
need (J X K) AND gates and (J — 1) K-bit adders to produce a product of (/ + K)
bits.

As a second example, consider a multiplier circuit that multiplies a binary number
represented by four bits by a number represented by three bits. Let the multiplicand be
represented by B3;B,BB, and the multiplier by A,AA,. Since K = 4 and J = 3, we
need 12 AND gates and two 4-bit adders to produce a product of seven bits. The logic
diagram of the multiplier is shown in Fig. 4.16.

148 Chapter 4 Combinational Logic

Ag
Aq LJ
B; B, By By
0
Addend Augend
4-bit adder
Sum and output carry
Ay
Bs B, B, By
Addend Augend
4-bit adder
Sum and output carry
FIGURE 4.16

Four-bit by three-bit binary multiplier

4.8 MAGNITUDE COMPARATOR

The comparison of two numbers is an operation that determines whether one number
is greater than, less than, or equal to the other number. A magnitude comparator is a
combinational circuit that compares two numbers A and B and determines their relative
magnitudes. The outcome of the comparison is specified by three binary variables that
indicate whether A > B,A = B,or A < B.

On the one hand, the circuit for comparing two n-bit numbers has 22" entries in the
truth table and becomes too cumbersome, even with n = 3. On the other hand, as one

Section 4.8 Magnitude Comparator 149

may suspect, a comparator circuit possesses a certain amount of regularity. Digital func-
tions that possess an inherent well-defined regularity can usually be designed by means
of an algorithm—a procedure which specifies a finite set of steps that, if followed, give
the solution to a problem. We illustrate this method here by deriving an algorithm for
the design of a four-bit magnitude comparator.

The algorithm is a direct application of the procedure a person uses to compare the
relative magnitudes of two numbers. Consider two numbers, A and B, with four digits
each. Write the coefficients of the numbers in descending order of significance:

A= A3 A2A1 AO
B = BSBZBlBO

Each subscripted letter represents one of the digits in the number. The two numbers are
equal if all pairs of significant digits are equal: A; = B3, A, = B,, A; = By, and
Ay = Bjy. When the numbers are binary, the digits are either 1 or 0, and the equality of
each pair of bits can be expressed logically with an exclusive-NOR function as

x; = A;B; + AjB] fori=20,1,2,3

where x; = 1 only if the pair of bits in position i are equal (i.e., if both are 1 or both
are 0).

The equality of the two numbers A and B is displayed in a combinational circuit by
an output binary variable that we designate by the symbol (A = B).This binary vari-
able is equal to 1 if the input numbers, A and B, are equal, and is equal to 0 otherwise.
For equality to exist, all x; variables must be equal to 1,a condition that dictates an AND
operation of all variables:

(A = B) = X3XpX1X(

The binary variable (A = B) is equal to 1 only if all pairs of digits of the two numbers
are equal.

To determine whether A is greater or less than B, we inspect the relative magnitudes
of pairs of significant digits, starting from the most significant position. If the two digits
of a pair are equal, we compare the next lower significant pair of digits. The comparison
continues until a pair of unequal digits is reached. If the corresponding digit of A is 1
and that of B is 0, we conclude that A > B. If the corresponding digit of A is 0 and that
of Bis 1,we have A < B. The sequential comparison can be expressed logically by the
two Boolean functions

(A > B) = A3Bé + X3AzBé + X3X2AIBi + X3X2xleB(l)
(A < B) = AéB3 + x3A§B2 + X3XZA,1Bi + X3X2)C1A’n0B6

The symbols (A > B) and (A < B) are binary output variables that are equal to 1
when A > Band A < B, respectively.

The gate implementation of the three output variables just derived is simpler than it
seems because it involves a certain amount of repetition. The unequal outputs can use
the same gates that are needed to generate the equal output. The logic diagram of the
four-bit magnitude comparator is shown in Fig. 4.17 The four x outputs are generated

150 Chapter 4 Combinational Logic

Ay
X3
B
)
X2
T\ —:\D7 (A< B)
X1
BL -
T)
Ao 4
Yo (A>B)
By -
— A=B
} ()
FIGURE 4.17

Four-bit magnitude comparator

with exclusive-NOR circuits and are applied to an AND gate to give the output binary
variable (A = B).The other two outputs use the x variables to generate the Boolean
functions listed previously. This is a multilevel implementation and has a regular pattern.
The procedure for obtaining magnitude comparator circuits for binary numbers with
more than four bits is obvious from this example.

4.9 DECODERS

Discrete quantities of information are represented in digital systems by binary codes.
A binary code of n bits is capable of representing up to 2" distinct elements of coded
information. A decoder is a combinational circuit that converts binary information from

Section 4.9 Decoders 151

n input lines to a maximum of 2" unique output lines. If the n-bit coded information has
unused combinations, the decoder may have fewer than 2" outputs.

The decoders presented here are called n-to-m-line decoders, where m = 2". Their
purpose is to generate the 2" (or fewer) minterms of n input variables. Each combination
of inputs will assert a unique output. The name decoder is also used in conjunction with
other code converters, such as a BCD-to-seven-segment decoder.

As an example, consider the three-to-eight-line decoder circuit of Fig. 4.18. The three
inputs are decoded into eight outputs, each representing one of the minterms of the
three input variables. The three inverters provide the complement of the inputs, and each
one of the eight AND gates generates one of the minterms. A particular application of
this decoder is binary-to-octal conversion. The input variables represent a binary num-
ber, and the outputs represent the eight digits of a number in the octal number system.
However, a three-to-eight-line decoder can be used for decoding any three-bit code to
provide eight outputs, one for each element of the code.

Dy=x'y'z
L
DO } l)1 — x/yrz
z J
D, = x'yz'
> =
’)
D;=x'yz
L
} D4 — xyrzf
x L
Ds=xy'z
L
} D¢ = xyz’'
,‘ D; = xyz
FIGURE 4.18

Three-to-eight-line decoder

152

Chapter 4 Combinational Logic

Table 4.6
Truth Table of a Three-to-Eight-Line Decoder
Inputs Outputs

X y z Do D] Dz D3 D4 Ds D6 D7
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

The operation of the decoder may be clarified by the truth table listed in Table 4.6.
For each possible input combination, there are seven outputs that are equal to 0 and
only one that is equal to 1. The output whose value is equal to 1 represents the minterm
equivalent of the binary number currently available in the input lines.

Some decoders are constructed with NAND gates. Since a NAND gate produces the
AND operation with an inverted output, it becomes more economical to generate the
decoder minterms in their complemented form. Furthermore, decoders include one or
more enable inputs to control the circuit operation. A two-to-four-line decoder with an
enable input constructed with NAND gates is shown in Fig. 4.19. The circuit operates
with complemented outputs and a complement enable input. The decoder is enabled
when E is equal to O (i.e., active-low enable). As indicated by the truth table, only one

Bar
E A B Dy D, D, Ds
Dy
L 1 X X 1 1 1 1
A T[>O_ 0 0 0 0o 1 1 1
0o 0 1 10 1 1
} D, 0 1 0 1 1 0 1
B — >O 0 1 1 1 1 1 1
el
|
E {>c
(a) Logic diagram (b) Truth table

FIGURE 4.19
Two-to-four-line decoder with enable input

Section 4.9 Decoders 153

output can be equal to 0 at any given time; all other outputs are equal to 1. The output
whose value is equal to 0 represents the minterm selected by inputs A and B.The circuit
is disabled when E is equal to 1, regardless of the values of the other two inputs. When
the circuit is disabled, none of the outputs are equal to 0 and none of the minterms are
selected. In general, a decoder may operate with complemented or uncomplemented
outputs. The enable input may be activated with a 0 or with a 1 signal. Some decoders
have two or more enable inputs that must satisfy a given logic condition in order to
enable the circuit.

A decoder with enable input can function as a demultiplexer—a circuit that receives
information from a single line and directs it to one of 2" possible output lines. The
selection of a specific output is controlled by the bit combination of # selection lines.
The decoder of Fig. 4.19 can function as a one-to-four-line demultiplexer when E is
taken as a data input line and A and B are taken as the selection inputs. The single
input variable £ has a path to all four outputs, but the input information is directed to
only one of the output lines, as specified by the binary combination of the two selection
lines A and B. This feature can be verified from the truth table of the circuit. For
example, if the selection lines AB = 10, output D, will be the same as the input value
E, while all other outputs are maintained at 1. Because decoder and demultiplexer
operations are obtained from the same circuit, a decoder with an enable input is
referred to as a decoder—demultiplexer.

Decoders with enable inputs can be connected together to form a larger decoder
circuit. Figure 4.20 shows two 3-to-8-line decoders with enable inputs connected to form
a4-to-16-line decoder. When w = 0, the top decoder is enabled and the other is disabled.
The bottom decoder outputs are all 0’s, and the top eight outputs generate minterms
0000 to 0111. When w = 1, the enable conditions are reversed: The bottom decoder
outputs generate minterms 1000 to 1111, while the outputs of the top decoder are all
0’s. This example demonstrates the usefulness of enable inputs in decoders and other

X
3X8
Y decoder Dyto D
< E
w {>c
3X8
decoder Dgto Dis
E

FIGURE 4.20
4 X 16 decoder constructed with two 3 X 8 decoders

154 Chapter 4 Combinational Logic

combinational logic components. In general, enable inputs are a convenient feature for
interconnecting two or more standard components for the purpose of combining them
into a similar function with more inputs and outputs.

Combinational Logic Implementation

A decoder provides the 2" minterms of n input variables. Each asserted output of the
decoder is associated with a unique pattern of input bits. Since any Boolean function
can be expressed in sum-of-minterms form, a decoder that generates the minterms of
the function, together with an external OR gate that forms their logical sum, provides
a hardware implementation of the function. In this way, any combinational circuit with
n inputs and m outputs can be implemented with an n-to-2"-line decoder and m OR
gates.

The procedure for implementing a combinational circuit by means of a decoder and
OR gates requires that the Boolean function for the circuit be expressed as a sum of
minterms. A decoder is then chosen that generates all the minterms of the input vari-
ables. The inputs to each OR gate are selected from the decoder outputs according to
the list of minterms of each function. This procedure will be illustrated by an example
that implements a full-adder circuit.

From the truth table of the full adder (see Table 4.4), we obtain the functions for the
combinational circuit in sum-of-minterms form:

S(x,y, Z) = 2(192, 4’ 7)
C(x,y,z) = %(3,5,6,7)

Since there are three inputs and a total of eight minterms, we need a three-to-eight-line
decoder. The implementation is shown in Fig. 4.21. The decoder generates the eight
minterms for x, y, and z. The OR gate for output S forms the logical sum of minterms 1,
2,4,and 7. The OR gate for output C forms the logical sum of minterms 3, 5, 6, and 7

0 —
1 \ : s
x —{ 22 2 J
y |y 3xs .
decoder 4
P 5 = <
6
7
FIGURE 4.21

Implementation of a full adder with a decoder

4.10

Section 4.10 Encoders 155

A function with a long list of minterms requires an OR gate with a large number of
inputs. A function having a list of k minterms can be expressed in its complemented form
F’ with 2" — k minterms. If the number of minterms in the function is greater than 2" /2,
then F’ can be expressed with fewer minterms. In such a case, it is advantageous to use
a NOR gate to sum the minterms of F’. The output of the NOR gate complements this
sum and generates the normal output F. If NAND gates are used for the decoder, as in
Fig. 4.19, then the external gates must be NAND gates instead of OR gates. This is
because a two-level NAND gate circuit implements a sum-of-minterms function and is
equivalent to a two-level AND-OR circuit.

