OPERATING
SYSTEMS

Internals and Design Principles

William Stallings

This page intentionally left blank

OPERATING SYSTEMS
INTERNALS AND DESIGN
PRINCIPLES

SEVENTH EDITION

William Stallings

Prentice Hall
Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton Art Director: Jayne Conte

Editor in Chief: Michael Hirsch Cover Designer: Bruce Kenselaar

Executive Editor: Tracy Dunkelberger Media Director: Daniel Sandin

Assistant Editor: Melinda Haggerty Media Project Manager: Wanda Rockwell
Editorial Assistant: Allison Michael Full-Service Project Management/Composition:
Director of Marketing: Patrice Jones Shiny Rajesh/Integra Software Service Pvt. Ltd.
Marketing Manager: Yezan Alayan Interior Printer/Bindery: Edwards Brothers
SenioMarketing Coordinator: Kathryn Ferranti Cover Printer: Lehigh-Phoenix Color

Production Manager: Pat Brown

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on
appropriate page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. Screen
shots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored or endorsed by or
affiliated with the Microsoft Corporation.

Copyright © 2012, 2009, 2005, 2001, 1998 Pearson Education, Inc., publishing as Prentice Hall, 1 Lake Street,

Upper Saddle River, New Jersey, 07458. All rights reserved. Manufactured in the United States of America. This publication
is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, 1 Lake Street, Upper Saddle River, New Jersey, 07458.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Stallings, William.
Operating systems : internals and design principles / William Stallings. — 7th ed.
p. cm.
Includes bibliographical references and index.
ISBN-13:978-0-13-230998-1 (alk. paper)
ISBN-10: 0-13-230998-X (alk. paper)
1. Operating systems (Computers) L. Title.
QA76.76.0635733 2011
005.4'3 dc22
2010048597

1098765432 1—EB—15 14 13 12 11

Prentice Hall
is an imprint of

PEARSON

C— . ISBN 10: 0-13-230998-X
www.pearsonhighered.com ISBN 13: 978-0-13-230998-1

www.pearsonhighered.com

To my brilliant and brave wife,
Antigone Tricia, who has survived
the worst horrors imaginable.

CONTENTS

Online Resources x

Preface xi

About the Author xix

Chapter 0

0.1
0.2
0.3

0.4

Reader’s and Instructor’s
Guide 1

Outline of this Book 2
Example Systems 2

A Roadmap for Readers and
Instructors 3

Internet and Web Resources 4

PART 1 BACKGROUND 7

Chapter 1

1.1
1.2

1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

1A

Chapter 2

2.1
2.2

2.3
2.4

2.5

Computer System
Overview 7

Basic Elements 8

Evolution of the
Microprocessor 10

Instruction Execution 11
Interrupts 14

The Memory Hierarchy 24
Cache Memory 27

Direct Memory Access 31
Multiprocessor and Multicore
Organization 33
Recommended Reading and
Web Sites 36

Key Terms, Review Questions,
and Problems 37

Performance Characteristics of
Two-Level Memories 39
Operating System
Overview 46

Operating System Objectives and
Functions 48

The Evolution of Operating
Systems 52

Major Achievements 62
Developments Leading to Modern
Operating Systems 71

Virtual Machines 74

2.6

2.7
2.8
2.9
2.10
2.11

2.12

2.13

OS Design Considerations for
Multiprocessor and Multicore 77
Microsoft Windows Overview 80
Traditional UNIX Systems 90
Modern UNIX Systems 92

Linux 94

Linux VServer Virtual Machine
Architecture 100

Recommended Reading and Web
Sites 101

Key Terms, Review Questions, and
Problems 103

PART 2 PROCESSES 106

Chapter 3 Process Description and

3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8
3.9
3.10

Chapter 4

4.1
4.2
4.3
4.4
4.5
4.6

4.7

Control 106

‘What Is a Process? 108
Process States 110

Process Description 126
Process Control 134
Execution of the Operating
System 140

Security Issues 143

UNIX SVR4 Process
Management 147

Summary 152
Recommended Reading 152
Key Terms, Review Questions, and
Problems 153

Threads 157

Processes and Threads 158
Types of Threads 164
Multicore and Multithreading 171
Windows 7 Thread and SMP
Management 176

Solaris Thread and SMP
Management 182

Linux Process and Thread
Management 186

Mac OS X Grand Central
Dispatch 189

4.8
4.9
4.10

Chapter 5

5.1
5.2

5.3
5.4
5.5
5.6
5.7
5.8
5.9

Chapter 6

6.1
6.2
6.3
6.4
6.5

6.6
6.7

6.8
6.9
6.10
6.11

6.12
6.13

Summary 192

Recommended Reading 192

Key Terms, Review Questions, and
Problems 193

Concurrency: Mutual Exclu-
sion and Synchronization 198

Principles of Concurrency 201
Mutual Exclusion: Hardware
Support 209

Semaphores 213

Monitors 226

Message Passing 233

R eaders/Writers Problem 239
Summary 243

Recommended Reading 244
Key Terms, Review Questions,
and Problems 245

Concurrency: Deadlock and
Starvation 258

Principles of Deadlock 259
Deadlock Prevention 268
Deadlock Avoidance 270
Deadlock Detection 276

An Integrated Deadlock
Strategy 278

Dining Philosophers Problem 279
UNIX Concurrency
Mechanisms 281

Linux Kernel Concurrency
Mechanisms 285

Solaris Thread Synchronization
Primitives 292

Windows 7 Concurrency
Mechanisms 294

Summary 298

Recommended Reading 298
Key Terms, Review Questions,
and Problems 299

PART 3 MEMORY 305

Chapter 7
7.1

7.2

Memory Management 305

Memory Management
Requirements 307
Memory Partitioning 310

7.3
7.4
7.5
7.6
7.7
7.8

7A
Chapter 8
8.1

8.2
8.3

8.4
8.5

8.6
8.7

8.8

CONTENTS Vv

Paging 321

Segmentation 325

Security Issues 326

Summary 330

Recommended Reading 330

Key Terms, Review Questions, and
Problems 331

Loading and Linking 334

Virtual Memory 340

Hardware and Control

Structures 341

Operating System Software 360
UNIX and Solaris Memory
Management 379

Linux Memory Management 384
Windows Memory

Management 386

Summary 389

Recommended Reading and Web
Sites 390

Key Terms, Review Questions,
and Problems 391

PART 4 SCHEDULING 395

Chapter 9

9.1
9.2
9.3

9.4
9.5
9.6

Chapter 10

10.1
10.2
10.3
10.4
10.5
10.6
10.7

10.8

Uniprocessor Scheduling 395

Types of Processor Scheduling 396
Scheduling Algorithms 400
Traditional UNIX

Scheduling 422

Summary 424

Recommended Reading 425

Key Terms, Review Questions,
and Problems 426

Multiprocessor and Real-Time
Scheduling 430

Multiprocessor Scheduling 431
Real-Time Scheduling 442
Linux Scheduling 457

UNIX SVR4 Scheduling 461
UNIX FreeBSD Scheduling 463
Windows Scheduling 466

Linux Virtual Machine Process
Scheduling 468

Summary 469

vi

10.9
10.10

CONTENTS

Recommended Reading 470
Key Terms, Review Questions, and
Problems 471

PART 5 INPUT/OUTPUT AND

FILES 474
Chapter 11

11.1
11.2

11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13

Chapter 12

12.1
12.2
12.3
12.4
12.5
12.6
12.7

12.8

12.9

12.10
12.11
12.12
12.13
12.14

I/0 Management and Disk
Scheduling 474

170 Devices 475

Organization of the I/O

Function 477

Operating System Design Issues 480
I/0 Buftering 483

Disk Scheduling 487

RAID 494

Disk Cache 502

UNIX SVR4 I/0 506

Linux [0 509

Windows I/0 512

Summary 515

Recommended Reading 516

Key Terms, Review Questions, and
Problems 517

File Management 520

Overview 522

File Organization and Access 527
B-Trees 532

File Directories 535

File Sharing 540

Record Blocking 541

Secondary Storage

Management 543

File System Security 551

UNIX File Management 553
Linux Virtual File System 560
Windows File System 564
Summary 569

Recommended Reading 570
Key Terms, Review Questions, and
Problems 571

PART 6 EMBEDDED SYSTEMS 573

Chapter 13

13.1
13.2

Embedded Operating
Systems 573

Embedded Systems 574
Characteristics of Embedded

13.3
13.4
13.5

13.6

Operating Systems 576

eCos 579

TinyOS 594

Recommended Reading and
Web Sites 603

Key Terms, Review Questions,
and Problems 604

PART 7 COMPUTER SECURITY 607

Chapter 14

14.1

14.2
14.3
14.4

14.5
14.6
14.7

14.8

Chapter 15

15.1
15.2
15.3
15.4
15.5

15.6
15.7

15.8

Computer Security
Threats 607

Computer Security

Concepts 608

Threats, Attacks, and Assets 610
Intruders 616

Malicious Software

Overview 619

Viruses, Worms, and Bots 623
Rootkits 633

Recommended Reading and
Web Sites 635

Key Terms, Review Questions,
and Problems 636

Computer Security
Techniques 639

Authentication 640

Access Control 646

Intrusion Detection 653
Malware Defense 657

Dealing with Buffer Overflow
Attacks 663

Windows 7 Security 667
Recommended Reading and
Web Sites 672

Key Terms, Review Questions,
and Problems 674

PART 8 DISTRIBUTED SYSTEMS 677

Chapter 16

16.1
16.2

16.3
16.4
16.5

Distributed Processing, Client/
Server, and Clusters 677

Client/Server Computing 678
Service-Oriented

Architecture 689

Distributed Message Passing 691
Remote Procedure Calls 695
Clusters 699

16.6 Windows Cluster Server 704
16.7 Beowulf and Linux Clusters 706
16.8 Summary 708
16.9 Recommended Reading and Web
Sites 709
16.10 Key Terms, Review Questions, and
Problems 710
APPENDICES
Appendix A Topics in Concurrency A-1
A.l Mutual Exclusion: Software
Approaches A-2
A.2 Race Conditions and
Semaphores A-8
A3 A Barbershop Problem A-15

A4

Problems A-21

CONTENTS viil

Appendix B Programming and Operating

B.1
B.2
B.3
B.4
B.5

B.6
B.7
B.8

System Projects B-1

0OS/161 B-2

Simulations B-3
Programming Projects B-4
Research Projects B-6
Reading/Report
Assignments B-6

Writing Assignments B-6
Discussion Topics B-7
BACI B-7

Glossary 713

References 723

Index 743

ONLINE CHAPTERS AND APPENDICES

1

Chapter 17
17.1

17.2
17.3
17.4
17.5
17.6
17.7

17A
Chapter 18

18.1
18.2
18.3

18.4
18.5

18.6
18.7

Chapter 19

19.1
19.2
19.3
19.4

19.5

Chapter 20
20.1

20.2

Network Protocols 17-1

The Need for a Protocol
Architecture 17-3

The TCP/IP Protocol
Architecture 17-6

Sockets 17-15

Linux Networking 17-21
Summary 17-22

Recommended Reading and Web
Sites 17-23

Key Terms, Review Questions, and
Problems 17-24

The Trivial File Transfer

Protocol 17-28

Distributed Process
Management 18-1

Process Migration 18-2
Distributed Global States 18-10
Distributed Mutual

Exclusion 18-16

Distributed Deadlock 18-30
Summary 18-44

Recommended Reading 18-45
Key Terms, Review Questions, and
Problems 18-46

Overview of Probability
and Stochastic Processes 19-1

Probability 19-2

Random Variables 19-8
Elementary Concepts of Stochas-
tic Processes 19-14
Recommended Reading and Web
Sites 19-26

Key Terms, Review Questions, and
Problems 19-27

Queueing Analysis 20-1

How Queues Behave—A Simple
Example 20-3
Why Queueing Analysis? 20-8

20.3
20.4
20.5
20.6
20.7
20.8
20.9
20.10

20.11

20.12

Programming Project One

Queueing Models 20-10
Single-Server Queues 20-20
Multiserver Queues 20-22
Examples 20-24

Queues with Priorities 20-30
Networks of Queues 20-32
Other Queueing Models 20-37
Estimating Model

Parameters 20-38

Recommended Reading and Web
Sites 20-42

Key Terms, Review Questions, and
Problems 20-43

Developing
a Shell

Programming Project Two The HOST

Dispatcher Shell

Appendix C Topics in Computer

C.1
C.2

C.3

C.4

Organization C-1

Processor Registers C-2
Instruction Execution for I/O
Instructions C-6

[/0O Communication
Techniques C-7

Hardware Performance

Issues for Multicore
Organization C-12

Appendix D Object-Oriented

D.1
D.2
D.3

D.4
D.5

Design D-1

Motivation D-2
Object-Oriented Concepts D-4
Benefits of Object-Oriented
Design D-9

CORBA D-11

Recommended Reading and
Web Site D-17

Appendix E Amdahl’s Law E-1

Appendix F Hash Tables F-1

'Online chapters, appendices, and other documents are Premium Content, available via the access card

viii

at the front of this book.

Appendix G Response Time G-1

Appendix H Queueing System
Concepts H-1

H.1 The Single-Server Queue H-2
H.2 The Multiserver Queue H-4
H.3 Poisson Arrival Rate H-7

Appendix I The Complexity of
Algorithms I-1

Appendix J] Disk Storage Devices J-1
J1 Magnetic Disk J-2
J.2 Optical Memory J-8

Appendix K Cryptographic
Algorithms K-1

K.1 Symmetric Encryption K-2
K.2 Public-Key Cryptography K-6
K.3 Secure Hash Functions K-10

Appendix L Standards Organizations L-1

L.1 The Importance of Standards L-2
L.2 Standards and Regulation L-3
L.3 Standards-Setting Organizations L-4

Appendix M Sockets: A Programmer’s
Introduction M-1

M.1 Sockets, Socket Descriptors, Ports,

and Connections M-4

ONLINE CHAPTERS AND APPENDICES ix

M.2 The Client/Server Model of
Communication M-6

M.3 Sockets Elements M-8

M.4 Stream and Datagram
Sockets M-28

M.5 Run-Time Program
Control M-33

M.6 Remote Execution of a Windows

Console Application M-38

Appendix N The International Reference
Alphabet N-1

Appendix O BACI: The Ben-Ari
Concurrent Programming

System O-1
0.1 Introduction O-2
0.2 BACI O-3
0.3 Examples of BACI Programs O-7
0.4 BACI Projects O-11
0.5 Enhancements to the BACI

System O-16

Appendix P Procedure Control P-1

P.1 Stack Implementation P-2
P.2 Procedure Calls and Returns P-3
P.3 R eentrant Procedures P-4

ONLINE RESOURCES

Site

Location

Description

Companion Web Site

williamstallings.com/OS/
OS7e.html

www.pearsonhighered.com/
stallings/

Student Resources button:
Useful links and documents
for students

Instructor Resources button:
Useful links and documents
for instructors

Premium Web Content

www.pearsonhighered.com/
stallings/, click on Premium
Web Content button and
enter the student access code
found on the card in the front
of the book.

Online chapters, appendices,
and other documents that
supplement the book

Instructor Resource Center
(IRC)

Pearsonhighered.com/
Stallings/, click on Instructor
Resource button.

Solutions manual, projects
manual, slides, and other
useful documents

Computer Science Student
Resource Site

computersciencestudent.com

Useful links and documents
for computer science students

www.pearsonhighered.com/stallings/Student
www.pearsonhighered.com/stallings/Student
www.pearsonhighered.com/stallings/
www.pearsonhighered.com/stallings/

PREFACE

This book does not pretend to be a comprehensive record; but it aims
at helping to disentangle from an immense mass of material the crucial
issues and cardinal decisions. Throughout I have set myself to explain
faithfully and to the best of my ability.

— THE WORLD CRISIS, WINSTON CHURCHILL

OBJECTIVES

This book is about the concepts, structure, and mechanisms of operating systems.
Its purpose is to present, as clearly and completely as possible, the nature and char-
acteristics of modern-day operating systems.

This task is challenging for several reasons. First, there is a tremendous range
and variety of computer systems for which operating systems are designed. These
include embedded systems, smart phones, single-user workstations and personal
computers, medium-sized shared systems, large mainframe and supercomputers,
and specialized machines such as real-time systems. The variety is not just in the
capacity and speed of machines, but in applications and system support require-
ments as well. Second, the rapid pace of change that has always characterized com-
puter systems continues with no letup. A number of key areas in operating system
design are of recent origin, and research into these and other new areas continues.

In spite of this variety and pace of change, certain fundamental concepts apply
consistently throughout. To be sure, the application of these concepts depends on
the current state of technology and the particular application requirements. The
intent of this book is to provide a thorough discussion of the fundamentals of oper-
ating system design and to relate these to contemporary design issues and to current
directions in the development of operating systems.

EXAMPLE SYSTEMS

This text is intended to acquaint the reader with the design principles and implemen-
tation issues of contemporary operating systems. Accordingly, a purely conceptual
or theoretical treatment would be inadequate. To illustrate the concepts and to tie
them to real-world design choices that must be made, three operating systems have
been chosen as running examples:

* Windows 7: A multitasking operating system for personal computers, work-
stations, and servers. This operating system incorporates many of the latest
developments in operating system technology. In addition, Windows is
one of the first important commercial operating systems to rely heavily on

X1

xii

PREFACE

object-oriented design principles. This book covers the technology used in
the most recent version of Windows, known as Windows 7.

e UNIX: A multiuser operating system, originally intended for minicomput-
ers, but implemented on a wide range of machines from powerful microcom-
puters to supercomputers. Several flavors of UNIX are included as examples.
FreeBSD is a widely used system that incorporates many state-of-the-art fea-
tures. Solaris is a widely used commercial version of UNIX.

e Linux: An open-source version of UNIX that is now widely used.

These systems were chosen because of their relevance and representativeness.
The discussion of the example systems is distributed throughout the text rather than
assembled as a single chapter or appendix. Thus, during the discussion of concur-
rency, the concurrency mechanisms of each example system are described, and the
motivation for the individual design choices is discussed. With this approach, the
design concepts discussed in a given chapter are immediately reinforced with real-
world examples.

INTENDED AUDIENCE

The book is intended for both an academic and a professional audience. As a text-
book, it is intended as a one-semester undergraduate course in operating systems
for computer science, computer engineering, and electrical engineering majors.
It covers all of the core topics and most of the elective topics recommended in
Computer Science Curriculum 2008, from the Joint Task Force on Computing
Curricula of the IEEE Computer Society and the ACM, for the Undergraduate
Program in Computer Science. The book also covers the operating systems top-
ics recommended in the Guidelines for Associate-Degree Curricula in Computer
Science 2002, also from the Joint Task Force on Computing Curricula of the IEEE
Computer Society and the ACM. The book also serves as a basic reference volume
and is suitable for self-study.

PLAN OF THE TEXT

The book is divided into eight parts (see Chapter 0 for an overview):

e Background

® Processes

e Memory

e Scheduling

e Input/output and files
e Embedded systems
e Security

e Distributed systems

PREFACE xiii

The book includes a number of pedagogic features, including the use of ani-
mations and numerous figures and tables to clarify the discussion. Each chapter
includes a list of key words, review questions, homework problems, suggestions for
further reading, and recommended Web sites. The book also includes an extensive
glossary, a list of frequently used acronyms, and a bibliography. In addition, a test
bank is available to instructors.

WHAT’S NEW IN THE SEVENTH EDITION

In the 3 years since the sixth edition of this book was published, the field has seen
continued innovations and improvements. In this new edition, I try to capture these
changes while maintaining a broad and comprehensive coverage of the entire field.
To begin the process of revision, the sixth edition of this book was extensively
reviewed by a number of professors who teach the subject and by professionals
working in the field. The result is that, in many places, the narrative has been clari-
fied and tightened, and illustrations have been improved. Also, a number of new
“field-tested” homework problems have been added.

Beyond these refinements to improve pedagogy and user friendliness, the
technical content of the book has been updated throughout, to reflect the ongo-
ing changes in this exciting field, and the instructor and student support has been
expanded. The most noteworthy changes are as follows:

e Windows 7: Windows 7 is Microsoft’s latest OS offering for PCs, worksta-
tions, and servers. The seventh edition provides details on Windows 7
internals in all of the key technology areas covered in this book, including
process/thread management, scheduling, memory management, security,
file systems, and I/O.

e Multicore operating system issues: The seventh edition now includes cover-
age of what has become the most prevalent new development in computer
systems: the use of multiple processors on a single chip. At appropriate points
in the book, operating system issues related to the use of a multicore organiza-
tion are explored.

¢ Virtual machines: Chapter 2 now includes a section on virtual machines, which
outlines the various approaches that have been implemented commercially.

* New scheduling examples: Chapter 10 now includes a discussion of the
FreeBSD scheduling algorithm, designed for use with multiprocessor and
multicore systems, and Linux VServer scheduling for a virtual machine
environment.

e Service-oriented architecture (SOA): SOA is a form of client/server archi-
tecture that now enjoys widespread use in enterprise systems. SOA is now
covered in Chapter 16.

e Probability, statistics, and queueing analysis: Two new chapters review key
topics in these areas to provide background for OS performance analysis.

e B-trees: This is a technique for organizing indexes into files and databases
that is commonly used in OS file systems, including those supported by

Xiv PREFACE

Mac OS X, Windows, and several Linux file systems. B-trees are now cov-
ered in Chapter 12.

e Student study aids: Each chapter now begins with a list of learning objec-
tives. In addition, a chapter-by-chapter set of review outlines highlights key
concepts that the student should concentrate on in each chapter.

e 0S/161: OS/161 is an educational operating system that is becoming increas-
ingly recognized as the teaching platform of choice. This new edition provides
support for using OS/161 as an active learning component. See later in this
Preface for details.

e Sample syllabus: The text contains more material than can be conveniently covered
in one semester. Accordingly, instructors are provided with several sample syllabi
that guide the use of the text within limited time (e.g., 16 weeks or 12 weeks). These
samples are based on real-world experience by professors with the sixth edition.

With each new edition, it is a struggle to maintain a reasonable page count while
adding new material. In part, this objective is realized by eliminating obsolete material
and tightening the narrative. For this edition, chapters and appendices that are of less
general interest have been moved online, as individual PDF files. This has allowed an
expansion of material without the corresponding increase in size and price.

STUDENT RESOURCES

For this new edition, a tremendous amount of original supporting material has been
made available online, in the following categories

The Companion Web site and student resource material can be reached through
the Publisher’s Web site www.pearsonhighered.com/stallings or by clicking on
the button labeled “Book Info and More Instructor Resources” at the book’s
Companion Web site WilliamStallings.com/OS/OS7e.html. For this new edition, a
tremendous amount of original supporting material has been made available online,
in the following categories:

¢ Homework problems and solutions: To aid the student in understanding the
material, a separate set of homework problems with solutions are available.
These enable the students to test their understanding of the text.

e Programming projects: Two major programming projects, one to build a
shell (or command line interpreter) and one to build a process dispatcher, are
described.

¢ Key papers: Several dozen papers from the professional literature, many hard
to find, are provided for further reading.

e Supporting documents: A variety of other useful documents are referenced in
the text and provided online.

Premium Web Content
Purchasing this textbook new grants the reader 6 months of access to this online
material. See the access card in the front of this book for details.

www.pearsonhighered.com/stallings

PREFACE XV

Online chapters: To limit the size and cost of the book, four chapters of the
book are provided in PDF format. The chapters are listed in this book’s table
of contents.

Online appendices: There are numerous interesting topics that support mate-
rial found in the text but whose inclusion is not warranted in the printed text.
A total of 13 appendices cover these topics for the interested student. The
appendices are listed in this book’s table of contents.

INSTRUCTOR SUPPORT MATERIALS

Support materials are available at the Instructor Resource Center (IRC)
for this textbook, which can be reached through the Publisher’s Web site
www.pearsonhighered.com/stallings or by clicking on the button labeled “Book
Info and More Instructor Resources” at this book’s Companion Web site
WilliamStallings.com/OS/OS7e.html. To gain access to the IRC, please contact
your local Pearson sales representative via pearsonhighered.com/educator/replo-
cator/requestSalesRep.page or call Pearson Faculty Services at 1-800-526-0485.
To support instructors, the following materials are provided:

Solutions manual: Solutions to end-of-chapter Review Questions and
Problems.

Projects manual: Suggested project assignments for all of the project categories
listed in the next section.

PowerPoint slides: A set of slides covering all chapters, suitable for use in
lecturing.

PDF files: Reproductions of all figures and tables from the book.
Test bank: A chapter-by-chapter set of questions.
Links to Web sites for other courses being taught using this book.

An Internet mailing list has been set up so that instructors using this book can
exchange information, suggestions, and questions with each other and with
the author. As soon as typos or other errors are discovered, an errata list for
this book will be available at WilliamStallings.com. Sign-up information for
this Internet mailing list.

Computer science student resource list: A list of helpful links for computer
science students and professionals is provided at ComputerScienceStudent.com,
which provides documents, information, and useful links for computer science
students and professionals.

Programming projects: Two major programming projects, one to build a
shell (or command line interpreter) and one to build a process dispatcher,
are described in the online portion of this textbook. The IRC provides fur-
ther information and step-by-step exercises for developing the programs. As
an alternative, the instructor can assign a more extensive series of projects
that cover many of the principles in the book. The student is provided with

www.pearsonhighered.com/stallings

Xvi PREFACE

detailed instructions for doing each of the projects. In addition, there is a set of
homework problems, which involve questions related to each project for the
student to answer.

Projects and Other Student Exercises

For many instructors, an important component of an OS course is a project or set
of projects by which the student gets hands-on experience to reinforce concepts
from the text. This book provides an unparalleled degree of support for including
a projects component in the course. In the online portion of the text, two major
programming projects are defined. In addition, the instructor support materials
available through Pearson not only include guidance on how to assign and structure
the various projects but also includes a set of user’s manuals for various project
types plus specific assignments, all written especially for this book. Instructors can
assign work in the following areas:

e 0S/161 projects: Described below.
e Simulation projects: Described below.
e Programming projects: Described below.

¢ Research projects: A series of research assignments that instruct the student
to research a particular topic on the Internet and write a report.

e Reading/report assignments: A list of papers that can be assigned for reading
and writing a report, plus suggested assignment wording.

e Writing assignments: A list of writing assignments to facilitate learning the
material.

e Discussion topics: These topics can be used in a classroom, chat room, or mes-
sage board environment to explore certain areas in greater depth and to foster
student collaboration.

In addition, information is provided on a software package known as BACI that
serves as a framework for studying concurrency mechanisms.

This diverse set of projects and other student exercises enables the instructor to
use the book as one component in a rich and varied learning experience and to tailor a
course plan to meet the specific needs of the instructor and students. See Appendix B
in this book for details.

0OS/161

New to this edition is support for an active learning component based on OS/161.
OS/161 is an educational operating system that is becoming increasingly recog-
nized as the preferred teaching platform for OS internals. It aims to strike a bal-
ance between giving students experience in working on a real operating system and
potentially overwhelming students with the complexity that exists in a fully fledged
operating system, such as Linux. Compared to most deployed operating systems,
0S/161 is quite small (approximately 20,000 lines of code and comments), and there-
fore it is much easier to develop an understanding of the entire code base.

PREFACE XxvVii

The IRC includes:

1. A packaged set of html files that the instructor can upload to a course server
for student access.

2. A getting-started manual to be handed out to students to help them begin
using OS/161.

3. A set of exercises using OS/161, to be handed out to students.
4. Model solutions to each exercise for the instructor’s use.

5. All of this will be cross-referenced with appropriate sections in the book, so
that the student can read the textbook material and then do the corresponding
0S/161 project.

Simulations for Students and Instructors

The IRC provides support for assigning projects based on a set of seven simulations
that cover key areas of OS design. The student can use a set of simulation packages
to analyze OS design features. The simulators are all written in Java and can be run
either locally as a Java application or online through a browser. The IRC includes
specific assignments to give to students, telling them specifically what they are to do
and what results are expected.

Animations for Students and Instructors

This edition also incorporates animations. Animations provide a powerful tool for
understanding the complex mechanisms of a modern OS. A total of 53 animations
are used to illustrate key functions and algorithms in OS design. The animations are
used for Chapters 3, 5, 6,7, 8,9, and 11. For access to the animations, click on the
rotating globe at this book’s Web site at WilliamStallings.com/OS/OS7e.html.

ACKNOWLEDGMENTS

This new edition has benefited from review by a number of people, who gave gen-
erously of their time and expertise. These include Samir Chettri (The University of
Maryland, Baltimore County), Michael Rogers (Tennessee Technological University),
Glenn Booker (Drexel University), Jeongkyu Lee (University of Bridgeport), Sanjiv
Bhatia (University of Missouri, Baltimore County), Martin Barrett (East Tennessee
State University), Lubomir Ivanov (Iona College), Bina Ramamurthy (University at
Buffalo), Dean Kelley (Minnesota State University), Joel Weinstein (Northeastern
University), all of whom reviewed most or all of the book.

Thanks also to the people who provided detailed reviews of a one or
more chapters: John South (University of Dallas), Kevin Sanchez-Cherry (IT
Security Specilist), Adri Jovin (PG Scholar,Department of IT, Anna University
of Technology, Coimbatore), Thriveni Venkatesh (Professor Thriveni T K from
GcMAT, Bangalore, India), Fernando Lichtschein (Instituto de Tecnologia
ORT Argentina), C. Annamala (Indian Institute of Technology Kharagpur),

xviili PREFACE

Abdul-Rahman Mahmood (Independent IT & security consultant & Creator of
AlphaPeeler crypto tool), and Abhilash V R (VVDN Technologies).

I would also like to thank Dave Probert, Architect in the Windows Core Kernel
& Architecture team at Microsoft, for the review of the material on Windows Vista
and for providing the comparisons of Linux and Vista; Tigran Aivazian, author of
the Linux Kernel Internals document, which is part of the Linux Documentation
Project, for the review of the material on Linux 2.6; Nick Garnett of eCosCentric,
for the review of the material on eCos; and Philip Levis, one of the developers of
TinyOS, for the review of the material on TinyOS.

Professor Andrew Peterson, Ioan Stefanovici, and OS instructors at the
University of Toronto prepared the OS/161 supplements for the IRC.

Adam Critchley (University of Texas at San Antonio) developed the simula-
tion exercises. Matt Sparks (University of Illinois at Urbana-Champaign) adapted a
set of programming problems for use with this textbook.

Lawrie Brown of the Australian Defence Force Academy produced the mate-
rial on buffer overflow attacks. Ching-Kuang Shene (Michigan Tech University)
provided the examples used in the section on race conditions and reviewed the
section. Tracy Camp and Keith Hellman, both at the Colorado School of Mines,
developed a new set of homework problems. In addition, Fernando Ariel Gont
contributed a number of homework problems; he also provided detailed reviews of
all of the chapters.

I would also like to thank Bill Bynum (College of William and Mary) and
Tracy Camp (Colorado School of Mines) for contributing Appendix O; Steve
Taylor (Worcester Polytechnic Institute) for contributing the programming
projects and reading/report assignments in the instructor’s manual; and Professor
Tan N. Nguyen (George Mason University) for contributing the research projects
in the instruction manual. Ian G. Graham (Griffith University) contributed the
two programming projects in the textbook. Oskars Rieksts (Kutztown University)
generously allowed me to make use of his lecture notes, quizzes, and projects.

Finally, I would like to thank the many people responsible for the publica-
tion of the book, all of whom did their usual excellent job. This includes my editor
Tracy Dunkelberger, her assistants Carole Snyder, Melinda Hagerty, and Allison
Michael, and production manager Pat Brown. I also thank Shiny Rajesh and the
production staff at Integra for another excellent and rapid job. Thanks also to the
marketing and sales staffs at Pearson, without whose efforts this book would not
be in your hands.

With all this assistance, little remains for which I can take full credit. However,
I am proud to say that, with no help whatsoever, I selected all of the quotations.

ABOUT THE AUTHOR

William Stallings has made a unique contribution to understanding the broad
sweep of technical developments in computer security, computer networking, and
computer architecture. He has authored 17 titles, and, counting revised editions, a
total of 42 books on various aspects of these subjects. His writings have appeared
in numerous ACM and IEEE publications, including the Proceedings of the IEEE
and ACM Computing Reviews.

He has 11 times received the award for the best Computer Science textbook of
the year from the Text and Academic Authors Association.

In over 30 years in the field, he has been a technical contributor, technical
manager, and an executive with several high-technology firms. He has designed
and implemented both TCP/IP-based and OSI-based protocol suites on a variety
of computers and operating systems, ranging from microcomputers to mainframes.
As a consultant, he has advised government agencies, computer and software ven-
dors, and major users on the design, selection, and use of networking software and
products.

He has created and maintains the Computer Science Student Resource Site
at http://www.computersciencestudent.com/. This site provides documents and
links on a variety of subjects of general interest to computer science students
(and professionals). He is a member of the editorial board of Cryptologia, a
scholarly journal devoted to all aspects of cryptology.

Dr. Stallings holds a PhD from M.LT. in Computer Science and a B.S. from
Notre Dame in electrical engineering.

Xix

http://www.computersciencestudent.com/

This page intentionally left blank

CHAPTER

READER’S AND INSTRUCTOR’S
GUIDE

0.1 Outline of This Book
0.2 Example Systems
0.3 A Roadmap for Readers and Instructors

0.4 Internet and Web Resources
Web Sites for This Book
Other Web Sites
USENET Newsgroups

2 CHAPTER 0 / READER’S AND INSTRUCTOR’S GUIDE

These delightful records should have been my constant study.

THE IMPORTANCE OF BEING EARNEST, OSCAR WILDE

This book, with its accompanying Web site, covers a lot of material. Here we give
the reader some basic background information.

0.1 OUTLINE OF THIS BOOK

The book is organized in eight parts:

Part One. Background: Provides an overview of computer architecture and
organization, with emphasis on topics that relate to operating system (OS)
design, plus an overview of the OS topics in remainder of the book.

Part Two. Processes: Presents a detailed analysis of processes, multithreading,
symmetric multiprocessing (SMP), and microkernels. This part also examines
the key aspects of concurrency on a single system, with emphasis on issues of
mutual exclusion and deadlock.

Part Three. Memory: Provides a comprehensive survey of techniques for mem-
ory management, including virtual memory.

Part Four. Scheduling: Provides a comparative discussion of various approaches
to process scheduling. Thread scheduling, SMP scheduling, and real-time
scheduling are also examined.

Part Five. Input/Output and Files: Examines the issues involved in OS control
of the I/O function. Special attention is devoted to disk I/O, which is the key to
system performance. Also provides an overview of file management.

Part Six. Embedded Systems: Embedded systems far outnumber general-
purpose computing systems and present a number of unique OS challenges.
The chapter includes a discussion of common principles plus coverage of two
example systems: TinyOS and eCos.

Part Seven. Security: Provides a survey of threats and mechanisms for provid-
ing computer and network security.

Part Eight. Distributed Systems: Examines the major trends in the networking
of computer systems, including TCP/IP, client/server computing, and clusters.
Also describes some of the key design areas in the development of distributed
operating systems.

A number of online chapters and appendices cover additional topics relevant
to the book.

0.2 EXAMPLE SYSTEMS

This text is intended to acquaint the reader with the design principles and implemen-
tation issues of contemporary operating systems. Accordingly, a purely conceptual
or theoretical treatment would be inadequate. To illustrate the concepts and to tie

0.3 / A ROADMAP FOR READERS AND INSTRUCTORS 3

them to real-world design choices that must be made, two operating systems have
been chosen as running examples:

e Windows: A multitasking operating system designed to run on a variety of PCs,
workstations, and servers. It is one of the few recent commercial operating
systems that have essentially been designed from scratch. As such, it is in a posi-
tion to incorporate in a clean fashion the latest developments in operating
system technology. The current version, presented in this book, is Windows 7.

e UNIX: A multitasking operating system originally intended for minicomputers
but implemented on a wide range of machines from powerful microcomputers
to supercomputers. Included under this topic is Linux.

The discussion of the example systems is distributed throughout the text rather
than assembled as a single chapter or appendix. Thus, during the discussion of con-
currency, the concurrency mechanisms of each example system are described, and
the motivation for the individual design choices is discussed. With this approach,
the design concepts discussed in a given chapter are immediately reinforced with
real-world examples.

The book also makes use of other example systems where appropriate,
particularly in the chapter on embedded systems.

0.3 A ROADMAP FOR READERS AND INSTRUCTORS

It would be natural for the reader to question the particular ordering of topics pre-
sented in this book. For example, the topic of scheduling (Chapters 9 and 10) is
closely related to those of concurrency (Chapters 5 and 6) and the general topic of
processes (Chapter 3) and might reasonably be covered immediately after those
topics.

The difficulty is that the various topics are highly interrelated. For example, in
discussing virtual memory, it is useful to refer to the scheduling issues related to a
page fault. Of course, it is also useful to refer to some memory management issues
when discussing scheduling decisions. This type of example can be repeated end-
lessly: A discussion of scheduling requires some understanding of I/O management
and vice versa.

Figure 0.1 suggests some of the important interrelationships between topics.
The solid lines indicate very strong relationships, from the point of view of design
and implementation decisions. Based on this diagram, it makes sense to begin with
a basic discussion of processes, which we do in Chapter 3. After that, the order is
somewhat arbitrary. Many treatments of operating systems bunch all of the mate-
rial on processes at the beginning and then deal with other topics. This is certainly
valid. However, the central significance of memory management, which I believe
is of equal importance to process management, has led to a decision to present this
material prior to an in-depth look at scheduling.

The ideal solution is for the student, after completing Chapters 1 through
3 in series, to read and absorb the following chapters in parallel: 4 followed by
(optional) 5; 6 followed by 7; 8 followed by (optional) 9; 10. The remaining parts can

4 CHAPTER 0 / READER’S AND INSTRUCTOR’S GUIDE

Process
escription

O and file

g gy ey

Figure 0.1 OS Topics

be done in any order. However, although the human brain may engage in parallel
processing, the human student finds it impossible (and expensive) to work success-
fully with four copies of the same book simultaneously open to four different chap-
ters. Given the necessity for a linear ordering, I think that the ordering used in this
book is the most effective.

A final word. Chapter 2, especially Section 2.3, provides a top-level view of
all of the key concepts covered in later chapters. Thus, after reading Chapter 2,
there is considerable flexibility in choosing the order in which to read the remaining
chapters.

0.4 INTERNET AND WEB RESOURCES

There are a number of resources available on the Internet and the Web to support
this book and for keeping up with developments in this field.

Web Sites for This Book

Three Web sites provide additional resources for students and instructors. A special
Web page for this book is maintained at WilliamStallings.com/OS/OS7e.html. For
students, this Web site includes a list of relevant links, organized by chapter, an
errata sheet for the book, and links to the animations used throughout the book.
For access to the animations, click on the rotating globe. There are also documents
that introduce the C programming language for students who are not familiar with

0.4 / INTERNET AND WEB RESOURCES 5

or need a refresher on this language For instructors, this Web site links to course
pages by professors teaching from this book and provides a number of other useful
documents and links.

There is also an access-controlled Web site, referred to as Premium Content,
that provides a wealth of supporting material, including additional online chapters,
additional online appendices, a set of homework problems with solutions, copies of
a number of key papers in this field, and a number of other supporting documents.
See the card at the front of this book for access information. Of particular note are
the following online documents:

e Pseudocode: For those readers not comfortable with C, all of the algorithms
are also reproduced in a Pascal-like pseudocode. This pseudocode language is
intuitive and particularly easy to follow.

e Windows 7, UNIX, and Linux descriptions: As was mentioned, Windows and
various flavors of UNIX are used as running case studies, with the discussion
distributed throughout the text rather than assembled as a single chapter or
appendix. Some readers would like to have all of this material in one place as
a reference. Accordingly, all of the Windows, UNIX, and Linux material from
the book is reproduced in three documents at the Web site.

Finally, additional material for instructors is available at the Instructor
Resource Center (IRC) for this book. See Preface for details and access information.

As soon as any typos or other errors are discovered, an errata list for this book
will be available at the Web site. Please report any errors that you spot. Errata
sheets for my other books are at WilliamStallings.com.

I also maintain the Computer Science Student Resource Site, at
ComputerScienceStudent.com. The purpose of this site is to provide documents,
information, and links for computer science students and professionals. Links and
documents are organized into six categories:

e Math: Includes a basic math refresher, a queueing analysis primer, a number
system primer, and links to numerous math sites.

* How-to: Advice and guidance for solving homework problems, writing techni-
cal reports, and preparing technical presentations.

¢ Research resources: Links to important collections of papers, technical
reports, and bibliographies.

* Miscellaneous: A variety of useful documents and links.

¢ Computer science careers: Useful links and documents for those considering a
career in computer science.

* Humor and other diversions: You have to take your mind off your work once
in a while.

Other Web Sites

There are numerous Web sites that provide information related to the topics of
this book. In subsequent chapters, pointers to specific Web sites can be found

6 CHAPTER 0 / READER’S AND INSTRUCTOR’S GUIDE

in the Recommended Reading and Web Sites section. Because the URL for a
particular Web site may change, I have not included URLs in the book. For all of
the Web sites listed in the book, the appropriate link can be found at this book’s
Web site. Other links not mentioned in this book will be added to the Web site
over time.

USENET Newsgroups

A number of USENET newsgroups are devoted to some aspect of operating sys-
tems or to a particular operating system. As with virtually all USENET groups,
there is a high noise-to-signal ratio, but it is worth experimenting to see if any meet
your needs. The most relevant are as follows:

¢ comp.os.research: The best group to follow. This is a moderated newsgroup
that deals with research topics.
e comp.os.misc: A general discussion of OS topics.

* comp.os.linux.development.system: Linux discussion for developers.

PART 1 Background

COMPUTER SYSTEM OVERVIEW

1.1 Basic Elements
1.2 Evolution of the Microprocessor
1.3 Instruction Execution

1.4 Interrupts
Interrupts and the Instruction Cycle
Interrupt Processing
Multiple Interrupts

1.5 The Memory Hierarchy

1.6 Cache Memory
Motivation
Cache Principles
Cache Design

1.7 Direct Memory Access

1.8 Multiprocessor and Multicore Organization
Symmetric Multiprocessors
Multicore Computers

1.9 Recommended Reading and Web Sites
1.10 Key Terms, Review Questions, and Problems

APPENDIX 1A Performance Characteristics of Two-Level Memories
Locality
Operation of Two-Level Memory
Performance

8 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

No artifact designed by man is so convenient for this kind of functional
description as a digital computer. Almost the only ones of its properties
that are detectable in its behavior are the organizational properties.
Almost no interesting statement that one can make about on operating
computer bears any particular relation to the specific nature of the hard-
ware. A computer is an organization of elementary functional components
in which, to a high approximation, only the function performed by those
components is relevant to the behavior of the whole system.

THE SCIENCES OF THE ARTIFICIAL, HERBERT SIMON

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

e Describe the basic elements of a computer system and their interrelationship.
e Explain the steps taken by a processor to execute an instruction.

e Understand the concept of interrupts and how and why a processor uses
interrupts.

e List and describe the levels of a typical computer memory hierarchy.

e Explain the basic characteristics of multiprocessor and multicore organizations.

¢ Discuss the concept of locality and analyze the performance of a multilevel
memory hierarchy.

¢ Understand the operation of a stack and its use to support procedure call and
return.

An operating system (OS) exploits the hardware resources of one or more proces-
sors to provide a set of services to system users. The OS also manages secondary
memory and I/O (input/output) devices on behalf of its users. Accordingly, it is
important to have some understanding of the underlying computer system hardware
before we begin our examination of operating systems.

This chapter provides an overview of computer system hardware. In most
areas, the survey is brief, as it is assumed that the reader is familiar with this subject.
However, several areas are covered in some detail because of their importance to
topics covered later in the book. Further topics are covered in Appendix C.

1.1 BASIC ELEMENTS

At a top level, a computer consists of processor, memory, and I/O components, with
one or more modules of each type. These components are interconnected in some
fashion to achieve the main function of the computer, which is to execute programs.
Thus, there are four main structural elements:

e Processor: Controls the operation of the computer and performs its data pro-
cessing functions. When there is only one processor, it is often referred to as
the central processing unit (CPU).

1.1 / BASIC ELEMENTS 9

e Main memory: Stores data and programs. This memory is typically volatile; that
is, when the computer is shut down, the contents of the memory are lost. In
contrast, the contents of disk memory are retained even when the computer
system is shut down. Main memory is also referred to as real memory or primary
memory.

¢ 1/0 modules: Move data between the computer and its external environment.
The external environment consists of a variety of devices, including secondary
memory devices (e.g., disks), communications equipment, and terminals.

e System bus: Provides for communication among processors, main memory,
and I/O modules.

Figure 1.1 depicts these top-level components. One of the processor’s func-
tions is to exchange data with memory. For this purpose, it typically makes use of
two internal (to the processor) registers: a memory address register (MAR), which
specifies the address in memory for the next read or write; and a memory buffer reg-
ister (MBR), which contains the data to be written into memory or which receives

CPU Main memory
° 0
System 1
bus . 2
PC MAR ; .
Instruction °
Instruction .
IR MBR Instrilction
I/O AR °
Data
I/O BR
Data
Data
1/0 module : w2
n—1
~ PC = Program counter
o IR = Instruction register
° MAR = Memory address register
Buffers MBR = Memory buffer register

I/O AR = Input/output address register
I/0 BR = Input/output buffer register

Figure 1.1 Computer Components: Top-Level View

10 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

the data read from memory. Similarly, an I/O address register (I/OAR) specifies a
particular I/O device. An I/O buffer register (I/OBR) is used for the exchange of
data between an I/O module and the processor.

A memory module consists of a set of locations, defined by sequentially num-
bered addresses. Each location contains a bit pattern that can be interpreted as
either an instruction or data. An I/O module transfers data from external devices to
processor and memory, and vice versa. It contains internal buffers for temporarily
holding data until they can be sent on.

1.2 EVOLUTION OF THE MICROPROCESSOR

The hardware revolution that brought about desktop and handheld computing was
the invention of the microprocessor, which contained a processor on a single chip.
Though originally much slower than multichip processors, microprocessors have
continually evolved to the point that they are now much faster for most computa-
tions due to the physics involved in moving information around in sub-nanosecond
timeframes.

Not only have microprocessors become the fastest general purpose processors
available, they are now multiprocessors; each chip (called a socket) contains multi-
ple processors (called cores), each with multiple levels of large memory caches, and
multiple logical processors sharing the execution units of each core. As of 2010, it is
not unusual for even a laptop to have 2 or 4 cores, each with 2 hardware threads, for
a total of 4 or 8 logical processors.

Although processors provide very good performance for most forms of
computing, there is increasing demand for numerical computation. Graphical
Processing Units (GPUs) provide efficient computation on arrays of data using
Single-Instruction Multiple Data (SIMD) techniques pioneered in supercomput-
ers. GPUs are no longer used just for rendering advanced graphics, but they are
also used for general numerical processing, such as physics simulations for games
or computations on large spreadsheets. Simultaneously, the CPUs themselves are
gaining the capability of operating on arrays of data—with increasingly power-
ful vector units integrated into the processor architecture of the x86 and AMD64
families.

Processors and GPUs are not the end of the computational story for the
modern PC. Digital Signal Processors (DSPs) are also present, for dealing with
streaming signals—such as audio or video. DSPs used to be embedded in I/O
devices, like modems, but they are now becoming first-class computational devices,
especially in handhelds. Other specialized computational devices (fixed function
units) co-exist with the CPU to support other standard computations, such as
encoding/decoding speech and video (codecs), or providing support for encryption
and security.

To satisfy the requirements of handheld devices, the classic microprocessor
is giving way to the System on a Chip (SoC), where not just the CPUs and caches
are on the same chip, but also many of the other components of the system, such as
DSPs, GPUs, I/O devices (such as radios and codecs), and main memory.

1.3 / INSTRUCTION EXECUTION 11

1.3 INSTRUCTION EXECUTION

A program to be executed by a processor consists of a set of instructions stored
in memory. In its simplest form, instruction processing consists of two steps: The
processor reads (fetches) instructions from memory one at a time and executes each
instruction. Program execution consists of repeating the process of instruction fetch
and instruction execution. Instruction execution may involve several operations and
depends on the nature of the instruction.

The processing required for a single instruction is called an instruction cycle.
Using a simplified two-step description, the instruction cycle is depicted in Figure 1.2.
The two steps are referred to as the fetch stage and the execute stage. Program execu-
tion halts only if the processor is turned off, some sort of unrecoverable error occurs,
or a program instruction that halts the processor is encountered.

At the beginning of each instruction cycle, the processor fetches an instruc-
tion from memory. Typically, the program counter (PC) holds the address of the
next instruction to be fetched. Unless instructed otherwise, the processor always
increments the PC after each instruction fetch so that it will fetch the next instruc-
tion in sequence (i.e., the instruction located at the next higher memory address).
For example, consider a simplified computer in which each instruction occupies one
16-bit word of memory. Assume that the program counter is set to location 300.
The processor will next fetch the instruction at location 300. On succeeding instruc-
tion cycles, it will fetch instructions from locations 301, 302, 303, and so on. This
sequence may be altered, as explained subsequently.

The fetched instruction is loaded into the instruction register (IR). The
instruction contains bits that specify the action the processor is to take. The proces-
sor interprets the instruction and performs the required action. In general, these
actions fall into four categories:

¢ Processor-memory: Data may be transferred from processor to memory or
from memory to processor.

e Processor-1/0: Data may be transferred to or from a peripheral device by
transferring between the processor and an I/O module.

e Data processing: The processor may perform some arithmetic or logic opera-
tion on data.

e Control: An instruction may specify that the sequence of execution be altered.
For example, the processor may fetch an instruction from location 149, which

Fetch stage Execute stage

START Fetch next Execute HALT
instruction instruction

Figure 1.2 Basic Instruction Cycle

12 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Opcode | Address

(a) Instruction format

| S | Magnitude

(b) Integer format

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(c) Internal CPU registers

0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

(d) Partial list of opcodes
Figure 1.3 Characteristics of a Hypothetical Machine

specifies that the next instruction will be from location 182. The processor sets
the program counter to 182. Thus, on the next fetch stage, the instruction will
be fetched from location 182 rather than 150.

An instruction’s execution may involve a combination of these actions.

Consider a simple example using a hypothetical processor that includes
the characteristics listed in Figure 1.3. The processor contains a single data reg-
ister, called the accumulator (AC). Both instructions and data are 16 bits long,
and memory is organized as a sequence of 16-bit words. The instruction format
provides 4 bits for the opcode, allowing as many as 2* = 16 different opcodes (rep-
resented by a single hexadecimal digit). The opcode defines the operation the
processor is to perform. With the remaining 12 bits of the instruction format, up to
212 = 4,096 (4K) words of memory (denoted by three hexadecimal digits) can be
directly addressed.

Figure 1.4 illustrates a partial program execution, showing the relevant
portions of memory and processor registers. The program fragment shown adds the
contents of the memory word at address 940 to the contents of the memory word at
address 941 and stores the result in the latter location. Three instructions, which can
be described as three fetch and three execute stages, are required:

1. The PC contains 300, the address of the first instruction. This instruction (the
value 1940 in hexadecimal) is loaded into the IR and the PC is incremented.
Note that this process involves the use of a memory address register (MAR)

A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the Computer
Science Student Resource Site at ComputerScienceStudent.com.

6.

1.3 / INSTRUCTION EXECUTION 13

Fetch stage Execute stage
Memory CPU registers Memory CPU registers
30001 9 40 3 0 0]PC 30001 9 40 3 0 1|PC
30159411> AC|301[5 9 4 1 000 3[AC
30212 9 41 19401R3022941j194OIR
940(0 0 0 3 94000.03
94110 0 0 2 941{0 0 0 2
Step 1 Step 2
Memory CPU registers Memory CPU registers
30001 9 40 3 0 1]PC 30001 9 40 3 0 2|PC
30115 9 41 000 3/AC|301|59 41 000 5[AC
30229411594IIR3022941<5941->IR
940(0 0 0 3 94000.03 3+42=5
94110 0 0 2 941{0 0 0 2
Step 3 Step 4
Memory CPU registers Memory CPU registers
30001 9 40 3 0 2|PC 30001 9 40 3 0 3]PC
301|159 41 000 5/AC|301|59 41 000 5[AC
30212 9 4 1 294 1|IR[302[2 941 294 1|IR
940(0 0 0 3 940{0 0 0 3
94110 0 0 2 94110 0 0 5
Step 5 Step 6

Figure 1.4 Example of Program Execution (contents
of memory and registers in hexadecimal)

and a memory buffer register (MBR). For simplicity, these intermediate regis-
ters are not shown.

The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be
loaded from memory. The remaining 12 bits (three hexadecimal digits) specify
the address, which is 940.

. The next instruction (5941) is fetched from location 301 and the PC is

incremented.

The old contents of the AC and the contents of location 941 are added and the
result is stored in the AC.

. The next instruction (2941) is fetched from location 302 and the PC is

incremented.
The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch stage and

an execute stage, are needed to add the contents of location 940 to the contents
of 941. With a more complex set of instructions, fewer instruction cycles would be
needed. Most modern processors include instructions that contain more than one
address. Thus the execution stage for a particular instruction may involve more than
one reference to memory. Also, instead of memory references, an instruction may
specify an I/O operation.

14 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

1.4 INTERRUPTS

Virtually all computers provide a mechanism by which other modules (I/O, mem-
ory) may interrupt the normal sequencing of the processor. Table 1.1 lists the most
common classes of interrupts.

Interrupts are provided primarily as a way to improve processor utilization.
For example, most I/O devices are much slower than the processor. Suppose that
the processor is transferring data to a printer using the instruction cycle scheme of
Figure 1.2. After each write operation, the processor must pause and remain idle
until the printer catches up. The length of this pause may be on the order of many
thousands or even millions of instruction cycles. Clearly, this is a very wasteful use
of the processor.

To give a specific example, consider a PC that operates at 1 GHz, which would
allow roughly 10° instructions per second.? A typical hard disk has a rotational
speed of 7200 revolutions per minute for a half-track rotation time of 4 ms, which is
4 million times slower than the processor.

Figure 1.5a illustrates this state of affairs. The user program performs a series of
WRITE calls interleaved with processing. The solid vertical lines represent segments
of code in a program. Code segments 1, 2, and 3 refer to sequences of instructions that
do not involve I/O. The WRITE calls are to an I/O routine that is a system utility and
that will perform the actual I/O operation. The I/O program consists of three sections:

¢ A sequence of instructions, labeled 4 in the figure, to prepare for the actual
I/O operation. This may include copying the data to be output into a special
buffer and preparing the parameters for a device command.

e The actual I/O command. Without the use of interrupts, once this command
is issued, the program must wait for the I/O device to perform the requested
function (or periodically check the status, or poll, the I/O device). The program
might wait by simply repeatedly performing a test operation to determine if
the I/O operation is done.

¢ A sequence of instructions, labeled 5 in the figure, to complete the operation.
This may include setting a flag indicating the success or failure of the operation.

Table 1.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction execution, such as
arithmetic overflow, division by zero, attempt to execute an illegal machine instruction,
and reference outside a user’s allowed memory space.

Timer Generated by a timer within the processor. This allows the operating system to perform
certain functions on a regular basis.

/0 Generated by an I/O controller, to signal normal completion of an operation or to signal
a variety of error conditions.

Hardware failure | Generated by a failure, such as power failure or memory parity error.

2A discussion of the uses of numerical prefixes, such as giga and tera, is contained in a supporting docu-
ment at the Computer Science Student Resource Site at ComputerScienceStudent.com.

1.4 / INTERRUPTS 15

User
program

WRITE

/0 User 1/0 User 1/0
program program program program program
- -_—T A -1 i
,L// I‘ //: I‘y’,=
A @0 A e o A @
) 71 i
O T T el g Y~ T L 7 L o
Sl Command | WRITE —-=—7/ Command | WRITE ——=="7 / Command
~ — // —_— /
SN ©) I I
AN !/ /g
/ [Py @ /1 / /
! /N BD /1 !
I/ ® J/ ©) J
/ / N 7 / /
e \/ S~ Interrupt ! Int t
/ { ~< errup Iy nterrup
q 7 (o) 11\ ~<_ handler i handler
/ 1 \\ Sy // -
LN L
/ WRITE [/% ® | WRITE C,’:\ ./l P®
T 1 / ,' N d T I‘k\J
g Z END !/ END
@ 1/ /,
* L//// // /
/
7
« ® |/
| //
G| | 7
| //
‘v i I/
WRITE WRITE ¥

(a) No interrupts (b) Interrupts; short I/O wait (c) Interrupts; long I/0 wait

Figure 1.5 Program Flow of Control without and with Interrupts

The dashed line represents the path of execution followed by the processor;
that is, this line shows the sequence in which instructions are executed. Thus, after
the first WRITE instruction is encountered, the user program is interrupted and
execution continues with the I/O program. After the I/O program execution is com-
plete, execution resumes in the user program immediately following the WRITE
instruction.

Because the I/O operation may take a relatively long time to complete, the I/O
program is hung up waiting for the operation to complete; hence, the user program
is stopped at the point of the WRITE call for some considerable period of time.

Interrupts and the Instruction Cycle

With interrupts, the processor can be engaged in executing other instructions while
an I/O operation is in progress. Consider the flow of control in Figure 1.5b. As
before, the user program reaches a point at which it makes a system call in the form
of a WRITE call. The I/O program that is invoked in this case consists only of the
preparation code and the actual I/O command. After these few instructions have
been executed, control returns to the user program. Meanwhile, the external device
is busy accepting data from computer memory and printing it. This I/O operation is
conducted concurrently with the execution of instructions in the user program.
When the external device becomes ready to be serviced, that is, when it is
ready to accept more data from the processor, the I/O module for that external
device sends an interrupt request signal to the processor. The processor responds by
suspending operation of the current program; branching off to a routine to service

16 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

User program Interrupt handler
-
1 J
2
° .
° °
° .
Interrupt —— !
occurs here i+1
°
°
°
M

Figure 1.6 Transfer of Control via Interrupts

that particular I/O device, known as an interrupt handler; and resuming the original
execution after the device is serviced. The points at which such interrupts occur are
indicated by X in Figure 1.5b. Note that an interrupt can occur at any point in the
main program, not just at one specific instruction.

For the user program, an interrupt suspends the normal sequence of execu-
tion. When the interrupt processing is completed, execution resumes (Figure 1.6).
Thus, the user program does not have to contain any special code to accommodate
interrupts; the processor and the OS are responsible for suspending the user pro-
gram and then resuming it at the same point.

To accommodate interrupts, an interrupt stage is added to the instruction cycle,
as shown in Figure 1.7 (compare Figure 1.2). In the interrupt stage, the processor
checks to see if any interrupts have occurred, indicated by the presence of an inter-
rupt signal. If no interrupts are pending, the processor proceeds to the fetch stage
and fetches the next instruction of the current program. If an interrupt is pending,

Fetch stage Execute stage Interrupt stage
Interrupts
disabled
Check for
Fetch next Execute interrupt;
(START) instruction instruction Interrupts ~ | initiate interrupt
enabled handler

(HALT)

Figure 1.7 Instruction Cycle with Interrupts

1.4 / INTERRUPTS 17

the processor suspends execution of the current program and executes an interrupt-
handler routine. The interrupt-handler routine is generally part of the OS. Typically,
this routine determines the nature of the interrupt and performs whatever actions
are needed. In the example we have been using, the handler determines which I/O
module generated the interrupt and may branch to a program that will write more
data out to that I/O module. When the interrupt-handler routine is completed, the
processor can resume execution of the user program at the point of interruption.

It is clear that there is some overhead involved in this process. Extra instruc-
tions must be executed (in the interrupt handler) to determine the nature of the
interrupt and to decide on the appropriate action. Nevertheless, because of the
relatively large amount of time that would be wasted by simply waiting on an I/O
operation, the processor can be employed much more efficiently with the use of
interrupts.

To appreciate the gain in efficiency, consider Figure 1.8, which is a timing dia-
gram based on the flow of control in Figures 1.5a and 1.5b. Figures 1.5b and 1.8

Time —@
®

Processor I 1/0

/0
wait operation operation

@\@‘@

1/0
operation

Processor 1/0
wait operation

®|oje|e|eje|e|o|e)

(b) With interrupts
(circled numbers refer
to numbers in Figure 1.5b)

@\@

(a) Without interrupts
(circled numbers refer
to numbers in Figure 1.5a)

Figure 1.8 Program Timing: Short I/O Wait

18 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

assume that the time required for the I/O operation is relatively short: less than the
time to complete the execution of instructions between write operations in the user
program. The more typical case, especially for a slow device such as a printer, is
that the I/O operation will take much more time than executing a sequence of user
instructions. Figure 1.5c indicates this state of affairs. In this case, the user program
reaches the second WRITE call before the I/O operation spawned by the first call is
complete. The result is that the user program is hung up at that point. When the pre-
ceding I/O operation is completed, this new WRITE call may be processed, and a
new I/O operation may be started. Figure 1.9 shows the timing for this situation with
and without the use of interrupts. We can see that there is still a gain in efficiency
because part of the time during which the I/O operation is underway overlaps with
the execution of user instructions.

o HON
© @
Processor /0 @

wait operation

Time

1/0
operation
Processor
@ wait
1/0
Procgssor I/O. operation
wait operation
Processor
wait

@ (b) With interrupts

(circled numbers refer
to numbers in Figure 1.5¢)

(a) Without interrupts
(circled numbers refer
to numbers in Figure 1.5a)

Figure 1.9 Program Timing: Long I/O Wait

1.4 / INTERRUPTS 19

Interrupt Processing

An interrupt triggers a number of events, both in the processor hardware and in
software. Figure 1.10 shows a typical sequence. When an I/O device completes an
I/O operation, the following sequence of hardware events occurs:

1. The device issues an interrupt signal to the processor.

2. The processor finishes execution of the current instruction before responding
to the interrupt, as indicated in Figure 1.7.

3. The processor tests for a pending interrupt request, determines that there is
one, and sends an acknowledgment signal to the device that issued the inter-
rupt. The acknowledgment allows the device to remove its interrupt signal.

4. The processor next needs to prepare to transfer control to the interrupt rou-
tine. To begin, it saves information needed to resume the current program at
the point of interrupt. The minimum information required is the program sta-
tus word? (PSW) and the location of the next instruction to be executed, which

Hardware Software

Device controller or
other system hardware
issues an interrupt

Save remainder of
process state
information

Processor finishes
execution of current
instruction

Process interrupt

Processor signals
acknowledgment
of interrupt
Restore process state
information
Processor pushes PSW
and PC onto control
stack
Restore old PSW
and PC

Processor loads new
PC value based on
interrupt

Figure 1.10 Simple Interrupt Processing

3The PSW contains status information about the currently running process, including memory usage
information, condition codes, and other status information, such as an interrupt enable/disable bit and a
kernel/user mode bit. See Appendix C for further discussion.

20 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

is contained in the program counter (PC). These can be pushed onto a control
stack (see Appendix P).

The processor then loads the program counter with the entry location of the
interrupt-handling routine that will respond to this interrupt. Depending on
the computer architecture and OS design, there may be a single program,
one for each type of interrupt, or one for each device and each type of inter-
rupt. If there is more than one interrupt-handling routine, the processor must
determine which one to invoke. This information may have been included in
the original interrupt signal, or the processor may have to issue a request to
the device that issued the interrupt to get a response that contains the needed
information.

Once the program counter has been loaded, the processor proceeds to the next

instruction cycle, which begins with an instruction fetch. Because the instruction
fetch is determined by the contents of the program counter, control is transferred to
the interrupt-handler program. The execution of this program results in the follow-
ing operations:

6.

At this point, the program counter and PSW relating to the interrupted
program have been saved on the control stack. However, there is other in-
formation that is considered part of the state of the executing program. In
particular, the contents of the processor registers need to be saved, because
these registers may be used by the interrupt handler. So all of these values,
plus any other state information, need to be saved. Typically, the interrupt
handler will begin by saving the contents of all registers on the stack. Other
state information that must be saved is discussed in Chapter 3. Figure 1.11a
shows a simple example. In this case, a user program is interrupted after the
instruction at location N. The contents of all of the registers plus the address
of the next instruction (N + 1), a total of M words, are pushed onto the control
stack. The stack pointer is updated to point to the new top of stack, and the
program counter is updated to point to the beginning of the interrupt service
routine.

The interrupt handler may now proceed to process the interrupt. This includes
an examination of status information relating to the I/O operation or other
event that caused an interrupt. It may also involve sending additional com-
mands or acknowledgments to the I/O device.

When interrupt processing is complete, the saved register values are retrieved
from the stack and restored to the registers (e.g., see Figure 1.11b).

The final act is to restore the PSW and program counter values from the stack.
As a result, the next instruction to be executed will be from the previously
interrupted program.

It is important to save all of the state information about the interrupted pro-

gram for later resumption. This is because the interrupt is not a routine called from
the program. Rather, the interrupt can occur at any time and therefore at any point
in the execution of a user program. Its occurrence is unpredictable.

1.4 / INTERRUPTS 21

T—M T—M
Y N+1
Control Control
stack stack
T T
N+1 Y+L+1
Program Program
counter counter
Y | Start Yy | Start
Interrupt General Interrupt General
service registers service registers
routine routine
Y + L |Return Y + L |Return
Stack Stack
pointer pointer
Processor Processor
T—-M T
N e N e
N+1 User’s N+ 1 User’s
program program
Main Main
memory memory
(a) Interrupt occurs after instruction (b) Return from interrupt

at location N
Figure 1.11 Changes in Memory and Registers for an Interrupt

Multiple Interrupts

So far, we have discussed the occurrence of a single interrupt. Suppose, however,
that one or more interrupts can occur while an interrupt is being processed. For
example, a program may be receiving data from a communications line and print-
ing results at the same time. The printer will generate an interrupt every time that
it completes a print operation. The communication line controller will generate an
interrupt every time a unit of data arrives. The unit could either be a single character
or a block, depending on the nature of the communications discipline. In any case, it
is possible for a communications interrupt to occur while a printer interrupt is being
processed.

22 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Two approaches can be taken to dealing with multiple interrupts. The first
is to disable interrupts while an interrupt is being processed. A disabled interrupt
simply means that the processor ignores any new interrupt request signal. If an
interrupt occurs during this time, it generally remains pending and will be checked
by the processor after the processor has reenabled interrupts. Thus, if an interrupt
occurs when a user program is executing, then interrupts are disabled immediately.
After the interrupt-handler routine completes, interrupts are reenabled before
resuming the user program, and the processor checks to see if additional interrupts
have occurred. This approach is simple, as interrupts are handled in strict sequential
order (Figure 1.12a).

Interrupt
User program handler X

/

\

L

=
E —
= Interrupt
= handler Y
= ~_
- ~C
(a) Sequential interrupt processing
Interrupt
User program handler X
/ 7=
\\:
Interrupt
handler Y

4IIIIIIIIII’

(b) Nested interrupt processing

Figure 1.12 Transfer of Control with Multiple Interrupts

1.4 / INTERRUPTS 23

The drawback to the preceding approach is that it does not take into account
relative priority or time-critical needs. For example, when input arrives from the
communications line, it may need to be absorbed rapidly to make room for more
input. If the first batch of input has not been processed before the second batch
arrives, data may be lost because the buffer on the I/O device may fill and overflow.

A second approach is to define priorities for interrupts and to allow an inter-
rupt of higher priority to cause a lower-priority interrupt handler to be interrupted
(Figure 1.12b). As an example of this second approach, consider a system with three
I/O devices: a printer, a disk, and a communications line, with increasing priorities of
2,4, and 5, respectively. Figure 1.13, based on an example in [TANEO6], illustrates
a possible sequence. A user program begins at t = 0. At t = 10, a printer interrupt
occurs; user information is placed on the control stack and execution continues at
the printer interrupt service routine (ISR). While this routine is still executing, at
t = 15 a communications interrupt occurs. Because the communications line has
higher priority than the printer, the interrupt request is honored. The printer ISR is
interrupted, its state is pushed onto the stack, and execution continues at the com-
munications ISR. While this routine is executing, a disk interrupt occurs (¢ = 20).
Because this interrupt is of lower priority, it is simply held, and the communications
ISR runs to completion.

When the communications ISR is complete (z = 25), the previous processor
state is restored, which is the execution of the printer ISR. However, before even a
single instruction in that routine can be executed, the processor honors the higher-
priority disk interrupt and transfers control to the disk ISR. Only when that routine
is complete (¢t = 35) is the printer ISR resumed. When that routine completes
(t = 40), control finally returns to the user program.

Printer Communication
User program
interrupt service routine interrupt service routine
—t =0 — /_
- - 5 -
— Q — N > —
— 3 — —
=/ = | -
— — —
\ —)
s - Sos g DK
0 - interrupt service routine
SN .

Figure 1.13 Example Time Sequence of Multiple Interrupts

24 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

1.5 THE MEMORY HIERARCHY

The design constraints on a computer’s memory can be summed up by three ques-
tions: How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there,
applications will likely be developed to use it. The question of how fast is, in a sense,
easier to answer. To achieve greatest performance, the memory must be able to
keep up with the processor. That is, as the processor is executing instructions, we
would not want it to have to pause waiting for instructions or operands. The final
question must also be considered. For a practical system, the cost of memory must
be reasonable in relationship to other components.

As might be expected, there is a trade-off among the three key characteristics
of memory: namely, capacity, access time, and cost. A variety of technologies are
used to implement memory systems, and across this spectrum of technologies, the
following relationships hold:

e Faster access time, greater cost per bit
e Greater capacity, smaller cost per bit
e Greater capacity, slower access speed

The dilemma facing the designer is clear. The designer would like to use
memory technologies that provide for large-capacity memory, both because the
capacity is needed and because the cost per bit is low. However, to meet perform-
ance requirements, the designer needs to use expensive, relatively lower-capacity
memories with fast access times.

The way out of this dilemma is to not rely on a single memory component or
technology, but to employ a memory hierarchy. A typical hierarchy is illustrated in
Figure 1.14. As one goes down the hierarchy, the following occur:

a. Decreasing cost per bit
b. Increasing capacity
c. Increasing access time

d. Decreasing frequency of access to the memory by the processor

Thus, smaller, more expensive, faster memories are supplemented by larger,
cheaper, slower memories. The key to the success of this organization is the decreas-
ing frequency of access at lower levels. We will examine this concept in greater
detail later in this chapter, when we discuss the cache, and when we discuss virtual
memory later in this book. A brief explanation is provided at this point.

Suppose that the processor has access to two levels of memory. Level 1 con-
tains 1,000 bytes and has an access time of 0.1 ps; level 2 contains 100,000 bytes and
has an access time of 1 pus. Assume that if a byte to be accessed is in level 1, then
the processor accesses it directly. If it is in level 2, then the byte is first transferred
to level 1 and then accessed by the processor. For simplicity, we ignore the time
required for the processor to determine whether the byte is in level 1 or level 2.

1.5 / THE MEMORY HIERARCHY 25

Figure 1.14 The Memory Hierarchy

Figure 1.15 shows the general shape of the curve that models this situation. The
figure shows the average access time to a two-level memory as a function of the hit
ratio H, where H is defined as the fraction of all memory accesses that are found
in the faster memory (e.g., the cache), T} is the access time to level 1, and 75 is the
access time to level 2.* As can be seen, for high percentages of level 1 access, the
average total access time is much closer to that of level 1 than that of level 2.

In our example, suppose 95% of the memory accesses are found in the cache
(H = 0.95). Then the average time to access a byte can be expressed as

(0.95) (0.1 us) + (0.05) (0.1 ps + 1 ps) = 0.095 + 0.055 = 0.15 ps

The result is close to the access time of the faster memory. So the strategy
of using two memory levels works in principle, but only if conditions (a) through
(d) in the preceding list apply. By employing a variety of technologies, a spectrum of

4If the accessed word is found in the faster memory, that is defined as a hit. A miss occurs if the accessed
word is not found in the faster memory.

26 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

T, + T,

T, —

Average access time

|
0 1

Fraction of accesses involving only level 1 (Hit ratio)

Figure 1.15 Performance of a Simple Two-Level
Memory

memory systems exists that satisfies conditions (a) through (c). Fortunately, condi-
tion (d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of
reference [DENNG68]. During the course of execution of a program, memory refer-
ences by the processor, for both instructions and data, tend to cluster. Programs
typically contain a number of iterative loops and subroutines. Once a loop or subrou-
tine is entered, there are repeated references to a small set of instructions. Similarly,
operations on tables and arrays involve access to a clustered set of data bytes. Over
a long period of time, the clusters in use change, but over a short period of time, the
processor is primarily working with fixed clusters of memory references.

Accordingly, it is possible to organize data across the hierarchy such that the
percentage of accesses to each successively lower level is substantially less than that of
the level above. Consider the two-level example already presented. Let level 2 mem-
ory contain all program instructions and data. The current clusters can be temporarily
placed in level 1. From time to time, one of the clusters in level 1 will have to be
swapped back to level 2 to make room for a new cluster coming in to level 1. On aver-
age, however, most references will be to instructions and data contained in level 1.

This principle can be applied across more than two levels of memory. The
fastest, smallest, and most expensive type of memory consists of the registers inter-
nal to the processor. Typically, a processor will contain a few dozen such registers,
although some processors contain hundreds of registers. Skipping down two levels,
main memory is the principal internal memory system of the computer. Each loca-
tion in main memory has a unique address, and most machine instructions refer
to one or more main memory addresses. Main memory is usually extended with a
higher-speed, smaller cache. The cache is not usually visible to the programmer or,
indeed, to the processor. It is a device for staging the movement of data between
main memory and processor registers to improve performance.

1.6 / CACHE MEMORY 27

The three forms of memory just described are, typically, volatile and employ
semiconductor technology. The use of three levels exploits the fact that semicon-
ductor memory comes in a variety of types, which differ in speed and cost. Data are
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable disk, tape, and optical
storage. External, nonvolatile memory is also referred to as secondary memory or
auxiliary memory. These are used to store program and data files, and are usually
visible to the programmer only in terms of files and records, as opposed to individ-
ual bytes or words. A hard disk is also used to provide an extension to main memory
known as virtual memory, which is discussed in Chapter 8.

Additional levels can be effectively added to the hierarchy in software. For
example, a portion of main memory can be used as a buffer to temporarily hold data
that are to be read out to disk. Such a technique, sometimes referred to as a disk
cache (examined in detail in Chapter 11), improves performance in two ways:

e Disk writes are clustered. Instead of many small transfers of data, we have a
few large transfers of data. This improves disk performance and minimizes
processor involvement.

e Some data destined for write-out may be referenced by a program before the
next dump to disk. In that case, the data are retrieved rapidly from the soft-
ware cache rather than slowly from the disk.

Appendix 1A examines the performance implications of multilevel memory
structures.

1.6 CACHE MEMORY

Although cache memory is invisible to the OS, it interacts with other memory man-
agement hardware. Furthermore, many of the principles used in virtual memory
schemes (discussed in Chapter 8) are also applied in cache memory.

Motivation

On all instruction cycles, the processor accesses memory at least once, to fetch
the instruction, and often one or more additional times, to fetch operands and/
or store results. The rate at which the processor can execute instructions is clearly
limited by the memory cycle time (the time it takes to read one word from or write
one word to memory). This limitation has been a significant problem because of
the persistent mismatch between processor and main memory speeds: Over the
years, processor speed has consistently increased more rapidly than memory access
speed. We are faced with a trade-off among speed, cost, and size. Ideally, main
memory should be built with the same technology as that of the processor registers,
giving memory cycle times comparable to processor cycle times. This has always
been too expensive a strategy. The solution is to exploit the principle of locality by
providing a small, fast memory between the processor and main memory, namely
the cache.

28 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Block transfer

Word transfer P N—
/_/H
CPU Cache Main memory
Fast Slow

(a) Single cache

Level 1 Level 2 Level 3 Main

ey (L1) cache (L2) cache (L3) cache memory

Fastest Fast Less Slow
fast

(b) Three-level cache organization

Figure 1.16 Cache and Main Memory

Cache Principles

Cache memory is intended to provide memory access time approaching that of the
fastest memories available and at the same time support a large memory size that has
the price of less expensive types of semiconductor memories. The concept is illus-
trated in Figure 1.16a. There is a relatively large and slow main memory together
with a smaller, faster cache memory. The cache contains a copy of a portion of main
memory. When the processor attempts to read a byte or word of memory, a check
is made to determine if the byte or word is in the cache. If so, the byte or word is
delivered to the processor. If not, a block of main memory, consisting of some fixed
number of bytes, is read into the cache and then the byte or word is delivered to
the processor. Because of the phenomenon of locality of reference, when a block of
data is fetched into the cache to satisfy a single memory reference, it is likely that
many of the near-future memory references will be to other bytes in the block.

Figure 1.16b depicts the use of multiple levels of cache. The L2 cache is slower
and typically larger than the L1 cache, and the L3 cache is slower and typically
larger than the L2 cache.