ENCODERS

An encoder is a digital circuit that performs the inverse operation of a decoder. An
encoder has 2" (or fewer) input lines and » output lines. The output lines, as an aggregate,
generate the binary code corresponding to the input value. An example of an encoder
is the octal-to-binary encoder whose truth table is given in Table 4.7 It has eight inputs
(one for each of the octal digits) and three outputs that generate the corresponding
binary number. It is assumed that only one input has a value of 1 at any given time.

The encoder can be implemented with OR gates whose inputs are determined
directly from the truth table. Output z is equal to 1 when the input octal digitis 1, 3, 5,
or 7. Output y is 1 for octal digits 2, 3, 6, or 7, and output x is 1 for digits 4, 5,6, or 7 These
conditions can be expressed by the following Boolean output functions:

Z:D1+D3+D5+D7
y=D2+D3+D6+D7
X:D4+D5+D6+D7

The encoder can be implemented with three OR gates.

Table 4.7
Truth Table of an Octal-to-Binary Encoder
Inputs Outputs

Do D'| Dz D3 D4 Ds D6 D7 X y z
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1

156

Chapter 4 Combinational Logic

The encoder defined in Table 4.7 has the limitation that only one input can be active
at any given time. If two inputs are active simultaneously, the output produces an unde-
fined combination. For example, if D; and Dy are 1 simultaneously, the output of the
encoder will be 111 because all three outputs are equal to 1. The output 111 does not
represent either binary 3 or binary 6. To resolve this ambiguity, encoder circuits must
establish an input priority to ensure that only one input is encoded. If we establish a
higher priority for inputs with higher subscript numbers, and if both D5 and Dg are 1 at
the same time, the output will be 110 because D¢ has higher priority than Dj.

Another ambiguity in the octal-to-binary encoder is that an output with all 0’s is
generated when all the inputs are 0; but this output is the same as when Dy is equal to 1.
The discrepancy can be resolved by providing one more output to indicate whether at
least one input is equal to 1.

Priority Encoder

A priority encoder is an encoder circuit that includes the priority function. The operation
of the priority encoder is such that if two or more inputs are equal to 1 at the same time,
the input having the highest priority will take precedence. The truth table of a four-input
priority encoder is given in Table 4.8. In addition to the two outputs x and y, the circuit
has a third output designated by V; this is a valid bit indicator that is set to 1 when one or
more inputs are equal to 1. If all inputs are 0, there is no valid input and V is equal to 0.
The other two outputs are not inspected when V equals 0 and are specified as don’t-care
conditions. Note that whereas X’s in output columns represent don’t-care conditions, the
X’s in the input columns are useful for representing a truth table in condensed form.
Instead of listing all 16 minterms of four variables, the truth table uses an X to represent
either 1 or 0. For example, X100 represents the two minterms 0100 and 1100.

According to Table 4.8, the higher the subscript number, the higher the priority of
the input. Input D3 has the highest priority, so, regardless of the values of the other
inputs, when this input is 1, the output for xy is 11 (binary 3). D, has the next priority
level. The output is 10 if D, = 1, provided that D; = 0, regardless of the values of the
other two lower priority inputs. The output for D is generated only if higher priority
inputs are 0, and so on down the priority levels.

Table 4.8
Truth Table of a Priority Encoder
Inputs Outputs

Do D-| Dz D3 X V4 v
0 0 0 0 X X 0
1 0 0 0 0 0 1
X 1 0 0 0 1 1
X X 1 0 1 0 1
X X X 1 1 1 1

D,
D2D3 —_——t
DD, 00 01 11 10
my, m, my m,
001 X 1 1 1
m, ms m, myg
01 1 1 1
D,
My KCG s LCT
11 1 1 1
DU mg my Wi My
10 1 1 X
[—
D3
x =D, + Dy
FIGURE 4.22

Maps for a priority encoder

Section 4.10 Encoders
D,
D2D3 —
DoD, 00 01 11 10
my my ms m,
00| X 1 1
my ms m, mg
01 1 1 1
my, my3 ms my
11 1 1 1
DU myg my my my,
10 1 1
——
D;
y=D;+ DD’

157

The maps for simplifying outputs x and y are shown in Fig. 4.22. The minterms for the

two functions are derived from Table 4.8. Although the table has only five rows, when

each X in a row is replaced first by 0 and then by 1, we obtain all 16 possible input com-

binations. For example, the fourth row in the table, with inputs XX10, represents the four
minterms 0010,0110,1010, and 1110. The simplified Boolean expressions for the priority
encoder are obtained from the maps. The condition for output V is an OR function of

all the input variables. The priority encoder is implemented in Fig. 4.23 according to the
following Boolean functions:

D;

D,

Dy

Dy

x=D2+D3

y=D;+ D D;
V:D0+D1+D2+D3

>o—

>

FIGURE 4.23
Four-input priority encoder

v

158

4.11

Chapter 4 Combinational Logic

MULTIPLEXERS

A multiplexer is a combinational circuit that selects binary information from one of
many input lines and directs it to a single output line. The selection of a particular input
line is controlled by a set of selection lines. Normally, there are 2" input lines and # selec-
tion lines whose bit combinations determine which input is selected.

A two-to-one-line multiplexer connects one of two 1-bit sources to a common desti-
nation, as shown in Fig. 4.24. The circuit has two data input lines, one output line, and
one selection line S. When § = 0, the upper AND gate is enabled and /;, has a path to
the output. When § = 1, the lower AND gate is enabled and 7, has a path to the output.
The multiplexer acts like an electronic switch that selects one of two sources. The block
diagram of a multiplexer is sometimes depicted by a wedge-shaped symbol, as shown in
Fig. 4.24(b). It suggests visually how a selected one of multiple data sources is directed
into a single destination. The multiplexer is often labeled “MUX” in block diagrams.

A four-to-one-line multiplexer is shown in Fig. 4.25. Each of the four inputs, I,
through 7, is applied to one input of an AND gate. Selection lines S; and S are decoded
to select a particular AND gate. The outputs of the AND gates are applied to a single
OR gate that provides the one-line output. The function table lists the input that is
passed to the output for each combination of the binary selection values. To demonstrate
the operation of the circuit, consider the case when §;S, = 10. The AND gate associated
with input 7, has two of its inputs equal to 1 and the third input connected to /,. The
other three AND gates have at least one input equal to 0, which makes their outputs
equal to 0. The output of the OR gate is now equal to the value of I,, providing a path
from the selected input to the output. A multiplexer is also called a data selector, since
it selects one of many inputs and steers the binary information to the output line.

The AND gates and inverters in the multiplexer resemble a decoder circuit, and indeed,
they decode the selection input lines. In general, a 2"-to-1-line multiplexer is constructed
from an n-to-2" decoder by adding 2" input lines to it, one to each AND gate. The outputs
of the AND gates are applied to a single OR gate. The size of a multiplexer is specified by

) > M v

I

I

-
[
> S

(a) Logic diagram (b) Block diagram

FIGURE 4.24
Two-to-one-line multiplexer

Section 4.11 Multiplexers 159

Iy —\
L \
Y
L \
I \
AlA i
0 0| Iy
0 1| L
Sy 1 0| b
1 1| L
So —
(a) Logic diagram (b) Function table
FIGURE 4.25

Four-to-one-line multiplexer

the number 2" of its data input lines and the single output line. The # selection lines are
implied from the 2" data lines. As in decoders, multiplexers may have an enable input to
control the operation of the unit. When the enable input is in the inactive state, the outputs
are disabled, and when it is in the active state, the circuit functions as a normal multiplexer.

Multiplexer circuits can be combined with common selection inputs to provide
multiple-bit selection logic. As an illustration, a quadruple 2-to-1-line multiplexer is shown
in Fig. 4.26. The circuit has four multiplexers, each capable of selecting one of two input
lines. Output Y|, can be selected to come from either input A or input B. Similarly,
output Y; may have the value of A; or By, and so on. Input selection line S selects one of
the lines in each of the four multiplexers. The enable input E must be active (i.e., asserted)
for normal operation. Although the circuit contains four 2-to-1-line multiplexers, we are
more likely to view it as a circuit that selects one of two 4-bit sets of data lines. As shown
in the function table, the unit is enabled when £ = 0. Then, if § = 0, the four A inputs
have a path to the four outputs. If, by contrast, S = 1, the four B inputs are applied to the
outputs. The outputs have all 0’s when E = 1, regardless of the value of S.

Boolean Function Implementation

In Section 4.9, it was shown that a decoder can be used to implement Boolean functions
by employing external OR gates. An examination of the logic diagram of a multiplexer
reveals that it is essentially a decoder that includes the OR gate within the unit. The

160 Chapter 4 Combinational Logic

Function table

B

A Y\
.) —_
Ay ﬁ
L/) Y,
A, ﬁ
L _D—Yz
A; ﬁ
L ‘Df)%
: -
B, E S | OutputY
/ 1 X | allO’s
0 0 | selectA
0 1 | selectB
)
L/
)
L/

N

(select)
E
(enable) {>O

FIGURE 4.26
Quadruple two-to-one-line multiplexer

minterms of a function are generated in a multiplexer by the circuit associated with the
selection inputs. The individual minterms can be selected by the data inputs, thereby
providing a method of implementing a Boolean function of n variables with a multi-
plexer that has # selection inputs and 2" data inputs, one for each minterm.

We will now show a more efficient method for implementing a Boolean function of
n variables with a multiplexer that has n — 1 selection inputs. The first » — 1 variables
of the function are connected to the selection inputs of the multiplexer. The remaining
single variable of the function is used for the data inputs. If the single variable is denoted

Section 4.11 Multiplexers 161

by z, each data input of the multiplexer will be z, z’, 1, or 0. To demonstrate this proce-
dure, consider the Boolean function

F(x,y,z) = 2(1,2,6,7)

This function of three variables can be implemented with a four-to-one-line multiplexer
as shown in Fig. 4.27 The two variables x and y are applied to the selection lines in that
order; x is connected to the Sy input and y to the S, input. The values for the data input
lines are determined from the truth table of the function. When xy = 00, output F is
equal to z because F = Owhen z = Oand F = 1 when z = 1. This requires that variable
z be applied to data input 0. The operation of the multiplexer is such that when xy = 00,
data input 0 has a path to the output, and that makes F equal to z. In a similar fashion,
we can determine the required input to data lines 1, 2, and 3 from the value of F when
xy = 01,10,and 11, respectively. This particular example shows all four possibilities that
can be obtained for the data inputs.