Figure 1.17 depicts the structure of a cache/main memory system. Main mem-
ory consists of up to 2" addressable words, with each word having a unique n-bit
address. For mapping purposes, this memory is considered to consist of a number of
fixed-length blocks of K words each. That is, there are M = 2"/K blocks. Cache con-
sists of C slots (also referred to as lines) of K words each, and the number of slots is
considerably less than the number of main memory blocks (C<<M).> Some subset
of the blocks of main memory resides in the slots of the cache. If a word in a block

>The symbol << means much less than. Similarly, the symbol >> means much greater than.

1.6 / CACHE MEMORY 29

Line Memory
number Tag Block address
0 0
1 1
2 2 Block
. 3 (K words)
L]
o
c—1
Block length
(K words) ®
[]
(a) Cache A
Block
2" —1
Word
length
(b) Main memory

Figure 1.17 Cache/Main-Memory Structure

of memory that is not in the cache is read, that block is transferred to one of the
slots of the cache. Because there are more blocks than slots, an individual slot can-
not be uniquely and permanently dedicated to a particular block. Therefore, each
slot includes a tag that identifies which particular block is currently being stored.
The tag is usually some number of higher-order bits of the address and refers to all
addresses that begin with that sequence of bits.

As a simple example, suppose that we have a 6-bit address and a 2-bit tag. The
tag 01 refers to the block of locations with the following addresses: 010000, 010001,
010010, 010011, 010100, 010101, 010110, 010111, 011000, 011001, 011010, 011011,
011100, 011101, 011110, 011111.

Figure 1.18 illustrates the read operation. The processor generates the address,
RA, of a word to be read. If the word is contained in the cache, it is delivered to the
processor. Otherwise, the block containing that word is loaded into the cache and
the word is delivered to the processor.

Cache Design

A detailed discussion of cache design is beyond the scope of this book. Key
elements are briefly summarized here. We will see that similar design issues must be

30 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

(START)

RA—read address

Receive address
RA from CPU

Is block No Access main
containing RA memory for block
in cache? containing RA

Yes

Fetch RA word Allocate cache

and deliver slot for main

to CPU memory block
Lozl morim Deliver RA word
memory block
. to CPU
into cache slot

DONE

Figure 1.18 Cache Read Operation

addressed in dealing with virtual memory and disk cache design. They fall into the
following categories:

e Cache size

e Block size

e Mapping function

e Replacement algorithm
e Write policy

e Number of cache levels

We have already dealt with the issue of cache size. It turns out that reason-
ably small caches can have a significant impact on performance. Another size issue
is that of block size: the unit of data exchanged between cache and main memory.
As the block size increases from very small to larger sizes, the hit ratio will at first
increase because of the principle of locality: the high probability that data in the
vicinity of a referenced word are likely to be referenced in the near future. As the

1.7 / DIRECT MEMORY ACCESS 31

block size increases, more useful data are brought into the cache. The hit ratio will
begin to decrease, however, as the block becomes even bigger and the probability of
using the newly fetched data becomes less than the probability of reusing the data
that have to be moved out of the cache to make room for the new block.

When a new block of data is read into the cache, the mapping function deter-
mines which cache location the block will occupy. Two constraints affect the design
of the mapping function. First, when one block is read in, another may have to be
replaced. We would like to do this in such a way as to minimize the probability that
we will replace a block that will be needed in the near future. The more flexible the
mapping function, the more scope we have to design a replacement algorithm to
maximize the hit ratio. Second, the more flexible the mapping function, the more
complex is the circuitry required to search the cache to determine if a given block
is in the cache.

The replacement algorithm chooses, within the constraints of the mapping
function, which block to replace when a new block is to be loaded into the cache and
the cache already has all slots filled with other blocks. We would like to replace the
block that is least likely to be needed again in the near future. Although it is impos-
sible to identify such a block, a reasonably effective strategy is to replace the block
that has been in the cache longest with no reference to it. This policy is referred to
as the least-recently-used (LRU) algorithm. Hardware mechanisms are needed to
identify the least-recently-used block.

If the contents of a block in the cache are altered, then it is necessary to write it
back to main memory before replacing it. The write policy dictates when the mem-
ory write operation takes place. At one extreme, the writing can occur every time
that the block is updated. At the other extreme, the writing occurs only when the
block is replaced. The latter policy minimizes memory write operations but leaves
main memory in an obsolete state. This can interfere with multiple-processor opera-
tion and with direct memory access by I/O hardware modules.

Finally, it is now commonplace to have multiple levels of cache, labeled L1
(cache closest to the processor), L2, and in many cases a third level L3. A discus-
sion of the performance benefits of multiple cache levels is beyond our scope; see
[STAL10] for a discussion.

1.7 DIRECT MEMORY ACCESS

Three techniques are possible for I/O operations: programmed I/O, interrupt-driven
I/0, and direct memory access (DMA). Before discussing DMA, we briefly define
the other two techniques; see Appendix C for more detail.

When the processor is executing a program and encounters an instruction
relating to I/0, it executes that instruction by issuing a command to the appro-
priate I/O module. In the case of programmed I/O, the I/O module performs the
requested action and then sets the appropriate bits in the I/O status register but
takes no further action to alert the processor. In particular, it does not interrupt the
processor. Thus, after the I/O instruction is invoked, the processor must take some
active role in determining when the I/O instruction is completed. For this purpose,

32 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

the processor periodically checks the status of the I/O module until it finds that the
operation is complete.

With programmed I/O, the processor has to wait a long time for the I/O mod-
ule of concern to be ready for either reception or transmission of more data. The
processor, while waiting, must repeatedly interrogate the status of the I/O module.
As a result, the performance level of the entire system is severely degraded.

An alternative, known as interrupt-driven 1/0, is for the processor to issue
an I/O command to a module and then go on to do some other useful work. The
I/O module will then interrupt the processor to request service when it is ready to
exchange data with the processor. The processor then executes the data transfer, as
before, and then resumes its former processing.

Interrupt-driven I/O, though more efficient than simple programmed I/O, still
requires the active intervention of the processor to transfer data between memory
and an I/O module, and any data transfer must traverse a path through the proces-
sor. Thus, both of these forms of I/O suffer from two inherent drawbacks:

1. The I/O transfer rate is limited by the speed with which the processor can test
and service a device.

2. The processor is tied up in managing an I/O transfer; a number of instructions
must be executed for each I/O transfer.

When large volumes of data are to be moved, a more efficient technique is
required: direct memory access (DMA). The DMA function can be performed by
a separate module on the system bus or it can be incorporated into an I/O module.
In either case, the technique works as follows. When the processor wishes to read
or write a block of data, it issues a command to the DMA module, by sending to the
DMA module the following information:

e Whether a read or write is requested
e The address of the I/O device involved
e The starting location in memory to read data from or write data to

e The number of words to be read or written

The processor then continues with other work. It has delegated this I/O opera-
tion to the DMA module, and that module will take care of it. The DMA module
transfers the entire block of data, one word at a time, directly to or from memory
without going through the processor. When the transfer is complete, the DMA
module sends an interrupt signal to the processor. Thus, the processor is involved
only at the beginning and end of the transfer.

The DMA module needs to take control of the bus to transfer data to and from
memory. Because of this competition for bus usage, there may be times when the
processor needs the bus and must wait for the DM A module. Note that this is not
an interrupt; the processor does not save a context and do something else. Rather,
the processor pauses for one bus cycle (the time it takes to transfer one word across
the bus). The overall effect is to cause the processor to execute more slowly during
a DMA transfer when processor access to the bus is required. Nevertheless, for a
multiple-word I/O transfer, DMA is far more efficient than interrupt-driven or
programmed 1/O.

1.8 / MULTIPROCESSOR AND MULTICORE ORGANIZATION 33

1.8 MULTIPROCESSOR AND MULTICORE ORGANIZATION

Traditionally, the computer has been viewed as a sequential machine. Most com-
puter programming languages require the programmer to specify algorithms as
sequences of instructions. A processor executes programs by executing machine
instructions in sequence and one at a time. Each instruction is executed in a sequence
of operations (fetch instruction, fetch operands, perform operation, store results).

This view of the computer has never been entirely true. At the micro-operation
level, multiple control signals are generated at the same time. Instruction pipelining,
at least to the extent of overlapping fetch and execute operations, has been around
for a long time. Both of these are examples of performing functions in parallel.

As computer technology has evolved and as the cost of computer hardware
has dropped, computer designers have sought more and more opportunities for par-
allelism, usually to improve performance and, in some cases, to improve reliability.
In this book, we examine the three most popular approaches to providing parallel-
ism by replicating processors: symmetric multiprocessors (SMPs), multicore com-
puters, and clusters. SMPs and multicore computers are discussed in this section;
clusters are examined in Chapter 16.

Symmetric Multiprocessors

DEFINITION An SMP can be defined as a stand-alone computer system with the
following characteristics:

1. There are two or more similar processors of comparable capability.

2. These processors share the same main memory and I/O facilities and are inter-
connected by a bus or other internal connection scheme, such that memory
access time is approximately the same for each processor.

3. All processors share access to I/O devices, either through the same channels
or through different channels that provide paths to the same device.

4. All processors can perform the same functions (hence the term symmetric).

5. The system is controlled by an integrated operating system that provides
interaction between processors and their programs at the job, task, file, and
data element levels.

Points 1 to 4 should be self-explanatory. Point 5 illustrates one of the contrasts
with a loosely coupled multiprocessing system, such as a cluster. In the latter, the
physical unit of interaction is usually a message or complete file. In an SMP, indi-
vidual data elements can constitute the level of interaction, and there can be a high
degree of cooperation between processes.

An SMP organization has a number of potential advantages over a uniproces-
sor organization, including the following:

e Performance: If the work to be done by a computer can be organized so that
some portions of the work can be done in parallel, then a system with multiple
processors will yield greater performance than one with a single processor of
the same type.

34 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

e Availability: In a symmetric multiprocessor, because all processors can per-
form the same functions, the failure of a single processor does not halt the
machine. Instead, the system can continue to function at reduced performance.

e Incremental growth: A user can enhance the performance of a system by
adding an additional processor.

¢ Scaling: Vendors can offer a range of products with different price and
performance characteristics based on the number of processors configured in
the system.

It is important to note that these are potential, rather than guaranteed, benefits.
The operating system must provide tools and functions to exploit the parallelism in
an SMP system.

An attractive feature of an SMP is that the existence of multiple processors is
transparent to the user. The operating system takes care of scheduling of tasks on
individual processors and of synchronization among processors.

ORGANIZATION Figure 1.19 illustrates the general organization of an SMP. There
are multiple processors, each of which contains its own control unit, arithmetic-
logic unit, and registers. Each processor has access to a shared main memory and
the I/0 devices through some form of interconnection mechanism; a shared bus
is a common facility. The processors can communicate with each other through
memory (messages and status information left in shared address spaces). It may

Processor Processor Processor

L1 cache L1 cache L1 cache
L2 cache L2 cache L2 cache

System bus

. /0

L o adapter
memory
subsystem

/0
adapter

/0
adapter

Figure 1.19 Symmetric Multiprocessor Organization

1.8 / MULTIPROCESSOR AND MULTICORE ORGANIZATION 35

also be possible for processors to exchange signals directly. The memory is often
organized so that multiple simultaneous accesses to separate blocks of memory are
possible.

In modern computers, processors generally have at least one level of cache
memory that is private to the processor. This use of cache introduces some new
design considerations. Because each local cache contains an image of a portion of
main memory, if a word is altered in one cache, it could conceivably invalidate a
word in another cache. To prevent this, the other processors must be alerted that an
update has taken place. This problem is known as the cache coherence problem and
is typically addressed in hardware rather than by the 0S.°

Multicore Computers

A multicore computer, also known as a chip multiprocessor, combines two or more
processors (called cores) on a single piece of silicon (called a die). Typically, each
core consists of all of the components of an independent processor, such as registers,
ALU, pipeline hardware, and control unit, plus L1 instruction and data caches. In
addition to the multiple cores, contemporary multicore chips also include L2 cache
and, in some cases, .3 cache.

The motivation for the development of multicore computers can be summed
up as follows. For decades, microprocessor systems have experienced a steady, usu-
ally exponential, increase in performance. This is partly due to hardware trends,
such as an increase in clock frequency and the ability to put cache memory closer
to the processor because of the increasing miniaturization of microcomputer
components. Performance has also been improved by the increased complexity of
processor design to exploit parallelism in instruction execution and memory access.
In brief, designers have come up against practical limits in the ability to achieve
greater performance by means of more complex processors. Designers have found
that the best way to improve performance to take advantage of advances in hard-
ware is to put multiple processors and a substantial amount of cache memory on a
single chip. A detailed discussion of the rationale for this trend is beyond our scope,
but is summarized in Appendix C.

An example of a multicore system is the Intel Core 17, which includes four x86
processors, each with a dedicated L2 cache, and with a shared L3 cache (Figure 1.20).
One mechanism Intel uses to make its caches more effective is prefetching, in which
the hardware examines memory access patterns and attempts to fill the caches spec-
ulatively with data that’s likely to be requested soon.

The Core i7 chip supports two forms of external communications to other
chips. The DDR3 memory controller brings the memory controller for the DDR
(double data rate) main memory onto the chip. The interface supports three chan-
nels that are 8 bytes wide for a total bus width of 192 bits, for an aggregate data
rate of up to 32 GB/s. With the memory controller on the chip, the Front Side Bus
is eliminated. The QuickPath Interconnect (QPI) is a point-to-point link electri-
cal interconnect specification. It enables high-speed communications among con-
nected processor chips. The QPI link operates at 6.4 GT/s (transfers per second).

oA description of hardware-based cache coherency schemes is provided in [STAL10].

36 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Core 0 Core 1 Core 2 Core 3
32 kB I&D 32 kB I&D 32 kB I&D 32 kB I&D
L1 caches L1 caches L1 caches L1 caches

256 kB 256 kB 256 kB 256 kB

L2 cache L2 cache L2 cache L2 cache
8 MB
L3 cache
DDR3 memory Quickpath
controllers interconnect

3x8B @ 1.33 GT/s

4x20b @ 6.4 GT/s

Figure 1.20 Intel Core i7 Block Diagram

At 16 bits per transfer, that adds up to 12.8 GB/s; and since QPI links involve dedi-

cated bidirectional pairs, the total bandwidth is 25.6 GB/s.

1.9 RECOMMENDED READING AND WEB SITES

[STALI10] covers the topics of this chapter in detail. In addition, there are many other
texts on computer organization and architecture. Among the more worthwhile texts
are the following. [PATT09] is a comprehensive survey; [HENNO7], by the same
authors, is a more advanced text that emphasizes quantitative aspects of design.
[DENNO5] looks at the history of the development and application of the

locality principle, making for fascinating reading.

DENNOS Denning, P. “The Locality Principle.” Communications of the ACM, July 2005.
HENNO7 Hennessy, J., and Patterson, D. Computer Architecture: A Quantitative
Approach. San Mateo, CA: Morgan Kaufmann, 2007.
PATTO09 Patterson, D., and Hennessy, J. Computer Organization and Design: The
Hardware/Software Interface. San Mateo, CA: Morgan Kaufmann, 2009.
STAL10 Stallings, W. Computer Organization and Architecture, 8th ed. Upper Saddle
River, NJ: Prentice Hall, 2010.

Recommended Web sites:

* WWW Computer Architecture Home Page: A comprehensive index to information
relevant to computer architecture researchers, including architecture groups and proj-
ects, technical organizations, literature, employment, and commercial information

e CPU Info Center: Information on specific processors, including technical papers, prod-

uct information, and latest announcements

1.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 37

1.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
address register instruction register program counter
cache memory interrupt programmed /O
cache slot interrupt-driven I/O reentrant procedure
central processing unit I/O module register
data register locality secondary memory
direct memory access main memory spatial locality
hit ratio multicore stack
input/output multiprocessor system bus
instruction processor temporal locality
instruction cycle

Review Questions

1.1. List and briefly define the four main elements of a computer.

1.2. Define the two main categories of processor registers.

1.3. In general terms, what are the four distinct actions that a machine instruction can
specify?

1.4. What is an interrupt?

1.5. How are multiple interrupts dealt with?

1.6. 'What characteristics distinguish the various elements of a memory hierarchy?

1.7. What is cache memory?

1.8. What is the difference between a multiprocessor and a multicore system?

1.9. What is the distinction between spatial locality and temporal locality?

1.10. In general, what are the strategies for exploiting spatial locality and temporal locality?
Problems
1.1. Suppose the hypothetical processor of Figure 1.3 also has two I/O instructions:
0011 = Load AC from I/O
0111 = Store AC to I/O

In these cases, the 12-bit address identifies a particular external device. Show the pro-
gram execution (using format of Figure 1.4) for the following program:
1. Load AC from device 5.
2. Add contents of memory location 940.
3. Store AC to device 6.
Assume that the next value retrieved from device 5 is 3 and that location 940 contains
a value of 2.

1.2. The program execution of Figure 1.4 is described in the text using six steps. Expand
this description to show the use of the MAR and MBR.

1.3. Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of

two fields. The first byte contains the opcode and the remainder an immediate oper-
and or an operand address.

38 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

14.

1.5.

1.6.

1.7.

1.8.

1.9.

a. What is the maximum directly addressable memory capacity (in bytes)?
b. Discuss the impact on the system speed if the microprocessor bus has
1. a32-bit local address bus and a 16-bit local data bus, or
2. a16-bit local address bus and a 16-bit local data bus.
¢. How many bits are needed for the program counter and the instruction register?

Consider a hypothetical microprocessor generating a 16-bit address (e.g., assume that
the program counter and the address registers are 16 bits wide) and having a 16-bit
data bus.

a. Whatis the maximum memory address space that the processor can access directly
if it is connected to a “16-bit memory”?

b. What is the maximum memory address space that the processor can access directly
if it is connected to an “8-bit memory”?

¢. What architectural features will allow this microprocessor to access a separate
“I/O space”?

d. If an input and an output instruction can specify an 8-bit I/O port number, how
many 8-bit I/O ports can the microprocessor support? How many 16-bit I/O ports?
Explain.

Consider a 32-bit microprocessor, with a 16-bit external data bus, driven by an 8-MHz
input clock. Assume that this microprocessor has a bus cycle whose minimum dura-
tion equals four input clock cycles. What is the maximum data transfer rate across
the bus that this microprocessor can sustain in bytes/s? To increase its performance,
would it be better to make its external data bus 32 bits or to double the external clock
frequency supplied to the microprocessor? State any other assumptions you make and
explain. Hint: Determine the number of bytes that can be transferred per bus cycle.

Consider a computer system that contains an I/O module controlling a simple
keyboard/printer Teletype. The following registers are contained in the CPU and con-
nected directly to the system bus:

INPR: Input Register, 8 bits

OUTR: Output Register, 8 bits

FGI: Input Flag, 1 bit

FGO: Output Flag, 1 bit

IEN: Interrupt Enable, 1 bit

Keystroke input from the Teletype and output to the printer are controlled by the I/O

module. The Teletype is able to encode an alphanumeric symbol to an 8-bit word and

decode an 8-bit word into an alphanumeric symbol. The Input flag is set when an 8-bit

word enters the input register from the Teletype. The Output flag is set when a word

is printed.

a. Describe how the CPU, using the first four registers listed in this problem, can
achieve I/0O with the Teletype.

b. Describe how the function can be performed more efficiently by also employing
IEN.

In virtually all systems that include DMA modules, DMA access to main memory is
given higher priority than processor access to main memory. Why?

A DMA module is transferring characters to main memory from an external device
transmitting at 9600 bits per second (bps). The processor can fetch instructions at the
rate of 1 million instructions per second. By how much will the processor be slowed
down due to the DMA activity?

A computer consists of a CPU and an I/O device D connected to main memory M via
a shared bus with a data bus width of one word. The CPU can execute a maximum
of 106 instructions per second. An average instruction requires five processor cycles,
three of which use the memory bus. A memory read or write operation uses one
processor cycle. Suppose that the CPU is continuously executing “background” pro-
grams that require 95% of its instruction execution rate but not any I/O instructions.

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 39

Assume that one processor cycle equals one bus cycle. Now suppose that very large

blocks of data are to be transferred between M and D.

a. If programmed I/O is used and each one-word I/O transfer requires the CPU to
execute two instructions, estimate the maximum I/O data transfer rate, in words
per second, possible through D.

b. Estimate the same rate if DMA transfer is used.

1.10. Consider the following code:
for (i = 0;1 < 20;i++)
for (j = 0;j < 10;j++)
ali] = a[i] *j
a. Give one example of the spatial locality in the code.
b. Give one example of the temporal locality in the code.
1.11. Generalize Equations (1.1) and (1.2) in Appendix 1A to n-level memory hierarchies.
1.12. Consider a memory system with the following parameters:

Tc =100ns Cc = 0.01 cents/bit
Tm =1200ns Cm = 0.001 cents/bit

a. What is the cost of 1 MByte of main memory?

b. What is the cost of 1 MByte of main memory using cache memory technology?

c. If the effective access time is 10% greater than the cache access time, what is the
hit ratio H?

1.13. A computer has a cache, main memory, and a disk used for virtual memory. If a refer-
enced word is in the cache, 20 ns are required to access it. If it is in main memory but
not in the cache, 60 ns are needed to load it into the cache (this includes the time to
originally check the cache), and then the reference is started again. If the word is not
in main memory, 12 ms are required to fetch the word from disk, followed by 60 ns to
copy it to the cache, and then the reference is started again. The cache hit ratio is 0.9
and the main-memory hit ratio is 0.6. What is the average time in ns required to access
a referenced word on this system?

1.14. Suppose a stack is to be used by the processor to manage procedure calls and returns.
Can the program counter be eliminated by using the top of the stack as a program
counter?

APPENDIX 1A PERFORMANCE CHARACTERISTICS

OF TWO-LEVEL MEMORIES

In this chapter, reference is made to a cache that acts as a buffer between main
memory and processor, creating a two-level internal memory. This two-level archi-
tecture exploits a property known as locality to provide improved performance over
a comparable one-level memory.

The main memory cache mechanism is part of the computer architecture,
implemented in hardware and typically invisible to the OS. Accordingly, this
mechanism is not pursued in this book. However, there are two other instances
of a two-level memory approach that also exploit the property of locality and that
are, at least partially, implemented in the OS: virtual memory and the disk cache
(Table 1.2). These two topics are explored in Chapters 8 and 11, respectively. In this
appendix, we look at some of the performance characteristics of two-level memo-
ries that are common to all three approaches.

40 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Table 1.2 Characteristics of Two-Level Memories

system
Typical block size

Access of processor to
second level

special hardware
4 to 128 bytes

Direct access

and system software
64 to 4096 bytes

Indirect access

Main Memory Virtual Memory
Cache (Paging) Disk Cache
Typical access time ratios 5:1 10 1 100: 1
Memory management Implemented by Combination of hardware System software

64 to 4096 bytes

Indirect access

Locality

The basis for the performance advantage of a two-level memory is the principle of
locality, referred to in Section 1.5.This principle states that memory references tend
to cluster. Over a long period of time, the clusters in use change; but over a short
period of time, the processor is primarily working with fixed clusters of memory
references.

Intuitively, the principle of locality makes sense. Consider the following line
of reasoning:

1. Except for branch and call instructions, which constitute only a small fraction
of all program instructions, program execution is sequential. Hence, in most
cases, the next instruction to be fetched immediately follows the last instruc-
tion fetched.

2. It is rare to have a long uninterrupted sequence of procedure calls followed
by the corresponding sequence of returns. Rather, a program remains con-
fined to a rather narrow window of procedure-invocation depth. Thus, over
a short period of time references to instructions tend to be localized to a few
procedures.

3. Most iterative constructs consist of a relatively small number of instructions
repeated many times. For the duration of the iteration, computation is there-
fore confined to a small contiguous portion of a program.

4. In many programs, much of the computation involves processing data struc-
tures, such as arrays or sequences of records. In many cases, successive
references to these data structures will be to closely located data items.

This line of reasoning has been confirmed in many studies. With reference to
point (1), a variety of studies have analyzed the behavior of high-level language
programs. Table 1.3 includes key results, measuring the appearance of various
statement types during execution, from the following studies. The earliest study of
programming language behavior, performed by Knuth [KNUT71], examined a col-
lection of FORTRAN programs used as student exercises. Tanenbaum [TANE7§]
published measurements collected from over 300 procedures used in OS programs
and written in a language that supports structured programming (SAL). Patterson
and Sequin [PATTS2] analyzed a set of measurements taken from compilers
and programs for typesetting, computer-aided design (CAD), sorting, and file

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 41

Table 1.3 Relative Dynamic Frequency of High-Level Language Operations

Study [HUCKS3] [KNUT71] [PATTS2] [TANE78]
Language Pascal FORTRAN Pascal C SAL
Workload Scientific Student System System System

Assign
Loop
Call

IF
GOTO
Other

74 67 45 38 42
4 3 5 3 4
1 3 15 12 12

20 11 29 43 36
2 9 — 3 -

— 7 6 1 6

Return

Call

comparison. The programming languages C and Pascal were studied. Huck
[HUCKSS3] analyzed four programs intended to represent a mix of general-purpose
scientific computing, including fast Fourier transform and the integration of systems
of differential equations. There is good agreement in the results of this mixture of
languages and applications that branching and call instructions represent only a
fraction of statements executed during the lifetime of a program. Thus, these
studies confirm assertion (1), from the preceding list.

With respect to assertion (2), studies reported in [PATTS85] provide confirma-
tion. This is illustrated in Figure 1.21, which shows call-return behavior. Each call is
represented by the line moving down and to the right, and each return by the line
moving up and to the right. In the figure, a window with depth equal to 5 is defined.
Only a sequence of calls and returns with a net movement of 6 in either direction
causes the window to move. As can be seen, the executing program can remain
within a stationary window for long periods of time. A study by the same analysts of
C and Pascal programs showed that a window of depth 8 would only need to shift on
less than 1% of the calls or returns [TAMIS3].

Time
(in units of calls/returns)

Nesting

depth

Figure 1.21 Example Call-Return Behavior of a Program

42 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

A distinction is made in the literature between spatial locality and temporal
locality. Spatial locality refers to the tendency of execution to involve a number of
memory locations that are clustered. This reflects the tendency of a processor to
access instructions sequentially. Spatial location also reflects the tendency of a pro-
gram to access data locations sequentially, such as when processing a table of data.
Temporal locality refers to the tendency for a processor to access memory locations
that have been used recently. For example, when an iteration loop is executed, the
processor executes the same set of instructions repeatedly.

Traditionally, temporal locality is exploited by keeping recently used
instruction and data values in cache memory and by exploiting a cache hierarchy.
Spatial locality is generally exploited by using larger cache blocks and by incor-
porating prefetching mechanisms (fetching items whose use is expected) into the
cache control logic. Recently, there has been considerable research on refining
these techniques to achieve greater performance, but the basic strategies remain
the same.

Operation of Two-Level Memory

The locality property can be exploited in the formation of a two-level memory. The
upper-level memory (M1) is smaller, faster, and more expensive (per bit) than the
lower-level memory (M2). M1 is used as a temporary store for part of the contents
of the larger M2. When a memory reference is made, an attempt is made to access
the item in M1. If this succeeds, then a quick access is made. If not, then a block of
memory locations is copied from M2 to M1 and the access then takes place via M1.
Because of locality, once a block is brought into M1, there should be a number of
accesses to locations in that block, resulting in fast overall service.

To express the average time to access an item, we must consider not only the
speeds of the two levels of memory but also the probability that a given reference
can be found in M1. We have

TS:HX T1+(1_H)X(T1+T2)
T\ +(1—-H)XT, (R}
where

T, = average (system) access time

T, = access time of M1 (e.g., cache, disk cache)

T, = access time of M2 (e.g., main memory, disk)

H = hit ratio (fraction of time reference is found in M1)

Figure 1.15 shows average access time as a function of hit ratio. As can be
seen, for a high percentage of hits, the average total access time is much closer to
that of M1 than M2.

Performance

Let us look at some of the parameters relevant to an assessment of a two-level
memory mechanism. First consider cost. We have

G5+ G5,

C
s S, + S,

(1.2)

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 43

where

C, = average cost per bit for the combined two-level memory

C; = average cost per bit of upper-level memory M1

C, = average cost per bit of lower-level memory M2

Sy = size of M1

S, = size of M2
We would like Cy = C,. Given that C; >> C,, this requires §; << S,. Figure 1.22
shows the relationship.’

Next, consider access time. For a two-level memory to provide a significant
performance improvement, we need to have 7 approximately equal to 77 Ty = T7.
Given that Ty is much less than T, T, >> Ty, a hit ratio of close to 1 is needed.

So we would like M1 to be small to hold down cost, and large to improve the
hit ratio and therefore the performance. Is there a size of M1 that satisfies both
requirements to a reasonable extent? We can answer this question with a series of
subquestions:

e What value of hit ratio is needed to satisfy the performance requirement?
e What size of M1 will assure the needed hit ratio?

¢ Does this size satisfy the cost requirement?

1000 —
8_
8 7
6_
5
4_
3 (C4/Cy) = 1000
z_
)
= 100 —f
S]
172} -
g 4]
T 41
R 3
=
g - (C1/C,) = 100
5]
@
=
= 10 o
o) g:
~ 17
¢
4 (C,/C,) = 10
3
z—\&
1 T T III T T T T T T III T T T T T T T II
5678910 2 3 456789100 2 3 456781000

Relative size of two levels (S,/S;)

Figure 1.22 Relationship of Average Memory Cost to Relative Memory Size for a Two-Level
Memory

"Note that both axes use a log scale. A basic review of log scales is in the math refresher document at the
Computer Science Student Resource Site at ComputerScienceStudent.com.

44 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

To get at this, consider the quantity T/Ty, which is referred to as the access effi-
ciency. It is a measure of how close average access time (7y) is to M1 access time
(Ty). From Equation (1.1),
T 1
e ———— 1.3
% 1+(1-H)E -
L

In Figure 1.23, we plot 77/T; as a function of the hit ratio H, with the quantity 7,/7T
as a parameter. A hit ratio in the range of 0.8 to 0.9 would seem to be needed to
satisfy the performance requirement.

We can now phrase the question about relative memory size more exactly. Is
a hit ratio of 0.8 or higher reasonable for §; << S,? This will depend on a number
of factors, including the nature of the software being executed and the details of the
design of the two-level memory. The main determinant is, of course, the degree of
locality. Figure 1.24 suggests the effect of locality on the hit ratio. Clearly, if M1 is
the same size as M2, then the hit ratio will be 1.0: All of the items in M2 are always
stored also in M 1. Now suppose that there is no locality; that is, references are com-
pletely random. In that case the hit ratio should be a strictly linear function of the
relative memory size. For example, if M1 is half the size of M2, then at any time half
of the items from M2 are also in M1 and the hit ratio will be 0.5. In practice, how-
ever, there is some degree of locality in the references. The effects of moderate and
strong locality are indicated in the figure.

So, if there is strong locality, it is possible to achieve high values of hit ratio
even with relatively small upper-level memory size. For example, numerous studies

¥ 01
&~]
] N
o)]
=
Z -
2
= i
@
2
g
& 0.01 E
0.001
0.0 0.2 04 0.6 0.8 1.0
Hit ratio = H

Figure 1.23 Access Efficiency as a Function of Hit Ratio (r = T»/Ty)

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 45

Hit ratio

1.0

0.8 —

0.6 —

Strong
locality

Moderate

locality
047 No locality
0.2 -
0.0 T T T T
0.0 0.2 0.4 0.6 0.8

Relative memory size (S;/S,)

Figure 1.24 Hit Ratio as a Function of Relative Memory Size

have shown that rather small cache sizes will yield a hit ratio above 0.75 regardless
of the size of main memory (e.g., [AGARS89], [PRZY88], [STRES3], and [SMIT82]).
A cache in the range of 1K to 128K words is generally adequate, whereas main
memory is now typically in the gigabyte range. When we consider virtual mem-
ory and disk cache, we will cite other studies that confirm the same phenomenon,
namely that a relatively small M1 yields a high value of hit ratio because of locality.

This brings us to the last question listed earlier: Does the relative size of the
two memories satisfy the cost requirement? The answer is clearly yes. If we need
only a relatively small upper-level memory to achieve good performance, then the
average cost per bit of the two levels of memory will approach that of the cheaper
lower-level memory.

OPERATING SYSTEM OVERVIEW

2.1

2.2

23

24

2.5

2.6

2.7

2.8

2.9

2.10

211

2.12

213
46

Operating System Objectives and Functions
The Operating System as a User/Computer Interface
The Operating System as Resource Manager
Ease of Evolution of an Operating System
The Evolution of Operating Systems
Serial Processing
Simple Batch Systems
Multiprogrammed Batch Systems
Time-Sharing Systems
Major Achievements
The Process
Memory Management
Information Protection and Security
Scheduling and Resource Management
Developments Leading to Modern Operating Systems
Virtual Machines

Virtual Machines and Virtualizing
Virtual Machine Architecture

OS Design Considerations for Multiprocessor and Multicore
Symmetric Multiprocessor OS Considerations
Multicore OS Considerations

Microsoft Windows Overview
History
The Modern OS
Architecture
Client/Server Model
Threads and SMP
Windows Objects
What Is New in Windows 7

Traditional Unix Systems
History
Description
Modern Unix Systems
System V Release 4 (SVR4)
BSD
Solaris 10
Linux
History
Modular Structure
Kernel Components

Linux Vserver Virtual Machine Architecture
Recommended Reading and Web Sites
Key Terms, Review Questions, and Problems

CHAPTER 2 / OPERATING SYSTEM OVERVIEW 47

Operating systems are those programs that interface the machine with
the applications programs. The main function of these systems is to
dynamically allocate the shared system resources to the executing
programs. As such, research in this area is clearly concerned with
the management and scheduling of memory, processes, and other
devices. But the interface with adjacent levels continues to shift with
time. Functions that were originally part of the operating system have
migrated to the hardware. On the other side, programmed functions
extraneous to the problems being solved by the application programs
are included in the operating system.

— WHAT CAN BE AUTOMATED?: THE COMPUTER SCIENCE AND
ENGINEERING RESEARCH STUDY, MIT PRESS, 1980

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Summarize, at a top level, the key functions of an operating system (OS).

Discuss the evolution of operating systems for early simple batch systems to
modern complex systems.

Give a brief explanation of each of the major achievements in OS research,
as defined in Section 2.3.

Discuss the key design areas that have been instrumental in the development
of modern operating systems.

Define and discuss virtual machines and virtualization

Understand the OS design issues raised by the introduction of multiprocessor
and multicore organization.

Understand the basic structure of Windows 7.

Describe the essential elements of a traditional UNIX system.
Explain the new features found in modern UNIX systems.
Discuss Linux and its relationship to UNIX.

We begin our study of operating systems (OSs) with a brief history. This history is
itself interesting and also serves the purpose of providing an overview of OS prin-
ciples. The first section examines the objectives and functions of operating systems.
Then we look at how operating systems have evolved from primitive batch systems
to sophisticated multitasking, multiuser systems. The remainder of the chapter looks
at the history and general characteristics of the two operating systems that serve as
examples throughout this book. All of the material in this chapter is covered in
greater depth later in the book.

48 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

2.1 OPERATING SYSTEM OBJECTIVES AND FUNCTIONS

An OS is a program that controls the execution of application programs and acts as
an interface between applications and the computer hardware. It can be thought of
as having three objectives:

* Convenience: An OS makes a computer more convenient to use.

e Efficiency: An OS allows the computer system resources to be used in an effi-
cient manner.

* Ability to evolve: An OS should be constructed in such a way as to permit the
effective development, testing, and introduction of new system functions with-
out interfering with service.

Let us examine these three aspects of an OS in turn.

The Operating System as a User/Computer Interface

The hardware and software used in providing applications to a user can be viewed
in a layered or hierarchical fashion, as depicted in Figure 2.1. The user of those
applications, the end user, generally is not concerned with the details of computer
hardware. Thus, the end user views a computer system in terms of a set of applica-
tions. An application can be expressed in a programming language and is developed
by an application programmer. If one were to develop an application program as a
set of machine instructions that is completely responsible for controlling the com-
puter hardware, one would be faced with an overwhelmingly complex undertaking.
To ease this chore, a set of system programs is provided. Some of these programs
are referred to as utilities, or library programs. These implement frequently used
functions that assist in program creation, the management of files, and the control of

L Application programs
Application PP prog
programming interface . .
Application Libraries/utilities Software
binary interface
Operating system
Instruction set
architecture
Execution hardware
Svystem i . Memory
ystem interconneci immdkiien
(bus) Hardware
1/0 devices Main
and memo
networking 1y

Figure 2.1 Computer Hardware and Software Structure

2.1 / OPERATING SYSTEM OBJECTIVES AND FUNCTIONS 49

I/O devices. A programmer will make use of these facilities in developing an appli-
cation, and the application, while it is running, will invoke the utilities to perform
certain functions. The most important collection of system programs comprises the
OS. The OS masks the details of the hardware from the programmer and provides
the programmer with a convenient interface for using the system. It acts as media-
tor, making it easier for the programmer and for application programs to access and
use those facilities and services.
Briefly, the OS typically provides services in the following areas:

¢ Program development: The OS provides a variety of facilities and services,
such as editors and debuggers, to assist the programmer in creating programs.
Typically, these services are in the form of utility programs that, while not
strictly part of the core of the OS, are supplied with the OS and are referred to
as application program development tools.

e Program execution: A number of steps need to be performed to execute a
program. Instructions and data must be loaded into main memory, I/O devices
and files must be initialized, and other resources must be prepared. The OS
handles these scheduling duties for the user.

e Access to I/0 devices: Each I/O device requires its own peculiar set of instruc-
tions or control signals for operation. The OS provides a uniform interface
that hides these details so that programmers can access such devices using sim-
ple reads and writes.

¢ Controlled access to files: For file access, the OS must reflect a detailed under-
standing of not only the nature of the I/O device (disk drive, tape drive) but
also the structure of the data contained in the files on the storage medium.
In the case of a system with multiple users, the OS may provide protection
mechanisms to control access to the files.

e System access: For shared or public systems, the OS controls access to the
system as a whole and to specific system resources. The access function must
provide protection of resources and data from unauthorized users and must
resolve conflicts for resource contention.

e Error detection and response: A variety of errors can occur while a computer
system is running. These include internal and external hardware errors, such
as a memory error, or a device failure or malfunction; and various software
errors, such as division by zero, attempt to access forbidden memory location,
and inability of the OS to grant the request of an application. In each case,
the OS must provide a response that clears the error condition with the least
impact on running applications. The response may range from ending the pro-
gram that caused the error, to retrying the operation, to simply reporting the
error to the application.