The general procedure for implementing any Boolean function of » variables with a
multiplexer with n — 1 selection inputs and 2"~ ! data inputs follows from the previous
example. To begin with, Boolean function is listed in a truth table. Then first n — 1 vari-
ables in the table are applied to the selection inputs of the multiplexer. For each com-
bination of the selection variables, we evaluate the output as a function of the last
variable. This function can be 0, 1, the variable, or the complement of the variable. These
values are then applied to the data inputs in the proper order.

As a second example, consider the implementation of the Boolean function

F(A,B,C,D) = 3(1,3,4,11, 12, 13, 14, 15)

This function is implemented with a multiplexer with three selection inputs as shown in
Fig. 4.28. Note that the first variable A must be connected to selection input S, so that
A, B, and C correspond to selection inputs S, Sy, and S, respectively. The values for the

4 X 1 MUX
y —S
x y z|F
X — Sl
00 0|0 Fp=,
0 0 1|1
0 0 1 F=g Z 0 F
0 1 10 ,
7 —1
1 0 01]0 F=0
10 1]0 0 2
1 —3
1 1 01 —
F=1
1 1
(a) Truth table (b) Multiplexer implementation
FIGURE 4.27

Implementing a Boolean function with a multiplexer

162 Chapter 4 Combinational Logic

A B C D|F
0 0 0 0|0 F=p X
00 o0 111 8 X 1 MUX
0 0 00 p=p ¢ So
0 0 1 11 B S
A S,
01 0 0/1 p_pr
01 0 10
D 0
0 1 010 p_p 1—1
0 1 110 DC) —F
1 0 0 00 — 0 3
100 1]o F70 4
1 0 1 0/0 5_ 5
101 11 F=P i 6
110 01 p_y I—7
1 0 1
1 1 1 0|1 ,_
11 11 F=1
FIGURE 4.28

Implementing a four-input function with a multiplexer

data inputs are determined from the truth table listed in the figure. The corresponding
data line number is determined from the binary combination of ABC. For example, the
table shows that when ABC = 101, F = D, so the input variable D is applied to data
input 5. The binary constants 0 and 1 correspond to two fixed signal values. When inte-
grated circuits are used, logic 0 corresponds to signal ground and logic 1 is equivalent to
the power signal, depending on the technology (e.g.,3 V).

Three-State Gates

A multiplexer can be constructed with three-state gates—digital circuits that exhibit
three states. Two of the states are signals equivalent to logic 1 and logic 0 as in a conven-
tional gate. The third state is a high-impedance state in which (1) the logic behaves like
an open circuit, which means that the output appears to be disconnected, (2) the circuit
has no logic significance, and (3) the circuit connected to the output of the three-state
gate is not affected by the inputs to the gate. Three-state gates may perform any con-
ventional logic, such as AND or NAND. However, the one most commonly used is the
buffer gate.

The graphic symbol for a three-state buffer gate is shown in Fig. 4.29. It is distinguished
from a normal buffer by an input control line entering the bottom of the symbol. The
buffer has a normal input, an output, and a control input that determines the state of the
output. When the control input is equal to 1, the output is enabled and the gate behaves
like a conventional buffer, with the output equal to the normal input. When the control

Select

Section 4.11 Multiplexers 163

Normal input A Output Y =AifC=1
High-impedance if C = 0
Control input C
FIGURE 4.29

Graphic symbol for a three-state buffer

input is 0, the output is disabled and the gate goes to a high-impedance state, regardless
of the value in the normal input. The high-impedance state of a three-state gate provides
a special feature not available in other gates. Because of this feature, a large number of
three-state gate outputs can be connected with wires to form a common line without
endangering loading effects.

The construction of multiplexers with three-state buffers is demonstrated in Fig. 4.30.
Figure 4.30(a) shows the construction of a two-to-one-line multiplexer with 2 three-state
buffers and an inverter. The two outputs are connected together to form a single output
line. (Note that this type of connection cannot be made with gates that do not have
three-state outputs.) When the select input is 0, the upper buffer is enabled by its control
input and the lower buffer is disabled. Output Y is then equal to input A. When the select
input is 1, the lower buffer is enabled and Y is equal to B.

The construction of a four-to-one-line multiplexer is shown in Fig. 4.30(b). The out-
puts of 4 three-state buffers are connected together to form a single output line. The
control inputs to the buffers determine which one of the four normal inputs /, through

Iy

iyl

L

N

> Y L
0 ——

—s,
NG Select 9 2% 4 1
Y O decoder)
Enable EN
3
(a) 2-to-1-line mux (b) 4-to-1-line mux
FIGURE 4.30

Multiplexers with three-state gates

164

4.12

Chapter 4 Combinational Logic

I; will be connected to the output line. No more than one buffer may be in the active
state at any given time. The connected buffers must be controlled so that only 1 three-
state buffer has access to the output while all other buffers are maintained in a high-
impedance state. One way to ensure that no more than one control input is active at any
given time is to use a decoder, as shown in the diagram. When the enable input of the
decoder is 0, all of its four outputs are 0 and the bus line is in a high-impedance state
because all four buffers are disabled. When the enable input is active, one of the three-
state buffers will be active, depending on the binary value in the select inputs of the
decoder. Careful investigation reveals that this circuit is another way of constructing a
four-to-one-line multiplexer.

HDL MODELS OF COMBINATIONAL
CIRCUITS

The Verilog HDL was introduced in Section 3.10. In the current section, we introduce
additional features of Verilog, present more elaborate examples, and compare alternative
descriptions of combinational circuits in Verilog. Sequential circuits are presented in
Chapter 5. As mentioned previously, the module is the basic building block for modeling
hardware with the Verilog HDL. The logic of a module can be described in any one (or a
combination) of the following modeling styles:

¢ Gate-level modeling using instantiations of predefined and user-defined primitive
gates.

e Dataflow modeling using continuous assignment statements with the keyword
assign.

¢ Behavioral modeling using procedural assignment statements with the keyword
always.

Gate-level (structural) modeling describes a circuit by specifying its gates and how they
are connected with each other. Dataflow modeling is used mostly for describing the
Boolean equations of combinational logic. We’ll also consider here behavioral modeling
that is used to describe combinational and sequential circuits at a higher level of abstrac-
tion. Combinational logic can be designed with truth tables, Boolean equations, and
schematics; Verilog has a construct corresponding to each of these “classical” approaches
to design: user-defined primitives, continuous assignments, and primitives, as shown in
Fig. 4.31. There is one other modeling style, called switch-level modeling. It is sometimes
used in the simulation of MOS transistor circuit models, but not in logic synthesis. We
will not consider switch-level modeling.

Gate-Level Modeling

Gate-level modeling was introduced in Section 3.10 with a simple example. In this type
of representation, a circuit is specified by its logic gates and their interconnections. Gate-
level modeling provides a textual description of a schematic diagram. The Verilog HDL

Section 4.12 HDL Models of Combinational Circuits 165

Verilog model
(combinational logic)

-
[=]
Q
=)
c
en
7]
£ &
g 2
S 3
2 g
T P
S =
g S
= O
S
) Boolean equation
o)

N

Truth table Schematic

FIGURE 4.31
Relationship of Verilog constructs to truth tables, Boolean equations, and schematics

includes 12 basic gates as predefined primitives. Four of these primitive gates are of the
three-state type. The other eight are the same as the ones listed in Section 2.8. They are
all declared with the lowercase keywords and, nand, or, nor, xor, xnor, not, and buf.
Primitives such as and are n-input primitives. They can have any number of scalar inputs
(e.g., a three-input and primitive). The buf and not primitives are n-output primitives.
A single input can drive multiple output lines distinguished by their identifiers.

The Verilog language includes a functional description of each type of gate, too. The
logic of each gate is based on a four-valued system. When the gates are simulated,
the simulator assigns one value to the output of each gate at any instant. In addition to
the two logic values of 0 and 1, there are two other values: unknown and high impedance.
An unknown value is denoted by x and a high impedance by z. An unknown value is
assigned during simulation when the logic value of a signal is ambiguous—for instance,
if it cannot be determined whether its value is 0 or 1 (e.g., a flip-flop without a reset
condition). A high-impedance condition occurs at the output of three-state gates that
are not enabled or if a wire is inadvertently left unconnected. The four-valued logic truth
tables for the and, or, xor, and not primitives are shown in Table 4.9. The truth table for
the other four gates is the same, except that the outputs are complemented. Note that
for the and gate, the output is 1 only when both inputs are 1 and the output is 0 if any
input is 0. Otherwise, if one input is x or z, the output is x. The output of the or gate is 0
if both inputs are 0, is 1 if any input is 1, and is x otherwise.

When a primitive gate is listed in a module, we say that it is instantiated in the module.
In general, component instantiations are statements that reference lower level compo-
nents in the design, essentially creating unique copies (or instances) of those components
in the higher level module. Thus, a module that uses a gate in its description is said to

166

Chapter 4 Combinational Logic

Table 4.9
Truth Table for Predefined Primitive Gates
and | 0 1 x z or 0 1 x z
0 0 0 0 O 0 0 1 x x
1 0 1 x x 1 1 1 1
X 0 x x x X x 1 x x
z 0 x x x V/ x 1 x x
xor | 0 1 x 1z not | input output
0 0 1 x x 0 1
1 1 0 x x 1 0
X X X X X X X
z X X X X Y/ X

instantiate the gate. Think of instantiation as the HDL counterpart of placing and
connecting parts on a circuit board.

We now present two examples of gate-level modeling. Both examples use identifiers
having multiple bit widths, called vectors. The syntax specifying a vector includes within
square brackets two numbers separated with a colon. The following Verilog statements

specify two vectors:

output [0: 3] D;
wire [7: 0] SUM;

The first statement declares an output vector D with four bits, 0 through 3. The second
declares a wire vector SUM with eight bits numbered 7 through 0. (Note: The first (left-
most) number (array index) listed is always the most significant bit of the vector.) The
individual bits are specified within square brackets,so D /2] specifies bit 2 of D. It is also
possible to address parts (contiguous bits) of vectors. For example, SUM/2: 0] specifies
the three least significant bits of vector SUM.

HDL Example 4.1 shows the gate-level description of a two-to-four-line decoder.
(See Fig. 4.19.) This decoder has two data inputs A and B and an enable input E. The
four outputs are specified with the vector D. The wire declaration is for internal connec-
tions. Three not gates produce the complement of the inputs, and four nand gates provide
the outputs for D. Remember that the output is always listed first in the port list of a
primitive, followed by the inputs. This example describes the decoder of Fig. 4.19 and
follows the procedures established in Section 3.10. Note that the keywords not and nand
are written only once and do not have to be repeated for each gate, but commas must
be inserted at the end of each of the gates in the series, except for the last statement,
which must be terminated with a semicolon.