* Accounting: A good OS will collect usage statistics for various resources and
monitor performance parameters such as response time. On any system, this
information is useful in anticipating the need for future enhancements and in
tuning the system to improve performance. On a multiuser system, the infor-
mation can be used for billing purposes.

50 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Figure 2.1 also indicates three key interfaces in a typical computer system:

¢ Instruction set architecture (ISA): The ISA defines the repertoire of machine
language instructions that a computer can follow. This interface is the bound-
ary between hardware and software. Note that both application programs
and utilities may access the ISA directly. For these programs, a subset of the
instruction repertoire is available (user ISA). The OS has access to additional
machine language instructions that deal with managing system resources
(system ISA).

e Application binary interface (ABI): The ABI defines a standard for binary
portability across programs. The ABI defines the system call interface to
the operating system and the hardware resources and services available in a
system through the user ISA.

e Application programming interface (API): The API gives a program access
to the hardware resources and services available in a system through the user
ISA supplemented with high-level language (HLL) library calls. Any system
calls are usually performed through libraries. Using an API enables applica-
tion software to be ported easily, through recompilation, to other systems that
support the same API.

The Operating System as Resource Manager

A computer is a set of resources for the movement, storage, and processing of data
and for the control of these functions. The OS is responsible for managing these
resources.

Can we say that it is the OS that controls the movement, storage, and process-
ing of data? From one point of view, the answer is yes: By managing the computer’s
resources, the OS is in control of the computer’s basic functions. But this control is
exercised in a curious way. Normally, we think of a control mechanism as something
external to that which is controlled, or at least as something that is a distinct and
separate part of that which is controlled. (For example, a residential heating sys-
tem is controlled by a thermostat, which is separate from the heat-generation and
heat-distribution apparatus.) This is not the case with the OS, which as a control
mechanism is unusual in two respects:

e The OS functions in the same way as ordinary computer software; that is, it is
a program or suite of programs executed by the processor.

e The OS frequently relinquishes control and must depend on the processor to
allow it to regain control.

Like other computer programs, the OS provides instructions for the proces-
sor. The key difference is in the intent of the program. The OS directs the processor
in the use of the other system resources and in the timing of its execution of other
programs. But in order for the processor to do any of these things, it must cease
executing the OS program and execute other programs. Thus, the OS relinquishes
control for the processor to do some “useful” work and then resumes control long
enough to prepare the processor to do the next piece of work. The mechanisms
involved in all this should become clear as the chapter proceeds.

2.1 / OPERATING SYSTEM OBJECTIVES AND FUNCTIONS 51

Computer system

Memory I/0O devices
Operating 1/0 controller O Printers,
system keyboards,
software digital camera,
1/0 controller O etc.
o °
Programs © .
and data ° °
1/0O controller

Processor e o0 Processor

Storage

oS
Programs

Data

Figure 2.2 The Operating System as Resource Manager

Figure 2.2 suggests the main resources that are managed by the OS. A portion
of the OS is in main memory. This includes the kernel, or nucleus, which contains
the most frequently used functions in the OS and, at a given time, other portions
of the OS currently in use. The remainder of main memory contains user programs
and data. The memory management hardware in the processor and the OS jointly
control the allocation of main memory, as we shall see. The OS decides when an I/O
device can be used by a program in execution and controls access to and use of files.
The processor itself is a resource, and the OS must determine how much processor
time is to be devoted to the execution of a particular user program. In the case of a
multiple-processor system, this decision must span all of the processors.

Ease of Evolution of an Operating System

A major OS will evolve over time for a number of reasons:

e Hardware upgrades plus new types of hardware: For example, early versions
of UNIX and the Macintosh OS did not employ a paging mechanism because
they were run on processors without paging hardware.! Subsequent versions
of these operating systems were modified to exploit paging capabilities. Also,

!Paging is introduced briefly later in this chapter and is discussed in detail in Chapter 7.

52 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

the use of graphics terminals and page-mode terminals instead of line-at-a-
time scroll mode terminals affects OS design. For example, a graphics terminal
typically allows the user to view several applications at the same time through
“windows” on the screen. This requires more sophisticated support in the OS.

e New services: In response to user demand or in response to the needs of sys-
tem managers, the OS expands to offer new services. For example, if it is found
to be difficult to maintain good performance for users with existing tools, new
measurement and control tools may be added to the OS.

¢ Fixes: Any OS has faults. These are discovered over the course of time and
fixes are made. Of course, the fix may introduce new faults.

The need to change an OS regularly places certain requirements on its design.
An obvious statement is that the system should be modular in construction, with
clearly defined interfaces between the modules, and that it should be well docu-
mented. For large programs, such as the typical contemporary OS, what might be
referred to as straightforward modularization is inadequate [DENNG80a]. That is,
much more must be done than simply partitioning a program into modules. We
return to this topic later in this chapter.

2.2 THE EVOLUTION OF OPERATING SYSTEMS

In attempting to understand the key requirements for an OS and the significance
of the major features of a contemporary OS, it is useful to consider how operating
systems have evolved over the years.

Serial Processing

With the earliest computers, from the late 1940s to the mid-1950s, the programmer
interacted directly with the computer hardware; there was no OS. These computers
were run from a console consisting of display lights, toggle switches, some form of
input device, and a printer. Programs in machine code were loaded via the input
device (e.g., a card reader). If an error halted the program, the error condition was
indicated by the lights. If the program proceeded to a normal completion, the out-
put appeared on the printer.
These early systems presented two main problems:

e Scheduling: Most installations used a hardcopy sign-up sheet to reserve com-
puter time. Typically, a user could sign up for a block of time in multiples of a
half hour or so. A user might sign up for an hour and finish in 45 minutes; this
would result in wasted computer processing time. On the other hand, the user
might run into problems, not finish in the allotted time, and be forced to stop
before resolving the problem.

e Setup time: A single program, called a job, could involve loading the com-
piler plus the high-level language program (source program) into memory,
saving the compiled program (object program) and then loading and linking
together the object program and common functions. Each of these steps could

2.2 / THE EVOLUTION OF OPERATING SYSTEMS 53

involve mounting or dismounting tapes or setting up card decks. If an error
occurred, the hapless user typically had to go back to the beginning of the
setup sequence. Thus, a considerable amount of time was spent just in setting
up the program to run.

This mode of operation could be termed serial processing, reflecting the fact
that users have access to the computer in series. Over time, various system software
tools were developed to attempt to make serial processing more efficient. These
include libraries of common functions, linkers, loaders, debuggers, and I/O driver
routines that were available as common software for all users.

Simple Batch Systems

Early computers were very expensive, and therefore it was important to maxi-
mize processor utilization. The wasted time due to scheduling and setup time was
unacceptable.

To improve utilization, the concept of a batch OS was developed. It appears
that the first batch OS (and the first OS of any kind) was developed in the mid-1950s
by General Motors for use on an IBM 701 [WEIZS81]. The concept was subsequently
refined and implemented on the IBM 704 by a number of IBM customers. By the
early 1960s, a number of vendors had developed batch operating systems for their
computer systems. IBSYS, the IBM OS for the 7090/7094 computers, is particularly
notable because of its widespread influence on other systems.

The central idea behind the simple batch-processing scheme is the use of a
piece of software known as the monitor. With this type of OS, the user no longer has
direct access to the processor. Instead, the user submits the job on cards or tape to a
computer operator, who batches the jobs together sequentially and places the entire
batch on an input device, for use by the monitor. Each program is constructed to
branch back to the monitor when it completes processing, at which point the moni-
tor automatically begins loading the next program.

To understand how this scheme works, let us look at it from two points of
view: that of the monitor and that of the processor.

* Monitor point of view: The monitor controls the sequence of events. For this
to be so, much of the monitor must always be in main memory and available
for execution (Figure 2.3). That portion is referred to as the resident monitor.
The rest of the monitor consists of utilities and common functions that are
loaded as subroutines to the user program at the beginning of any job that
requires them. The monitor reads in jobs one at a time from the input device
(typically a card reader or magnetic tape drive). As it is read in, the current job
is placed in the user program area, and control is passed to this job. When the
job is completed, it returns control to the monitor, which immediately reads
in the next job. The results of each job are sent to an output device, such as a
printer, for delivery to the user.

¢ Processor point of view: At a certain point, the processor is executing instruc-
tions from the portion of main memory containing the monitor. These
instructions cause the next job to be read into another portion of main

54 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Interrupt
processing

Device
drivers

Job
sequencing

Monitor

Control language
interpreter

Boundary

User
program
area

Figure 2.3 Memory Layout for a
Resident Monitor

memory. Once a job has been read in, the processor will encounter a branch
instruction in the monitor that instructs the processor to continue execution
at the start of the user program. The processor will then execute the instruc-
tions in the user program until it encounters an ending or error condition.
Either event causes the processor to fetch its next instruction from the moni-
tor program. Thus the phrase “control is passed to a job” simply means that
the processor is now fetching and executing instructions in a user program,
and “control is returned to the monitor” means that the processor is now
fetching and executing instructions from the monitor program.

The monitor performs a scheduling function: A batch of jobs is queued up,
and jobs are executed as rapidly as possible, with no intervening idle time. The mon-
itor improves job setup time as well. With each job, instructions are included in a
primitive form of job control language (JCL). This is a special type of programming
language used to provide instructions to the monitor. A simple example is that of a
user submitting a program written in the programming language FORTRAN plus
some data to be used by the program. All FORTRAN instructions and data are on a
separate punched card or a separate record on tape. In addition to FORTRAN and
data lines, the job includes job control instructions, which are denoted by the begin-
ning $. The overall format of the job looks like this:

$JOB
SFTN

° FORTRAN instructions

2.2 / THE EVOLUTION OF OPERATING SYSTEMS 55

$LOAD
$RUN

° Data

SEND

To execute this job, the monitor reads the $FTN line and loads the appropri-
ate language compiler from its mass storage (usually tape). The compiler translates
the user’s program into object code, which is stored in memory or mass storage.
If it is stored in memory, the operation is referred to as “compile, load, and go.”
If it is stored on tape, then the $LOAD instruction is required. This instruction is
read by the monitor, which regains control after the compile operation. The moni-
tor invokes the loader, which loads the object program into memory (in place of
the compiler) and transfers control to it. In this manner, a large segment of main
memory can be shared among different subsystems, although only one such subsys-
tem could be executing at a time.

During the execution of the user program, any input instruction causes one
line of data to be read. The input instruction in the user program causes an input
routine that is part of the OS to be invoked. The input routine checks to make
sure that the program does not accidentally read in a JCL line. If this happens, an
error occurs and control transfers to the monitor. At the completion of the user
job, the monitor will scan the input lines until it encounters the next JCL instruc-
tion. Thus, the system is protected against a program with too many or too few
data lines.

The monitor, or batch OS, is simply a computer program. It relies on the abil-
ity of the processor to fetch instructions from various portions of main memory to
alternately seize and relinquish control. Certain other hardware features are also
desirable:

e Memory protection: While the user program is executing, it must not alter the
memory area containing the monitor. If such an attempt is made, the proces-
sor hardware should detect an error and transfer control to the monitor. The
monitor would then abort the job, print out an error message, and load in the
next job.

e Timer: A timer is used to prevent a single job from monopolizing the system.
The timer is set at the beginning of each job. If the timer expires, the user pro-
gram is stopped, and control returns to the monitor.

e Privileged instructions: Certain machine level instructions are designated priv-
ileged and can be executed only by the monitor. If the processor encounters
such an instruction while executing a user program, an error occurs causing
control to be transferred to the monitor. Among the privileged instructions
are I/O instructions, so that the monitor retains control of all I/O devices. This
prevents, for example, a user program from accidentally reading job control
instructions from the next job. If a user program wishes to perform I/O, it must
request that the monitor perform the operation for it.

56 CHAPTER 2/ OPERATING SYSTEM OVERVIEW

¢ Interrupts: Early computer models did not have this capability. This feature
gives the OS more flexibility in relinquishing control to and regaining control
from user programs.

Considerations of memory protection and privileged instructions lead to the
concept of modes of operation. A user program executes in a user mode, in which
certain areas of memory are protected from the user’s use and in which certain
instructions may not be executed. The monitor executes in a system mode, or what
has come to be called kernel mode, in which privileged instructions may be executed
and in which protected areas of memory may be accessed.

Of course, an OS can be built without these features. But computer vendors
quickly learned that the results were chaos, and so even relatively primitive batch
operating systems were provided with these hardware features.

With a batch OS, processor time alternates between execution of user pro-
grams and execution of the monitor. There have been two sacrifices: Some main
memory is now given over to the monitor and some processor time is consumed by
the monitor. Both of these are forms of overhead. Despite this overhead, the simple
batch system improves utilization of the computer.

Multiprogrammed Batch Systems

Even with the automatic job sequencing provided by a simple batch OS, the proces-
sor is often idle. The problem is that I/O devices are slow compared to the processor.
Figure 2.4 details a representative calculation. The calculation concerns a program
that processes a file of records and performs, on average, 100 machine instructions
per record. In this example, the computer spends over 96% of its time waiting for
I/O devices to finish transferring data to and from the file. Figure 2.5a illustrates this
situation, where we have a single program, referred to as uniprogramming. The pro-
cessor spends a certain amount of time executing, until it reaches an I/O instruction.
It must then wait until that I/O instruction concludes before proceeding.

This inefficiency is not necessary. We know that there must be enough
memory to hold the OS (resident monitor) and one user program. Suppose that
there is room for the OS and two user programs. When one job needs to wait for
I/O, the processor can switch to the other job, which is likely not waiting for I/O
(Figure 2.5b). Furthermore, we might expand memory to hold three, four, or more
programs and switch among all of them (Figure 2.5¢). The approach is known as
multiprogramming, or multitasking. It is the central theme of modern operating
systems.

Read one record from file 15 us
Execute 100 instructions 1 s
Write one record to file 15 us
Total 31 us

1
Percent CPU Utilization = 31 = 0.032 = 32%

Figure 2.4 System Ultilization Example

Program A

Program A

Program B

Combined

Program A

Program B

Program C

Combined

2.2 / THE EVOLUTION OF OPERATING SYSTEMS

Run Wait Run Wait
Time
(a) Uniprogramming
Run Wait Run Wait
Wait | Run Wait Run Wait
RunfRun| gy [RunRun)
Time
(b) Multiprogramming with two programs
Run Wait Run Wait
Wait | Run Wait Run Wait
Wait Run Wait Run Wait
Run | Run | Run . Run | Run | Run .
A B C Wait A B C Wait
Time

(c) Multiprogramming with three programs

Figure 2.5 Multiprogramming Example

57

To illustrate the benefit of multiprogramming, we give a simple example.
Consider a computer with 250 Mbytes of available memory (not used by the OS),
a disk, a terminal, and a printer. Three programs, JOB1, JOB2, and JOB3, are
submitted for execution at the same time, with the attributes listed in Table 2.1.
We assume minimal processor requirements for JOB2 and JOB3 and continuous
disk and printer use by JOB3. For a simple batch environment, these jobs will be
executed in sequence. Thus, JOB1 completes in 5 minutes. JOB2 must wait until

Table 2.1 Sample Program Execution Attributes

JOB1 JOB2 JOB3
Type of job Heavy compute Heavy I/O Heavy I/O
Duration 5 min 15 min 10 min
Memory required 50 M 100 M 75 M
Need disk? No No Yes
Need terminal? No Yes No
Need printer? No No Yes

58 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Table 2.2 Effects of Multiprogramming on Resource Utilization

Uniprogramming Multiprogramming

Processor use 20% 40%
Memory use 33% 67%

Disk use 33% 67%

Printer use 33% 67%
Elapsed time 30 min 15 min
Throughput 6 jobs/hr 12 jobs/hr
Mean response time 18 min 10 min

the 5 minutes are over and then completes 15 minutes after that. JOB3 begins after
20 minutes and completes at 30 minutes from the time it was initially submitted.
The average resource utilization, throughput, and response times are shown in the
uniprogramming column of Table 2.2. Device-by-device utilization is illustrated in
Figure 2.6a. It is evident that there is gross underutilization for all resources when
averaged over the required 30-minute time period.

Now suppose that the jobs are run concurrently under a multiprogramming
OS. Because there is little resource contention between the jobs, all three can run
in nearly minimum time while coexisting with the others in the computer (assum-
ing that JOB2 and JOB3 are allotted enough processor time to keep their input
and output operations active). JOB1 will still require 5 minutes to complete, but at
the end of that time, JOB2 will be one-third finished and JOB3 half finished. All
three jobs will have finished within 15 minutes. The improvement is evident when
examining the multiprogramming column of Table 2.2, obtained from the histogram
shown in Figure 2.6b.

As with a simple batch system, a multiprogramming batch system must rely
on certain computer hardware features. The most notable additional feature that
is useful for multiprogramming is the hardware that supports I/O interrupts and
DMA (direct memory access). With interrupt-driven I/O or DMA, the processor
can issue an I/O command for one job and proceed with the execution of another
job while the I/O is carried out by the device controller. When the I/O operation is
complete, the processor is interrupted and control is passed to an interrupt-handling
program in the OS. The OS will then pass control to another job.

Multiprogramming operating systems are fairly sophisticated compared to
single-program, or uniprogramming, systems. To have several jobs ready to run,
they must be kept in main memory, requiring some form of memory management.
In addition, if several jobs are ready to run, the processor must decide which one
to run, this decision requires an algorithm for scheduling. These concepts are dis-
cussed later in this chapter.

Time-Sharing Systems

With the use of multiprogramming, batch processing can be quite efficient.
However, for many jobs, it is desirable to provide a mode in which the user interacts
directly with the computer. Indeed, for some jobs, such as transaction processing, an
interactive mode is essential.

6S

CPU
Memory
Disk
Terminal
Printer

| I I | I

T T T | !

Job history | “joB] JOB2 JOB3
I I I I I
0 5 10 15 20 25 30
minutes
time

(a) Uniprogramming

Figure 2.6 Utilization Histograms

100%

0%
100%

0%
100%

0%
100%

0%
100%

0%

CPU

Memory

Disk

Terminal |-

Printer

Job history

— l
JOBI1
JOB2
JOB3
T T
0 5 10 15
minutes -
time
(b) Multiprogramming

100%

0%
100%

0%
100%

0%
100%

0%
100%

0%

60 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Today, the requirement for an interactive computing facility can be, and often
is, met by the use of a dedicated personal computer or workstation. That option was
not available in the 1960s, when most computers were big and costly. Instead, time
sharing was developed.

Just as multiprogramming allows the processor to handle multiple batch jobs
at a time, multiprogramming can also be used to handle multiple interactive jobs. In
this latter case, the technique is referred to as time sharing, because processor time is
shared among multiple users. In a time-sharing system, multiple users simultaneously
access the system through terminals, with the OS interleaving the execution of each
user program in a short burst or quantum of computation. Thus, if there are n users
actively requesting service at one time, each user will only see on the average 1/n
of the effective computer capacity, not counting OS overhead. However, given the
relatively slow human reaction time, the response time on a properly designed system
should be similar to that on a dedicated computer.

Both batch processing and time sharing use multiprogramming. The key
differences are listed in Table 2.3.

One of the first time-sharing operating systems to be developed was the
Compatible Time-Sharing System (CTSS) [CORB62], developed at MIT by a
group known as Project MAC (Machine-Aided Cognition, or Multiple-Access
Computers). The system was first developed for the IBM 709 in 1961 and later
transferred to an IBM 7094.

Compared to later systems, CTSS is primitive. The system ran on a computer
with 32,000 36-bit words of main memory, with the resident monitor consuming 5000
of that. When control was to be assigned to an interactive user, the user’s program
and data were loaded into the remaining 27,000 words of main memory. A pro-
gram was always loaded to start at the location of the 5000th word; this simplified
both the monitor and memory management. A system clock generated interrupts
at a rate of approximately one every 0.2 seconds. At each clock interrupt, the OS
regained control and could assign the processor to another user. This technique is
known as time slicing. Thus, at regular time intervals, the current user would be
preempted and another user loaded in. To preserve the old user program status for
later resumption, the old user programs and data were written out to disk before the
new user programs and data were read in. Subsequently, the old user program code
and data were restored in main memory when that program was next given a turn.

To minimize disk traffic, user memory was only written out when the incoming
program would overwrite it. This principle is illustrated in Figure 2.7. Assume that
there are four interactive users with the following memory requirements, in words:

e JOBI: 15,000
e JOB2: 20,000

Table 2.3 Batch Multiprogramming versus Time Sharing

Batch Multiprogramming Time Sharing
Principal objective Maximize processor use Minimize response time
Source of directives to Job control language commands Commands entered at the
operating system provided with the job terminal

2.2 / THE EVOLUTION OF OPERATING SYSTEMS 61

0 0 0
Monitor Monitor Monitor
5000 5000 5000
10000 1083
JOB 1
JOB 2
20000 (OB 2)
TFree 25000 25000
Free Free
32000 32000 32000
(@) (b) (©)
0 0 0
Monitor Monitor Monitor
5000 5000 5000
OB 1 JOB 4
15000 JOB 2
JOB 1)
20000 20000
(JOB 2) (JOB 2)
25000 25000 25000
Free Free Free
32000 32000 32000

(d) (e) (H
Figure 2.7 CTSS Operation

e JOB3: 5000
e JOB4: 10,000

Initially, the monitor loads JOB1 and transfers control to it (a). Later, the
monitor decides to transfer control to JOB2. Because JOB2 requires more mem-
ory than JOB1, JOB1 must be written out first, and then JOB2 can be loaded (b).
Next, JOB3 is loaded in to be run. However, because JOB3 is smaller than JOB2,
a portion of JOB2 can remain in memory, reducing disk write time (c). Later, the
monitor decides to transfer control back to JOB1. An additional portion of JOB2
must be written out when JOB1 is loaded back into memory (d). When JOB4 is
loaded, part of JOB1 and the portion of JOB2 remaining in memory are retained
(e). At this point, if either JOB1 or JOB2 is activated, only a partial load will be
required. In this example, it is JOB2 that runs next. This requires that JOB4 and the
remaining resident portion of JOB1 be written out and that the missing portion of
JOB?2 be read in (f).

The CTSS approach is primitive compared to present-day time sharing, but
it was effective. It was extremely simple, which minimized the size of the monitor.
Because a job was always loaded into the same locations in memory, there was no
need for relocation techniques at load time (discussed subsequently). The technique
of only writing out what was necessary minimized disk activity. Running on the
7094, CTSS supported a maximum of 32 users.

Time sharing and multiprogramming raise a host of new problems for the OS.
If multiple jobs are in memory, then they must be protected from interfering with
each other by, for example, modifying each other’s data. With multiple interactive
users, the file system must be protected so that only authorized users have access

62 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

to a particular file. The contention for resources, such as printers and mass storage
devices, must be handled. These and other problems, with possible solutions, will be
encountered throughout this text.

2.3 MAJOR ACHIEVEMENTS

Operating systems are among the most complex pieces of software ever devel-
oped. This reflects the challenge of trying to meet the difficult and in some cases
competing objectives of convenience, efficiency, and ability to evolve. [DENN80a]
proposes that there have been four major theoretical advances in the development
of operating systems:

* Processes

* Memory management

e Information protection and security

¢ Scheduling and resource management

Each advance is characterized by principles, or abstractions, developed to
meet difficult practical problems. Taken together, these five areas span many of
the key design and implementation issues of modern operating systems. The brief
review of these five areas in this section serves as an overview of much of the rest
of the text.

The Process

Central to the design of operating systems is the concept of process. This term was
first used by the designers of Multics in the 1960s [DALEG6S]. It is a somewhat
more general term than job. Many definitions have been given for the term process,
including

e A program in execution
e Aninstance of a program running on a computer
¢ The entity that can be assigned to and executed on a processor

e A unit of activity characterized by a single sequential thread of execution, a
current state, and an associated set of system resources

This concept should become clearer as we proceed.

Three major lines of computer system development created problems in timing
and synchronization that contributed to the development of the concept of the
process: multiprogramming batch operation, time sharing, and real-time transaction
systems. As we have seen, multiprogramming was designed to keep the processor
and I/O devices, including storage devices, simultaneously busy to achieve maxi-
mum efficiency. The key mechanism is this: In response to signals indicating the
completion of I/O transactions, the processor is switched among the various pro-
grams residing in main memory.

2.3 / MAJOR ACHIEVEMENTS 63

A second line of development was general-purpose time sharing. Here, the
key design objective is to be responsive to the needs of the individual user and yet,
for cost reasons, be able to support many users simultaneously. These goals are
compatible because of the relatively slow reaction time of the user. For example,
if a typical user needs an average of 2 seconds of processing time per minute, then
close to 30 such users should be able to share the same system without noticeable
interference. Of course, OS overhead must be factored into such calculations.

A third important line of development has been real-time transaction process-
ing systems. In this case, a number of users are entering queries or updates against a
database. An example is an airline reservation system. The key difference between
the transaction processing system and the time-sharing system is that the former
is limited to one or a few applications, whereas users of a time-sharing system can
engage in program development, job execution, and the use of various applications.
In both cases, system response time is paramount.

The principal tool available to system programmers in developing the early
multiprogramming and multiuser interactive systems was the interrupt. The activity
of any job could be suspended by the occurrence of a defined event, such as an I/O
completion. The processor would save some sort of context (e.g., program coun-
ter and other registers) and branch to an interrupt-handling routine, which would
determine the nature of the interrupt, process the interrupt, and then resume user
processing with the interrupted job or some other job.

The design of the system software to coordinate these various activities turned
out to be remarkably difficult. With many jobs in progress at any one time, each of
which involved numerous steps to be performed in sequence, it became impossible
to analyze all of the possible combinations of sequences of events. In the absence of
some systematic means of coordination and cooperation among activities, program-
mers resorted to ad hoc methods based on their understanding of the environment
that the OS had to control. These efforts were vulnerable to subtle programming
errors whose effects could be observed only when certain relatively rare sequences
of actions occurred. These errors were difficult to diagnose because they needed to
be distinguished from application software errors and hardware errors. Even when
the error was detected, it was difficult to determine the cause, because the precise
conditions under which the errors appeared were very hard to reproduce. In general
terms, there are four main causes of such errors [DENNG80a]:

e Improper synchronization: It is often the case that a routine must be sus-
pended awaiting an event elsewhere in the system. For example, a program
that initiates an I/O read must wait until the data are available in a buffer
before proceeding. In such cases, a signal from some other routine is required.
Improper design of the signaling mechanism can result in signals being lost or
duplicate signals being received.

¢ Failed mutual exclusion: It is often the case that more than one user or pro-
gram will attempt to make use of a shared resource at the same time. For
example, two users may attempt to edit the same file at the same time. If
these accesses are not controlled, an error can occur. There must be some
sort of mutual exclusion mechanism that permits only one routine at a time
to perform an update against the file. The implementation of such mutual

64 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

exclusion is difficult to verify as being correct under all possible sequences
of events.

* Nondeterminate program operation: The results of a particular program
normally should depend only on the input to that program and not on
the activities of other programs in a shared system. But when programs share
memory, and their execution is interleaved by the processor, they may inter-
fere with each other by overwriting common memory areas in unpredictable
ways. Thus, the order in which various programs are scheduled may affect the
outcome of any particular program.

¢ Deadlocks: It is possible for two or more programs to be hung up waiting for
each other. For example, two programs may each require two I/O devices to
perform some operation (e.g., disk to tape copy). One of the programs has
seized control of one of the devices and the other program has control of
the other device. Each is waiting for the other program to release the desired
resource. Such a deadlock may depend on the chance timing of resource
allocation and release.

What is needed to tackle these problems is a systematic way to monitor
and control the various programs executing on the processor. The concept of the
process provides the foundation. We can think of a process as consisting of three
components:

¢ An executable program
e The associated data needed by the program (variables, work space, buffers, etc.)
e The execution context of the program

This last element is essential. The execution context, or process state, is the
internal data by which the OS is able to supervise and control the process. This
internal information is separated from the process, because the OS has information
not permitted to the process. The context includes all of the information that the OS
needs to manage the process and that the processor needs to execute the process
properly. The context includes the contents of the various processor registers, such
as the program counter and data registers. It also includes information of use to the
OS, such as the priority of the process and whether the process is waiting for the
completion of a particular I/O event.

Figure 2.8 indicates a way in which processes may be managed. Two proc-
esses, A and B, exist in portions of main memory. That is, a block of memory is
allocated to each process that contains the program, data, and context information.
Each process is recorded in a process list built and maintained by the OS. The
process list contains one entry for each process, which includes a pointer to the
location of the block of memory that contains the process. The entry may also
include part or all of the execution context of the process. The remainder of the
execution context is stored elsewhere, perhaps with the process itself (as indicated
in Figure 2.8) or frequently in a separate region of memory. The process index
register contains the index into the process list of the process currently controlling
the processor. The program counter points to the next instruction in that process
to be executed. The base and limit registers define the region in memory occupied

2.3 / MAJOR ACHIEVEMENTS 65

Main Processor
memory registers
Process index
PC =
i
Process Base [h |
list _ limit
]
1
L]
Other
registers o
1
Context
Process Data
A
Program
(code)
b
Context
Process " Data
B
Program
(code)

Figure 2.8 Typical Process Implementation

by the process: The base register is the starting address of the region of memory
and the limit is the size of the region (in bytes or words). The program counter and
all data references are interpreted relative to the base register and must not exceed
the value in the limit register. This prevents interprocess interference.

In Figure 2.8, the process index register indicates that process B is execut-
ing. Process A was previously executing but has been temporarily interrupted. The
contents of all the registers at the moment of A’s interruption were recorded in its
execution context. Later, the OS can perform a process switch and resume execution
of process A. The process switch consists of storing the context of B and restoring
the context of A. When the program counter is loaded with a value pointing into A’s
program area, process A will automatically resume execution.

Thus, the process is realized as a data structure. A process can either be
executing or awaiting execution. The entire state of the process at any instant is con-
tained in its context. This structure allows the development of powerful techniques
for ensuring coordination and cooperation among processes. New features can be
designed and incorporated into the OS (e.g., priority) by expanding the context to

66 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

include any new information needed to support the feature. Throughout this book,
we will see a number of examples where this process structure is employed to solve
the problems raised by multiprogramming and resource sharing.

A final point, which we introduce briefly here, is the concept of thread. In
essence, a single process, which is assigned certain resources, can be broken up into
multiple, concurrent threads that execute cooperatively to perform the work of the
process. This introduces a new level of parallel activity to be managed by the hard-
ware and software.

Memory Management

The needs of users can be met best by a computing environment that supports
modular programming and the flexible use of data. System managers need efficient
and orderly control of storage allocation. The OS, to satisfy these requirements, has
five principal storage management responsibilities:

¢ Process isolation: The OS must prevent independent processes from interfer-
ing with each other’s memory, both data and instructions.

° Automatic allocation and management: Programs should be dynamically
allocated across the memory hierarchy as required. Allocation should be
transparent to the programmer. Thus, the programmer is relieved of concerns
relating to memory limitations, and the OS can achieve efficiency by assigning
memory to jobs only as needed.

¢ Support of modular programming: Programmers should be able to define pro-
gram modules, and to create, destroy, and alter the size of modules dynamically.

* Protection and access control: Sharing of memory, at any level of the memory
hierarchy, creates the potential for one program to address the memory space
of another. This is desirable when sharing is needed by particular applications.
At other times, it threatens the integrity of programs and even of the OS itself.
The OS must allow portions of memory to be accessible in various ways by
various users.

* Long-term storage: Many application programs require means for storing
information for extended periods of time, after the computer has been
powered down.

Typically, operating systems meet these requirements with virtual memory
and file system facilities. The file system implements a long-term store, with infor-
mation stored in named objects, called files. The file is a convenient concept for the
programmer and is a useful unit of access control and protection for the OS.

Virtual memory is a facility that allows programs to address memory from
a logical point of view, without regard to the amount of main memory physically
available. Virtual memory was conceived to meet the requirement of having multi-
ple user jobs reside in main memory concurrently, so that there would not be a hia-
tus between the execution of successive processes while one process was written out
to secondary store and the successor process was read in. Because processes vary
in size, if the processor switches among a number of processes it is difficult to pack
them compactly into main memory. Paging systems were introduced, which allow

2.3 / MAJOR ACHIEVEMENTS 67

processes to be comprised of a number of fixed-size blocks, called pages. A pro-
gram references a word by means of a virtual address consisting of a page number
and an offset within the page. Each page of a process may be located anywhere
in main memory. The paging system provides for a dynamic mapping between the
virtual address used in the program and a real address, or physical address, in main
memory.

With dynamic mapping hardware available, the next logical step was to
eliminate the requirement that all pages of a process reside in main memory simul-
taneously. All the pages of a process are maintained on disk. When a process is
executing, some of its pages are in main memory. If reference is made to a page
that is not in main memory, the memory management hardware detects this and
arranges for the missing page to be loaded. Such a scheme is referred to as virtual
memory and is depicted in Figure 2.9.

A.l v
A0 | A2
0 0
AS
1 1
2 2
B.O [B.1 [B2 | B3
3 3
4 4
5 5
6 6
A7
A9 7 User
3 program
B
9
A8
10
User
program
A
B.5 | B.6
Main memory Disk
Main memory consists of a Secondary memory (disk) can
number of fixed-length frames, hold many fixed-length pages. A
each equal to the size of a page. user program consists of some
For a program to execute, some number of pages. Pages for all
or all of its pages must be in programs plus the operating system
main memory. are on disk, as are files.

Figure 2.9 Virtual Memory Concepts

68 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Real
Memory- address
Processor management
Virtual unit
address .
Main
memory
Disk
address
Secondary

memory

Figure 2.10 Virtual Memory Addressing

The processor hardware, together with the OS, provides the user with a
“virtual processor” that has access to a virtual memory. This memory may be a
linear address space or a collection of segments, which are variable-length blocks
of contiguous addresses. In either case, programming language instructions can
reference program and data locations in the virtual memory area. Process isolation
can be achieved by giving each process a unique, nonoverlapping virtual memory.
Memory sharing can be achieved by overlapping portions of two virtual memory
spaces. Files are maintained in a long-term store. Files and portions of files may be
copied into the virtual memory for manipulation by programs.

Figure 2.10 highlights the addressing concerns in a virtual memory scheme.
Storage consists of directly addressable (by machine instructions) main memory
and lower-speed auxiliary memory that is accessed indirectly by loading blocks
into main memory. Address translation hardware (memory management unit) is
interposed between the processor and memory. Programs reference locations using
virtual addresses, which are mapped into real main memory addresses. If a refer-
ence is made to a virtual address not in real memory, then a portion of the contents
of real memory is swapped out to auxiliary memory and the desired block of data
is swapped in. During this activity, the process that generated the address reference
must be suspended. The OS designer needs to develop an address translation mech-
anism that generates little overhead and a storage allocation policy that minimizes
the traffic between memory levels.

Information Protection and Security

The growth in the use of time-sharing systems and, more recently, computer net-
works has brought with it a growth in concern for the protection of information.
The nature of the threat that concerns an organization will vary greatly depending
on the circumstances. However, there are some general-purpose tools that can be

2.3 / MAJOR ACHIEVEMENTS 69

built into computers and operating systems that support a variety of protection and
security mechanisms. In general, we are concerned with the problem of controlling
access to computer systems and the information stored in them.

Much of the work in security and protection as it relates to operating systems
can be roughly grouped into four categories:

¢ Availability: Concerned with protecting the system against interruption.

e Confidentiality: Assures that users cannot read data for which access is
unauthorized.

e Data integrity: Protection of data from unauthorized modification.

e Authenticity: Concerned with the proper verification of the identity of users
and the validity of messages or data.

Scheduling and Resource Management

A key responsibility of the OS is to manage the various resources available to it
(main memory space, I/O devices, processors) and to schedule their use by the vari-
ous active processes. Any resource allocation and scheduling policy must consider
three factors:

e Fairness: Typically, we would like all processes that are competing for the use
of a particular resource to be given approximately equal and fair access to that
resource. This is especially so for jobs of the same class, that is, jobs of similar
demands.

¢ Differential responsiveness: On the other hand, the OS may need to discrimi-
nate among different classes of jobs with different service requirements. The
OS should attempt to make allocation and scheduling decisions to meet the
total set of requirements. The OS should also make these decisions dynami-
cally. For example, if a process is waiting for the use of an I/O device, the OS
may wish to schedule that process for execution as soon as possible to free up
the device for later demands from other processes.

e Efficiency: The OS should attempt to maximize throughput, minimize
response time, and, in the case of time sharing, accommodate as many users
as possible. These criteria conflict; finding the right balance for a particular
situation is an ongoing problem for OS research.

Scheduling and resource management are essentially operations-research
problems and the mathematical results of that discipline can be applied. In addition,
measurement of system activity is important to be able to monitor performance and
make adjustments.

Figure 2.11 suggests the major elements of the OS involved in the scheduling
of processes and the allocation of resources in a multiprogramming environment.
The OS maintains a number of queues, each of which is simply a list of processes
waiting for some resource. The short-term queue consists of processes that are in
main memory (or at least an essential minimum portion of each is in main memory)
and are ready to run as soon as the processor is made available. Any one of these
processes could use the processor next. It is up to the short-term scheduler, or

70 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Operating system
| |
Service call Service []
from process call []
P handler (code) I I
[|
| |
[|
[|
| |
[|
Interrupt Long- Short- /0
from process I term term queues
nterrupt queue queue
Interrupt handler (code)
from I/0
Short-term
scheduler
(code)

Pass control
to process

Figure 2.11 Key Elements of an Operating System for Multiprogramming

dispatcher, to pick one. A common strategy is to give each process in the queue
some time in turn; this is referred to as a round-robin technique. In effect, the
round-robin technique employs a circular queue. Another strategy is to assign
priority levels to the various processes, with the scheduler selecting processes in
priority order.

The long-term queue is a list of new jobs waiting to use the processor. The
OS adds jobs to the system by transferring a process from the long-term queue to
the short-term queue. At that time, a portion of main memory must be allocated
to the incoming process. Thus, the OS must be sure that it does not overcommit
memory or processing time by admitting too many processes to the system. There
is an I/O queue for each I/O device. More than one process may request the use of
the same I/O device. All processes waiting to use each device are lined up in that
device’s queue. Again, the OS must determine which process to assign to an avail-
able I/O device.

The OS receives control of the processor at the interrupt handler if an inter-
rupt occurs. A process may specifically invoke some OS service, such as an I/O
device handler by means of a service call. In this case, a service call handler is the
entry point into the OS. In any case, once the interrupt or service call is handled, the
short-term scheduler is invoked to pick a process for execution.

The foregoing is a functional description; details and modular design of this
portion of the OS will differ in various systems. Much of the research and develop-
ment effort in operating systems has been directed at picking algorithms and data
structures for this function that provide fairness, differential responsiveness, and
efficiency.