Section 4.12 HDL Models of Combinational Circuits 167

HDL Example 4.1 (Two-to-Four-Line Decoder)

/I Gate-level description of two-to-four-line decoder
/I Refer to Fig. 4.19 with symbol E replaced by enable, for clarity.

module decoder_2x4_gates (D, A, B, enable);
output [0: 3] D;
input A, B;
input enable;
wire A_not,B_not, enable_not;

not
G1 (A_not, A),
G2 (B_not, B),
G3 (enable_not, enable);
nand
G4 (D[0], A_not, B_not, enable_not),
G5 (D[1], A_not, B, enable_not),
G6 (D[2], A, B_not, enable_not),
G7 (D[3], A, B, enable_not);

endmodule

Two or more modules can be combined to build a hierarchical description of a design.
There are two basic types of design methodologies: top down and bottom up. In a
top-down design, the top-level block is defined and then the subblocks necessary to
build the top-level block are identified. In a bottom-up design, the building blocks are
first identified and then combined to build the top-level block. Take, for example, the
binary adder of Fig. 4.9. It can be considered as a top-block component built with four
full-adder blocks, while each full adder is built with two half-adder blocks. In a top-down
design, the four-bit adder is defined first, and then the two adders are described. In a
bottom-up design, the half adder is defined, then each full adder is constructed, and then
the four-bit adder is built from the full adders.

A bottom-up hierarchical description of a four-bit adder is shown in HDL
Example 4.2. The half adder is defined by instantiating primitive gates. The next mod-
ule describes the full adder by instantiating and connecting two half adders. The third
module describes the four-bit adder by instantiating and connecting four full adders.
Note that the first character of an identifier cannot be a number, but can be an under-
score, so the module name _4bitadder is valid. An alternative name that is meaningful,
but does not require a leading underscore, is adder_4_bit. The instantiation is done by
using the name of the module that is instantiated together with a new (or the same)
set of port names. For example, the half adder HAI inside the full adder module is
instantiated with ports S7, C1, x, and y. This produces a half adder with outputs S7 and
CI and inputs x and y.

168 Chapter 4 Combinational Logic

HDL Example 4.2 (Ripple-Carry Adder)

/I Gate-level description of four-bit ripple carry adder
/I Description of half adder (Fig. 4.5b)

/l module half_adder (S, C, X, y); /I Verilog 1995 syntax
/l output S, C;
/l'input X, vy;

module half_adder (output S, C, input X, y); /I Verilog 2001, 2005 syntax
/I Instantiate primitive gates

xor (S, X, y);

and (C, x, y);
endmodule

/I Description of full adder (Fig. 4.8) /I Verilog 1995 syntax
/ module full_adder (S, C, x, y, z);

I/l output S, C;

/[input X, Y, Z;

module full_adder (output S, C, input X, y, z); /I Verilog 2001, 2005 syntax
wire S1, C1, C2;

/I Instantiate half adders
half_adder HA1 (S1, C1, x, y);
half_adder HA2 (S, C2, S1, z);
or G1 (C, C2, C1);

endmodule

/I Description of four-bit adder (Fig. 4.9) /I Verilog 1995 syntax
/ module ripple_carry_4_bit_adder (Sum, C4, A, B, C0O);
/I output [3: 0] Sum;

/l output C4;
/linput [3:0] A, B;
/l input Co;

/I Alternative Verilog 2001, 2005 syntax:

module ripple_carry_4_bit_adder (output [3: 0] Sum, output C4,
input [3: 0] A, B, input C0);

wire C1,C2, C3; /I Intermediate carries
/I Instantiate chain of full adders
full_adder FAO (Sum[0], C1, A[O], B[0], CO0),

)
FA1 (Sum[1], C2, A[1], B[1], C1),
FA2 (Sum[2], C3, A[2], B[2], C2),
FA3 (Sum[3], C4, A[3], B[3], C3)

)

endmodule

HDL Example 4.2 illustrates Verilog 2001, 2005 syntax, which eliminates extra typing
of identifiers declaring the mode (e.g., output), type (reg), and declaration of a vector range
(e.g.,[3:0]) of a port. The first version of the standard (1995) uses separate statements for
these declarations.

Section 4.12 HDL Models of Combinational Circuits 169

Note that modules can be instantiated (nested) within other modules, but module
declarations cannot be nested; that is, a module definition (declaration) cannot be placed
within another module declaration. In other words, a module definition cannot be
inserted into the text between the module and endmodule keywords of another module.
The only way one module definition can be incorporated into another module is by
instantiating it. Instantiating modules within other modules creates a hierarchical
decomposition of a design. A description of a module is said to be a structural descrip-
tion if it is composed of instantiations of other modules. Note also that instance names
must be specified when defined modules are instantiated (such as FAO for the first full
adder in the third module), but using a name is optional when instantiating primitive
gates. Module ripple_carry_4_bit_adder is composed of instantiated and interconnected
full adders, each of which is itself composed of half adders and some glue logic. The top
level, or parent module, of the design hierarchy is the module ripple_carry_4_bit_adder.
Four copies of full_adder are its child modules, etc. C0 is an input of the cell forming the
least significant bit of the chain, and C4 is the output of the cell forming the most
significant bit.

Three-State Gates

As mentioned in Section 4.11, a three-state gate has a control input that can place the
gate into a high-impedance state. The high-impedance state is symbolized by z in Verilog.
There are four types of three-state gates, as shown in Fig. 4.32. The bufifl gate behaves
like a normal buffer if control = 1. The output goes to a high-impedance state z when
control = 0. The bufif(gate behaves in a similar fashion, except that the high-impedance
state occurs when control = 1. The two notif gates operate in a similar manner, except
that the output is the complement of the input when the gate is not in a high-impedance
state. The gates are instantiated with the statement

gatename (output,input,control);

' f N ' T N
control control

FIGURE 4.32
Three-state gates

bufif1 bufifO
in T out in ?C? out
control control

notif1 notif0

170

Chapter 4 Combinational Logic

The gate name can be that of any 1 of the 4 three-state gates. In simulation, the output
can result in 0, 1, x, or z. Two examples of gate instantiation are

bufifi (OUT, A, control);
notif0 (Y, B, enable);

In the first example, input A is transferred to OUT when control = 1. OUT goes to z
when control = 0. In the second example, output Y = z when enable = 1 and output
Y = B’ when enable = 0.

The outputs of three-state gates can be connected together to form a common output
line. To identify such a connection, Verilog HDL uses the keyword tri (for tristate) to
indicate that the output has multiple drivers. As an example, consider the two-to-one-
line multiplexer with three-state gates shown in Fig. 4.33.

The HDL description must use a tri data type for the output:

/I Mux with three-state output

module mux_tri (m_out, A, B, select);
output m_out;
input A, B, select;
tri m_out;

bufif1 (m_out, A, select);
bufif0 (m_out, B, select);
endmodule

The 2 three-state buffers have the same output. In order to show that they have a com-
mon connection, it is necessary to declare m_out with the keyword tri.

Keywords wire and tri are examples of a set of data types called nets, which represent
connections between hardware elements. In simulation, their value is determined by a
continuous assignment statement or by the device whose output they represent. The word
net is not a keyword, but represents a class of data types, such as wire, wor, wand, tri,
supplyl, and supply0. The wire declaration is used most frequently. In fact, if an identifier
is used, but not declared, the language specifies that it will be interpreted (by default) as
a wire. The net wor models the hardware implementation of the wired-OR configuration
(emitter-coupled logic). The wand models the wired-AND configuration (open-collector
technology; see Fig. 3.26). The nets supplyl and supply0 represent power supply and
ground, respectively. They are used to hardwire an input of a device to either 1 or 0.

A '\, m_out

B %
select
FIGURE 4.33

Two-to-one-line multiplexer with three-state buffers

Section 4.12 HDL Models of Combinational Circuits 171

Dataflow Modeling

Dataflow modeling of combinational logic uses a number of operators that act on binary
operands to produce a binary result. Verilog HDL provides about 30 different operators.
Table 4.10 lists some of these operators, their symbols, and the operation that they per-
form. (A complete list of operators supported by Verilog 2001, 2005 can be found in
Table 8.1 in Section 8.2.) It is necessary to distinguish between arithmetic and logic
operations, so different symbols are used for each. The plus symbol (+) indicates the
arithmetic operation of addition; the bitwise logic AND operation (conjunction) uses
the symbol &. There are special symbols for bitwise logical OR (disjunction), NOT, and
XOR. The equality symbol uses two equals signs (without spaces between them) to
distinguish it from the equals sign used with the assign statement. The bitwise operators
operate bit by bit on a pair of vector operands to produce a vector result. The concat-
enation operator provides a mechanism for appending multiple operands. For example,
two operands with two bits each can be concatenated to form an operand with four bits.
The conditional operator acts like a multiplexer and is explained later, in conjunction
with HDL Example 4.6.

It should be noted that a bitwise operator (e.g., ~) and its corresponding logical
operator (e.g., !) may produce different results, depending on their operand. If the
operands are scalar the results will be identical; if the operands are vectors the result
will not necessarily match. For example, ~(1010) is (0101), and !(1010) is 0. A binary
value is considered to be logically true if it is not 0. In general, use the bitwise opera-
tors to describe arithmetic operations and the logical operators to describe logical
operations.

Dataflow modeling uses continuous assignments and the keyword assign. A continu-
ous assignment is a statement that assigns a value to a net. The data type family net is
used in Verilog HDL to represent a physical connection between circuit elements. A net

Table 4.10
Some Verilog HDL Operators
Symbol Operation Symbol Operation
+ binary addition
— binary subtraction
& bitwise AND && logical AND
[bitwise OR I| logical OR
A bitwise XOR
~ bitwise NOT ! logical NOT
== equality
> greater than
< less than
{} concatenation
IS conditional

172

Chapter 4 Combinational Logic

is declared explicitly by a net keyword (e.g., wire) or by declaring an identifier to be an
input port. The logic value associated with a net is determined by what the net is con-
nected to. If the net is connected to an output of a gate, the net is said to be driven by
the gate, and the logic value of the net is determined by the logic values of the inputs to
the gate and the truth table of the gate. If the identifier of a net is the left-hand side of
a continuous assignment statement or a procedural assignment statement, the value
assigned to the net is specified by a Boolean expression that uses operands and opera-
tors. As an example, assuming that the variables were declared, a two-to-one-line mul-
tiplexer with scalar data inputs A and B, select input S, and output Y is described with
the continuous assignment

assign Y = (A && S) || (B && S)

The relationship between Y, A, B, and S is declared by the keyword assign, followed by
the target output Y and an equals sign. Following the equals sign is a Boolean expres-
sion. In hardware terms, this assignment would be equivalent to connecting the output
of the OR gate to wire Y.

The next two examples show the dataflow models of the two previous gate-level
examples. The dataflow description of a two-to-four-line decoder with active-low output
enable and inverted output is shown in HDL Example 4.3. The circuit is defined with
four continuous assignment statements using Boolean expressions, one for each output.
The dataflow description of the four-bit adder is shown in HDL Example 4.4. The addi-
tion logic is described by a single statement using the operators of addition and concat-
enation. The plus symbol (+) specifies the binary addition of the four bits of A with the
four bits of B and the one bit of C_in. The target output is the concatenation of the
output carry C_out and the four bits of Sum. Concatenation of operands is expressed
within braces and a comma separating the operands. Thus, {C_out, Sum/ represents the
five-bit result of the addition operation.

HDL Example 4.3 (Dataflow: Two-to-Four Line Decoder)

/I Dataflow description of two-to-four-line decoder

/I See Fig. 4.19. Note: The figure uses symbol E, but the
/I Verilog model uses enable to clearly indicate functionality.

module decoder_2x4_df (/I Verilog 2001, 2005 syntax
output [0: 3] D,
input A, B,
enable
);
assign D[0] = !(('A) && (!B) && (lenable)),
D[1] = I(*!1A) && B && (lenable)),
D[2] = (A && B && (lenable)
D[3] = (A && B && (lenable))

endmodule

Section 4.12 HDL Models of Combinational Circuits 173

HDL Example 4.4 (Dataflow: Four-Bit Adder)

/I Dataflow description of four-bit adder
/I Verilog 2001, 2005 module port syntax

module binary_adder (

output [3: 0] Sum,
output C_out,
input [3: 0] A, B,

input C_in
);

assign {C_out, Sum} = A + B + C_in;
endmodule

Dataflow HDL models describe combinational circuits by their function rather than
by their gate structure. To show how dataflow descriptions facilitate digital design, con-
sider the 4-bit magnitude comparator described in HDL Example 4.5. The module
specifies two 4-bit inputs A and B and three outputs. One output (A_It_B) is logic 1 if
A is less than B, a second output (A_gt_B) is logic 1 if A is greater than B, and a third
output (A_eqg_B) islogic 1 if A is equal to B. Note that equality (identity) is symbolized
with two equals signs (= =) to distinguish the operation from that of the assignment
operator (=). A Verilog HDL synthesis compiler can accept this module description as
input, execute synthesis algorithms, and provide an output netlist and a schematic of a
circuit equivalent to the one in Fig. 4.17 all without manual intervention! The designer
need not draw the schematic.

HDL Example 4.5 (Dataflow: Four-Bit Comparator)

/I Dataflow description of a four-bit comparator /V2001, 2005 syntax

module mag_compare

(output A It B, A _eq_B, A gt B,
input [3: 0] A B

).

assign A_It B = (A <B);
assign A_gt B = (A > B);
assign A_eq_B = (A = = B);
endmodule

The next example uses the conditional operator (? :). This operator takes three
operands:

condition ? true-expression : false-expression;

The condition is evaluated. If the result is logic 1, the true expression is evaluated and
used to assign a value to the left-hand side of an assignment statement. If the result is

174

Chapter 4 Combinational Logic

logic 0, the false expression is evaluated. The two conditions together are equivalent to
an if-else condition. HDL Example 4.6 describes a two-to-one-line multiplexer using
the conditional operator. The continuous assignment

assign OUT = select ? A : B;
specifies the condition that OUT = A if select = 1, else OUT = B if select = 0.

HDL Example 4.6 (Dataflow: Two-to-One Multiplexer)

/I Dataflow description of two-to-one-line multiplexer

module mux_2x1_df(m_out, A, B, select);

output m_out;
input A, B;
input select;

assign m_out = (select)? A : B;
endmodule

Behavioral Modeling

Behavioral modeling represents digital circuits at a functional and algorithmic level. It
is used mostly to describe sequential circuits, but can also be used to describe combina-
tional circuits. Here, we give two simple combinational circuit examples to introduce the
subject. Behavioral modeling is presented in more detail in Section 5.6, after the study
of sequential circuits.

Behavioral descriptions use the keyword always, followed by an optional event con-
trol expression and a list of procedural assignment statements. The event control expres-
sion specifies when the statements will execute. The target output of a procedural
assignment statement must be of the reg data type. Contrary to the wire data type,
whereby the target output of an assignment may be continuously updated, a reg data
type retains its value until a new value is assigned.

HDL Example 4.7 shows the behavioral description of a two-to-one-line multiplexer.
(Compare it with HDL Example 4.6.) Since variable m_out is a target output, it must
be declared as reg data (in addition to the output declaration). The procedural assign-
ment statements inside the always block are executed every time there is a change in
any of the variables listed after the @ symbol. (Note that there is no semicolon (;) at the
end of the always statement.) In this case, these variables are the input variables A, B,
and select. The statements execute if A, B, or select changes value. Note that the keyword
or, instead of the bitwise logical OR operator “|; is used between variables. The condi-
tional statement if-else provides a decision based upon the value of the select input. The
if statement can be written without the equality symbol:

if (select) OUT = A;

The statement implies that select is checked for logic 1.

Section 4.12 HDL Models of Combinational Circuits 175

HDL Example 4.7 (Behavioral: Two-to-One Line Multiplexer)

/I Behavioral description of two-to-one-line multiplexer

module mux_2x1_beh (m_out, A, B, select);

output m_out;
input A, B, select;
reg m_out;
always @(A or B or select)
if (select == 1) m_out = A;
else m_out 5 B;
endmodule

HDL Example 4.8 describes the function of a four-to-one-line multiplexer. The select
input is defined as a two-bit vector, and output y is declared to have type reg. The always
statement, in this example, has a sequential block enclosed between the keywords case
and endcase. The block is executed whenever any of the inputs listed after the @ symbol
changes in value. The case statement is a multiway conditional branch construct. When-
ever in_0, in_I, in_2, in_3 or select change, the case expression (select) is evaluated and
its value compared, from top to bottom, with the values in the list of statements that
follow, the so-called case items. The statement associated with the first case item that
matches the case expression is executed. In the absence of a match, no statement is
executed. Since select is a two-bit number, it can be equal to 00, 01, 10, or 11. The case
items have an implied priority because the list is evaluated from top to bottom.

The list is called a sensitivity list (Verilog 2001, 2005) and is equivalent to the event
control expression (Verilog 1995) formed by “ORing” the signals. Combinational logic
is reactive—when an input changes an output may change.

HDL Example 4.8 (Behavioral: Four-to-One Line Multiplexer)

/I Behavioral description of four-to-one line multiplexer
/I Verilog 2001, 2005 port syntax

module mux_4x1_beh

(output reg m_out,
input in_0,in_1,in_2,in_3,
input [1: 0] select

always @ (in_0, in_1, in_2, in_3, select) /I Verilog 2001, 2005 syntax
case (select)

2’b00: m_out = in_0;

2’b01: m_out = in_1;

2'b10: m_out = in_2;

2’b11: m_out = in_3;
endcase

endmodule

176 Chapter 4 Combinational Logic

Binary numbers in Verilog are specified and interpreted with the letter b preceded
by a prime. The size of the number is written first and then its value. Thus, 2'b01 speci-
fies a two-bit binary number whose value is 01. Numbers are stored as a bit pattern in
memory, but they can be referenced in decimal, octal, or hexadecimal formats with the
letters d'o; and h, respectively. For example, 4 HA = 4’d10 = 4’1010 and have the
same internal representation in a simulator. If the base of the number is not specified,
its interpretation defaults to decimal. If the size of the number is not specified, the
system assumes that the size of the number is at least 32 bits; if a host simulator has a
larger word length —say, 64 bits—the language will use that value to store unsized
numbers. The integer data type (keyword integer) is stored in a 32-bit representation.
The underscore (_) may be inserted in a number to improve readability of the code
(e.g.,16'b0101_1110_0101_0011). It has no other effect.

The case construct has two important variations: casex and casez. The first will treat
as don’t-cares any bits of the case expression or the case item that have logic value x or
z. The casez construct treats as don’t-cares only the logic value z, for the purpose of
detecting a match between the case expression and a case item.

The list of case items need not be complete. If the list of case items does not include
all possible bit patterns of the case expression, no match can be detected. Unlisted case
items, i.e., bit patterns that are not explicitly decoded can be treated by using the default
keyword as the last item in the list of case items. The associated statement will execute
when no other match is found. This feature is useful, for example, when there are more
possible state codes in a sequential machine than are actually used. Having a default
case item lets the designer map all of the unused states to a desired next state without
having to elaborate each individual state, rather than allowing the synthesis tool to
arbitrarily assign the next state.

The examples of behavioral descriptions of combinational circuits shown here are
simple ones. Behavioral modeling and procedural assignment statements require knowl-
edge of sequential circuits and are covered in more detail in Section 5.6.

Writing a Simple Test Bench

A test bench is an HDL program used for describing and applying a stimulus to an HDL
model of a circuit in order to test it and observe its response during simulation. Test
benches can be quite complex and lengthy and may take longer to develop than the
design that is tested. The results of a test are only as good as the test bench that is used
to test a circuit. Care must be taken to write stimuli that will test a circuit thoroughly,
exercising all of the operating features that are specified. However, the test benches
considered here are relatively simple, since the circuits we want to test implement only
combinational logic. The examples are presented to demonstrate some basic features of
HDL stimulus modules. Chapter 8 considers test benches in greater depth.

In addition to employing the always statement, test benches use the initial statement
to provide a stimulus to the circuit being tested. We use the term “always statement”
loosely. Actually, always is a Verilog language construct specifying ~ow the associated
statement is to execute (subject to the event control expression). The always statement

Section 4.12 HDL Models of Combinational Circuits 177

executes repeatedly in a loop. The initial statement executes only once, starting from
simulation time 0, and may continue with any operations that are delayed by a given
number of time units, as specified by the symbol #. For example, consider the initial
block

initial
begin
A=0;B=0;
#10A = 1;
#20A =0;B =1;
end

The block is enclosed between the keywords begin and end. At time 0, A and B are set
to 0. Ten time units later, A is changed to 1. Twenty time units after that (at = 30), A is
changed to 0 and B to 1. Inputs specified by a three-bit truth table can be generated with
the initial block:

initial
begin
D = 3'b000;
repeat (7)
#10D = D + 3'b001;
end

When the simulator runs, the three-bit vector D is initialized to 000 at time = 0. The
keyword repeat specifies a looping statement: D is incremented by 1 seven times, once
every 10 time units. The result is a sequence of binary numbers from 000 to 111.

A stimulus module has the following form:

module test_ module_name;
/I Declare local reg and wire identifiers.
/I Instantiate the design module under test.
/I Specify a stopwatch, using $finish to terminate the simulation.
/I Generate stimulus, using initial and always statements.