2.4 / DEVELOPMENTS LEADING TO MODERN OPERATING SYSTEMS 71

2.4 DEVELOPMENTS LEADING TO MODERN OPERATING
SYSTEMS

Over the years, there has been a gradual evolution of OS structure and capabilities.
However, in recent years a number of new design elements have been introduced
into both new operating systems and new releases of existing operating systems that
create a major change in the nature of operating systems. These modern operating
systems respond to new developments in hardware, new applications, and new secu-
rity threats. Among the key hardware drivers are multiprocessor systems, greatly
increased processor speed, high-speed network attachments, and increasing size
and variety of memory storage devices. In the application arena, multimedia appli-
cations, Internet and Web access, and client/server computing have influenced OS
design. With respect to security, Internet access to computers has greatly increased
the potential threat and increasingly sophisticated attacks, such as viruses, worms,
and hacking techniques, have had a profound impact on OS design.

The rate of change in the demands on operating systems requires not just
modifications and enhancements to existing architectures but new ways of organ-
izing the OS. A wide range of different approaches and design elements has been
tried in both experimental and commercial operating systems, but much of the work
fits into the following categories:

e Microkernel architecture
Multithreading
Symmetric multiprocessing

Distributed operating systems

Object-oriented design

Most operating systems, until recently, featured a large monolithic kernel.
Most of what is thought of as OS functionality is provided in these large kernels,
including scheduling, file system, networking, device drivers, memory management,
and more. Typically, a monolithic kernel is implemented as a single process, with
all elements sharing the same address space. A microkernel architecture assigns
only a few essential functions to the kernel, including address spaces, interproc-
ess communication (IPC), and basic scheduling. Other OS services are provided by
processes, sometimes called servers, that run in user mode and are treated like any
other application by the microkernel. This approach decouples kernel and server
development. Servers may be customized to specific application or environment
requirements. The microkernel approach simplifies implementation, provides flex-
ibility, and is well suited to a distributed environment. In essence, a microkernel
interacts with local and remote server processes in the same way, facilitating con-
struction of distributed systems.

Multithreading is a technique in which a process, executing an application, is
divided into threads that can run concurrently. We can make the following distinction:

e Thread: A dispatchable unit of work. It includes a processor context (which
includes the program counter and stack pointer) and its own data area for a

72 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

stack (to enable subroutine branching). A thread executes sequentially and is
interruptable so that the processor can turn to another thread.

* Process: A collection of one or more threads and associated system resources
(such as memory containing both code and data, open files, and devices). This
corresponds closely to the concept of a program in execution. By breaking
a single application into multiple threads, the programmer has great control
over the modularity of the application and the timing of application-related
events.

Multithreading is useful for applications that perform a number of essentially
independent tasks that do not need to be serialized. An example is a database server
that listens for and processes numerous client requests. With multiple threads run-
ning within the same process, switching back and forth among threads involves
less processor overhead than a major process switch between different processes.
Threads are also useful for structuring processes that are part of the OS kernel as
described in subsequent chapters.

Symmetric multiprocessing (SMP) is a term that refers to a computer hard-
ware architecture (described in Chapter 1) and also to the OS behavior that exploits
that architecture. The OS of an SMP schedules processes or threads across all of the
processors. SMP has a number of potential advantages over uniprocessor architec-
ture, including the following:

e Performance: If the work to be done by a computer can be organized so that
some portions of the work can be done in parallel, then a system with multiple
processors will yield greater performance than one with a single processor of
the same type. This is illustrated in Figure 2.12. With multiprogramming, only
one process can execute at a time; meanwhile all other processes are waiting
for the processor. With multiprocessing, more than one process can be run-
ning simultaneously, each on a different processor.

e Availability: In a symmetric multiprocessor, because all processors can per-
form the same functions, the failure of a single processor does not halt the
system. Instead, the system can continue to function at reduced performance.

¢ Incremental growth: A user can enhance the performance of a system by add-
ing an additional processor.

e Scaling: Vendors can offer a range of products with different price and per-
formance characteristics based on the number of processors configured in the
system.

Itis important to note that these are potential, rather than guaranteed, benefits. The
OS must provide tools and functions to exploit the parallelism in an SMP system.

Multithreading and SMP are often discussed together, but the two are
independent facilities. Even on a uniprocessor system, multithreading is useful for
structuring applications and kernel processes. An SMP system is useful even for
nonthreaded processes, because several processes can run in parallel. However, the
two facilities complement each other and can be used effectively together.

An attractive feature of an SMP is that the existence of multiple processors is
transparent to the user. The OS takes care of scheduling of threads or processes on

2.4 / DEVELOPMENTS LEADING TO MODERN OPERATING SYSTEMS 73

Time

Process 1 [I I I I]

Process 2 [I I I]

Process 3 [[]

(a) Interleaving (multiprogramming; one processor)

Process 1 [I [[I]

Process 2 [I []

Process 3 [[]

(b) Interleaving and overlapping (multiprocessing; two processors)

1 Blocked I Running
Figure 2.12 Multiprogramming and Multiprocessing

individual processors and of synchronization among processors. This book discusses
the scheduling and synchronization mechanisms used to provide the single-system
appearance to the user. A different problem is to provide the appearance of a sin-
gle system for a cluster of separate computers—a multicomputer system. In this
case, we are dealing with a collection of entities (computers), each with its own
main memory, secondary memory, and other I/O modules. A distributed operating
system provides the illusion of a single main memory space and a single secondary
memory space, plus other unified access facilities, such as a distributed file system.
Although clusters are becoming increasingly popular, and there are many cluster
products on the market, the state of the art for distributed operating systems lags
that of uniprocessor and SMP operating systems. We examine such systems in
Part Eight.

Another innovation in OS design is the use of object-oriented technologies.
Object-oriented design lends discipline to the process of adding modular extensions
to a small kernel. At the OS level, an object-based structure enables programmers
to customize an OS without disrupting system integrity. Object orientation also
eases the development of distributed tools and full-blown distributed operating
systems.

74 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

2.5 VIRTUAL MACHINES

Virtual Machines and Virtualizing

Traditionally, applications have run directly on an OS on a PC or a server. Each PC
or server would run only one OS at a time. Thus, the vendor had to rewrite parts
of its applications for each OS/platform they would run on. An effective strategy
for dealing with this problem is known as virtualization. Virtualization technology
enables a single PC or server to simultaneously run multiple operating systems or
multiple sessions of a single OS. A machine with virtualization can host numerous
applications, including those that run on different operating systems, on a single
platform. In essence, the host operating system can support a number of virtual
machines (VM), each of which has the characteristics of a particular OS and, in some
versions of virtualization, the characteristics of a particular hardware platform.

The VM approach is becoming a common way for businesses and individuals
to deal with legacy applications and to optimize their hardware usage by maximizing
the number of kinds of applications that a single computer can handle [GEER09].
Commercial VM offerings by companies such as VMware and Microsoft are widely
used, with millions of copies having been sold. In addition to their use in server
environments, these VM technologies also are used in desktop environments to run
multiple operating systems, typically Windows and Linux.

The specific architecture of the VM approach varies among vendors.
Figure 2.13 shows a typical arrangement. The virtual machine monitor (VMM), or
hypervisor, runs on top of (or is incorporated into) the host OS. The VMM sup-
ports VMs, which are emulated hardware devices. Each VM runs a separate OS.
The VMM handles each operating system’s communications with the processor,
the storage medium, and the network. To execute programs, the VMM hands off
the processor control to a virtual OS on a VM. Most VMs use virtualized network

Applications Applications Applications
and and e o o and
processes processes processes
Virtual Virtual o o o Virtual
machine 1 machine 2 machine n

Virtual machine monitor

Host operating system

Shared hardware

Figure 2.13 Virtual Memory Concept

2.5 / VIRTUAL MACHINES 75

connections to communicate with one another, when such communication is needed.
Key to the success of this approach is that the VMM provides a layer between soft-
ware environments and the underlying hardware and host OS that is programma-
ble, transparent to the software above it, and makes efficient use of the hardware
below it.

Virtual Machine Architecture?

Recall from Section 2.1 (see Figure 2.1) the discussion of the application program-
ming interface, the application binary interface, and the instruction set archi-
tecture. Let us use these interface concepts to clarify the meaning of machine in
the term virtual machine. Consider a process executing a compiled application
program. From the perspective of the process, the machine on which it executes
consists of the virtual memory space assigned to the process, the processor reg-
isters it may use, the user-level machine instructions it may execute, and the OS
system calls it may invoke for I/O. Thus the ABI defines the machine as seen by
a process.

From the perspective of an application, the machine characteristics are speci-
fied by high-level language capabilities, and OS and system library calls. Thus, the
API defines the machine for an application.

For the operating system, the machine hardware defines the system that
supports the operation of the OS and the numerous processes that execute con-
currently. These processes share a file system and other I/O resources. The system
allocates real memory and I/O resources to the processes and allows the processes
to interact with their resources. From the OS perspective, therefore, it is the ISA
that provides the interface between the system and machine.

With these considerations in mind, we can consider two architectural
approaches to implementing virtual machines: process VMs and system VMs.

PROCESS VIRTUAL MACHINE In essence, a process VM presents an ABI to an
application process, translates a set of OS and user-level instructions composing one
platform to those of another (Figure 2.14a). A process VM is a virtual platform for
executing a single process. As such, the process VM is created when the process is
created and terminated when the process is terminated.

In order to provide cross-platform portability, a common implementation of
the process VM architecture is as part of an overall HLL application environment.
The resulting ABI does not correspond to any specific machine. Instead, the ABI
specification is designed to easily support a given HLL or set of HLLs and to be eas-
ily portable to a variety of ISAs. The HLL VM includes a front-end compiler that
generates a virtual binary code for execution or interpretation. This code can then
be executed on any machine that has the process VM implemented.

Two widely used examples of this approach are the Java VM architecture and
the Microsoft Common Language Infrastructure, which is the foundation of the
NET framework.

2Much of the discussion that follows is based on [SMIT05].

76 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Virtualizing Application
architecture view
—_——t —_——t
Guest Application Application
process process
ABI
VM Virtualizing
software software Process
. virtual
0S machine
Host ABI
Hardware
(a) Process VM
Applications Applications
Guest
0s ’ 0s
API
VMM Virtualizing
software System
ISA virtual
Host Hardware machine
(b) System VM

Figure 2.14 Process and System Virtual Machines

SYSTEM VIRTUAL MACHINE In a system VM, virtualizing software translates the
ISA used by one hardware platform to that of another. Note in Figure 2.14a that
the virtualizing software in the process VM approach makes use of the services of
the host OS, while in the system VM approach there is logically no separate host
OS, rather the host system OS incorporates the VM capability. In the system VM
case, the virtualizing software is host to a number of guest operating systems, with
each VM including its own OS. The VMM emulates the hardware ISA so that the
guest software can potentially execute a different ISA from the one implemented
on the host.

With the system VM approach, a single hardware platform can support mul-
tiple, isolated guest OS environments simultaneously. This approach provides a
number of benefits, including application portability, support of legacy systems
without the need to maintain legacy hardware, and security by means of isolation of
each guest OS environment from the other guest environments.

A variant on the architecture shown in Figure 2.14b is referred to as a hosted
VM. In this case, the VMM is built on top of an existing host OS. The VMM relies
on the host OS to provide device drivers and other lower-level services. An example
of a hosted VM is the VMware GSX server.

2.6 / OS DESIGN CONSIDERATIONS FOR MULTIPROCESSOR AND MULTICORE 77

2.6 OS DESIGN CONSIDERATIONS FOR MULTIPROCESSOR
AND MULTICORE

Symmetric Multiprocessor OS Considerations

In an SMP system, the kernel can execute on any processor, and typically each
processor does self-scheduling from the pool of available processes or threads.
The kernel can be constructed as multiple processes or multiple threads, allowing
portions of the kernel to execute in parallel. The SMP approach complicates the OS.
The OS designer must deal with the complexity due to sharing resources (like data
structures) and coordinating actions (like accessing devices) from multiple parts of
the OS executing at the same time. Techniques must be employed to resolve and
synchronize claims to resources.

An SMP operating system manages processor and other computer resources
so that the user may view the system in the same fashion as a multiprogramming
uniprocessor system. A user may construct applications that use multiple processes
or multiple threads within processes without regard to whether a single processor
or multiple processors will be available. Thus, a multiprocessor OS must provide all
the functionality of a multiprogramming system plus additional features to accom-
modate multiple processors. The key design issues include the following:

e Simultaneous concurrent processes or threads: Kernel routines need to be
reentrant to allow several processors to execute the same kernel code simulta-
neously. With multiple processors executing the same or different parts of the
kernel, kernel tables and management structures must be managed properly
to avoid data corruption or invalid operations.

e Scheduling: Any processor may perform scheduling, which complicates the
task of enforcing a scheduling policy and assuring that corruption of the sched-
uler data structures is avoided. If kernel-level multithreading is used, then the
opportunity exists to schedule multiple threads from the same process simul-
taneously on multiple processors. Multiprocessor scheduling is examined in
Chapter 10.

e Synchronization: With multiple active processes having potential access to
shared address spaces or shared I/O resources, care must be taken to provide
effective synchronization. Synchronization is a facility that enforces mutual
exclusion and event ordering. A common synchronization mechanism used in
multiprocessor operating systems is locks, described in Chapter 5.

° Memory management: Memory management on a multiprocessor must deal
with all of the issues found on uniprocessor computers and is discussed in Part
Three. In addition, the OS needs to exploit the available hardware parallelism
to achieve the best performance. The paging mechanisms on different proc-
essors must be coordinated to enforce consistency when several processors
share a page or segment and to decide on page replacement. The reuse of
physical pages is the biggest problem of concern; that is, it must be guaranteed
that a physical page can no longer be accessed with its old contents before the
page is put to a new use.

78 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

¢ Reliability and fault tolerance: The OS should provide graceful degradation
in the face of processor failure. The scheduler and other portions of the OS
must recognize the loss of a processor and restructure management tables
accordingly.

Because multiprocessor OS design issues generally involve extensions to
solutions to multiprogramming uniprocessor design problems, we do not treat
multiprocessor operating systems separately. Rather, specific multiprocessor issues
are addressed in the proper context throughout this book.

Multicore OS Considerations

The considerations for multicore systems include all the design issues discussed so
far in this section for SMP systems. But additional concerns arise. The issue is one
of the scale of the potential parallelism. Current multicore vendors offer systems
with up to eight cores on a single chip. With each succeeding processor technology
generation, the number of cores and the amount of shared and dedicated cache
memory increases, so that we are now entering the era of “many-core” systems.

The design challenge for a many-core multicore system is to efficiently
harness the multicore processing power and intelligently manage the substantial
on-chip resources efficiently. A central concern is how to match the inherent paral-
lelism of a many-core system with the performance requirements of applications.
The potential for parallelism in fact exists at three levels in contemporary multicore
system. First, there is hardware parallelism within each core processor, known as
instruction level parallelism, which may or may not be exploited by application pro-
grammers and compilers. Second, there is the potential for multiprogramming and
multithreaded execution within each processor. Finally, there is the potential for
a single application to execute in concurrent processes or threads across multiple
cores. Without strong and effective OS support for the last two types of parallelism
just mentioned, hardware resources will not be efficiently used.

In essence, then, since the advent of multicore technology, OS designers have
been struggling with the problem of how best to extract parallelism from computing
workloads. A variety of approaches are being explored for next-generation operat-
ing systems. We introduce two general strategies in this section and consider some
details in later chapters.

PARALLELISM WITHIN APPLICATIONS Most applications can, in principle, be
subdivided into multiple tasks that can execute in parallel, with these tasks then
being implemented as multiple processes, perhaps each with multiple threads. The
difficulty is that the developer must decide how to split up the application work into
independently executable tasks. That is, the developer must decide what pieces can
or should be executed asynchronously or in parallel. It is primarily the compiler and
the programming language features that support the parallel programming design
process. But, the OS can support this design process, at minimum, by efficiently
allocating resources among parallel tasks as defined by the developer.

Perhaps the most effective initiative to support developers is implemented in
the latest release of the UNIX-based Mac OS X operating system. Mac OS X 10.6
includes a multicore support capability known as Grand Central Dispatch (GCD).

2.6 / OS DESIGN CONSIDERATIONS FOR MULTIPROCESSOR AND MULTICORE 79

GCD does not help the developer decide how to break up a task or application into
separate concurrent parts. But once a developer has identified something that can
be split off into a separate task, GCD makes it as easy and noninvasive as possible
to actually do so.

In essence, GCD is a thread pool mechanism, in which the OS maps tasks onto
threads representing an available degree of concurrency (plus threads for block-
ing on I/0). Windows also has a thread pool mechanism (since 2000), and thread
pools have been heavily used in server applications for years. What is new in GCD
is the extension to programming languages to allow anonymous functions (called
blocks) as a way of specifying tasks. GCD is hence not a major evolutionary step.
Nevertheless, it is a new and valuable tool for exploiting the available parallelism of
a multicore system.

One of Apple’s slogans for GCD is “islands of serialization in a sea of concurrency.”
That captures the practical reality of adding more concurrency to run-of-the-mill
desktop applications. Those islands are what isolate developers from the thorny
problems of simultaneous data access, deadlock, and other pitfalls of multithreading.
Developers are encouraged to identify functions of their applications that would be
better executed off the main thread, even if they are made up of several sequential or
otherwise partially interdependent tasks. GCD makes it easy to break off the entire
unit of work while maintaining the existing order and dependencies between subtasks.
In later chapters, we look at some of the details of GCD.

VIRTUAL MACHINE APPROACH An alternative approach is to recognize that
with the ever-increasing number of cores on a chip, the attempt to multiprogram
individual cores to support multiple applications may be a misplaced use of
resources [JACK10]. If instead, we allow one or more cores to be dedicated to a
particular process and then leave the processor alone to devote its efforts to that
process, we avoid much of the overhead of task switching and scheduling decisions.
The multicore OS could then act as a hypervisor that makes a high-level decision
to allocate cores to applications but does little in the way of resource allocation
beyond that.

The reasoning behind this approach is as follows. In the early days of com-
puting, one program was run on a single processor. With multiprogramming,
each application is given the illusion that it is running on a dedicated processor.
Multiprogramming is based on the concept of a process, which is an abstraction of
an execution environment. To manage processes, the OS requires protected space,
free from user and program interference. For this purpose, the distinction between
kernel mode and user mode was developed. In effect, kernel mode and user mode
abstracted the processor into two processors. With all these virtual processors, how-
ever, come struggles over who gets the attention of the real processor. The overhead
of switching between all these processors starts to grow to the point where respon-
siveness suffers, especially when multiple cores are introduced. But with many-core
systems, we can consider dropping the distinction between kernel and user mode.
In this approach, the OS acts more like a hypervisor. The programs themselves take
on many of the duties of resource management. The OS assigns an application a
processor and some memory, and the program itself, using metadata generated by
the compiler, would best know how to use these resources.

80 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

2.7 MICROSOFT WINDOWS OVERVIEW

History

The story of Windows begins with a very different OS, developed by Microsoft for
the first IBM personal computer and referred to as MS-DOS. The initial version,
MS-DOS 1.0, was released in August 1981. It consisted of 4000 lines of assem-
bly language source code and ran in 8 Kbytes of memory using the Intel 8086
MiCroprocessor.

The IBM PC was an important stage in a continuing revolution in computing
that has expanded computing from the data center of the 1960s, to the departmental
minicomputer of the 1970s, and to the desktop in the 1980s. The revolution has con-
tinued with computing moving into the briefcase in the 1990s, and into our pockets
during the most recent decade.

Microsoft’s initial OS ran a single application at a time, using a command line
interface to control the system. It took a long time for Microsoft to develop a true
GUI interface for the PC; on their third try they succeeded. The 16-bit Windows
3.0 shipped in 1990 and instantly became successful, selling a million copies in six
months. Windows 3.0 was implemented as a layer on top of MS-DOS and suffered
from the limitations of that primitive system. Five years later, Microsoft shipped a
32-bit version, Windows 95, which was also very successful and led to the develop-
ment of additional versions: Windows 98 and Windows Me.

Meanwhile, it had become clear to Microsoft that the MS-DOS platform could
not sustain a truly modern OS. In 1989 Microsoft hired Dave Cutler, who had devel-
oped the very successful RSX-11M and VAX/VMS operating systems at Digital
Equipment Corporation. Cutler’s charter was to develop a modern OS, which was
portable to architectures other than the Intel x86 family, and yet compatible with
the OS/2 system that Microsoft was jointly developing with IBM, as well as the port-
able UNIX standard, POSIX. This system was christened NT (New Technology).

The first version of Windows NT (3.1) was released in 1993, with the same GUI
as Windows 3.1, the follow-on to Windows 3.0. However, NT 3.1 was a new 32-bit
OS with the ability to support older DOS and Windows applications as well as pro-
vide OS/2 support. Several versions of NT 3.x followed with support for additional
hardware platforms. In 1996, Microsoft released NT 4.0 with the same user interface
as Windows 95. In 2000, Microsoft introduced the next major upgrade of the NT OS:
Windows 2000. The underlying Executive and Kernel architecture is fundamentally
the same as in NT 3.1, but new features have been added. The emphasis in Windows
2000 was the addition of services and functions to support distributed processing.
The central element of Windows 2000’s new features was Active Directory, which
is a distributed directory service able to map names of arbitrary objects to any kind
of information about those objects. Windows 2000 also added the plug-and-play
and power-management facilities that were already in Windows 98, the successor to
Windows 95. These features are particularly important for laptop computers.

In 2001, a new desktop version of NT was released, known as Windows XP.
The goal of Windows XP was to finally replace the versions of Windows based on
MS-DOS with an OS based on NT. In 2007, Microsoft shipped Windows Vista for
the desktop and a short time later, Windows Server 2008. In 2009, they shipped

2.7 / MICROSOFT WINDOWS OVERVIEW 81

Windows 7 and Windows Server 2008 R2. Despite the difference in naming, the
client and server versions of these systems use many of the same files, but with addi-
tional features and capabilities enabled for servers.

Over the years, NT has attempted to support multiple processor architectures;
the Intel i860 was the original target for NT as well as the x86. Subsequently, NT
added support for the Digital Alpha architecture, the PowerPC, and the MIPS.
Later came the Intel IA64 (Itanium) and the 64-bit version of the x86, based on
the AMDG64 processor architecture. Windows 7 supports only x86 and AMDG64.
Windows Server 2008 R2 supports only AMD64 and IA64—but Microsoft has
announced that it will end support for [A64 in future releases. All the other proces-
sor architectures have failed in the market, and today only the x86, AMD64, and
ARM architectures are viable. Microsoft’s support for ARM is limited to their
Windows CE OS, which runs on phones and handheld devices. Windows CE has
little relationship to the NT-based Windows that runs on slates, netbooks/laptops,
desktops, and servers.

Microsoft has announced that it is developing a version of NT that targets
cloud computing: Windows Azure. Azure includes a number of features that are
specific to the requirements of public and private clouds. Though it is closely related
to Windows Server, it does not share files in the same way that the Windows client
and server versions do.

The Modern OS

Modern operating systems, such as today’s Windows and UNIX (with all its flavors
like Solaris, Linux, and MacOS X), must exploit the capabilities of all the billions
of transistors on each silicon chip. They must work with multiple 32-bit and 64-bit
CPUs, with adjunct GPUs, DSPs, and fixed function units. They must provide sup-
port for sophisticated input/output (multiple touch-sensitive displays, cameras,
microphones, biometric and other sensors) and handle a variety of data challenges
(streaming media, photos, scientific number crunching, search queries)—all while
giving a human being a responsive, real-time experience with the computing system.

To handle these requirements, the computer cannot be doing only one thing
at a time. Unlike the early days of the PC, when the OS ran a single application at
a time, hundreds of activities are taking place to provide the modern computing
experience. The OS can no longer just switch to the application and step away until
it is needed; it must aggressively manage the system and coordinate between all the
competing computations that are taking place often simultaneously on the multiple
CPUs, GPUs, and DSPs that may be present in a modern computing environment.
Thus all modern operating systems have multitasking capability, even though they
may be acting on behalf of only a single human being (called the user).

Windows is a sophisticated multitasking OS, designed to manage the com-
plexity of the modern computing environment, provide a rich platform for appli-
cation developers, and support a rich set of experiences for users. Like Solaris,
Windows is designed to have the features that enterprises need, while at the same
time Windows, like MacOS, provides the simplicity and ease-of-use that consumers
require. In the following sections we will present an overview of the fundamental
structure and capabilities of Windows.

82 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Architecture

Figure 2.15 illustrates the overall structure of Windows 7; all releases of Windows
based on NT have essentially the same structure at this level of detail.

As with virtually all operating systems, Windows separates application-oriented
software from the core OS software. The latter, which includes the Executive, the
Kernel, device drivers, and the hardware abstraction layer, runs in kernel mode.
Kernel mode software has access to system data and to the hardware. The remaining
software, running in user mode, has limited access to system data.

OPERATING SYSTEM ORGANIZATION Windows has a highly modular architecture.
Each system function is managed by just one component of the OS. The rest of the
OS and all applications access that function through the responsible component using
standard interfaces. Key system data can only be accessed through the appropriate

Service processes L
P Applications

System support

processes
Service control
manager SVChost.exe Environment
Task manager bsyst
| Lsass | Winmgmt.exe - Subsystems
: Windows
| Winlogon | Spooler explorer POSIX
. . User
Session | Services.exe application
manager :
& Subsytem DLLs Win32
------- nii {]
1
! | Ntdll.dll
System :
threads | 1 User mode
Kernel mode
System service dispatcher
(Kernel-mode callable interfaces)
Win32 USER,
I/O manager - - 5 - GDI
= | Q ol I 2| = 9| 8al &
) S, —_ Q e 1=} - SIS 2
) ® BE| 2 e E |28 |d 3 =
< a 09 @ g = 5 28 |% B =N
. P S lEs| 2 |82 g 122 |S2|aw
Device g =] - é = s |22 |=E (23
and file o § cs| 2 |8a| § |22 &% i Graphics
system § & g B g 5 2188 £ drivers
drivers & - - 8 = @
Kernel |
Hardware abstraction layer (HAL) |
Lsass = local security authentication server Colored area indicates Executive

POSIX = portable operating system interface
GDI = graphics device interface
DLL = dynamic link libraries

Figure 2.15 Windows and Windows Vista Architecture [RUSS11]

2.7 / MICROSOFT WINDOWS OVERVIEW 83

function. In principle, any module can be removed, upgraded, or replaced without
rewriting the entire system or its standard application program interfaces (APIs).
The kernel-mode components of Windows are the following:

¢ Executive: Contains the core OS services, such as memory management, pro-
cess and thread management, security, I/O, and interprocess communication.

* Kernel: Controls execution of the processors. The Kernel manages thread
scheduling, process switching, exception and interrupt handling, and multi-
processor synchronization. Unlike the rest of the Executive and the user level,
the Kernel’s own code does not run in threads.

e Hardware abstraction layer (HAL): Maps between generic hardware com-
mands and responses and those unique to a specific platform. It isolates
the OS from platform-specific hardware differences. The HAL makes each
computer’s system bus, direct memory access (DMA) controller, inter-
rupt controller, system timers, and memory controller look the same to the
Executive and Kernel components. It also delivers the support needed for
SMP, explained subsequently.

e Device drivers: Dynamic libraries that extend the functionality of the
Executive. These include hardware device drivers that translate user I/O func-
tion calls into specific hardware device I/O requests and software components
for implementing file systems, network protocols, and any other system exten-
sions that need to run in kernel mode.

* Windowing and graphics system: Implements the GUI functions, such as deal-
ing with windows, user interface controls, and drawing.

The Windows Executive includes components for specific system functions
and provides an API for user-mode software. Following is a brief description of
each of the Executive modules:

¢ 1/0 manager: Provides a framework through which I/O devices are accessible
to applications, and is responsible for dispatching to the appropriate device
drivers for further processing. The I/O manager implements all the Windows
I/0O APIs and enforces security and naming for devices, network protocols,
and file systems (using the object manager). Windows I/O is discussed in
Chapter 11.

e Cache manager: Improves the performance of file-based I/O by causing
recently referenced file data to reside in main memory for quick access, and
deferring disk writes by holding the updates in memory for a short time before
sending them to the disk in more efficient batches.

* Object manager: Creates, manages, and deletes Windows Executive objects
that are used to represent resources such as processes, threads, and synchroni-
zation objects. It enforces uniform rules for retaining, naming, and setting the
security of objects. The object manager also creates the entries in each proc-
esses’ handle table, which consist of access control information and a pointer
to the object. Windows objects are discussed later in this section.

¢ Plug-and-play manager: Determines which drivers are required to support a
particular device and loads those drivers.

84 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

* Power manager: Coordinates power management among various devices
and can be configured to reduce power consumption by shutting down idle
devices, putting the processor to sleep, and even writing all of memory to disk
and shutting off power to the entire system.

* Security reference monitor: Enforces access-validation and audit-generation
rules. The Windows object-oriented model allows for a consistent and uni-
form view of security, right down to the fundamental entities that make up the
Executive. Thus, Windows uses the same routines for access validation and
for audit checks for all protected objects, including files, processes, address
spaces, and I/O devices. Windows security is discussed in Chapter 15.

¢ Virtual memory manager: Manages virtual addresses, physical memory, and
the paging files on disk. Controls the memory management hardware and data
structures which map virtual addresses in the process’s address space to physi-
cal pages in the computer’s memory. Windows virtual memory management is
described in Chapter 8.

e Process/thread manager: Creates, manages, and deletes process and thread
objects. Windows process and thread management are described in Chapter 4.

¢ Configuration manager: Responsible for implementing and managing the
system registry, which is the repository for both system-wide and per-user
settings of various parameters.

e Advanced local procedure call (ALPC) facility: Implements an efficient cross-
process procedure call mechanism for communication between local processes
implementing services and subsystems. Similar to the remote procedure call
(RPC) facility used for distributed processing.

USER-MoDE PROCESSES Four basic types of user-mode processes are supported
by Windows:

e Special system processes: User-mode services needed to manage the system,
such as the session manager, the authentication subsystem, the service man-
ager, and the logon process.

e Service processes: The printer spooler, the event logger, user-mode compo-
nents that cooperate with device drivers, various network services, and many,
many others. Services are used by both Microsoft and external software devel-
opers to extend system functionality as they are the only way to run background
user-mode activity on a Windows system.

¢ Environment subsystems: Provide different OS personalities (environments).
The supported subsystems are Win32 and POSIX. Each environment sub-
system includes a subsystem process shared among all applications using the
subsystem and dynamic link libraries (DLLs) that convert the user application
calls to ALPC calls on the subsystem process, and/or native Windows calls.

e User applications: Executables (EXEs) and DLLs that provide the functional-
ity users run to make use of the system. EXEs and DLLs are generally targeted
at a specific environment subsystem; although some of the programs that are
provided as part of the OS use the native system interfaces (NT API). There is
also support for running 32-bit programs on 64-bit systems.

2.7 / MICROSOFT WINDOWS OVERVIEW 85

Windows is structured to support applications written for multiple OS personali-
ties. Windows provides this support using a common set of kernel mode components
that underlie the OS environment subsystems. The implementation of each environ-
ment subsystem includes a separate process, which contains the shared data structures,
privileges, and Executive object handles needed to implement a particular personal-
ity. The process is started by the Windows Session Manager when the first application
of that type is started. The subsystem process runs as a system user, so the Executive
will protect its address space from processes run by ordinary users.

An environment subsystem provides a graphical or command-line user inter-
face that defines the look and feel of the OS for a user. In addition, each subsys-
tem provides the API for that particular environment. This means that applications
created for a particular operating environment need only be recompiled to run on
Windows. Because the OS interface that they see is the same as that for which they
were written, the source code does not need to be modified.

Client/Server Model

The Windows OS services, the environment subsystems, and the applications are
structured using the client/server computing model, which is a common model for
distributed computing and which is discussed in Part Six. This same architecture can
be adopted for use internally to a single system, as is the case with Windows.

The native NT API is a set of kernel-based services which provide the core
abstractions used by the system, such as processes, threads, virtual memory, I/O,
and communication. Windows provides a far richer set of services by using the
client/server model to implement functionality in user-mode processes. Both the
environment subsystems and the Windows user-mode services are implemented as
processes that communicate with clients via RPC. Each server process waits for a
request from a client for one of its services (e.g., memory services, process creation
services, or networking services). A client, which can be an application program
or another server program, requests a service by sending a message. The message
is routed through the Executive to the appropriate server. The server performs
the requested operation and returns the results or status information by means of
another message, which is routed through the Executive back to the client.

Advantages of a client/server architecture include the following:

e It simplifies the Executive. It is possible to construct a variety of APIs im-
plemented in user-mode servers without any conflicts or duplications in the
Executive. New APIs can be added easily.

e It improves reliability. Each new server runs outside of the kernel, with its
own partition of memory, protected from other servers. A single server can
fail without crashing or corrupting the rest of the OS.

e It provides a uniform means for applications to communicate with services via
RPCs without restricting flexibility. The message-passing process is hidden
from the client applications by function stubs, which are small pieces of code
which wrap the RPC call. When an application makes an API call to an envi-
ronment subsystem or a service, the stub in the client application packages the
parameters for the call and sends them as a message to the server process that
implements the call.

86 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

e [t provides a suitable base for distributed computing. Typically, distributed
computing makes use of a client/server model, with remote procedure calls
implemented using distributed client and server modules and the exchange of
messages between clients and servers. With Windows, a local server can pass
a message on to a remote server for processing on behalf of local client appli-
cations. Clients need not know whether a request is being serviced locally or
remotely. Indeed, whether a request is serviced locally or remotely can change
dynamically based on current load conditions and on dynamic configuration
changes.

Threads and SMP

Two important characteristics of Windows are its support for threads and for
symmetric multiprocessing (SMP), both of which were introduced in Section 2.4.
[RUSS11] lists the following features of Windows that support threads and SMP:

e OS routines can run on any available processor, and different routines can
execute simultaneously on different processors.

e Windows supports the use of multiple threads of execution within a single
process. Multiple threads within the same process may execute on different
processors simultaneously.

e Server processes may use multiple threads to process requests from more than
one client simultaneously.

e Windows provides mechanisms for sharing data and resources between proc-
esses and flexible interprocess communication capabilities.

Windows Objects

Though the core of Windows is written in C, the design principles followed draw
heavily on the concepts of object-oriented design. This approach facilitates the shar-
ing of resources and data among processes and the protection of resources from
unauthorized access. Among the key object-oriented concepts used by Windows are
the following:

* Encapsulation: An object consists of one or more items of data, called
attributes, and one or more procedures that may be performed on those data,
called services. The only way to access the data in an object is by invoking one
of the object’s services. Thus, the data in the object can easily be protected
from unauthorized use and from incorrect use (e.g., trying to execute a non-
executable piece of data).

* Object class and instance: An object class is a template that lists the attributes
and services of an object and defines certain object characteristics. The OS can
create specific instances of an object class as needed. For example, there is a
single process object class and one process object for every currently active
process. This approach simplifies object creation and management.

e Inheritance: Although the implementation is hand coded, the Executive uses
inheritance to extend object classes by adding new features. Every Executive

2.7 / MICROSOFT WINDOWS OVERVIEW 87

class is based on a base class which specifies virtual methods that support
creating, naming, securing, and deleting objects. Dispatcher objects are
Executive objects that inherit the properties of an event object, so they can
use common synchronization methods. Other specific object types, such as the
device class, allow classes for specific devices to inherit from the base class,
and add additional data and methods.

e Polymorphism: Internally, Windows uses a common set of API functions to
manipulate objects of any type; this is a feature of polymorphism, as defined
in Appendix D. However, Windows is not completely polymorphic because
there are many APIs that are specific to a single object type.

The reader unfamiliar with object-oriented concepts should review Appendix D.

Not all entities in Windows are objects. Objects are used in cases where data
are intended for user mode access or when data access is shared or restricted.
Among the entities represented by objects are files, processes, threads, semaphores,
timers, and graphical windows. Windows creates and manages all types of objects in
a uniform way, via the object manager. The object manager is responsible for creat-
ing and destroying objects on behalf of applications and for granting access to an
object’s services and data.

Each object within the Executive, sometimes referred to as a kernel object
(to distinguish from user-level objects not of concern to the Executive), exists as
a memory block allocated by the kernel and is directly accessible only by kernel
mode components. Some elements of the data structure (e.g., object name, security
parameters, usage count) are common to all object types, while other elements are
specific to a particular object type (e.g., a thread object’s priority). Because these
object data structures are in the part of each process’s address space accessible only
by the kernel, it is impossible for an application to reference these data structures
and read or write them directly. Instead, applications manipulate objects indirectly
through the set of object manipulation functions supported by the Executive. When
an object is created, the application that requested the creation receives back a
handle for the object. In essence, a handle is an index into a per-process Executive
table containing a pointer to the referenced object. This handle can then be used
by any thread within the same process to invoke Win32 functions that work with
objects, or can be duplicated into other processes.

Objects may have security information associated with them, in the form
of a Security Descriptor (SD). This security information can be used to restrict
access to the object based on contents of a token object which describes a par-
ticular user. For example, a process may create a named semaphore object with
the intent that only certain users should be able to open and use that semaphore.
The SD for the semaphore object can list those users that are allowed (or denied)
access to the semaphore object along with the sort of access permitted (read,
write, change, etc.).

In Windows, objects may be either named or unnamed. When a process
creates an unnamed object, the object manager returns a handle to that object, and
the handle is the only way to refer to it. Handles can be inherited by child processes,
or duplicated between processes. Named objects are also given a name that other
unrelated processes can use to obtain a handle to the object. For example, if proc-

88 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Table 2.4

Windows Kernel Control Objects

Process

Thread

Profile

Asynchronous Procedure Call | Used to break into the execution of a specified thread and to cause a

Deferred Procedure Call Used to postpone interrupt processing to avoid delaying hardware inter-

Interrupt Used to connect an interrupt source to an interrupt service routine by

procedure to be called in a specified processor mode.

rupts. Also used to implement timers and interprocessor communication.

means of an entry in an Interrupt Dispatch Table (IDT). Each processor
has an IDT that is used to dispatch interrupts that occur on that processor.

Represents the virtual address space and control information necessary

for the execution of a set of thread objects. A process contains a pointer to
an address map, a list of ready threads containing thread objects, a list of
threads belonging to the process, the total accumulated time for all threads
executing within the process, and a base priority.

Represents thread objects, including scheduling priority and quantum, and
which processors the thread may run on.