/I Display the output response (text or graphics (or both)).
endmodule

A test module is written like any other module, but it typically has no inputs or outputs.
The signals that are applied as inputs to the design module for simulation are declared
in the stimulus module as local reg data type. The outputs of the design module that are
displayed for testing are declared in the stimulus module as local wire data type. The
module under test is then instantiated, using the local identifiers in its port list.
Figure 4.34 clarifies this relationship. The stimulus module generates inputs for the
design module by declaring local identifiers # A and ¢_B as reg type and checks the
output of the design unit with the wire identifier #_C.The local identifiers are then used
to instantiate the design module being tested. The simulator associates the (actual) local
identifiers within the test bench, t_A, t_B, and ¢_C, with the formal identifiers of the

178 Chapter 4 Combinational Logic

modaule t_circuit;
regt_A,t B;
wire t_C;

module circuit @

| _— | input A, B;

|
’ output @:

/I Stimulus generators for
/It_A and t_B go here
initial # stop_time $finish;

parameter stop_time = 1000 ;

circuit M (

/I Description goes here
endmodule

endmodule

FIGURE 4.34
Interaction between stimulus and design modules

module (A, B, C). The association shown here is based on position in the port list, which
is adequate for the examples that we will consider. The reader should note, however,
that Verilog provides a more flexible name association mechanism for connecting ports
in larger circuits.

The response to the stimulus generated by the initial and always blocks will
appear in text format as standard output and as waveforms (timing diagrams) in
simulators having graphical output capability. Numerical outputs are displayed by
using Verilog system tasks. These are built-in system functions that are recognized
by keywords that begin with the symbol $. Some of the system tasks that are useful
for display are

$display — display a one-time value of variables or strings with an end-of-line return,
$write —same as $display, but without going to next line,

$monitor —display variables whenever a value changes during a simulation run,
$time —display the simulation time,

$finish— terminate the simulation.

The syntax for $display, $write, and $monitor is of the form
Task-name (format specification, argumentlist);

The format specification uses the symbol % to specity the radix of the numbers that are
displayed and may have a string enclosed in quotes (). The base may be binary, decimal,
hexadecimal, or octal, identified with the symbols %b, %d, %h, and %o, respectively
(%B, %D, %H, and %O are valid too). For example, the statement

$display ("%d %b %b", C, A, B);

specifies the display of C in decimal and of A and B in binary. Note that there are no
commas in the format specification, that the format specification and argument list

Section 4.12 HDL Models of Combinational Circuits 179

are separated by a comma, and that the argument list has commas between the
variables. An example that specifies a string enclosed in quotes may look like the
statement

$display ("time = %0d A = %b", $time, A, B);

and will produce the display
time =3A=10B =1

where (time =), (A =), and (B =) are part of the string to be displayed. The format
specifiers %0d, %b, and %b specify the base for $time, A, and B, respectively. In display-
ing time values, it is better to use the format %0d instead of %d. This provides a display
of the significant digits without the leading spaces that %d will include. (%d will display
about 10 leading spaces because time is calculated as a 32-bit number.)

An example of a stimulus module is shown in HDL Example 4.9. The circuit to be
tested is the two-to-one-line multiplexer described in Example 4.6. The module
t_mux_2x1_dfhas no ports. The inputs for the mux are declared with a reg keyword and
the outputs with a wire keyword. The mux is instantiated with the local variables. The
initial block specifies a sequence of binary values to be applied during the simulation.
The output response is checked with the $monitor system task. Every time a variable in
its argument changes value, the simulator displays the inputs, output, and time. The result
of the simulation is listed under the simulation log in the example. It shows that
m_out = A when select = 1 and m_out = B when select = 0 verifying the operation of
the multiplexer.

HDL Example 4.9 (Test Bench)

/I Test bench with stimulus for mux_2x1_df

module t_mux_2x1_df;

wire t_mux_out;
reg t A tB;
reg t_select;

parameter stop_time = 50;
mux_2x1_df M1 (t_mux_out, t_A, t_B, t_select); /Il Instantiation of circuit to be tested
initial # stop_time $finish;

initial begin /I Stimulus generator
t select=1;t A=0;t B=1,
#10t A=1;t B=0;
#10 t_select = 0;
#10t A=0;t B=1;
end

initial begin /I Response monitor
// $display (" time Select A B m_out”);
// $monitor ($time,,” %b %b %b %b”, t_select, t_ A, t B, t_m_out);

180 Chapter 4 Combinational Logic

$monitor ("time =", $time,, "select = %b A = %b B = %b OUT = %b”,
t select, t_A, t B, t mux_out);
end
endmodule

/I Dataflow description of two-to-one-line multiplexer

[l from Example 4.6
module mux_2x1_df (m_out, A, B, select);

output m_out;
input A, B;
input select;

assign m_out = (select)? A : B;
endmodule

Simulation log:

select=1A=0B=10UT =0time =0
select=1A=1B=00UT = 1time = 10
select =0A=1B =00UT = 0time = 20
select =0A=0B =10UT = 1time = 30

Logic simulation is a fast and accurate method of verifying that a model of a
combinational circuit is correct. There are two types of verification: functional and
timing. In functional verification, we study the circuit logical operation indepen-
dently of timing considerations. This can be done by deriving the truth table of the
combinational circuit. In timing verification, we study the circuit’s operation by
including the effect of delays through the gates. This can be done by observing the
waveforms at the outputs of the gates when they respond to a given input. An exam-
ple of a circuit with gate delays was presented in Section 3.10 in HDL Example 3.3.
We next show an HDL example that produces the truth table of a combinational
circuit. A $monitor system task displays the output caused by the given stimulus.
A commented alternative statement having a $display task would create a header
that could be used with a $monitor statement to eliminate the repetition of names
on each line of output.

The analysis of combinational circuits was covered in Section 4.3. A multilevel
circuit of a full adder was analyzed, and its truth table was derived by inspection. The
gate-level description of this circuit is shown in HDL Example 4.10. The circuit has
three inputs, two outputs, and nine gates. The description of the circuit follows the
interconnections between the gates according to the schematic diagram of Fig. 4.2.
The stimulus for the circuit is listed in the second module. The inputs for simulating
the circuit are specified with a three-bit reg vector D. D[2] is equivalent to input A,
D[1] toinput B,and D/0] to input C. The outputs of the circuit F| and F, are declared
as wire. The complement of F2 is named F2_b to illustrate a common industry practice
for designating the complement of a signal (instead of appending _not). This procedure

Section 4.12 HDL Models of Combinational Circuits 181

follows the steps outlined in Fig. 4.34. The repeat loop provides the seven binary num-
bers after 000 for the truth table. The result of the simulation generates the output
truth table displayed with the example. The truth table listed shows that the circuit is
a full adder.

HDL Example 4.10 (Gate-Level Circuit)

/I Gate-level description of circuit of Fig. 4.2

module Circuit_of Fig_ 4 2 (A, B, C, F1, F2);
input A, B, C;
output F1, F2;
wire T1,T2,T3,F2 b, E1, E2, ES3;
or g1(T1, A, B,C);
and g2 (T2, A, B, C);
and g3 (E1, A, B);
and g4 (E2, A, C);
and g5 (E3, B, C);
or g6 (F2, E1, E2, E3);
not g7 (F2_b, F2);
and g8 (T3, T1, F2_b);
or g9 (F1,T2, T3);
endmodule

/I Stimulus to analyze the circuit

module test_circuit;

reg [2: 0] D;
wire F1, F2;
Circuit_of _Fig_4 2 (D[2], D[1], D[0], F1, F2);
initial
begin
D = 3'b000;
repeat (7)#10D = D 1 1’b1;
end
initial

$monitor ("ABC = %b F1 = %b F2 =%b", D, F1, F2);
endmodule

Simulation log: ABC = 000 F1 =0F2 =0

ABC =001F1=1F2=0ABC =010F1=1F2=0
ABC =011F1=0F2=1ABC=100F1=1F2=0
ABC =101F1=0F2=1ABC =110F1 =0F2 =1
ABC =111F1=1F2=1

182 Chapter 4 Combinational Logic

PROBLEMS

(Answers to problems marked with * appear at the end of the text. Where appropriate, a logic
design and its related HDL modeling problem are cross-referenced.)

4.1

4.2%

4.3

4.4

Consider the combinational circuit shown in Fig. P4.1. (HDL —see Problem 4.49.)

A

g > 7 Df ;

)

T

£

FIGURE P4.1

(a)* Derive the Boolean expressions for T; through T,. Evaluate the outputs F; and F,
as a function of the four inputs.

(b) List the truth table with 16 binary combinations of the four input variables. Then list
the binary values for 7 through 7} and outputs F; and F, in the table.

(c) Plot the output Boolean functions obtained in part (b) on maps and show that the
simplified Boolean expressions are equivalent to the ones obtained in part (a).

Obtain the simplified Boolean expressions for output F and G in terms of the input
variables in the circuit of Fig. P4.2.

A—>o F}
— >
B

F

C — /

) D,

FIGURE P4.2

For the circuit shown in Fig. 4.26 (Section 4.11),

(a) Write the Boolean functions for the four outputs in terms of the input variables.

(b)* If the circuit is described in a truth table, how many rows and columns would there
be in the table?

Design a combinational circuit with three inputs and one output.

(a)* The outputis 1 when the binary value of the inputs is less than 3. The output is 0 otherwise.

(b) The output is 1 when the binary value of the inputs is an even number.

4.5

4.6

4.7

4.8

4.9

Problems 183

Design a combinational circuit with three inputs, x, y, and z, and three outputs, A, B,and C.
When the binary input is 0, 1,2, or 3, the binary output is one greater than the input. When
the binary input is 4, 5, 6, or 7, the binary output is two less than the input.

A majority circuit is a combinational circuit whose output is equal to 1 if the input variables

have more 1’s than 0’s. The output is 0 otherwise.

(a)* Design a 3-input majority circuit by finding the circuit’s truth table, Boolean equation,
and a logic diagram.

(b) Write and verify a Verilog gate-level model of the circuit.

Design a combinational circuit that converts a four-bit Gray code (Table 1.6) to a bit four-
binary number.

(a)* Implement the circuit with exclusive-OR gates.

(b) Using a case statement, write and verify a Verilog model of the circuit.

Design a code converter that converts a decimal digit from
(a)* The 8,4,-2,-1 code to BCD (see Table 1.5). (HDL—see Problem 4.50.)
(b) The 8,4,-2,-1 code to Gray code.

An ABCD-to-seven-segment decoder is a combinational circuit that converts a decimal digit
in BCD to an appropriate code for the selection of segments in an indicator used to display
the decimal digit in a familiar form. The seven outputs of the decoder (a, b, ¢, d, e, |, g) select
the corresponding segments in the display, as shown in Fig. P4.9(a). The numeric display
chosen to represent the decimal digit is shown in Fig. P4.9(b). Using a truth table and
Karnaugh maps, design the BCD-to-seven-segment decoder using a minimum number of
gates. The six invalid combinations should result in a blank display. (HDL —see Problem 4.51.)

4

(a) Segment designation (b) Numerical designation for display

FIGURE P4.9

4.10% Design a four-bit combinational circuit 2’s complementer. (The output generates the 2’s

4.11

4.12

complement of the input binary number.) Show that the circuit can be constructed with
exclusive-OR gates. Can you predict what the output functions are for a five-bit 2’s com-
plementer?

Using four half-adders (HDL —see Problem 4.52),

(a) Design a full-subtractor circuit incrementer. (A circuit that adds one to a four-bit
binary number.)