Used to measure the distribution of run time within a block of code. Both
user and system code can be profiled.

ess A wishes to synchronize with process B, it could create a named event object
and pass the name of the event to B. Process B could then open and use that event
object. However, if A simply wished to use the event to synchronize two threads
within itself, it would create an unnamed event object, because there is no need for
other processes to be able to use that event.

There are two categories of objects used by Windows for synchronizing the
use of the processor:

¢ Dispatcher objects: The subset of Executive objects which threads can wait on
to control the dispatching and synchronization of thread-based system opera-
tions. These are described in Chapter 6.

¢ Control objects: Used by the Kernel component to manage the operation of
the processor in areas not managed by normal thread scheduling. Table 2.4
lists the Kernel control objects.

Windows is not a full-blown object-oriented OS. It is not implemented in
an object-oriented language. Data structures that reside completely within one
Executive component are not represented as objects. Nevertheless, Windows illus-
trates the power of object-oriented technology and represents the increasing trend
toward the use of this technology in OS design.

What Is New in Windows 7

The core architecture of Windows has been very stable; however, at each release
there are new features and improvements made even at the lower levels of the sys-
tem. Many of the changes in Windows are not visible in the features themselves,
but in the performance and stability of the system. These are due to changes in
the engineering behind Windows. Other improvements are due to new features, or
improvements to existing features:

2.7 / MICROSOFT WINDOWS OVERVIEW 89

Engineering improvements: The performance of hundreds of key scenarios,
such as opening a file from the GUI, are tracked and continuously character-
ized to identify and fix problems. The system is now built in layers which can
be separately tested, improving modularity and reducing complexity.

Performance improvements: The amount of memory required has been
reduced, both for clients and servers. The VMM is more aggressive about
limiting the memory use of runaway processes (see Section 8.5). Background
processes can arrange to start upon an event trigger, such as a plugging in a
camera, rather than running continuously.

Reliability improvements: The user-mode heap is more tolerant of memory
allocation errors by C/C++ programmers, such as continuing to use memory
after it is freed. Programs that make such errors are detected and the heap
allocation policies are modified for that program to defer freeing memory and
avoid corruption of the program’s data.

Energy efficiency: Many improvements have been made to the energy effi-
ciency of Windows. On servers, unused processors can be “parked,” reducing
their energy use. All Windows systems are more efficient in how the timers
work; avoiding timer interrupts and the associated background activity allows
the processors to remain idle longer, which allows modern processors to con-
sume less energy. Windows accomplishes this by coalescing timer interrupts
into batches.

Security: Windows 7 builds on the security features in Windows Vista, which
added integrity levels to the security model, provided BitLocker volume
encryption (see Section 15.6), and limited privileged actions by ordinary users.
BitLocker is now easier to set up and use, and privileged actions result in
many fewer annoying GUI pop-ups.

Thread improvements: The most interesting Windows 7 changes were in the
Kernel. The number of logical CPUs available on each system is growing
dramatically. Previous versions of Windows limited the number of CPUs to
64, because of the bitmasks used to represent values like processor affinity
(see Section 4.4). Windows 7 can support hundreds of CPUs. To ensure that
the performance of the system scaled with the number of CPUs, major
improvements were made to the Kernel-scheduling code to break apart locks
and reduce contention. As the number of available CPUs increase, new
programming environments are being developed to support the finer-grain
parallelism than is available with threads. Windows 7 supports a form of User-
Mode Scheduling which separates the user-mode and kernel-mode portions
of threads, allowing the user-mode portions to yield the CPU without enter-
ing the Kernel scheduler. Finally, Windows Server 2008 R2 introduced
Dynamic Fair Share Scheduling (DFSS) to allow multiuser servers to limit
how much one user can interfere with another. DFSS keeps a user with
20 running threads from getting twice as much processor time as a user with
only 10 running threads.

90 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

2.8 TRADITIONAL UNIX SYSTEMS

History

The history of UNIX is an oft-told tale and will not be repeated in great detail here.
Instead, we provide a brief summary.

UNIX was initially developed at Bell Labs and became operational on a
PDP-7 in 1970. Some of the people involved at Bell Labs had also participated in
the time-sharing work being done at MIT’s Project MAC. That project led to the
development of first CTSS and then Multics. Although it is common to say that
the original UNIX was a scaled-down version of Multics, the developers of UNIX
actually claimed to be more influenced by CTSS [RITC78]. Nevertheless, UNIX
incorporated many ideas from Multics.

Work on UNIX at Bell Labs, and later elsewhere, produced a series of versions
of UNIX. The first notable milestone was porting the UNIX system from the PDP-7 to
the PDP-11. This was the first hint that UNIX would be an OS for all computers. The
next important milestone was the rewriting of UNIX in the programming language
C. This was an unheard-of strategy at the time. It was generally felt that something as
complex as an OS, which must deal with time-critical events, had to be written exclu-
sively in assembly language. Reasons for this attitude include the following:

e Memory (both RAM and secondary store) was small and expensive by today’s
standards, so effective use was important. This included various techniques for
overlaying memory with different code and data segments, and self-modifying
code.

e Even though compilers had been available since the 1950s, the computer
industry was generally skeptical of the quality of automatically generated
code. With resource capacity small, efficient code, both in terms of time and
space, was essential.

e Processor and bus speeds were relatively slow, so saving clock cycles could
make a substantial difference in execution time.

The C implementation demonstrated the advantages of using a high-level
language for most if not all of the system code. Today, virtually all UNIX imple-
mentations are written in C.

These early versions of UNIX were popular within Bell Labs. In 1974, the
UNIX system was described in a technical journal for the first time [RITC74]. This
spurred great interest in the system. Licenses for UNIX were provided to commer-
cial institutions as well as universities. The first widely available version outside Bell
Labs was Version 6, in 1976. The follow-on Version 7, released in 1978, is the ances-
tor of most modern UNIX systems. The most important of the non-AT&T systems
to be developed was done at the University of California at Berkeley, called UNIX
BSD (Berkeley Software Distribution), running first on PDP and then VAX com-
puters. AT&T continued to develop and refine the system. By 1982, Bell Labs had
combined several AT&T variants of UNIX into a single system, marketed com-
mercially as UNIX System III. A number of features was later added to the OS to
produce UNIX System V.

2.8 / TRADITIONAL UNIX SYSTEMS 91

Description

Figure 2.16 provides a general description of the classic UNIX architecture. The
underlying hardware is surrounded by the OS software. The OS is often called the
system kernel, or simply the kernel, to emphasize its isolation from the user and appli-
cations. It is the UNIX kernel that we will be concerned with in our use of UNIX as
an example in this book. UNIX also comes equipped with a number of user services
and interfaces that are considered part of the system. These can be grouped into
the shell, other interface software, and the components of the C compiler (compiler,
assembler, loader). The layer outside of this consists of user applications and the user
interface to the C compiler.

A closer look at the kernel is provided in Figure 2.17. User programs can
invoke OS services either directly or through library programs. The system call
interface is the boundary with the user and allows higher-level software to gain
access to specific kernel functions. At the other end, the OS contains primitive rou-
tines that interact directly with the hardware. Between these two interfaces, the
system is divided into two main parts, one concerned with process control and the
other concerned with file management and I/O. The process control subsystem is
responsible for memory management, the scheduling and dispatching of processes,
and the synchronization and interprocess communication of processes. The file sys-
tem exchanges data between memory and external devices either as a stream of
characters or in blocks. To achieve this, a variety of device drivers are used. For
block-oriented transfers, a disk cache approach is used: A system buffer in main
memory is interposed between the user address space and the external device.

The description in this subsection has dealt with what might be termed
traditional UNIX systems; [VAHA96] uses this term to refer to System V Release
3 (SVR3), 4.3BSD, and earlier versions. The following general statements may be

UNIX commands
and libraries

System call
interface

Hardware

User-written
applications

Figure 2.16 General UNIX Architecture

92 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

User programs

ST e | Libraries

Kernel level

| System call interface

Interprocess
communication
File subsystem
<> Process
control
subsystem Scheduler
Memory
Buffeitcache management

Character Block

Device drivers

!

Hardware control

Kernel level

Hardware level

Hardware

Figure 2.17 Traditional UNIX Kernel

made about a traditional UNIX system. It is designed to run on a single processor
and lacks the ability to protect its data structures from concurrent access by multiple
processors. Its kernel is not very versatile, supporting a single type of file system,
process scheduling policy, and executable file format. The traditional UNIX kernel
is not designed to be extensible and has few facilities for code reuse. The result is
that, as new features were added to the various UNIX versions, much new code had
to be added, yielding a bloated and unmodular kernel.

2.9 MODERN UNIX SYSTEMS

As UNIX evolved, the number of different implementations proliferated, each pro-
viding some useful features. There was a need to produce a new implementation that
unified many of the important innovations, added other modern OS design features,
and produced a more modular architecture. Typical of the modern UNIX kernel is
the architecture depicted in Figure 2.18. There is a small core of facilities, written in

2.9 / MODERN UNIX SYSTEMS 93

coff

NFS
File mappings

FFS

Virtual

Devi.ce memory ZEE:I‘;:(ZS
mappings framework §5fs
Anonymous
mappings RFS
Common
facilities
Disk driver Time-sharing

Block
device
switch

processes

Scheduler
framework

System
processes

Tape driver

Network tty
driver driver

Figure 2.18 Modern UNIX Kernel

a modular fashion, that provide functions and services needed by a number of OS
processes. Each of the outer circles represents functions and an interface that may
be implemented in a variety of ways.

We now turn to some examples of modern UNIX systems.

System V Release 4 (SVR4)

SVR4, developed jointly by AT&T and Sun Microsystems, combines features from
SVR3, 4.3BSD, Microsoft Xenix System V, and SunOS. It was almost a total rewrite
of the System V kernel and produced a clean, if complex, implementation. New fea-
tures in the release include real-time processing support, process scheduling classes,
dynamically allocated data structures, virtual memory management, virtual file sys-
tem, and a preemptive kernel.

SVR4 draws on the efforts of both commercial and academic designers and
was developed to provide a uniform platform for commercial UNIX deployment. It
has succeeded in this objective and is perhaps the most important UNIX variant. It
incorporates most of the important features ever developed on any UNIX system

94 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

and does so in an integrated, commercially viable fashion. SVR4 runs on processors
ranging from 32-bit microprocessors up to supercomputers.

BSD

The Berkeley Software Distribution (BSD) series of UNIX releases have played
a key role in the development of OS design theory. 4.xBSD is widely used in aca-
demic installations and has served as the basis of a number of commercial UNIX
products. It is probably safe to say that BSD is responsible for much of the popular-
ity of UNIX and that most enhancements to UNIX first appeared in BSD versions.

4.4BSD was the final version of BSD to be released by Berkeley, with the
design and implementation organization subsequently dissolved. It is a major
upgrade to 4.3BSD and includes a new virtual memory system, changes in the ker-
nel structure, and a long list of other feature enhancements.

One of the most widely used and best documented versions of BSD is
FreeBSD. FreeBSD is popular for Internet-based servers and firewalls and is used
in a number of embedded systems.

The latest version of the Macintosh OS, Mac OS X, is based on FreeBSD 5.0
and the Mach 3.0 microkernel.

Solaris 10

Solaris is Sun’s SVR4-based UNIX release, with the latest version being 10. Solaris
provides all of the features of SVR4 plus a number of more advanced features, such
as a fully preemptable, multithreaded kernel, full support for SMP, and an object-
oriented interface to file systems. Solaris is the most widely used and most successful
commercial UNIX implementation.

2.10 LINUX

History

Linux started out as a UNIX variant for the IBM PC (Intel 80386) architecture.
Linus Torvalds, a Finnish student of computer science, wrote the initial version.
Torvalds posted an early version of Linux on the Internet in 1991. Since then, a
number of people, collaborating over the Internet, have contributed to the devel-
opment of Linux, all under the control of Torvalds. Because Linux is free and the
source code is available, it became an early alternative to other UNIX workstations,
such as those offered by Sun Microsystems and IBM. Today, Linux is a full-featured
UNIX system that runs on all of these platforms and more, including Intel Pentium
and Itanium, and the Motorola/IBM PowerPC.

Key to the success of Linux has been the availability of free software packages
under the auspices of the Free Software Foundation (FSF). FSF’s goal is stable,
platform-independent software that is free, high quality, and embraced by the user
community. FSF’s GNU project® provides tools for software developers, and the

3GNU is a recursive acronym for GNU’s Not Unix. The GNU project is a free software set of packages
and tools for developing a UNIX-like operating system; it is often used with the Linux kernel.

2.10 / LINUX 95

GNU Public License (GPL) is the FSF seal of approval. Torvalds used GNU tools
in developing his kernel, which he then released under the GPL. Thus, the Linux
distributions that you see today are the product of FSF’s GNU project, Torvald’s
individual effort, and the efforts of many collaborators all over the world.

In addition to its use by many individual programmers, Linux has now made
significant penetration into the corporate world. This is not only because of the
free software, but also because of the quality of the Linux kernel. Many talented
programmers have contributed to the current version, resulting in a technically
impressive product. Moreover, Linux is highly modular and easily configured. This
makes it easy to squeeze optimal performance from a variety of hardware platforms.
Plus, with the source code available, vendors can tweak applications and utilities to
meet specific requirements. Throughout this book, we will provide details of Linux
kernel internals based on the most recent version, Linux 2.6.

Modular Structure

Most UNIX kernels are monolithic. Recall from earlier in this chapter that a mono-
lithic kernel is one that includes virtually all of the OS functionality in one large
block of code that runs as a single process with a single address space. All the func-
tional components of the kernel have access to all of its internal data structures
and routines. If changes are made to any portion of a typical monolithic OS, all the
modules and routines must be relinked and reinstalled and the system rebooted
before the changes can take effect. As a result, any modification, such as adding
a new device driver or file system function, is difficult. This problem is especially
acute for Linux, for which development is global and done by a loosely associated
group of independent programmers.

Although Linux does not use a microkernel approach, it achieves many of
the potential advantages of this approach by means of its particular modular archi-
tecture. Linux is structured as a collection of modules, a number of which can be
automatically loaded and unloaded on demand. These relatively independent blocks
are referred to as loadable modules [GOYE99]. In essence, a module is an object
file whose code can be linked to and unlinked from the kernel at runtime. Typically,
a module implements some specific function, such as a file system, a device driver,
or some other feature of the kernel’s upper layer. A module does not execute as its
own process or thread, although it can create kernel threads for various purposes
as necessary. Rather, a module is executed in kernel mode on behalf of the current
process.

Thus, although Linux may be considered monolithic, its modular structure
overcomes some of the difficulties in developing and evolving the kernel.

The Linux loadable modules have two important characteristics:

e Dynamic linking: A kernel module can be loaded and linked into the kernel
while the kernel is already in memory and executing. A module can also be
unlinked and removed from memory at any time.

e Stackable modules: The modules are arranged in a hierarchy. Individual
modules serve as libraries when they are referenced by client modules higher
up in the hierarchy, and as clients when they reference modules further down.

96 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Dynamic linking [FRANO97] facilitates configuration and saves kernel memory.
In Linux, a user program or user can explicitly load and unload kernel modules
using the insmod and rmmod commands. The kernel itself monitors the need for
particular functions and can load and unload modules as needed. With stackable
modules, dependencies between modules can be defined. This has two benefits:

1. Code common to a set of similar modules (e.g., drivers for similar hardware)
can be moved into a single module, reducing replication.
2. The kernel can make sure that needed modules are present, refraining from

unloading a module on which other running modules depend, and loading any
additional required modules when a new module is loaded.

Figure 2.19 is an example that illustrates the structures used by Linux to
manage modules. The figure shows the list of kernel modules after only two modules
have been loaded: FAT and VFAT. Each module is defined by two tables, the mod-
ule table and the symbol table. The module table includes the following elements:

e *next: Pointer to the following module. All modules are organized into a
linked list. The list begins with a pseudomodule (not shown in Figure 2.19).

e *pame: Pointer to module name

e size: Module size in memory pages

e usecount: Module usage counter. The counter is incremented when an opera-
tion involving the module’s functions is started and decremented when the
operation terminates.

Module Module
*next *next
*name *name
size size
usecount usecount
flags flags
nysms nysms
ndeps ndeps
- FAT - VFAT
syms syms
*deps *deps
*refs *refs
. Symbol_table . Symbol_table
O value O value
*name *name
value value
*name *name
° °
° °
° °
value value
*name *name

Figure 2.19 Example List of Linux Kernel Modules

e flags: Module flags

e nsyms: Number of exported symbols

¢ ndeps: Number of referenced modules

e *syms: Pointer to this module’s symbol table.

2.10 / LINUX 97

e *deps: Pointer to list of modules that are referenced by this module.

o *refs: Pointer to list of modules that use this module.

The symbol table defines those symbols controlled by this module that are
used elsewhere.
Figure 2.19 shows that the VFAT module was loaded after the FAT module
and that the VFAT module is dependent on the FAT module.

Kernel Components

Figure 2.20, taken from [MOSBO02], shows the main components of the Linux kernel
as implemented on an IA-64 architecture (e.g., Intel Itanium). The figure shows
several processes running on top of the kernel. Each box indicates a separate pro-

cess, while each squiggly line with an arrowhead represents a thread of execution.

4

The kernel itself consists of an interacting collection of components, with arrows

Processes

Signals / System calls
Processes \ \
cdschoduley File Network
! systems protocols
Virtual
memory
Char device Block device Network
drivers drivers device drivers
\ / —
Traps & Physical it
faults memory
CPU System Terminal Disk Network interface
memory controller

Figure 2.20 Linux Kernel Components

User level

Kernel

Hardware

“In Linux, there is no distinction between the concepts of processes and threads. However, multiple
threads in Linux can be grouped together in such a way that, effectively, you can have a single process
comprising multiple threads. These matters are discussed in Chapter 4.

98 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Table 2.5 Some Linux Signals

SIGHUP
SIGQUIT
SIGTRAP
SIGBUS
SIGKILL
SIGSEGV
SIGPIPT
SIGTERM
SIGCHLD

Terminal hangup SIGCONT Continue

Keyboard quit SIGTSTP Keyboard stop

Trace trap SIGTTOU Terminal write

Bus error SIGXCPU CPU limit exceeded
Kill signal SIGVTALRM Virtual alarm clock
Segmentation violation SIGWINCH Window size unchanged
Broken pipe SIGPWR Power failure
Termination SIGRTMIN First real-time signal
Child status unchanged SIGRTMAX Last real-time signal

indicating the main interactions. The underlying hardware is also depicted as a
set of components with arrows indicating which kernel components use or control
which hardware components. All of the kernel components, of course, execute on
the processor but, for simplicity, these relationships are not shown.

Briefly, the principal kernel components are the following:

Signals: The kernel uses signals to call into a process. For example, signals are
used to notify a process of certain faults, such as division by zero. Table 2.5
gives a few examples of signals.

System calls: The system call is the means by which a process requests a specific
kernel service. There are several hundred system calls, which can be roughly
grouped into six categories: file system, process, scheduling, interprocess com-
munication, socket (networking), and miscellaneous. Table 2.6 defines a few
examples in each category.

Processes and scheduler: Creates, manages, and schedules processes.
Virtual memory: Allocates and manages virtual memory for processes.

Table 2.6 Some Linux System Calls

File system Related
close Close a file descriptor.
link Make a new name for a file.
open Open and possibly create a file or device.
read Read from file descriptor.
write Write to file descriptor.
Process Related
execve Execute program.
exit Terminate the calling process.
getpid Get process identification.
setuid Set user identity of the current process.
prtrace Provides a means by which a parent process may observe and control the execu-
tion of another process, and examine and change its core image and registers.

Table 2.6 (continued)

2.10 / LINUX 99

Scheduling Related

sched_getparam
sched_get_priority max
sched_setscheduler

sched_rr_get_interval

Set the scheduling parameters associated with the scheduling policy for the
process identified by pid.

Return the maximum priority value that can be used with the scheduling
algorithm identified by policy.

Set both the scheduling policy (e.g., FIFO) and the associated parameters for
the process pid.

Write into the timespec structure pointed to by the parameter tp the round-
robin time quantum for the process pid.

sched_yield A process can relinquish the processor voluntarily without blocking via this
system call. The process will then be moved to the end of the queue for its static
priority and a new process gets to run.

Interprocess Communication (IPC) Related

msgrey A message buffer structure is allocated to receive a message. The system
call then reads a message from the message queue specified by msqid into
the newly created message buffer.

semctl Perform the control operation specified by cmd on the semaphore set
semid.

semop Perform operations on selected members of the semaphore set semid.

shmat Attach the shared memory segment identified by semid to the data segment
of the calling process.

shmetl Allow the user to receive information on a shared memory segment; set the
owner, group, and permissions of a shared memory segment; or destroy a
segment.

Socket (networking) Related

bind Assigns the local IP address and port for a socket. Returns 0 for success and —1
for error.

connect Establish a connection between the given socket and the remote socket
associated with sockaddr.

gethostname Return local host name.

send Send the bytes contained in buffer pointed to by *msg over the given
socket.

setsockopt Set the options on a socket

Miscellaneous

create_module
fsync
query_module

time

vhangup

Attempt to create a loadable module entry and reserve the kernel memory that
will be needed to hold the module.

Copy all in-core parts of a file to disk, and waits until the device reports that all
parts are on stable storage.

Request information related to loadable modules from the kernel.
Return the time in seconds since January 1, 1970.

Simulate a hangup on the current terminal. This call arranges for other users to
have a “clean” tty at login time.

100 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

¢ File systems: Provides a global, hierarchical namespace for files, directories,
and other file related objects and provides file system functions.

e Network protocols: Supports the Sockets interface to users for the TCP/IP
protocol suite.

¢ Character device drivers: Manages devices that require the kernel to send or
receive data one byte at a time, such as terminals, modems, and printers.

e Block device drivers: Manages devices that read and write data in blocks, such
as various forms of secondary memory (magnetic disks, CD-ROMs, etc.).

e Network device drivers: Manages network interface cards and communica-
tions ports that connect to network devices, such as bridges and routers.

e Traps and faults: Handles traps and faults generated by the processor, such as
a memory fault.

¢ Physical memory: Manages the pool of page frames in real memory and allo-
cates pages for virtual memory.

e Interrupts: Handles interrupts from peripheral devices.

2.11 LINUX VSERVER VIRTUAL MACHINE ARCHITECTURE

Linux VServer is an open-source, fast, lightweight approach to implement-
ing virtual machines on a Linux server [SOLTO07, LIGNO0S]. Only a single copy
of the Linux kernel is involved. VServer consists of a relatively modest modifi-
cation to the kernel plus a small set of OS userland® tools. The VServer Linux
kernel supports a number of separate virtual servers. The kernel manages all sys-
tem resources and tasks, including process scheduling, memory, disk space, and
processor time. This is closer in concept to the process VM rather than the system
VM of Figure 2.14.

Each virtual server is isolated from the others using Linux kernel capabilities.
This provides security and makes it easy to set up multiple virtual machines on a
single platform. The isolation involves four elements: chroot, chcontext, chbind, and
capabilities.

The chroot command is a UNIX or Linux command to make the root directory
(/) become something other than its default for the lifetime of the current process.
It can only be run by privileged users and is used to give a process (commonly a net-
work server such as FTP or HTTP) access to a restricted portion of the file system.
This command provides file system isolation. All commands executed by the virtual
server can only affect files that start with the defined root for that server.

The chcontext Linux utility allocates a new security context and executes
commands in that context. The usual or hosted security context is the context 0.
This context has the same privileges as the root user (UID 0): This context can
see and kill other tasks in the other contexts. Context number 1 is used to view

The term userland refers to all application software that runs in user space rather than kernel space. OS
userland usually refers to the various programs and libraries that the operating system uses to interact
with the kernel: software that performs input/output, manipulates file system objects, etc.

2.12 / RECOMMENDED READING AND WEB SITES 101

Server Server

applications applications
VM, o0 VM, VM, -
. ooe =
=) VM admin. =)
% Remote admin. =k

= .

= Core services %
-
= =
5 =2 = = S
= | RIEER IBEER B BRI 2

§ <[[ZB| |8 <[BBl < BBl

| Standard OS image |

Figure 2.21 Linux VServer Architecture

other contexts but cannot affect them. All other contexts provide complete isola-
tion: Processes from one context can neither see nor interact with processes from
another context. This provides the ability to run similar contexts on the same com-
puter without any interaction possible at the application level. Thus, each virtual
server has its own execution context that provides process isolation.

The chbind utility executes a command, and locks the resulting process and
its children into using a specific IP address. Once called, all packets sent out by this
virtual server through the system’s network interface are assigned the sending IP
address derived from the argument given to chbind. This system call provides net-
work isolation: Each virtual server uses a separate and distinct IP address. Incoming
traffic intended for one virtual server cannot be accessed by other virtual servers.

Finally, each virtual server is assigned a set of capabilities. The concept of
capabilities, as used in Linux, refers to a partitioning of the privileges available to
a root user, such as the ability to read files or to trace processes owned by another
user. Thus, each virtual server can be assigned a limited subset of the root user’s
privileges. This provides root isolation. VServer can also set resource limits, such as
limits to the amount of virtual memory a process may use.

Figure 2.21, based on [SOLTO07], shows the general architecture of Linux
VServer. VServer provides a shared, virtualized OS image, consisting of a root file
system, and a shared set of system libraries and kernel services. Each VM can be
booted, shut down, and rebooted independently. Figure 2.21 shows three group-
ings of software running on the computer system. The hosting platform includes the
shared OS image and a privileged host VM, whose function is to monitor and man-
age the other VMs. The virtual platform creates virtual machines and is the view of
the system seen by the applications running on the individual VMs.

2.12 RECOMMENDED READING AND WEB SITES

[BRINO1] is an excellent collection of papers covering major advances in OS design
over the years. [SWAIO7] is a provocative and interesting short article on the future
of operating systems.

102 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

[MUKHY96] provides a good discussion of OS design issues for SMPs.
[CHAP97] contains five articles on recent design directions for multiprocessor
operating systems. Worthwhile discussions of the principles of microkernel design
are contained in [LIED95] and [LIED96]; the latter focuses on performance
issues.

[LI10] and [SMITO05] provide good treatments of virtual machines.

An excellent treatment of UNIX internals, which provides a comparative
analysis of a number of variants, is [VAHA96]. For UNIX SVR4, [GOODY%4]
provides a definitive treatment, with ample technical detail. For the popular open-
source FreeBSD, [MCKUO05] is highly recommended. [MCDOO07] provides a good
treatment of Solaris internals. Good treatments of Linux internals are [LOVE10]
and [MAUEQOS].

Although there are countless books on various versions of Windows, there
is remarkably little material available on Windows internals. The book to read is
[RUSS11].

BRINO1 Brinch Hansen, P. Classic Operating Systems: From Batch Processing to
Distributed Systems. New York: Springer-Verlag, 2001.

CHAP97 Chapin, S., and Maccabe, A., eds. “Multiprocessor Operating Systems:
Harnessing the Power.” special issue of I[EEE Concurrency, April-June 1997.

GOOD9%4 Goodheart, B., and Cox, J. The Magic Garden Explained: The Internals of
UNIX System V Release 4. Englewood Cliffs, NJ: Prentice Hall, 1994.

LOVE10 Love, R. Linux Kernel Development. Upper Saddle River, NJ: Addison-
Wesley, 2010.

LI10 Li, Y.; Li, W.; and Jiang, C. “A Survey of Virtual Machine Systems: Current
Technology and Future Trends.” Proceedings, Third International Symposium on
Electronic Commerce and Security, 2010.

LIED95 Liedtke, J. “On p-Kernel Construction.” Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, December 1995.

LIEDY96 Liedtke, J. “Toward Real Microkernels.” Communications of the ACM,
September 1996.

MAUEO08 Mauerer, W. Professional Linux Kernel Architecture. New York: Wiley, 2008.

MCDOO07 McDougall, R., and Mauro, J. Solaris Internals: Solaris 10 and OpenSolaris
Kernel Architecture. Palo Alto, CA: Sun Microsystems Press, 2007.

MCKUO5 McKusick, M., and Neville-Neil, J. The Design and Implementation of the
FreeBSD Operating System. Reading, MA: Addison-Wesley, 2005.

MUKHY96 Mukherjee, B., and Karsten, S. “Operating Systems for Parallel Machines.”
In Parallel Computers: Theory and Practice. Edited by T. Casavant, P. Tvrkik, and
F. Plasil. Los Alamitos, CA: IEEE Computer Society Press, 1996.

RUSS11 Russinovich, M.; Solomon, D.; and Ionescu, A. Windows Internals: Covering
Windows 7 and Windows Server 2008 R2. Redmond, WA: Microsoft Press, 2011.

SMITO05 Smith, J., and Nair, R. “The Architecture of Virtual Machines.” Computer,
May 2005.

SWAI(Q7 Swaine, M. “Wither Operating Systems?” Dr. Dobb’s Journal, March 2007.

VAHAY96 Vahalia, U. UNIX Internals: The New Frontiers. Upper Saddle River, NJ:
Prentice Hall, 1996.

2.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 103

Recommended Web sites:

The Operating System Resource Center: A useful collection of documents and papers
on a wide range of OS topics.

Operating System Technical Comparison: Includes a substantial amount of information
on a variety of operating systems.

ACM Special Interest Group on Operating Systems: Information on SIGOPS publica-
tions and conferences.

IEEE Technical Committee on Operating Systems and Application Environments:
Includes an online newsletter and links to other sites.

The comp.os.research FAQ: Lengthy and worthwhile FAQ covering OS design issues.
UNIX Guru Universe: Excellent source of UNIX information.
Linux Documentation Project: The name describes the site.

IBM’s Linux Website: Provides a wide range of technical and user information on
Linux. Much of it is devoted to IBM products but there is a lot of useful general techni-
cal information.

Windows Development: Good source of information on Windows internals.

2.13 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
batch processing multiprogramming round robin
batch system multitasking scheduling
execution context multithreading serial processing
interrupt nucleus symmetric multiprocessing
job operating system task
job control language physical address thread
kernel privileged instruction time sharing
memory management process time-sharing system

microkernel

monitor

monolithic kernel

multiprogrammed batch
system

process state
real address
resident monitor

uniprogramming
virtual address
virtual machine

Review Questions

2.1
22
2.3
24
2.5

What are three objectives of an OS design?

What is the kernel of an OS?

‘What is multiprogramming?

What is a process?

How is the execution context of a process used by the OS?

104 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

2.6
2.7
2.8
2.9
2.10
2.11

List and briefly explain five storage management responsibilities of a typical OS.
Explain the distinction between a real address and a virtual address.

Describe the round-robin scheduling technique.

Explain the difference between a monolithic kernel and a microkernel.

What is multithreading?

List the key design issues for an SMP operating system.

Problems

21

2.2

2.3

24

2.5

2.6

Suppose that we have a multiprogrammed computer in which each job has identical
characteristics. In one computation period, 7, for a job, half the time is spent in I/O
and the other half in processor activity. Each job runs for a total of N periods. Assume
that a simple round-robin scheduling is used, and that I/O operations can overlap with
processor operation. Define the following quantities:

e Turnaround time = actual time to complete a job

e Throughput = average number of jobs completed per time period T

e Processor utilization = percentage of time that the processor is active (not waiting)
Compute these quantities for one, two, and four simultaneous jobs, assuming that the
period 7 is distributed in each of the following ways:

a. I/O first half, processor second half
b. /O first and fourth quarters, processor second and third quarter

An I/O-bound program is one that, if run alone, would spend more time waiting for
I/O than using the processor. A processor-bound program is the opposite. Suppose a
short-term scheduling algorithm favors those programs that have used little processor
time in the recent past. Explain why this algorithm favors I/O-bound programs and
yet does not permanently deny processor time to processor-bound programs.

Contrast the scheduling policies you might use when trying to optimize a time-sharing
system with those you would use to optimize a multiprogrammed batch system.

What is the purpose of system calls, and how do system calls relate to the OS and to
the concept of dual-mode (kernel-mode and user-mode) operation?

In IBM’s mainframe OS, OS/390, one of the major modules in the kernel is the System
Resource Manager. This module is responsible for the allocation of resources among
address spaces (processes). The SRM gives OS/390 a degree of sophistication unique
among operating systems. No other mainframe OS, and certainly no other type of OS,
can match the functions performed by SRM. The concept of resource includes proces-
sor, real memory, and I/O channels. SRM accumulates statistics pertaining to utilization
of processor, channel, and various key data structures. Its purpose is to provide optimum
performance based on performance monitoring and analysis. The installation sets
forth various performance objectives, and these serve as guidance to the SRM, which
dynamically modifies installation and job performance characteristics based on system
utilization. In turn, the SRM provides reports that enable the trained operator to refine
the configuration and parameter settings to improve user service.

This problem concerns one example of SRM activity. Real memory is divided
into equal-sized blocks called frames, of which there may be many thousands. Each
frame can hold a block of virtual memory referred to as a page. SRM receives control
approximately 20 times per second and inspects each and every page frame. If the
page has not been referenced or changed, a counter is incremented by 1. Over time,
SRM averages these numbers to determine the average number of seconds that a
page frame in the system goes untouched. What might be the purpose of this and what
action might SRM take?

A multiprocessor with eight processors has 20 attached tape drives. There is a large
number of jobs submitted to the system that each require a maximum of four tape

2.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 105

drives to complete execution. Assume that each job starts running with only three

tape drives for a long period before requiring the fourth tape drive for a short period

toward the end of its operation. Also assume an endless supply of such jobs.

a. Assume the scheduler in the OS will not start a job unless there are four tape
drives available. When a job is started, four drives are assigned immediately and
are not released until the job finishes. What is the maximum number of jobs that
can be in progress at once? What are the maximum and minimum number of tape
drives that may be left idle as a result of this policy?

b. Suggest an alternative policy to improve tape drive utilization and at the same
time avoid system deadlock. What is the maximum number of jobs that can be in
progress at once? What are the bounds on the number of idling tape drives?

PART 2 Processes

PROCESS DESCRIPTION
AND CONTROL

3.1 What Is a Process?
Background
Processes and Process Control Blocks

3.2 Process States
A Two-State Process Model
The Creation and Termination of Processes
A Five-State Model
Suspended Processes

3.3 Process Description
Operating System Control Structures
Process Control Structures

3.4 Process Control
Modes of Execution
Process Creation
Process Switching

3.5 Execution of the Operating System
Nonprocess Kernel
Execution within User Processes
Process-Based Operating System

3.6 Security Issues
System Access Threats
Countermeasures

3.7 UNIX SVR4 Process Management
Process States
Process Description
Process Control

3.8 Summary
3.9 Recommended Reading

3.10 Key Terms, Review Questions, and Problems

106

CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL 107

The concept of process is fundamental to the structure of modern
computer operating systems. Its evolution in analyzing problems of
synchronization, deadlock, and scheduling in operating systems has
been a major intellectual contribution of computer science.

WHAT CAN BE AUTOMATED?: THE COMPUTER SCIENCE AND ENGINEERING
RESEARcH STuDY, MIT PRESS, 1980

LEARNING OBJECTIVES
After studying this chapter, you should be able to:
e Define the term process and explain the relationship between processes and

process control blocks.

e Explain the concept of a process state and discuss the state transitions the
processes undergo.

e List and describe the purpose of the data structures and data structure
elements used by an OS to manage processes.

e Assess the requirements for process control by the OS.
e Understand the issues involved in the execution of OS code.
e Assess the key security issues that relate to operating systems.

e Describe the process management scheme for UNIX SVR4.

All multiprogramming operating systems, from single-user systems such as Windows
for end users to mainframe systems such as IBM’s mainframe operating system,
z/OS, which can support thousands of users, are built around the concept of the
process. Most requirements that the OS must meet can be expressed with reference
to processes:

e The OS must interleave the execution of multiple processes, to maximize pro-
cessor utilization while providing reasonable response time.

e The OS must allocate resources to processes in conformance with a specific
policy (e.g., certain functions or applications are of higher priority) while at
the same time avoiding deadlock.!

e The OS may be required to support interprocess communication and user cre-
ation of processes, both of which may aid in the structuring of applications.

We begin with an examination of the way in which the OS represents and
controls processes. Then, the chapter discusses process states, which characterize
the behavior of processes. Then we look at the data structures that the OS uses to
manage processes. These include data structures to represent the state of each

'Deadlock is examined in Chapter 6. As a simple example, deadlock occurs if two processes need the
same two resources to continue and each has ownership of one. Unless some action is taken, each process
will wait indefinitely for the missing resource.

108 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

process and data structures that record other characteristics of processes that the
OS needs to achieve its objectives. Next, we look at the ways in which the OS uses
these data structures to control process execution. Finally, we discuss process
management in UNIX SVR4. Chapter 4 provides more modern examples of
process management.

This chapter occasionally refers to virtual memory. Much of the time, we can

ignore this concept in dealing with processes, but at certain points in the discus-
sion, virtual memory considerations are pertinent. Virtual memory is previewed in
Chapter 2 and discussed in detail in Chapter 8. A set of animations that illustrate
concepts in this chapter is available online. Click on the rotating globe at this book’s
Web site at WilliamStallings.com/OS/OS7e.html for access.

3.1 WHAT IS A PROCESS?

Background

Before defining the term process, it is useful to summarize some of the concepts
introduced in Chapters 1 and 2:

1.

2.

A computer platform consists of a collection of hardware resources, such as
the processor, main memory, I/O modules, timers, disk drives, and so on.

Computer applications are developed to perform some task. Typically, they
accept input from the outside world, perform some processing, and generate
output.

It is inefficient for applications to be written directly for a given hardware
platform. The principal reasons for this are as follows:

a. Numerous applications can be developed for the same platform. Thus, it
makes sense to develop common routines for accessing the computer’s
resources.

b. The processor itself provides only limited support for multiprogramming.
Software is needed to manage the sharing of the processor and other
resources by multiple applications at the same time.

c¢. When multiple applications are active at the same time, it is necessary to
protect the data, I/O use, and other resource use of each application from
the others.

The OS was developed to provide a convenient, feature-rich, secure, and con-
sistent interface for applications to use. The OS is a layer of software between
the applications and the computer hardware (Figure 2.1) that supports appli-
cations and utilities.

We can think of the OS as providing a uniform, abstract representation of
resources that can be requested and accessed by applications. Resources
include main memory, network interfaces, file systems, and so on. Once the
OS has created these resource abstractions for applications to use, it must
also manage their use. For example, an OS may permit resource sharing and
resource protection.

3.1 / WHAT IS A PROCESS: 109

Now that we have the concepts of applications, system software, and resources,
we are in a position to discuss how the OS can, in an orderly fashion, manage the
execution of applications so that

e Resources are made available to multiple applications.

e The physical processor is switched among multiple applications so all will
appear to be progressing.

e The processor and I/O devices can be used efficiently.

The approach taken by all modern operating systems is to rely on a model in
which the execution of an application corresponds to the existence of one or more
processes.

Processes and Process Control Blocks

Recall from Chapter 2 that we suggested several definitions of the term process,
including

* A program in execution
e Aninstance of a program running on a computer
¢ The entity that can be assigned to and executed on a processor

e A unit of activity characterized by the execution of a sequence of instructions,
a current state, and an associated set of system resources

We can also think of a process as an entity that consists of a number of elements.
Two essential elements of a process are program code (which may be shared with
other processes that are executing the same program) and a set of data associated
with that code. Let us suppose that the processor begins to execute this program
code, and we refer to this executing entity as a process. At any given point in time,
while the program is executing, this process can be uniquely characterized by a
number of elements, including the following:

e Identifier: A unique identifier associated with this process, to distinguish it
from all other processes.

e State: If the process is currently executing, it is in the running state.

e Priority: Priority level relative to other processes.

e Program counter: The address of the next instruction in the program to be
executed.

e Memory pointers: Includes pointers to the program code and data associated
with this process, plus any memory blocks shared with other processes.

¢ Context data: These are data that are present in registers in the processor
while the process is executing.

e 1/0 status information: Includes outstanding I/O requests, I/O devices (e.g.,
disk drives) assigned to this process, a list of files in use by the process, and
SO on.

* Accounting information: May include the amount of processor time and clock
time used, time limits, account numbers, and so on.

110 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Identifier

State

Priority

Program counter

Memory pointers

Context data

1/0 status
information

Accounting
information

Figure 3.1 Simplified Process Control Block

The information in the preceding list is stored in a data structure, typically
called a process control block (Figure 3.1), that is created and managed by the OS.
The significant point about the process control block is that it contains sufficient
information so that it is possible to interrupt a running process and later resume
execution as if the interruption had not occurred. The process control block is
the key tool that enables the OS to support multiple processes and to provide for
multiprocessing. When a process is interrupted, the current values of the program
counter and the processor registers (context data) are saved in the appropriate fields
of the corresponding process control block, and the state of the process is changed
to some other value, such as blocked or ready (described subsequently). The OS is
now free to put some other process in the running state. The program counter and
context data for this process are loaded into the processor registers and this process
now begins to execute.

Thus, we can say that a process consists of program code and associated data
plus a process control block. For a single-processor computer, at any given time, at
most one process is executing and that process is in the running state.

3.2 PROCESS STATES

As just discussed, for a program to be executed, a process, or task, is created for
that program. From the processor’s point of view, it executes instructions from its
repertoire in some sequence dictated by the changing values in the program counter

3.2 / PROCESS STATES 111

Address Main memory Program counter
0 [8000 ¢ |

100
Dispatcher

5000
Process A

8000
Process B

12000
Process C

Figure 3.2 Snapshot of Example Execution (Figure 3.4)
at Instruction Cycle 13

register. Over time, the program counter may refer to code in different programs
that are part of different processes. From the point of view of an individual pro-
gram, its execution involves a sequence of instructions within that program.

We can characterize the behavior of an individual process by listing the
sequence of instructions that execute for that process. Such a listing is referred to
as a trace of the process. We can characterize behavior of the processor by showing
how the traces of the various processes are interleaved.

Let us consider a very simple example. Figure 3.2 shows a memory layout
of three processes. To simplify the discussion, we assume no use of virtual mem-
ory; thus all three processes are represented by programs that are fully loaded
in main memory. In addition, there is a small dispatcher program that switches
the processor from one process to another. Figure 3.3 shows the traces of each
of the processes during the early part of their execution. The first 12 instructions
executed in processes A and C are shown. Process B executes four instructions,
and we assume that the fourth instruction invokes an I/O operation for which the
process must wait.

Now let us view these traces from the processor’s point of view. Figure 3.4
shows the interleaved traces resulting from the first 52 instruction cycles (for con-
venience, the instruction cycles are numbered). In this figure, the shaded areas
represent code executed by the dispatcher. The same sequence of instructions is
executed by the dispatcher in each instance because the same functionality of the
dispatcher is being executed. We assume that the OS only allows a process to con-
tinue execution for a maximum of six instruction cycles, after which it is interrupted;

112 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

5000 8000 12000
5001 8001 12001
5002 8002 12002
5003 8003 12003
5004 12004
5005 12005
5006 12006
5007 12007
5008 12008
5009 12009
5010 12010
5011 12011
(a) Trace of process A (b) Trace of process B (c) Trace of process C

5000 = Starting address of program of process A
8000 = Starting address of program of process B
12000 = Starting address of program of process C

Figure 3.3 Traces of Processes of Figure 3.2

this prevents any single process from monopolizing processor time. As Figure 3.4
shows, the first six instructions of process A are executed, followed by a time-out
and the execution of some code in the dispatcher, which executes six instructions
before turning control to process B.? After four instructions are executed, proc-
ess B requests an I/O action for which it must wait. Therefore, the processor stops
executing process B and moves on, via the dispatcher, to process C. After a time-
out, the processor moves back to process A. When this process times out, process
B is still waiting for the I/O operation to complete, so the dispatcher moves on to
process C again.

A Two-State Process Model

The operating system’s principal responsibility is controlling the execution of
processes; this includes determining the interleaving pattern for execution and allo-
cating resources to processes. The first step in designing an OS to control processes
is to describe the behavior that we would like the processes to exhibit.

We can construct the simplest possible model by observing that, at any time, a
process is either being executed by a processor or not. In this model, a process may
be in one of two states: Running or Not Running, as shown in Figure 3.5a. When
the OS creates a new process, it creates a process control block for the process and
enters that process into the system in the Not Running state. The process exists,
is known to the OS, and is waiting for an opportunity to execute. From time to
time, the currently running process will be interrupted and the dispatcher portion
of the OS will select some other process to run. The former process moves from the

The small number of instructions executed for the processes and the dispatcher are unrealistically low;
they are used in this simplified example to clarify the discussion.

3.2 / PROCESS STATES 113

1 5000 27 12004
2 5001 28 12005
3 5002 Time-out
4 5003 29 100
5 5004 30 101
6 5005 31 102
Time-out 32 103
7 100 33 104
8 101 34 105
9 102 35 5006
10 103 36 5007
11 104 37 5008
12 105 38 5009
13 8000 39 5010
14 8001 40 5011
15 8002 Time-out
16 8003 41 100
1/O request 42 101
17 100 43 102
18 101 44 103
19 102 45 104
20 103 46 105
21 104 47 12006
22 105 48 12007
23 12000 49 12008
24 12001 50 12009
25 12002 51 12010
26 12003 52 12011
Time-out

100 = Starting address of dispatcher program

Shaded areas indicate execution of dispatcher process;
first and third columns count instruction cycles;
second and fourth columns show address of instruction being executed

Figure 3.4 Combined Trace of Processes of Figure 3.2

Running state to the Not Running state, and one of the other processes moves to
the Running state.

From this simple model, we can already begin to appreciate some of the design
elements of the OS. Each process must be represented in some way so that the OS
can keep track of it. That is, there must be some information relating to each proc-
ess, including current state and location in memory; this is the process control block.
Processes that are not running must be kept in some sort of queue, waiting their turn
to execute. Figure 3.5b suggests a structure. There is a single queue in which each
entry is a pointer to the process control block of a particular process. Alternatively,

114 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Dispatch

Enter

Pause
(a) State transition diagram

Queue

Enter Dispatch Exit
—_— Processor

Pause

(b) Queueing diagram
Figure 3.5 Two-State Process Model

the queue may consist of a linked list of data blocks, in which each block represents
one process; we will explore this latter implementation subsequently.

We can describe the behavior of the dispatcher in terms of this queueing
diagram. A process that is interrupted is transferred to the queue of waiting proc-
esses. Alternatively, if the process has completed or aborted, it is discarded (exits
the system). In either case, the dispatcher takes another process from the queue to
execute.

The Creation and Termination of Processes

Before refining our simple two-state model, it will be useful to discuss the cre-
ation and termination of processes; ultimately, and regardless of the model of
process behavior that is used, the life of a process is bounded by its creation and
termination.

PROCESS CREATION When a new process is to be added to those currently being
managed, the OS builds the data structures that are used to manage the process
and allocates address space in main memory to the process. We describe these data
structures in Section 3.3. These actions constitute the creation of a new process.

Four common events lead to the creation of a process, as indicated in Table 3.1.
In a batch environment, a process is created in response to the submission of a job.
In an interactive environment, a process is created when a new user attempts to
log on. In both cases, the OS is responsible for the creation of the new process.
An OS may also create a process on behalf of an application. For example, if a
user requests that a file be printed, the OS can create a process that will manage
the printing. The requesting process can thus proceed independently of the time
required to complete the printing task.

3.2 / PROCESS STATES 115

Table 3.1 Reasons for Process Creation

New batch job The OS is provided with a batch job control stream, usually on tape
or disk. When the OS is prepared to take on new work, it will read the
next sequence of job control commands.

Interactive log-on A user at a terminal logs on to the system.

Created by OS to provide a service | The OS can create a process to perform a function on behalf of a user
program, without the user having to wait (e.g., a process to control
printing).

Spawned by existing process For purposes of modularity or to exploit parallelism, a user program
can dictate the creation of a number of processes.

Traditionally, the OS created all processes in a way that was transparent to the
user or application program, and this is still commonly found with many contem-
porary operating systems. However, it can be useful to allow one process to cause
the creation of another. For example, an application process may generate another
process to receive data that the application is generating and to organize those data
into a form suitable for later analysis. The new process runs in parallel to the origi-
nal process and is activated from time to time when new data are available. This
arrangement can be very useful in structuring the application. As another example,
a server process (e.g., print server, file server) may generate a new process for each
request that it handles. When the OS creates a process at the explicit request of
another process, the action is referred to as process spawning.

When one process spawns another, the former is referred to as the parent
process, and the spawned process is referred to as the child process. Typically, the
“related” processes need to communicate and cooperate with each other. Achieving
this cooperation is a difficult task for the programmer; this topic is discussed in
Chapter 5.

Process TERMINATION Table 3.2 summarizes typical reasons for process
termination. Any computer system must provide a means for a process to indicate its
completion. A batch job should include a Halt instruction or an explicit OS service
call for termination. In the former case, the Halt instruction will generate an interrupt
to alert the OS that a process has completed. For an interactive application, the action
of the user will indicate when the process is completed. For example, in a time-sharing
system, the process for a particular user is to be terminated when the user logs off or
turns off his or her terminal. On a personal computer or workstation, a user may quit
an application (e.g., word processing or spreadsheet). All of these actions ultimately
result in a service request to the OS to terminate the requesting process.

Additionally, a number of error and fault conditions can lead to the termina-
tion of a process. Table 3.2 lists some of the more commonly recognized conditions.?

Finally, in some operating systems, a process may be terminated by the proc-
ess that created it or when the parent process is itself terminated.

3A forgiving operating system might, in some cases, allow the user to recover from a fault without termi-
nating the process. For example, if a user requests access to a file and that access is denied, the operating
system might simply inform the user that access is denied and allow the process to proceed.

116 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Table 3.2 Reasons for Process Termination

Normal completion

The process executes an OS service call to indicate that it has completed
running.

Time limit exceeded

The process has run longer than the specified total time limit. There are a
number of possibilities for the type of time that is measured. These include
total elapsed time (“wall clock time”), amount of time spent executing, and,
in the case of an interactive process, the amount of time since the user last
provided any input.

Memory unavailable

The process requires more memory than the system can provide.

Bounds violation

The process tries to access a memory location that it is not allowed to access.

Protection error

The process attempts to use a resource such as a file that it is not allowed
to use, or it tries to use it in an improper fashion, such as writing to a read-
only file.

Arithmetic error

The process tries a prohibited computation, such as division by zero, or tries
to store numbers larger than the hardware can accommodate.

Time overrun

The process has waited longer than a specified maximum for a certain event
to occur.

1/O failure

An error occurs during input or output, such as inability to find a file, failure
to read or write after a specified maximum number of tries (when, for exam-
ple, a defective area is encountered on a tape), or invalid operation (such as

reading from the line printer).

Invalid instruction

The process attempts to execute a nonexistent instruction (often a result of
branching into a data area and attempting to execute the data).

Privileged instruction

The process attempts to use an instruction reserved for the operating system.

Data misuse

A piece of data is of the wrong type or is not initialized.

Operator or OS intervention

For some reason, the operator or the operating system has terminated the
process (e.g., if a deadlock exists).

Parent termination

When a parent terminates, the operating system may automatically termi-
nate all of the offspring of that parent.

Parent request

A parent process typically has the authority to terminate any of its offspring.

A Five-State Model

If all processes were always ready to execute, then the queueing discipline suggested
by Figure 3.5b would be effective. The queue is a first-in-first-out list and the pro-
cessor operates in round-robin fashion on the available processes (each process in
the queue is given a certain amount of time, in turn, to execute and then returned to
the queue, unless blocked). However, even with the simple example that we have
described, this implementation is inadequate: Some processes in the Not Running
state are ready to execute, while others are blocked, waiting for an I/O operation
to complete. Thus, using a single queue, the dispatcher could not just select the
process at the oldest end of the queue. Rather, the dispatcher would have to scan
the list looking for the process that is not blocked and that has been in the queue
the longest.

A more natural way to handle this situation is to split the Not Running state
into two states: Ready and Blocked. This is shown in Figure 3.6. For good measure,

3.2 / PROCESS STATES 117

Dispatch

Time-out

Event

occurs Event

wait

Figure 3.6 Five-State Process Model

we have added two additional states that will prove useful. The five states in this
new diagram are:

e Running: The process that is currently being executed. For this chapter, we
will assume a computer with a single processor, so at most one process at a
time can be in this state.

¢ Ready: A process that is prepared to execute when given the opportunity.

* Blocked/Waiting:* A process that cannot execute until some event occurs,
such as the completion of an I/O operation.

e New: A process that has just been created but has not yet been admitted to the
pool of executable processes by the OS. Typically, a new process has not yet
been loaded into main memory, although its process control block has been
created.

e Exit: A process that has been released from the pool of executable processes
by the OS, either because it halted or because it aborted for some reason.

The New and Exit states are useful constructs for process management. The
New state corresponds to a process that has just been defined. For example, if a new
user attempts to log on to a time-sharing system or a new batch job is submitted for
execution, the OS can define a new process in two stages. First, the OS performs the
necessary housekeeping chores. An identifier is associated with the process. Any
tables that will be needed to manage the process are allocated and built. At this
point, the process is in the New state. This means that the OS has performed the
necessary actions to create the process but has not committed itself to the execution
of the process. For example, the OS may limit the number of processes that may
be in the system for reasons of performance or main memory limitation. While a
process is in the new state, information concerning the process that is needed by the
OS is maintained in control tables in main memory. However, the process itself is

*Waiting is a frequently used alternative term for Blocked as a process state. Generally, we will use
Blocked, but the terms are interchangeable.

118 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

not in main memory. That is, the code of the program to be executed is not in main
memory, and no space has been allocated for the data associated with that program.
While the process is in the New state, the program remains in secondary storage,
typically disk storage.5

Similarly, a process exits a system in two stages. First, a process is terminated
when it reaches a natural completion point, when it aborts due to an unrecoverable
error, or when another process with the appropriate authority causes the process to
abort. Termination moves the process to the exit state. At this point, the process is
no longer eligible for execution. The tables and other information associated with
the job are temporarily preserved by the OS, which provides time for auxiliary or
support programs to extract any needed information. For example, an accounting
program may need to record the processor time and other resources utilized by
the process for billing purposes. A utility program may need to extract information
about the history of the process for purposes related to performance or utilization
analysis. Once these programs have extracted the needed information, the OS no
longer needs to maintain any data relating to the process and the process is deleted
from the system.

Figure 3.6 indicates the types of events that lead to each state transition for a
process; the possible transitions are as follows:

e Null — New: A new process is created to execute a program. This event occurs
for any of the reasons listed in Table 3.1.

* New — Ready: The OS will move a process from the New state to the Ready
state when it is prepared to take on an additional process. Most systems set
some limit based on the number of existing processes or the amount of virtual
memory committed to existing processes. This limit assures that there are not
so many active processes as to degrade performance.

¢ Ready — Running: When it is time to select a process to run, the OS chooses
one of the processes in the Ready state. This is the job of the scheduler or
dispatcher. Scheduling is explored in Part Four.

* Running — Exit: The currently running process is terminated by the OS if the
process indicates that it has completed, or if it aborts. See Table 3.2.

* Running — Ready: The most common reason for this transition is that the
running process has reached the maximum allowable time for uninterrupted
execution; virtually all multiprogramming operating systems impose this type
of time discipline. There are several other alternative causes for this transi-
tion, which are not implemented in all operating systems. Of particular impor-
tance is the case in which the OS assigns different levels of priority to different
processes. Suppose, for example, that process A is running at a given priority
level, and process B, at a higher priority level, is blocked. If the OS learns
that the event upon which process B has been waiting has occurred, moving
B to a ready state, then it can interrupt process A and dispatch process B. We

3In the discussion in this paragraph, we ignore the concept of virtual memory. In systems that support
virtual memory, when a process moves from New to Ready, its program code and data are loaded
into virtual memory. Virtual memory was briefly discussed in Chapter 2 and is examined in detail in
Chapter 8.

3.2 / PROCESS STATES 119

say that the OS has preempted process AS Finally, a process may voluntarily
release control of the processor. An example is a background process that
performs some accounting or maintenance function periodically.

* Running — Blocked: A process is put in the Blocked state if it requests some-
thing for which it must wait. A request to the OS is usually in the form of a
system service call; that is, a call from the running program to a procedure
that is part of the operating system code. For example, a process may request
a service from the OS that the OS is not prepared to perform immediately. It
can request a resource, such as a file or a shared section of virtual memory,
that is not immediately available. Or the process may initiate an action, such
as an I/O operation, that must be completed before the process can continue.
When processes communicate with each other, a process may be blocked
when it is waiting for another process to provide data or waiting for a message
from another process.

¢ Blocked — Ready: A process in the Blocked state is moved to the Ready state
when the event for which it has been waiting occurs.

e Ready — Exit: For clarity, this transition is not shown on the state diagram. In
some systems, a parent may terminate a child’ process at any time. Also, if a par-
ent terminates, all child processes associated with that parent may be terminated.

¢ Blocked — Exit: The comments under the preceding item apply.

Returning to our simple example, Figure 3.7 shows the transition of each proc-
ess among the states. Figure 3.8a suggests the way in which a queueing discipline
might be implemented with two queues: a Ready queue and a Blocked queue. As
each process is admitted to the system, it is placed in the Ready queue. When it is
time for the OS to choose another process to run, it selects one from the Ready

Process A | | | | |

poces | -

Process C | | | | |

0 5 10 15 20 25 30 35 40 45 50

I:I = Running I:I = Ready - = Blocked

Figure 3.7 Process States for the Trace of Figure 3.4

®In general, the term preemption is defined to be the reclaiming of a resource from a process before the
process has finished using it. In this case, the resource is the processor itself. The process is executing and
could continue to execute, but is preempted so that another process can be executed.

120 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Ready queue Release

Admit Dispatch

Time-out

Blocked queue .
occurs

(a) Single blocked queue

Release

Ready queue

Admit Dispatch]
Time-out —|

Event 1 queue

Event 1 Event 1 wait
occurs

Event 2 queue

Event 2 Event 2 wait
occurs

°

°

.
Event n queue

Event n Event n wait
occurs

(b) Multiple blocked queues

Figure 3.8 Queueing Model for Figure 3.6

queue. In the absence of any priority scheme, this can be a simple first-in-first-out
queue. When a running process is removed from execution, it is either terminated
or placed in the Ready or Blocked queue, depending on the circumstances. Finally,
when an event occurs, any process in the Blocked queue that has been waiting on
that event only is moved to the Ready queue.

This latter arrangement means that, when an event occurs, the OS must scan
the entire blocked queue, searching for those processes waiting on that event. In a
large OS, there could be hundreds or even thousands of processes in that queue.
Therefore, it would be more efficient to have a number of queues, one for each
event. Then, when the event occurs, the entire list of processes in the appropriate
queue can be moved to the Ready state (Figure 3.8b).

One final refinement: If the dispatching of processes is dictated by a priority
scheme, then it would be convenient to have a number of Ready queues, one for
each priority level. The OS could then readily determine which is the highest-prior-
ity ready process that has been waiting the longest.

3.2 / PROCESS STATES 121

Suspended Processes

THE NEED FOR SwAPPING The three principal states just described (Ready,
Running, Blocked) provide a systematic way of modeling the behavior of processes
and guide the implementation of the OS. Some operating systems are constructed
using just these three states.

However, there is good justification for adding other states to the model. To
see the benefit of these new states, consider a system that does not employ virtual
memory. Each process to be executed must be loaded fully into main memory.
Thus, in Figure 3.8b, all of the processes in all of the queues must be resident in
main memory.

Recall that the reason for all of this elaborate machinery is that I/O activities
are much slower than computation and therefore the processor in a uniprogramming
system is idle most of the time. But the arrangement of Figure 3.8b does not entirely
solve the problem. It is true that, in this case, memory holds multiple processes and
that the processor can move to another process when one process is blocked. But the
processor is so much faster than I/O that it will be common for all of the processes in
memory to be waiting for I/O. Thus, even with multiprogramming, a processor could
be idle most of the time.

What to do? Main memory could be expanded to accommodate more proc-
esses. But there are two flaws in this approach. First, there is a cost associated with
main memory, which, though small on a per-byte basis, begins to add up as we get
into the gigabytes of storage. Second, the appetite of programs for memory has
grown as fast as the cost of memory has dropped. So larger memory results in larger
processes, not more processes.

Another solution is swapping, which involves moving part or all of a process
from main memory to disk. When none of the processes in main memory is in the
Ready state, the OS swaps one of the blocked processes out on to disk into a sus-
pend queue. This is a queue of existing processes that have been temporarily kicked
out of main memory, or suspended. The OS then brings in another process from the
suspend queue, or it honors a new-process request. Execution then continues with
the newly arrived process.

Swapping, however, is an 1/O operation, and therefore there is the potential
for making the problem worse, not better. But because disk I/O is generally the
fastest I/O on a system (e.g., compared to tape or printer I/O), swapping will usually
enhance performance.

With the use of swapping as just described, one other state must be added to
our process behavior model (Figure 3.9a): the Suspend state. When all of the proc-
esses in main memory are in the Blocked state, the OS can suspend one process by
putting it in the Suspend state and transferring it to disk. The space that is freed in
main memory can then be used to bring in another process.

When the OS has performed a swapping-out operation, it has two choices for
selecting a process to bring into main memory: It can admit a newly created process
or it can bring in a previously suspended process. It would appear that the prefer-
ence should be to bring in a previously suspended process, to provide it with service
rather than increasing the total load on the system.

122 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Dispatch
1spate Release

occurs

-

Release

Suspend

Event
occurs
occurs

Activate

Suspend

(b) With two suspend states

Figure 3.9 Process State Transition Diagram with Suspend States

But this line of reasoning presents a difficulty. All of the processes that have
been suspended were in the Blocked state at the time of suspension. It clearly would
not do any good to bring a blocked process back into main memory, because it is
still not ready for execution. Recognize, however, that each process in the Suspend
state was originally blocked on a particular event. When that event occurs, the proc-
ess is not blocked and is potentially available for execution.

Therefore, we need to rethink this aspect of the design. There are two inde-
pendent concepts here: whether a process is waiting on an event (blocked or not)
and whether a process has been swapped out of main memory (suspended or not).
To accommodate this 2 X 2 combination, we need four states:

e Ready: The process is in main memory and available for execution
e Blocked: The process is in main memory and awaiting an event.

3.2 / PROCESS STATES 123

¢ Blocked/Suspend: The process is in secondary memory and awaiting an event.

e Ready/Suspend: The process is in secondary memory but is available for
execution as soon as it is loaded into main memory.

Before looking at a state transition diagram that encompasses the two new
suspend states, one other point should be mentioned. The discussion so far has
assumed that virtual memory is not in use and that a process is either all in main
memory or all out of main memory. With a virtual memory scheme, it is possible
to execute a process that is only partially in main memory. If reference is made to
a process address that is not in main memory, then the appropriate portion of the
process can be brought in. The use of virtual memory would appear to eliminate the
need for explicit swapping, because any desired address in any desired process can
be moved in or out of main memory by the memory management hardware of the
processor. However, as we shall see in Chapter 8, the performance of a virtual mem-
ory system can collapse if there is a sufficiently large number of active processes, all
of which are partially in main memory. Therefore, even in a virtual memory system,
the OS will need to swap out processes explicitly and completely from time to time
in the interests of performance.

Let us look now, in Figure 3.9b, at the state transition model that we have
developed. (The dashed lines in the figure indicate possible but not necessary tran-
sitions.) Important new transitions are the following:

e Blocked — Blocked/Suspend: If there are no ready processes, then at least
one blocked process is swapped out to make room for another process that
is not blocked. This transition can be made even if there are ready processes
available, if the OS determines that the currently running process or a ready
process that it would like to dispatch requires more main memory to maintain
adequate performance.

¢ Blocked/Suspend — Ready/Suspend: A process in the Blocked/Suspend state
is moved to the Ready/Suspend state when the event for which it has been
waiting occurs. Note that this requires that the state information concerning
suspended processes must be accessible to the OS.

¢ Ready/Suspend — Ready: When there are no ready processes in main mem-
ory, the OS will need to bring one in to continue execution. In addition, it
might be the case that a process in the Ready/Suspend state has higher priority
than any of the processes in the Ready state. In that case, the OS designer may
dictate that it is more important to get at the higher-priority process than to
minimize swapping.

* Ready — Ready/Suspend: Normally, the OS would prefer to suspend a
blocked process rather than a ready one, because the ready process can now
be executed, whereas the blocked process is taking up main memory space
and cannot be executed. However, it may be necessary to suspend a ready
process if that is the only way to free up a sufficiently large block of main
memory. Also, the OS may choose to suspend a lower—priority ready process
rather than a higher—priority blocked process if it believes that the blocked
process will be ready soon.

124 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL
Several other transitions that are worth considering are the following:

¢ New — Ready/Suspend and New — Ready: When a new process is created, it
can either be added to the Ready queue or the Ready/Suspend queue. In either
case, the OS must create a process control block and allocate an address space
to the process. It might be preferable for the OS to perform these housekeep-
ing duties at an early time, so that it can maintain a large pool of processes that
are not blocked. With this strategy, there would often be insufficient room in
main memory for a new process; hence the use of the (New — Ready/Suspend)
transition. On the other hand, we could argue that a just-in-time philosophy of
creating processes as late as possible reduces OS overhead and allows that OS
to perform the process-creation duties at a time when the system is clogged
with blocked processes anyway.

* Blocked/Suspend — Blocked: Inclusion of this transition may seem to be poor
design. After all, if a process is not ready to execute and is not already in
main memory, what is the point of bringing it in? But consider the follow-
ing scenario: A process terminates, freeing up some main memory. There is a
process in the (Blocked/Suspend) queue with a higher priority than any of the
processes in the (Ready/Suspend) queue and the OS has reason to believe that
the blocking event for that process will occur soon. Under these circumstances,
it would seem reasonable to bring a blocked process into main memory in
preference to a ready process.

* Running — Ready/Suspend: Normally, a running process is moved to the
Ready state when its time allocation expires. If, however, the OS is preempt-
ing the process because a higher-priority process on the Blocked/Suspend
queue has just become unblocked, the OS could move the running process
directly to the (Ready/Suspend) queue and free some main memory.

* Any State — Exit: Typically, a process terminates while it is running, either
because it has completed or because of some fatal fault condition. However, in
some operating systems, a process may be terminated by the process that cre-
ated it or when the parent process is itself terminated. If this is allowed, then a
process in any state can be moved to the Exit state.

OTHER USES OF SUSPENSION So far, we have equated the concept of a suspended
process with that of a process that is not in main memory. A process that is not
in main memory is not immediately available for execution, whether or not it is
awaiting an event.

We can generalize the concept of a suspended process. Let us define a
suspended process as having the following characteristics:

1. The process is not immediately available for execution.

2. The process may or may not be waiting on an event. If it is, this blocked condi-
tion is independent of the suspend condition, and occurrence of the blocking
event does not enable the process to be executed immediately.

3.2 / PROCESS STATES 125

Table 3.3 Reasons for Process Suspension

Swapping The OS needs to release sufficient main memory to bring in a process that is ready
to execute.
Other OS reason The OS may suspend a background or utility process or a process that is suspected

of causing a problem.

Interactive user request | A user may wish to suspend execution of a program for purposes of debugging or
in connection with the use of a resource.

Timing A process may be executed periodically (e.g., an accounting or system monitoring
process) and may be suspended while waiting for the next time interval.

Parent process request A parent process may wish to suspend execution of a descendent to examine or
modify the suspended process, or to coordinate the activity of various descendants.

3. The process was placed in a suspended state by an agent: either itself, a parent
process, or the OS, for the purpose of preventing its execution.

4. The process may not be removed from this state until the agent explicitly
orders the removal.

Table 3.3 lists some reasons for the suspension of a process. One reason that
we have discussed is to provide memory space either to bring in a Ready/Suspended
process or to increase the memory allocated to other Ready processes. The OS may
have other motivations for suspending a process. For example, an auditing or trac-
ing process may be employed to monitor activity on the system; the process may
be used to record the level of utilization of various resources (processor, memory,
channels) and the rate of progress of the user processes in the system. The OS,
under operator control, may turn this process on and off from time to time. If the
OS detects or suspects a problem, it may suspend a process. One example of this
is deadlock, which is discussed in Chapter 6. As another example, a problem is
detected on a communications line, and the operator has the OS suspend the proc-
ess that is using the line while some tests are run.

Another set of reasons concerns the actions of an interactive user. For example, if
a user suspects a bug in the program, he or she may debug the program by suspending
its execution, examining and modifying the program or data, and resuming execution.
Or there may be a background process that is collecting trace or accounting statistics,
which the user may wish to be able to turn on and off.

Timing considerations may also lead to a swapping decision. For example, if a
process is to be activated periodically but is idle most of the time, then it should be
swapped out between uses. A program that monitors utilization or user activity is
an example.

Finally, a parent process may wish to suspend a descendent process. For exam-
ple, process A may spawn process B to perform a file read. Subsequently, process B
encounters an error in the file read procedure and reports this to process A. Process
A suspends process B to investigate the cause.

In all of these cases, the activation of a suspended process is requested by the
agent that initially requested the suspension.

126 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

3.3 PROCESS DESCRIPTION

The OS controls events within the computer system. It schedules and dispatches
processes for execution by the processor, allocates resources to processes, and
responds to requests by user processes for basic services. Fundamentally, we can
think of the OS as that entity that manages the use of system resources by processes.

This concept is illustrated in Figure 3.10. In a multiprogramming environment,
there are a number of processes (Py,..., P,,) that have been created and exist in
virtual memory. Each process, during the course of its execution, needs access to
certain system resources, including the processor, I/O devices, and main memory. In
the figure, process P is running; at least part of the process is in main memory, and
it has control of two I/O devices. Process P, is also in main memory but is blocked
waiting for an I/O device allocated to Py. Process P, has been swapped out and is
therefore suspended.

We explore the details of the management of these resources by the OS
on behalf of the processes in later chapters. Here we are concerned with a more
fundamental question: What information does the OS need to control processes and
manage resources for them?

Operating System Control Structures

If the OS is to manage processes and resources, it must have information about
the current status of each process and resource. The universal approach to provid-
ing this information is straightforward: The OS constructs and maintains tables of
information about each entity that it is managing. A general idea of the scope of this
effort is indicated in Figure 3.11, which shows four different types of tables main-
tained by the OS: memory, I/O, file, and process. Although the details will differ
from one OS to another, fundamentally, all operating systems maintain information
in these four categories.

Memory tables are used to keep track of both main (real) and second-
ary (virtual) memory. Some of main memory is reserved for use by the OS; the
remainder is available for use by processes. Processes are maintained on secondary
memory using some sort of virtual memory or simple swapping mechanism. The
memory tables must include the following information:

e The allocation of main memory to processes
e The allocation of secondary memory to processes

Virtual
memory
Computer
resources
Processor 1/0 1/0 1/0 L
memory

Figure 3.10 Processes and Resources (resource allocation at one snapshot in time)

3.3 / PROCESS DESCRIPTION 127

Process
image
Memory tables
Process
Memory 1
Devices 1/0 tables
Files
Processes File tables
Primary process table
Process 1
Process 2
Process
Process 3 image
Process

Process n

Figure 3.11 General Structure of Operating System Control Tables

n

* Any protection attributes of blocks of main or virtual memory, such as which
processes may access certain shared memory regions

¢ Any information needed to manage virtual memory

We examine the information structures for memory management in detail in Part
Three.

1/0 tables are used by the OS to manage the I/O devices and channels of the
computer system. At any given time, an I/O device may be available or assigned to a
particular process. If an I/O operation is in progress, the OS needs to know the status
of the I/O operation and the location in main memory being used as the source or
destination of the I/O transfer. /O management is examined in Chapter 11.

The OS may also maintain file tables. These tables provide information about
the existence of files, their location on secondary memory, their current status, and
other attributes. Much, if not all, of this information may be maintained and used by
a file management system, in which case the OS has little or no knowledge of files.
In other operating systems, much of the detail of file management is managed by
the OS itself. This topic is explored in Chapter 12.

Finally, the OS must maintain process tables to manage processes. The
remainder of this section is devoted to an examination of the required process
tables. Before proceeding to this discussion, two additional points should be made.
First, although Figure 3.11 shows four distinct sets of tables, it should be clear that
these tables must be linked or cross-referenced in some fashion. Memory, I/O, and

128 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

files are managed on behalf of processes, so there must be some reference to these
resources, directly or indirectly, in the process tables. The files referred to in the file
tables are accessible via an I/O device and will, at some times, be in main or virtual
memory. The tables themselves must be accessible by the OS and therefore are sub-
ject to memory management.

Second, how does the OS know to create the tables in the first place? Clearly,
the OS must have some knowledge of the basic environment, such as how much main
memory exists, what are the I/O devices and what are their identifiers, and so on. This
is an issue of configuration. That is, when the OS is initialized, it must have access to
some configuration data that define the basic environment, and these data must be
created outside the OS, with human assistance or by some autoconfiguration software.

Process Control Structures

Consider what the OS must know if it is to manage and control a process. First, it
must know where the process is located; second, it must know the attributes of the
process that are necessary for its management (e.g., process ID and process state).

PROCESS LocatioNn Before we can deal with the questions of where a process is
located or what its attributes are, we need to address an even more fundamental
question: What is the physical manifestation of a process? At a minimum, a process
must include a program or set of programs to be executed. Associated with these
programs is a set of data locations for local and global variables and any defined
constants. Thus, a process will consist of at least sufficient memory to hold the
programs and data of that process. In addition, the execution of a program typically
involves a stack (see Appendix P) that is used to keep track of procedure calls and
parameter passing between procedures. Finally, each process has associated with it
a number of attributes that are used by the OS for process control. Typically, the
collection of attributes is referred to as a process control block.” We can refer to this
collection of program, data, stack, and attributes as the process image (Table 3.4).
The location of a process image will depend on the memory management
scheme being used. In the simplest case, the process image is maintained as a

Table 3.4 Typical Elements of a Process Image

User Data
The modifiable part of the user space. May include program data, a user stack area, and programs that may be
modified.

User Program
The program to be executed.

Stack
Each process has one or more last-in-first-out (LIFO) stacks associated with it. A stack is used to store param-
eters and calling addresses for procedure and system calls.

Process Control Block
Data needed by the OS to control the process (see Table 3.5).

7Other commonly used names for this data structure are task control block, process descriptor, and task
descriptor.

3.3 / PROCESS DESCRIPTION 129

contiguous, or continuous, block of memory. This block is maintained in secondary
memory, usually disk. So that the OS can manage the process, at least a small portion
of its image must be maintained in main memory. To execute the process, the entire
process image must be loaded into main memory or at least virtual memory. Thus,
the OS needs to know the location of each process on disk and, for each such proc-
ess that is in main memory, the location of that process in main memory. We saw
a slightly more complex variation on this scheme with the CTSS OS, in Chapter 2.
With CTSS, when a process is swapped out, part of the process image may remain in
main memory. Thus, the OS must keep track of which portions of the image of each
process are still in main memory.

Modern operating systems presume paging hardware that allows noncontigu-
ous physical memory to support partially resident processes.® At any given time, a
portion of a process image may be in main memory, with the remainder in secondary
memory.” Therefore, process tables maintained by the OS must show the location
of each page of each process image.

Figure 3.11 depicts the structure of the location information in the follow-
ing way. There is a primary process table with one entry for each process. Each
entry contains, at least, a pointer to a process image. If the process image con-
tains multiple blocks, this information is contained directly in the primary process
table or is available by cross-reference to entries in memory tables. Of course,
this depiction is generic; a particular OS will have its own way of organizing the
location information.

PROCESS ATTRIBUTES A sophisticated multiprogramming system requires a great
deal of information about each process. As was explained, this information can be
considered to reside in a process control block. Different systems will organize this
information in different ways, and several examples of this appear at the end of this
chapter and the next. For now, let us simply explore the type of information that
might be of use to an OS without considering in any detail how that information is
organized.

Table 3.5 lists the typical categories of information required by the OS for each
process. You may be somewhat surprised at the quantity of information required.
As you gain a greater appreciation of the responsibilities of the OS, this list should
appear more reasonable.

We can group the process control block information into three general
categories:

e Process identification
e Processor state information

e Process control information

8A brief overview of the concepts of pages, segments, and virtual memory is provided in the subsection
on memory management in Section 2.3.

This brief discussion slides over some details. In particular, in a system that uses virtual memory, all of
the process image for an active process is always in secondary memory. When a portion of the image is
loaded into main memory, it is copied rather than moved. Thus, the secondary memory retains a copy of
all segments and/or pages. However, if the main memory portion of the image is modified, the secondary
copy will be out of date until the main memory portion is copied back onto disk.

130 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Table 3.5 Typical Elements of a Process Control Block

Process Identification

Identifiers
Numeric identifiers that may be stored with the process control block include

e Identifier of this process
e Identifier of the process that created this process (parent process)
e User identifier

Processor State Information

User-Visible Registers

A user-visible register is one that may be referenced by means of the machine language that the processor
executes while in user mode. Typically, there are from 8 to 32 of these registers, although some RISC
implementations have over 100.