(b)* Design a four-bit combinational decrementer (a circuit that subtracts 1 from a four-
bit binary number).

Design a half-subtractor circuit with inputs x and y and outputs Diff and B,,,. The circuit

subtracts the bits x — y and places the difference in D and the borrow in B,,,,.

(a) Design a full-subtractor circuit with three inputs x, y, B;, and two outputs Diff and
B, The circuit subtracts x — y — B;,, where B,, is the input borrow, B, is the output
borrow, and Diff is the difference.

184 Chapter 4 Combinational Logic

413+

The adder—subtractor circuit of Fig. 4.13 has the following values for mode input M and
data inputs A and B.

M A B

(a) 0 0111 0110
() 0 1000 1001
(c) 1 1100 1000
(d) 1 0101 1010
(e) 1 0000 0001

In each case, determine the values of the four SUM outputs, the carry C, and overflow V.
(HDL —see Problems 4.37 and 4.40.)

4.14* Assume that the exclusive-OR gate has a propagation delay of 10 ns and that the AND or

OR gates have a propagation delay of 5ns. What is the total propagation delay time in the
four-bit adder of Fig. 4.12?

Derive the two-level Boolean expression for the output carry C, shown in the lookahead
carry generator of Fig. 4.12.

Define the carry propagate and carry generate as
P;=A;+ B;
G;= AB;
respectively. Show that the output carry and output sum of a full adder becomes
Civ1 = (CiG} + P’
S; = (PGHSC
The logic diagram of the first stage of a four-bit parallel adder as implemented in IC type

74283 is shown in Fig. P4.16. Identify the P; and G| terminals and show that the circuit
implements a full-adder circuit.

m—p

2 >

FIGURE P4.16
First stage of a parallel adder

R D e iy S N
>

417

4.18

4.19

4.20

4.21

4.22%

4.23

4.24

4.25

4.26

4.27

4.28

Problems 185

Show that the output carry in a full adder circuit can be expressed in the AND-OR-
INVERT form
Civ1 = G; + PC; = (GiP; + G,C))’

IC type 74182 is a lookahead carry generator circuit that generates the carries with AND-
OR-INVERT gates (see Section 3.8). The circuit assumes that the input terminals have
the complements of the G’s, the P’s, and of C;. Derive the Boolean functions for the
lookahead carries C, C3, and Cj in this IC. (Hint: Use the equation-substitution method
to derive the carries in terms of C/)

Design a combinational circuit that generates the 9’s complement of a
(a)* BCD digit. (HDL—see Problem 4.54(a).)
(b) Gray-code digit. (HDL—see Problem 4.54(b).)

Construct a BCD adder—subtractor circuit. Use the BCD adder of Fig. 4.14 and the 9’s
complementer of problem 4.18. Use block diagrams for the components. (HDL —see Prob-
lem 4.55.)

For a binary multiplier that multiplies two unsigned four-bit numbers,
(a) Using AND gates and binary adders (see Fig. 4.16), design the circuit.
(b) Write and verify a Verilog dataflow model of the circuit.

Design a combinational circuit that compares two 4-bit numbers to check if they are equal.
The circuit output is equal to 1 if the two numbers are equal and 0 otherwise.

Design an excess-3-to-binary decoder using the unused combinations of the code as
don’t-care conditions. (HDL —see Problem 4.42.)

Draw the logic diagram of a 2-to-4-line decoder using (a) NOR gates only and (b) NAND
gates only. Include an enable input. (HDL—see Problems 4.36, 4.45.)

Design a BCD-to-decimal decoder using the unused combinations of the BCD code as
don’t-care conditions.

Construct a 5-to-32-line decoder with four 3-to-8-line decoders with enable and a 2-to-
4-line decoder. Use block diagrams for the components. (HDL —see Problem 4.63.)

Construct a 4-to-16-line decoder with five 2-to-4-line decoders with enable. (HDL —see
Problem 4.64.)

A combinational circuit is specified by the following three Boolean functions:
Fi(A,B,C) = %(1,4,6)
F,(A,B,C) = 3(3,5)
F3(A,B,C) = %(2,4,6,7)

Implement the circuit with a decoder constructed with NAND gates (similar to Fig. 4.19)

and NAND or AND gates connected to the decoder outputs. Use a block diagram for the
decoder. Minimize the number of inputs in the external gates.

Using a decoder and external gates, design the combinational circui defined by the
following three Boolean functions:
(a) Fy = x'yz' + xz d) Fi = (y +x)z

F,=xy'z +x'y F=y'z7 +x'y +yz’

Pyl

F;=x'y'z" + xy F;= (x +y)z

186

Chapter 4 Combinational Logic

4.29+

4.30

4.31

4.32

4.33
4.34

4.35

4.36

4.37

4.38

4.39*

4.40

4141

Design a four-input priority encoder with inputs as in Table 4.8, but with input D, having
the highest priority and input D3 the lowest priority.

Specify the truth table of an octal-to-binary priority encoder. Provide an output V to in-
dicate that at least one of the inputs is present. The input with the highest subscript num-
ber has the highest priority. What will be the value of the four outputs if inputs D, and Dy
are 1 at the same time? (HDL—see Problem 4.65.)

Construct a 16 X 1 multiplexer with two 8 X 1 and one 2 X 1 multiplexers. Use block dia-
grams. (HDL —see Problem 4.67)

Implement the following Boolean function with a multiplexer (HDL —see Problem 4.46):

(a) F(A,B,C,D) =3(0,2,5,8,10,14)
(b) F(A,B,C,D) = T1(2,6,11)

Implement a full adder with two 4 X 1 multiplexers.

An 8 X 1 multiplexer has inputs A, B, and C connected to the selection inputs S,, S;, and
So, respectively. The data inputs I, through I; are as follows:

(a)*]1: 12: 17: 0, 13: 15: 1,]0: 14: D, and 16: D’

(b) 11=12=O;I3=I7=1;I4=I5=D;andlo=16=D’.

Determine the Boolean function that the multiplexer implements.

Implement the following Boolean function with a 4 X 1 multiplexer and external gates.

(a)* F{(A,B,C,D) = 3(1,3,4,11,12,13,14,15)
(b) F,(A,B,C,D) =3(1,2,5,7,8,10,11, 13, 15)

Connect inputs A and B to the selection lines. The input requirements for the four data
lines will be a function of variables C and D.These values are obtained by expressing F as
a function of C and D for each of the four cases when AB = 00,01, 10, and 11. These func-
tions may have to be implemented with external gates. (HDL—see Problem 4.47)

Write the HDL gate-level description of the priority encoder circuit shown in Fig. 4.23.
(HDL —see Problem 4.45.)

Write the HDL gate-level hierarchical description of a four-bit adder—subtractor for un-
signed binary numbers. The circuit is similar to Fig. 4.13 but without output V. You can
instantiate the four-bit full adder described in HDL Example 4.2. (HDL—see Problems
4.13 and 4.40.)

Write the HDL dataflow description of a quadruple 2-to-1-line multiplexer with enable
(see Fig. 4.26).

Write an HDL behavioral description of a four-bit comparator with a six-bit output Y [5:0].
Bit 5 of Y is for “equals,” bit 4 for “not equal to,” bit 3 for “greater than,” bit 2 for “less
than,” bit 1 for “greater than or equal,” and bit 0 for “less than or equal to.”

Using the conditional operator (?:), write an HDL dataflow description of a four-bit adder—
subtractor of unsigned numbers. (See Problems 4.13 and 4.37)

Repeat problem 4.40 using an always statement.

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

Problems 187

(a) Write an HDL gate-level description of the BCD-to-excess-3 converter circuit shown
in Fig. 4.4 (see Problem 4.22).

(b) Write a dataflow description of the BCD-to-excess-3 converter using the Boolean
expressions listed in Fig. 4.3.

(c)* Write an HDL behavioral description of a BCD-to-excess-3 converter.

(d) Write a test bench to simulate and test the BCD-to-excess-3 converter circuit in order
to verify the truth table. Check all three circuits.

Explain the function of the circuit specified by the following HDL description:

module Prob4_43 (A, B, S, E, Q);
input [1:0] A, B;
input S, E;
output [1:0] Q;
assignQ=E?(S?A:B):'bz;
endmodule

Using a case statement, write an HDL behavioral description of a eight-bit arithmetic-
logic unit (ALU). The circuit has a three-bit select bus (Sel), sixteen-bit input datapaths
(A[15:0] and B[15:0]), an eight-bit output datapath (y[15:0]), and performs the arithmetic
and logic operations listed below.

Sel Operation Description

000 y = 8'b0

001 y=A&B Bitwise AND

010 y=A|B Bitwise OR

oM y=A"B Bitwise exclusive OR

100 y=~A Bitwise complement

101 y=A-B Subtract

110 y=A+B Add (Assume A and B are unsigned)
1M1 y = 8'hFF

Write an HDL behavioral description of a four-input priority encoder. Use a four-bit vector
for the D inputs and an always block with if-else statements. Assume that input D[3] has
the highest priority (see Problem 4.36).

Write a Verilog dataflow description of the logic circuit described by the Boolean function
in Problem 4.32.

Write a Verilog dataflow description of the logic circuit described by the Boolean function
in Problem 4.35.

Develop and modify the eight-bit ALU specified in Problem 4.44 so that it has three-state
output controlled by an enable input, En. Write a test bench and simulate the circuit.

For the circuit shown in Fig. P4.1,
(a) Write and verify a gate-level HDL model of the circuit.
(b) Compare your results with those obtained for Problem 4.1.

Using a case statement, develop and simulate a behavioral model of
(a)* The 8,4,-2,-1 to BCD code converter described in Problem 4.8(a).
(b) The 8,4,-2,-1 to Gray code converter described in Problem 4.8(b).

188 Chapter 4 Combinational Logic

4.51 Develop and simulate a behavioral model of the ABCD-to-seven-segment decoder
described in Problem 4.9.

4.52 Using a continuous assignment, develop and simulate a dataflow model of
(a) The four-bit incrementer described in Problem 4.11(a).

(b) The four-bit decrementer described in Problem 4.11(b).

4.53 Develop and simulate a structural model of the decimal adder shown in Fig. 4.14.

4.54 Develop and simulate a behavioral model of a circuit that generates the 9’s complement of
(a) aBCD digit (see Problem 4.18(a)).

(b) a Gray-code digit (see Problem 4.18(b).)

4.55 Construct a hierarchical model of the BCD adder—subtractor described in Problem 4.19.
The BCD adder and the 9’s complementer are to be described as behavioral models in
separate modules, and they are to be instantiated in a top-level module.

4.56* Write a continuous assignment statement that compares two 4-bit numbers to check if
their bit patterns match. The variable to which the assignment is made is to equal 1 if the
numbers match and 0 otherwise.

4.57* Develop and verify a behavioral model of the four-bit priority encoder described in
Problem 4.29.

4.58 Write a Verilog model of a circuit whose 32-bit output is formed by shifting its 32-bit input
three positions to the right and filling the vacant positions with the bit that was in the MSN
before the shift occurred (shift arithmetic right). Write a Verilog model of a circuit whose
32-bit output is formed by shifting its 32-bit input three positions to the left and filling the
vacant positions with O (shift logical left).

4.59 Write a Verilog model of a BCD-to-decimal decoder using the unused combinations of
the BCD code as don’t-care conditions (see Problem 4.24).

4.60 Using the port syntax of the IEEE 1364-2001 standard, write and verify a gate-level model
of the four-bit even parity checker shown in Fig. 3.34.

4.61 Using continuous assignment statements and the port syntax of the IEEE 1364-2001 standard,
write and verify a gate-level model of the four-bit even parity checker shown in Fig. 3.34.

4.62 Write and verify a gate-level hierarchical model of the circuit described in Problem 4.25.

4.63 Write and verify a gate-level hierarchical model of the circuit described in Problem 4.26.

4.64 Write and verify a Verilog model of the octal-to-binary circuit described in Problem 4.30.

4.65 Write a hierarchical gate-level model of the multiplexer described in Problem 4.31.

REFERENCES

1. BHASKER, J. 1997 A Verilog HD L Primer. Allentown, PA: Star Galaxy Press.

2. BHASKER, J. 1998. Verilog HD L Synthesis. Allentown, PA: Star Galaxy Press.

3. CiLeTTL, M. D. 1999. Modeling, Synthesis, and Rapid Prototyping with Verilog HD L. Upper
Saddle River, NJ: Prentice Hall.

4. DIETMEYER, D. L. 1988. Logic Design of Digital Systems,3rd ed. Boston: Allyn Bacon.

® N oW

©

10.

11.
12.

13.

Web Search Topics 189

Gaskl, D. D. 1997 Principles of Digital Design. Upper Saddle River, NJ: Prentice Hall.
Haves, J. P. 1993. Introduction to Digital Logic Design. Reading, MA: Addison-Wesley.
Karz, R.H.2005. Contemporary Logic Design. Upper Saddle River, NJ: Pearson Prentice Hall.
ManNo, M. M. and C. R. KiME. 2007. Logic and Computer Design Fundamentals, 4th ed.
Upper Saddle River, NJ: Prentice Hall.

NELsoN, V. P., H. T. NAGLE, J. D. IrwiN, and B. D. CarroLL. 1995. Digital Logic Circuit
Analysis and Design. Englewood Cliffs, NJ: Prentice Hall.

PALNITKAR, S. 1996. Verilog HD L: A Guide to Digital Design and Synthesis. Mountain View,
CA: SunSoft Press (a Prentice Hall title).

RotH, C. H. 2009. Fundamentals of Logic Design, 6th ed. St. Paul, MN: West.

TaowMmas, D. E. and P. R. MoorBy. 2002. The Verilog Hardware Description Language,
5th ed. Boston: Kluwer Academic Publishers.

WAKERLY, J. F. 2005. Digital Design: Principles and Practices, 4th ed. Upper Saddle River,
NIJ: Prentice Hall.

WEB SEARCH TOPICS

Boolean equation
Combinational logic
Truth table
Exclusive-OR
Comparator
Multiplexer
Decoder

Priority encoder
Three-state inverter
Three-state buffer

Chapter 5

Synchronous Sequential Logic

5.1

INTRODUCTION

5.2

Hand-held devices, cell phones, navigation receivers, personal computers, digital cameras,
personal media players, and virtually all electronic consumer products have the ability to
send, receive, store, retrieve, and process information represented in a binary format. The
technology enabling and supporting these devices is critically dependent on electronic
components that can store information, i.e., have memory. This chapter examines the
operation and control of these devices and their use in circuits and enables you to better
understand what is happening in these devices when you interact with them. The digital
circuits considered thus far have been combinational —their output depends only and
immediately on their inputs—they have no memory, i.e., dependence on past values of
their inputs. Sequential circuits, however, act as storage elements and have memory. They
can store, retain, and then retrieve information when needed at a later time. Our treatment
will distinguish sequential logic from combinational logic.

SEQUENTIAL CIRCUITS

190

A block diagram of a sequential circuit is shown in Fig. 5.1. It consists of a combinational
circuit to which storage elements are connected to form a feedback path. The storage
elements are devices capable of storing binary information. The binary information
stored in these elements at any given time defines the state of the sequential circuit at
that time. The sequential circuit receives binary information from external inputs that,
together with the present state of the storage elements, determine the binary value of
the outputs. These external inputs also determine the condition for changing the state

Section 5.2 Sequential Circuits 191

Inputs ———> o Outputs
Combinational
circuit

Memory
elements

FIGURE 5.1
Block diagram of sequential circuit

in the storage elements. The block diagram demonstrates that the outputs in a sequen-
tial circuit are a function not only of the inputs, but also of the present state of the stor-
age elements. The next state of the storage elements is also a function of external inputs
and the present state. Thus, a sequential circuit is specified by a time sequence of inputs,
outputs, and internal states. In contrast, the outputs of combinational logic depend only
on the present values of the inputs.

There are two main types of sequential circuits, and their classification is a function of
the timing of their signals. A synchronous sequential circuit is a system whose behavior
can be defined from the knowledge of its signals at discrete instants of time. The behavior
of an asynchronous sequential circuit depends upon the input signals at any instant of time
and the order in which the inputs change. The storage elements commonly used in asyn-
chronous sequential circuits are time-delay devices. The storage capability of a time-delay
device varies with the time it takes for the signal to propagate through the device. In prac-
tice, the internal propagation delay of logic gates is of sufficient duration to produce the
needed delay, so that actual delay units may not be necessary. In gate-type asynchronous
systems, the storage elements consist of logic gates whose propagation delay provides the
required storage. Thus, an asynchronous sequential circuit may be regarded as a combina-
tional circuit with feedback. Because of the feedback among logic gates, an asynchronous
sequential circuit may become unstable at times. The instability problem imposes many
difficulties on the designer. These circuits will not be covered in this text.

A synchronous sequential circuit employs signals that affect the storage elements at
only discrete instants of time. Synchronization is achieved by a timing device called a
clock generator, which provides a clock signal having the form of a periodic train of clock
pulses. The clock signal is commonly denoted by the identifiers clock and clk. The clock
pulses are distributed throughout the system in such a way that storage elements are
affected only with the arrival of each pulse. In practice, the clock pulses determine when
computational activity will occur within the circuit, and other signals (external inputs
and otherwise) determine what changes will take place affecting the storage elements
and the outputs. For example, a circuit that is to add and store two binary numbers would
compute their sum from the values of the numbers and store the sum at the occurrence
of a clock pulse. Synchronous sequential circuits that use clock pulses to control storage
elements are called clocked sequential circuits and are the type most frequently encoun-
tered in practice. They are called synchronous circuits because the activity within the
circuit and the resulting updating of stored values is synchronized to the occurrence of

192

Chapter 5 Synchronous Sequential Logic

Inputs ———> Outputs
Combinational
circuit

Clock pulses 4,—>

(a) Block diagram

B S s I e s

(b) Timing diagram of clock pulses

Flip-flops

FIGURE 5.2
Synchronous clocked sequential circuit

clock pulses. The design of synchronous circuits is feasible because they seldom manifest
instability problems and their timing is easily broken down into independent discrete
steps, each of which can be considered separately.

The storage elements (memory) used in clocked sequential circuits are called flip-
flops. A flip-flop is a binary storage device capable of storing one bit of information. In
a stable state, the output of a flip-flop is either 0 or 1. A sequential circuit may use many
flip-flops to store as many bits as necessary. The block diagram of a synchronous clocked
sequential circuit is shown in Fig. 5.2. The outputs are formed by a combinational logic
function of the inputs to the circuit or the values stored in the flip-flops (or both). The
value that is stored in a flip-flop when the clock pulse occurs is also determined by the
inputs to the circuit or the values presently stored in the flip-flop (or both). The new
value is stored (i.e., the flip-flop is updated) when a pulse of the clock signal occurs.
Prior to the occurrence of the clock pulse, the combinational logic forming the next
value of the flip-flop must have reached a stable value. Consequently, the speed at
which the combinational logic circuits operate is critical. If the clock (synchronizing)
pulses arrive at a regular interval, as shown in the timing diagram in Fig. 5.2, the com-
binational logic must respond to a change in the state of the flip-flop in time to be
updated before the next pulse arrives. Propagation delays play an important role in
determining the minimum interval between clock pulses that will allow the circuit to
operate correctly. A change in state of the flip-flops is initiated only by a clock pulse
transition—for example, when the value of the clock signals changes from 0 to 1. When
a clock pulse is not active, the feedback loop between the value stored in the flip-flop
and the value formed at the input to the flip-flop is effectively broken because the flip-
flop outputs cannot change even if the outputs of the combinational circuit driving their
inputs change in value. Thus, the transition from one state to the next occurs only at
predetermined intervals dictated by the clock pulses.

Section 5.3 Storage Elements: Latches 193

5.3 STORAGE ELEMENTS: LATCHES

A storage element in a digital circuit can maintain a binary state indefinitely (as long
as power is delivered to the circuit), until directed by an input signal to switch states.
The major differences among various types of storage elements are in the number of
inputs they possess and in the manner in which the inputs affect the binary state. Storage
elements that operate with signal levels (rather than signal transitions) are referred to as
latches; those controlled by a clock transition are flip-flops. Latches are said to be level
sensitive devices; flip-flops are edge-sensitive devices. The two types of storage elements
are related because latches are the basic circuits from which all flip-flops are con-
structed. Although latches are useful for storing binary information and for the design
of asynchronous sequential circuits, they are not practical for use as storage elements
in synchronous sequential circuits. Because they are the building blocks of flip-flops,
however, we will consider the fundamental storage mechanism used in latches before
considering flip-flops in the next section.

SR Latch

The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND
gates, and two inputs labeled S for set and R for reset. The SR latch constructed with two
cross-coupled NOR gates is shown in Fig. 5.3. The latch has two useful states. When output
O = 1and Q' = 0, the latch is said to be in the set state. When Q = O and Q' = 1, it is
in the reset state. Outputs Q and Q' are normally the complement of each other. However,
when both inputs are equal to 1 at the same time, a condition in which both outputs are
equal to 0 (rather than be mutually complementary) occurs. If both inputs are then switched
to 0 simultaneously, the device will enter an unpredictable or undefined state or a meta-
stable state. Consequently, in practical applications, setting both inputs to 1 is forbidden.
Under normal conditions, both inputs of the latch remain at 0 unless the state has to be
changed. The application of a momentary 1 to the S input causes the latch to go to the set
state. The S input must go back to 0 before any other changes take place, in order to avoid
the occurrence of an undefined next state that results from the forbidden input condition.
As shown in the function table of Fig. 5.3(b), two input conditions cause the circuit to be in

1
S ,
0 ﬂ R (reset) RlQQ

Q 1 0|1 0
0 0|1 O (afterS=1,R=0)
1 0 10 1
0 0[0 1 (afterS=0,R=1)
0 S (set)