Control and Status Registers
These are a variety of processor registers that are employed to control the operation of the processor. These
include

¢ Program counter: Contains the address of the next instruction to be fetched
¢ Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign, zero, carry, equal, overflow)
e Status information: Includes interrupt enabled/disabled flags, execution mode

Stack Pointers
Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A stack is used to store
parameters and calling addresses for procedure and system calls. The stack pointer points to the top of the stack.

Process Control Information

Scheduling and State Information
This is information that is needed by the operating system to perform its scheduling function. Typical items of
information:

e Process state: Defines the readiness of the process to be scheduled for execution (e.g., running, ready, wait-
ing, halted).

e Priority: One or more fields may be used to describe the scheduling priority of the process. In some systems,
several values are required (e.g., default, current, highest-allowable).

¢ Scheduling-related information: This will depend on the scheduling algorithm used. Examples are the
amount of time that the process has been waiting and the amount of time that the process executed the last
time it was running.

¢ Event: Identity of event the process is awaiting before it can be resumed.

Data Structuring

A process may be linked to other process in a queue, ring, or some other structure. For example, all processes
in a waiting state for a particular priority level may be linked in a queue. A process may exhibit a parent—child
(creator—created) relationship with another process. The process control block may contain pointers to other
processes to support these structures.

Interprocess Communication
Various flags, signals, and messages may be associated with communication between two independent
processes. Some or all of this information may be maintained in the process control block.

Process Privileges
Processes are granted privileges in terms of the memory that may be accessed and the types of instructions
that may be executed. In addition, privileges may apply to the use of system utilities and services.

Memory Management
This section may include pointers to segment and/or page tables that describe the virtual memory assigned to
this process.

Resource Ownership and Utilization
Resources controlled by the process may be indicated, such as opened files. A history of utilization of the
processor or other resources may also be included; this information may be needed by the scheduler.

3.3 / PROCESS DESCRIPTION 131

With respect to process identification, in virtually all operating systems, each
process is assigned a unique numeric identifier, which may simply be an index into
the primary process table (Figure 3.11); otherwise there must be a mapping that
allows the OS to locate the appropriate tables based on the process identifier. This
identifier is useful in several ways. Many of the other tables controlled by the OS
may use process identifiers to cross-reference process tables. For example, the
memory tables may be organized so as to provide a map of main memory with an
indication of which process is assigned to each region. Similar references will appear
in I/O and file tables. When processes communicate with one another, the process
identifier informs the OS of the destination of a particular communication. When
processes are allowed to create other processes, identifiers indicate the parent and
descendents of each process.

In addition to these process identifiers, a process may be assigned a user iden-
tifier that indicates the user responsible for the job.

Processor state information consists of the contents of processor registers.
While a process is running, of course, the information is in the registers. When a
process is interrupted, all of this register information must be saved so that it can
be restored when the process resumes execution. The nature and number of regis-
ters involved depend on the design of the processor. Typically, the register set will
include user-visible registers, control and status registers, and stack pointers. These
are described in Chapter 1.

Of particular note, all processor designs include a register or set of registers,
often known as the program status word (PSW), that contains status information.
The PSW typically contain condition codes plus other status information. A good
example of a processor status word is that on Intel x86 processors, referred to as the
EFLAGS register (shown in Figure 3.12 and Table 3.6). This structure is used by
any OS (including UNIX and Windows) running on an x86 processor.

The third major category of information in the process control block can be
called, for want of a better name, process control information. This is the addi-
tional information needed by the OS to control and coordinate the various active
processes. The last part of Table 3.5 indicates the scope of this information. As

—
—

31 21 16 /15 0
1|V{vlalv|r N| 10 |o|D|1|T]|S]|Z A P C
D|p|g|C F T| PL |F|F|F|F|F|F F F F

=<

ID = Identification flag DF = Direction flag

VIP = Virtual interrupt pending IF = Interrupt enable flag
VIF = Virtual interrupt flag TF = Trap flag

AC = Alignment check SF = Sign flag

VM = Virtual 8086 mode ZF = Zero flag

RF = Resume flag AF = Auxiliary carry flag
NT = Nested task flag PF = Parity flag

IOPL = I/O privilege level CF = Carry flag

OF = Overflow flag
Figure 3.12 x86 EFLAGS Register

132 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Table 3.6 Pentium EFLAGS Register Bits

Control Bits

AC (Alignment check)
Set if a word or doubleword is addressed on a nonword or non-doubleword boundary.

ID (Identification flag)

If this bit can be set and cleared, this processor supports the CPUID instruction. This instruction provides
information about the vendor, family, and model.

RF (Resume flag)

Allows the programmer to disable debug exceptions so that the instruction can be restarted after a debug
exception without immediately causing another debug exception.

IOPL (I/O privilege level)

When set, causes the processor to generate an exception on all accesses to I/O devices during protected mode
operation.

DF (Direction flag)
Determines whether string processing instructions increment or decrement the 16-bit half-registers SI and DI
(for 16-bit operations) or the 32-bit registers ESI and EDI (for 32-bit operations).

IF (Interrupt enable flag)

When set, the processor will recognize external interrupts.

TF (Trap flag)

When set, causes an interrupt after the execution of each instruction. This is used for debugging.
Operating Mode Bits

NT (Nested task flag)

Indicates that the current task is nested within another task in protected mode operation.

VM (Virtual 8086 mode)

Allows the programmer to enable or disable virtual 8086 mode, which determines whether the processor runs
as an 8086 machine.

VIP (Virtual interrupt pending)
Used in virtual 8086 mode to indicate that one or more interrupts are awaiting service.

VIF (Virtual interrupt flag)
Used in virtual 8086 mode instead of IF.

Condition Codes

AF (Auxiliary carry flag)

Represents carrying or borrowing between half-bytes of an 8-bit arithmetic or logic operation using the AL
register.

CF (Carry flag)

Indicates carrying out or borrowing into the leftmost bit position following an arithmetic operation. Also
modified by some of the shift and rotate operations.

OF (Overflow flag)

Indicates an arithmetic overflow after an addition or subtraction.

PF (Parity flag)

Parity of the result of an arithmetic or logic operation. 1 indicates even parity; 0 indicates odd parity.
SF (Sign flag)

Indicates the sign of the result of an arithmetic or logic operation.

ZF (Zero flag)

Indicates that the result of an arithmetic or logic operation is 0.

3.3 / PROCESS DESCRIPTION 133

Process Process Process
identification identification identification
Process
Processor state Processor state Processor state control
information information information
block
Process control Process control Process control
information information information
User stack User stack User stack

Private user
address space
(programs, data)

Private user
address space
(programs, data)

Private user
address space
(programs, data)

| = | = | =

I I I
X Shared address ! | Shared address ! X Shared address !
! space | X space I X space |

I I I
| | | | | |
. a1 L. J . a1

Process 1 Process 2 Process n

Figure 3.13 User Processes in Virtual Memory

we examine the details of operating system functionality in succeeding chapters,
the need for the various items on this list should become clear.

Figure 3.13 suggests the structure of process images in virtual memory. Each
process image consists of a process control block, a user stack, the private address
space of the process, and any other address space that the process shares with
other processes. In the figure, each process image appears as a contiguous range
of addresses. In an actual implementation, this may not be the case; it will depend
on the memory management scheme and the way in which control structures are
organized by the OS.

As indicated in Table 3.5, the process control block may contain structuring
information, including pointers that allow the linking of process control blocks.
Thus, the queues that were described in the preceding section could be imple-
mented as linked lists of process control blocks. For example, the queueing structure
of Figure 3.8a could be implemented as suggested in Figure 3.14.

THE RoLE oF THE PROCESS CONTROL BLock The process control block is the
most important data structure in an OS. Each process control block contains all
of the information about a process that is needed by the OS. The blocks are read
and/or modified by virtually every module in the OS, including those involved with
scheduling, resource allocation, interrupt processing, and performance monitoring
and analysis. One can say that the set of process control blocks defines the state of
the OS.

This brings up an important design issue. A number of routines within the OS
will need access to information in process control blocks. The provision of direct

134 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Process
control block
Running
Ready
Blocked —

Figure 3.14 Process List Structures

access to these tables is not difficult. Each process is equipped with a unique ID, and
this can be used as an index into a table of pointers to the process control blocks.
The difficulty is not access but rather protection. Two problems present themselves:

e A bug in a single routine, such as an interrupt handler, could damage process
control blocks, which could destroy the system’s ability to manage the affected
processes.

e A design change in the structure or semantics of the process control block
could affect a number of modules in the OS.

These problems can be addressed by requiring all routines in the OS to go
through a handler routine, the only job of which is to protect process control blocks,
and which is the sole arbiter for reading and writing these blocks. The trade-off in
the use of such a routine involves performance issues and the degree to which the
remainder of the system software can be trusted to be correct.

3.4 PROCESS CONTROL

Modes of Execution

Before continuing with our discussion of the way in which the OS manages pro-
cesses, we need to distinguish between the mode of processor execution normally
associated with the OS and that normally associated with user programs. Most

3.4 / PROCESS CONTROL 135

processors support at least two modes of execution. Certain instructions can only
be executed in the more-privileged mode. These would include reading or alter-
ing a control register, such as the program status word; primitive I/O instructions;
and instructions that relate to memory management. In addition, certain regions of
memory can only be accessed in the more-privileged mode.

The less-privileged mode is often referred to as the user mode, because user
programs typically would execute in this mode. The more-privileged mode is referred
to as the system mode, control mode, or kernel mode. This last term refers to the
kernel of the OS, which is that portion of the OS that encompasses the important
system functions. Table 3.7 lists the functions typically found in the kernel of an OS.

The reason for using two modes should be clear. It is necessary to protect the
OS and key operating system tables, such as process control blocks, from interfer-
ence by user programs. In the kernel mode, the software has complete control of the
processor and all its instructions, registers, and memory. This level of control is not
necessary and for safety is not desirable for user programs.

Two questions arise: How does the processor know in which mode it is to be
executing and how is the mode changed? Regarding the first question, typically there
is a bit in the program status word (PSW) that indicates the mode of execution. This
bit is changed in response to certain events. Typically, when a user makes a call to
an operating system service or when an interrupt triggers execution of an operating
system routine, the mode is set to the kernel mode and, upon return from the service
to the user process, the mode is set to user mode. As an example, consider the Intel
Itanium processor, which implements the 64-bit IA-64 architecture. The processor
has a processor status register (psr) that includes a 2-bit cpl (current privilege level)
field. Level 0 is the most privileged level, while level 3 is the least privileged level.
Most operating systems, such as Linux, use level O for the kernel and one other level

Table 3.7 Typical Functions of an Operating System Kernel

Process Management

® Process creation and termination

e Process scheduling and dispatching

e Process switching

e Process synchronization and support for interprocess communication
e Management of process control blocks

Memory Management

e Allocation of address space to processes
* Swapping
® Page and segment management

I/0 Management

e Buffer management
e Allocation of I/O channels and devices to processes

Support Functions

e Interrupt handling
e Accounting
® Monitoring

136 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

for user mode. When an interrupt occurs, the processor clears most of the bits in the
psr, including the cpl field. This automatically sets the cpl to level 0. At the end of
the interrupt-handling routine, the final instruction that is executed is irt (interrupt
return). This instruction causes the processor to restore the psr of the interrupted pro-
gram, which restores the privilege level of that program. A similar sequence occurs
when an application places a system call. For the Itanium, an application places a
system call by placing the system call identifier and the system call arguments in a
predefined area and then executing a special instruction that has the effect of inter-
rupting execution at the user level and transferring control to the kernel.

Process Creation

In Section 3.2, we discussed the events that lead to the creation of a new process.
Having discussed the data structures associated with a process, we are now in a
position to describe briefly the steps involved in actually creating the process.

Once the OS decides, for whatever reason (Table 3.1), to create a new process,
it can proceed as follows:

1. Assign a unique process identifier to the new process. At this time, a new entry
is added to the primary process table, which contains one entry per process.

2. Allocate space for the process. This includes all elements of the process image.
Thus, the OS must know how much space is needed for the private user address
space (programs and data) and the user stack. These values can be assigned by
default based on the type of process, or they can be set based on user request
at job creation time. If a process is spawned by another process, the parent
process can pass the needed values to the OS as part of the process-creation
request. If any existing address space is to be shared by this new process, the
appropriate linkages must be set up. Finally, space for a process control block
must be allocated.

3. Initialize the process control block. The process identification portion contains
the ID of this process plus other appropriate IDs, such as that of the parent
process. The processor state information portion will typically be initialized
with most entries zero, except for the program counter (set to the program
entry point) and system stack pointers (set to define the process stack bound-
aries). The process control information portion is initialized based on standard
default values plus attributes that have been requested for this process. For
example, the process state would typically be initialized to Ready or Ready/
Suspend. The priority may be set by default to the lowest priority unless an
explicit request is made for a higher priority. Initially, the process may own
no resources (I/O devices, files) unless there is an explicit request for these or
unless they are inherited from the parent.

4. Set the appropriate linkages. For example, if the OS maintains each schedul-
ing queue as a linked list, then the new process must be put in the Ready or
Ready/Suspend list.

5. Create or expand other data structures. For example, the OS may maintain
an accounting file on each process to be used subsequently for billing and/or
performance assessment purposes.

3.4 / PROCESS CONTROL 137

Process Switching

On the face of it, the function of process switching would seem to be straightforward.
At some time, a running process is interrupted and the OS assigns another process
to the Running state and turns control over to that process. However, several design
issues are raised. First, what events trigger a process switch? Another issue is that
we must recognize the distinction between mode switching and process switching.
Finally, what must the OS do to the various data structures under its control to
achieve a process switch?

WHEN 10 SWITCH PROCESSES A process switch may occur any time that the OS has
gained control from the currently running process. Table 3.8 suggests the possible
events that may give control to the OS.

First, let us consider system interrupts. Actually, we can distinguish, as many
systems do, two kinds of system interrupts, one of which is simply referred to as an
interrupt, and the other as a trap. The former is due to some sort of event that is
external to and independent of the currently running process, such as the completion
of an I/O operation. The latter relates to an error or exception condition generated
within the currently running process, such as an illegal file access attempt. With an
ordinary interrupt, control is first transferred to an interrupt handler, which does
some basic housekeeping and then branches to an OS routine that is concerned with
the particular type of interrupt that has occurred. Examples include the following:

e Clock interrupt: The OS determines whether the currently running process
has been executing for the maximum allowable unit of time, referred to as a
time slice. That is, a time slice is the maximum amount of time that a process
can execute before being interrupted. If so, this process must be switched to a
Ready state and another process dispatched.

e I/O interrupt: The OS determines what I/O action has occurred. If the I/O
action constitutes an event for which one or more processes are waiting,
then the OS moves all of the corresponding blocked processes to the Ready
state (and Blocked/Suspend processes to the Ready/Suspend state). The OS
must then decide whether to resume execution of the process currently in
the Running state or to preempt that process for a higher-priority Ready
process.

e Memory fault: The processor encounters a virtual memory address refer-
ence for a word that is not in main memory. The OS must bring in the block

Table 3.8 Mechanisms for Interrupting the Execution of a Process

Mechanism Cause Use

Interrupt External to the execution of the Reaction to an asynchronous external
current instruction event

Trap Associated with the execution of Handling of an error or an exception
the current instruction condition

Supervisor call Explicit request Call to an operating system function

138 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

(page or segment) of memory containing the reference from secondary mem-
ory to main memory. After the I/O request is issued to bring in the block of
memory, the process with the memory fault is placed in a blocked state; the
OS then performs a process switch to resume execution of another process.
After the desired block is brought into memory, that process is placed in the
Ready state.

With a trap, the OS determines if the error or exception condition is fatal.
If so, then the currently running process is moved to the Exit state and a proc-
ess switch occurs. If not, then the action of the OS will depend on the nature of
the error and the design of the OS. It may attempt some recovery procedure or
simply notify the user. It may do a process switch or resume the currently running
process.

Finally, the OS may be activated by a supervisor call from the program being
executed. For example, a user process is running and an instruction is executed that
requests an I/O operation, such as a file open. This call results in a transfer to a
routine that is part of the operating system code. The use of a system call may place
the user process in the Blocked state.

MobpEg SwircHING In Chapter 1, we discussed the inclusion of an interrupt stage as
part of the instruction cycle. Recall that, in the interrupt stage, the processor checks
to see if any interrupts are pending, indicated by the presence of an interrupt signal.
If no interrupts are pending, the processor proceeds to the fetch stage and fetches
the next instruction of the current program in the current process. If an interrupt is
pending, the processor does the following:

1. It sets the program counter to the starting address of an interrupt handler
program.

2. It switches from user mode to kernel mode so that the interrupt processing
code may include privileged instructions.

The processor now proceeds to the fetch stage and fetches the first instruction of
the interrupt handler program, which will service the interrupt. At this point, typi-
cally, the context of the process that has been interrupted is saved into that process
control block of the interrupted program.

One question that may now occur to you is, What constitutes the context that
is saved? The answer is that it must include any information that may be altered by
the execution of the interrupt handler and that will be needed to resume the pro-
gram that was interrupted. Thus, the portion of the process control block that was
referred to as processor state information must be saved. This includes the program
counter, other processor registers, and stack information.

Does anything else need to be done? That depends on what happens next. The
interrupt handler is typically a short program that performs a few basic tasks related
to an interrupt. For example, it resets the flag or indicator that signals the presence
of an interrupt. It may send an acknowledgment to the entity that issued the inter-
rupt, such as an I/O module. And it may do some basic housekeeping relating to the
effects of the event that caused the interrupt. For example, if the interrupt relates
to an I/O event, the interrupt handler will check for an error condition. If an error

3.4 / PROCESS CONTROL 139

has occurred, the interrupt handler may send a signal to the process that originally
requested the I/O operation. If the interrupt is by the clock, then the handler will
hand control over to the dispatcher, which will want to pass control to another proc-
ess because the time slice allotted to the currently running process has expired.

What about the other information in the process control block? If this inter-
rupt is to be followed by a switch to another process, then some work will need to be
done. However, in most operating systems, the occurrence of an interrupt does not
necessarily mean a process switch. It is possible that, after the interrupt handler has
executed, the currently running process will resume execution. In that case, all that
is necessary is to save the processor state information when the interrupt occurs and
restore that information when control is returned to the program that was running.
Typically, the saving and restoring functions are performed in hardware.

CHANGE OF PROCESS STATE It is clear, then, that the mode switch is a concept
distinct from that of the process switch.! A mode switch may occur without
changing the state of the process that is currently in the Running state. In that case,
the context saving and subsequent restoral involve little overhead. However, if the
currently running process is to be moved to another state (Ready, Blocked, etc.),
then the OS must make substantial changes in its environment. The steps involved
in a full process switch are as follows:

1. Save the context of the processor, including program counter and other
registers.

2. Update the process control block of the process that is currently in the
Running state. This includes changing the state of the process to one of the
other states (Ready; Blocked; Ready/Suspend; or Exit). Other relevant fields
must also be updated, including the reason for leaving the Running state and
accounting information.

3. Move the process control block of this process to the appropriate queue
(Ready; Blocked on Event i; Ready/Suspend).

4. Select another process for execution; this topic is explored in Part Four.

5. Update the process control block of the process selected. This includes chang-
ing the state of this process to Running.

6. Update memory management data structures. This may be required, depend-
ing on how address translation is managed; this topic is explored in Part Three.

7. Restore the context of the processor to that which existed at the time the
selected process was last switched out of the Running state, by loading in the
previous values of the program counter and other registers.

Thus, the process switch, which involves a state change, requires more effort than a
mode switch.

19The term context switch is often found in OS literature and textbooks. Unfortunately, although most of
the literature uses this term to mean what is here called a process switch, other sources use it to mean a
mode switch or even a thread switch (defined in the next chapter). To avoid ambiguity, the term is not
used in this book.

140 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

3.5 EXECUTION OF THE OPERATING SYSTEM

In Chapter 2, we pointed out two intriguing facts about operating systems:

* The OS functions in the same way as ordinary computer software in the sense
that the OS is a set of programs executed by the processor.

e The OS frequently relinquishes control and depends on the processor to
restore control to the OS.

If the OS is just a collection of programs and if it is executed by the processor
just like any other program, is the OS a process? If so, how is it controlled? These
interesting questions have inspired a number of design approaches. Figure 3.15
illustrates a range of approaches that are found in various contemporary operating
systems.

Nonprocess Kernel

One traditional approach, common on many older operating systems, is to execute
the kernel of the OS outside of any process (Figure 3.15a). With this approach,
when the currently running process is interrupted or issues a supervisor call, the
mode context of this process is saved and control is passed to the kernel. The OS has
its own region of memory to use and its own system stack for controlling procedure
calls and returns. The OS can perform any desired functions and restore the con-
text of the interrupted process, which causes execution to resume in the interrupted

o [e

Kernel

(a) Separate kernel

Process-switching functions

(b) OS functions execute within user processes

Process-switching functions

(c) OS functions execute as separate processes

Figure 3.15 Relationship between Operating System
and User Processes

3.5 / EXECUTION OF THE OPERATING SYSTEM 141

user process. Alternatively, the OS can complete the function of saving the environ-
ment of the process and proceed to schedule and dispatch another process. Whether
this happens depends on the reason for the interruption and the circumstances at
the time.

In any case, the key point here is that the concept of process is considered to
apply only to user programs. The operating system code is executed as a separate
entity that operates in privileged mode.

Execution within User Processes

An alternative that is common with operating systems on smaller computers (PCs,
workstations) is to execute virtually all OS software in the context of a user process.
The view is that the OS is primarily a collection of routines that the user calls to
perform various functions, executed within the environment of the user’s process.
This is illustrated in Figure 3.15b. At any given point, the OS is managing n process
images. Each image includes not only the regions illustrated in Figure 3.13, but also
program, data, and stack areas for kernel programs.

Figure 3.16 suggests a typical process image structure for this strategy. A sepa-
rate kernel stack is used to manage calls/returns while the process is in kernel mode.

Process
identification
Processor state Process control
information block

Process control
information

User stack

Private user
address space
(programs, data)

Kernel stack

I

i

: Shared address
: space

i

I

Figure 3.16 Process Image: Operating
System Executes within
User Space

142 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Operating system code and data are in the shared address space and are shared by
all user processes.

When an interrupt, trap, or supervisor call occurs, the processor is placed in
kernel mode and control is passed to the OS. To pass control from a user program
to the OS, the mode context is saved and a mode switch takes place to an operating
system routine. However, execution continues within the current user process. Thus,
a process switch is not performed, just a mode switch within the same process.

If the OS, upon completion of its work, determines that the current process
should continue to run, then a mode switch resumes the interrupted program within
the current process. This is one of the key advantages of this approach: A user
program has been interrupted to employ some operating system routine, and then
resumed, and all of this has occurred without incurring the penalty of two process
switches. If, however, it is determined that a process switch is to occur rather than
returning to the previously executing program, then control is passed to a proc-
ess-switching routine. This routine may or may not execute in the current process,
depending on system design. At some point, however, the current process has to be
placed in a nonrunning state and another process designated as the running process.
During this phase, it is logically most convenient to view execution as taking place
outside of all processes.

In a way, this view of the OS is remarkable. Simply put, at certain points in
time, a process will save its state information, choose another process to run from
among those that are ready, and relinquish control to that process. The reason this
is not an arbitrary and indeed chaotic situation is that during the critical time, the
code that is executed in the user process is shared operating system code and not
user code. Because of the concept of user mode and kernel mode, the user cannot
tamper with or interfere with the operating system routines, even though they are
executing in the user’s process environment. This further reminds us that there is
a distinction between the concepts of process and program and that the relation-
ship between the two is not one to one. Within a process, both a user program and
operating system programs may execute, and the operating system programs that
execute in the various user processes are identical.

Process-Based Operating System

Another alternative, illustrated in Figure 3.15¢, is to implement the OS as a collec-
tion of system processes. As in the other options, the software that is part of the
kernel executes in a kernel mode. In this case, however, major kernel functions are
organized as separate processes. Again, there may be a small amount of process-
switching code that is executed outside of any process.

This approach has several advantages. It imposes a program design discipline
that encourages the use of a modular OS with minimal, clean interfaces between the
modules. In addition, some noncritical operating system functions are conveniently
implemented as separate processes. For example, we mentioned earlier a monitor
program that records the level of utilization of various resources (processor, mem-
ory, channels) and the rate of progress of the user processes in the system. Because
this program does not provide a particular service to any active process, it can only
be invoked by the OS. As a process, the function can run at an assigned priority

3.6 / SECURITY ISSUES 143

level and be interleaved with other processes under dispatcher control. Finally,
implementing the OS as a set of processes is useful in a multiprocessor or multicom-
puter environment, in which some of the operating system services can be shipped
out to dedicated processors, improving performance.

3.6 SECURITY ISSUES

An OS associates a set of privileges with each process. These privileges dictate what
resources the process may access, including regions of memory, files, privileged sys-
tem instructions, and so on. Typically, a process that executes on behalf of a user
has the privileges that the OS recognizes for that user. A system or utility process
may have privileges assigned at configuration time.

On a typical system, the highest level of privilege is referred to as administra-
tor, supervisor, or root access.'! Root access provides access to all the functions and
services of the operating system. With root access, a process has complete control of
the system and can add or change programs and files, monitor other processes, send
and receive network traffic, and alter privileges.

A key security issue in the design of any OS is to prevent, or at least detect,
attempts by a user or a piece of malicious software (malware) from gaining unau-
thorized privileges on the system and, in particular, from gaining root access. In
this section, we briefly summarize the threats and countermeasures related to this
security issue. Part Seven provides more detail.

System Access Threats

System access threats fall into two general categories: intruders and malicious
software.

INTRUDERS One of the most common threats to security is the intruder (the other
is viruses), often referred to as a hacker or cracker. In an important early study of
intrusion, Anderson [ANDES0] identified three classes of intruders:

* Masquerader: An individual who is not authorized to use the computer and
who penetrates a system’s access controls to exploit a legitimate user’s account

e Misfeasor: A legitimate user who accesses data, programs, or resources for
which such access is not authorized, or who is authorized for such access but
misuses his or her privileges

¢ Clandestine user: An individual who seizes supervisory control of the system
and uses this control to evade auditing and access controls or to suppress audit
collection

The masquerader is likely to be an outsider; the misfeasor generally is an insider;
and the clandestine user can be either an outsider or an insider.

Intruder attacks range from the benign to the serious. At the benign end of the
scale, there are many people who simply wish to explore internets and see what is

1On UNIX systems, the administrator, or superuser, account is called root; hence the term root access.

144 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

out there. At the serious end are individuals who are attempting to read privileged
data, perform unauthorized modifications to data, or disrupt the system.

The objective of the intruder is to gain access to a system or to increase the
range of privileges accessible on a system. Most initial attacks use system or soft-
ware vulnerabilities that allow a user to execute code that opens a back door into
the system. Intruders can get access to a system by exploiting attacks such as buffer
overflows on a program that runs with certain privileges. We introduce buffer over-
flow attacks in Chapter 7.

Alternatively, the intruder attempts to acquire information that should have
been protected. In some cases, this information is in the form of a user password.
With knowledge of some other user’s password, an intruder can log in to a system
and exercise all the privileges accorded to the legitimate user.

Maricrous SOFTWARE Perhaps the most sophisticated types of threats to computer
systems are presented by programs that exploit vulnerabilities in computing systems.
Such threats are referred to as malicious software, or malware. In this context, we
are concerned with threats to application programs as well as utility programs, such
as editors and compilers, and kernel-level programs.

Malicious software can be divided into two categories: those that need a host
program, and those that are independent. The former, referred to as parasitic, are
essentially fragments of programs that cannot exist independently of some actual
application program, utility, or system program. Viruses, logic bombs, and back-
doors are examples. The latter are self-contained programs that can be scheduled
and run by the operating system. Worms and bot programs are examples.

We can also differentiate between those software threats that do not replicate
and those that do. The former are programs or fragments of programs that are acti-
vated by a trigger. Examples are logic bombs, backdoors, and bot programs. The
latter consists of either a program fragment or an independent program that, when
executed, may produce one or more copies of itself to be activated later on the same
system or some other system. Viruses and worms are examples.

Malicious software can be relatively harmless or may perform one or more of
a number of harmful actions, including destroying files and data in main memory,
bypassing controls to gain privileged access, and providing a means for intruders to
bypass access controls.

Countermeasures

InTtrUSION DETECTION RFC 2828 (Internet Security Glossary) defines intrusion
detection as follows: A security service that monitors and analyzes system events
for the purpose of finding, and providing real-time or near real-time warning of,
attempts to access system resources in an unauthorized manner.

Intrusion detection systems (IDSs) can be classified as follows:

e Host-based IDS: Monitors the characteristics of a single host and the events
occurring within that host for suspicious activity

¢ Network-based IDS: Monitors network traffic for particular network seg-
ments or devices and analyzes network, transport, and application protocols
to identify suspicious activity

3.6 / SECURITY ISSUES 145

An IDS comprises three logical components:

e Sensors: Sensors are responsible for collecting data. The input for a sensor
may be any part of a system that could contain evidence of an intrusion. Types
of input to a sensor include network packets, log files, and system call traces.
Sensors collect and forward this information to the analyzer.

e Analyzers: Analyzers receive input from one or more sensors or from other
analyzers. The analyzer is responsible for determining if an intrusion has
occurred. The output of this component is an indication that an intrusion has
occurred. The output may include evidence supporting the conclusion that an
intrusion occurred. The analyzer may provide guidance about what actions to
take as a result of the intrusion.

e User interface: The user interface to an IDS enables a user to view output
from the system or control the behavior of the system. In some systems, the
user interface may equate to a manager, director, or console component.

Intrusion detection systems are typically designed to detect human intruder
behavior as well as malicious software behavior.

AUTHENTICATION In most computer security contexts, user authentication is the
fundamental building block and the primary line of defense. User authentication
is the basis for most types of access control and for user accountability. RFC 2828
defines user authentication as follows:

The process of verifying an identity claimed by or for a system entity. An authen-
tication process consists of two steps:

e Identification step: Presenting an identifier to the security system. (Identifiers
should be assigned carefully, because authenticated identities are the basis
for other security services, such as access control service.)

¢ Verification step: Presenting or generating authentication information that
corroborates the binding between the entity and the identifier.

For example, user Alice Toklas could have the user identifier ABTOKLAS.
This information needs to be stored on any server or computer system that Alice
wishes to use and could be known to system administrators and other users. A typical
item of authentication information associated with this user ID is a password, which
is kept secret (known only to Alice and to the system). If no one is able to obtain
or guess Alice’s password, then the combination of Alice’s user ID and password
enables administrators to set up Alice’s access permissions and audit her activity.
Because Alice’s ID is not secret, system users can send her e-mail, but because her
password is secret, no one can pretend to be Alice.

In essence, identification is the means by which a user provides a claimed
identity to the system; user authentication is the means of establishing the validity
of the claim.

146 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

There are four general means of authenticating a user’s identity, which can be
used alone or in combination:

e Something the individual knows: Examples include a password, a personal
identification number (PIN), or answers to a prearranged set of questions.

* Something the individual possesses: Examples include electronic keycards,
smart cards, and physical keys. This type of authenticator is referred to as a
token.

e Something the individual is (static biometrics): Examples include recognition
by fingerprint, retina, and face.

* Something the individual does (dynamic biometrics): Examples include recog-
nition by voice pattern, handwriting characteristics, and typing rhythm.

All of these methods, properly implemented and used, can provide secure user
authentication. However, each method has problems. An adversary may be able to
guess or steal a password. Similarly, an adversary may be able to forge or steal a
token. A user may forget a password or lose a token. Further, there is a significant
administrative overhead for managing password and token information on systems
and securing such information on systems. With respect to biometric authenticators,
there are a variety of problems, including dealing with false positives and false nega-
tives, user acceptance, cost, and convenience.

Access CoNTROL Access control implements a security policy that specifies who
or what (e.g., in the case of a process) may have access to each specific system
resource and the type of access that is permitted in each instance.

An access control mechanism mediates between a user (or a process executing
on behalf of a user) and system resources, such as applications, operating systems,
firewalls, routers, files, and databases. The system must first authenticate a user
seeking access. Typically, the authentication function determines whether the user
is permitted to access the system at all. Then the access control function determines
if the specific requested access by this user is permitted. A security administrator
maintains an authorization database that specifies what type of access to which
resources is allowed for this user. The access control function consults this database
to determine whether to grant access. An auditing function monitors and keeps a
record of user accesses to system resources.

FIrewaLLs Firewalls can be an effective means of protecting a local system or
network of systems from network-based security threats while at the same time
affording access to the outside world via wide area networks and the Internet.
Traditionally, a firewall is a dedicated computer that interfaces with computers
outside a network and has special security precautions built into it in order to
protect sensitive files on computers within the network. It is used to service outside
network, especially Internet, connections and dial-in lines. Personal firewalls that
are implemented in hardware or software, and associated with a single workstation
or PC, are also common.

3.7 / UNIX SVR4 PROCESS MANAGEMENT 147

[BELL94] lists the following design goals for a firewall:

1. All traffic from inside to outside, and vice versa, must pass through the fire-
wall. This is achieved by physically blocking all access to the local network
except via the firewall. Various configurations are possible, as explained later
in this chapter.

2. Only authorized traffic, as defined by the local security policy, will be allowed
to pass. Various types of firewalls are used, which implement various types of
security policies.

3. The firewall itself is immune to penetration. This implies the use of a hard-
ened system with a secured operating system. Trusted computer systems are
suitable for hosting a firewall and often required in government applications.

3.7 UNIX SVR4 PROCESS MANAGEMENT

UNIX System V makes use of a simple but powerful process facility that is highly
visible to the user. UNIX follows the model of Figure 3.15b, in which most of the OS
executes within the environment of a user process. UNIX uses two categories of pro-
cesses: system processes and user processes. System processes run in kernel mode and
execute operating system code to perform administrative and housekeeping func-
tions, such as allocation of memory and process swapping. User processes operate
in user mode to execute user programs and utilities and in kernel mode to execute
instructions that belong to the kernel. A user process enters kernel mode by issuing a
system call, when an exception (fault) is generated, or when an interrupt occurs.

Process States

A total of nine process states are recognized by the UNIX SVR4 operating system;
these are listed in Table 3.9 and a state transition diagram is shown in Figure 3.17

Table 3.9 UNIX Process States

User Running Executing in user mode.

Kernel Running Executing in kernel mode.

Ready to Run, in Ready to run as soon as the kernel schedules it.
Memory

Asleep in Memory Unable to execute until an event occurs; process is in main memory (a blocked state).

Ready to Run, Process is ready to run, but the swapper must swap the process into main memory

Swapped before the kernel can schedule it to execute.

Sleeping, Swapped The process is awaiting an event and has been swapped to secondary storage (a
blocked state).

Preempted Process is returning from kernel to user mode, but the kernel preempts it and does a

process switch to schedule another process.

Created Process is newly created and not yet ready to run.

Zombie Process no longer exists, but it leaves a record for its parent process to collect.

148 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Not enough memory

Return .
(swapping system only)

to User

Preempt N
Swap out

Reschedule
process

Swap in
System call,
interrupt

Interrupt,
interrupt return

Swap out

Figure 3.17 UNIX Process State Transition Diagram

(based on figure in [BACHS6]). This figure is similar to Figure 3.9b, with the two
UNIX sleeping states corresponding to the two blocked states. The differences are
as follows:

e UNIX employs two Running states to indicate whether the process is execut-
ing in user mode or kernel mode.

e A distinction is made between the two states: (Ready to Run, in Memory) and
(Preempted). These are essentially the same state, as indicated by the dotted
line joining them. The distinction is made to emphasize the way in which the
preempted state is entered. When a process is running in kernel mode (as a
result of a supervisor call, clock interrupt, or I/O interrupt), there will come
a time when the kernel has completed its work and is ready to return control
to the user program. At this point, the kernel may decide to preempt the cur-
rent process in favor of one that is ready and of higher priority. In that case,
the current process moves to the preempted state. However, for purposes of
dispatching, those processes in the Preempted state and those in the (Ready to
Run, in Memory) state form one queue.

Preemption can only occur when a process is about to move from kernel mode
to user mode. While a process is running in kernel mode, it may not be preempted.
This makes UNIX unsuitable for real-time processing. Chapter 10 discusses the
requirements for real-time processing.

3.7 / UNIX SVR4 PROCESS MANAGEMENT 149

Two processes are unique in UNIX. Process 0 is a special process that is cre-
ated when the system boots; in effect, it is predefined as a data structure loaded
at boot time. It is the swapper process. In addition, process 0 spawns process 1,
referred to as the init process; all other processes in the system have process 1 as
an ancestor. When a new interactive user logs on to the system, it is process 1 that
creates a user process for that user. Subsequently, the user process can create child
processes in a branching tree, so that any particular application can consist of a
number of related processes.

Process Description

A process in UNIX is a rather complex set of data structures that provide the OS
with all of the information necessary to manage and dispatch processes. Table 3.10
summarizes the elements of the process image, which are organized into three parts:
user-level context, register context, and system-level context.

The user-level context contains the basic elements of a user’s program and
can be generated directly from a compiled object file. The user’s program is sepa-
rated into text and data areas; the text area is read-only and is intended to hold
the program’s instructions. While the process is executing, the processor uses the
user stack area for procedure calls and returns and parameter passing. The shared
memory area is a data area that is shared with other processes. There is only one
physical copy of a shared memory area, but, by the use of virtual memorys, it appears

Table 3.10 UNIX Process Image

User-Level Context

Process text Executable machine instructions of the program
Process data Data accessible by the program of this process
User stack Contains the arguments, local variables, and pointers for functions executing in user mode
Shared memory Memory shared with other processes, used for interprocess communication
Register Context
Program counter Address of next instruction to be executed; may be in kernel or user memory space of
this process
Processor status Contains the hardware status at the time of preemption; contents and format are hard-
register ware dependent
Stack pointer Points to the top of the kernel or user stack, depending on the mode of operation at
the time or preemption
General-purpose Hardware dependent
registers

System-Level Context

Process table entry | Defines state of a process; this information is always accessible to the operating system
U (user) area Process control information that needs to be accessed only in the context of the process

Per process region Defines the mapping from virtual to physical addresses; also contains a permission
table field that indicates the type of access allowed the process: read-only, read-write, or
read-execute

Kernel stack Contains the stack frame of kernel procedures as the process executes in kernel mode

150 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Table 3.11 UNIX Process Table Entry

Process status Current state of process.

Pointers To U area and process memory area (text, data, stack).

Process size Enables the operating system to know how much space to allocate the process.

User The real user ID identifies the user who is responsible for the running process. The effective

identifiers user ID may be used by a process to gain temporary privileges associated with a particular
program; while that program is being executed as part of the process, the process operates
with the effective user ID.

Process ID of this process; ID of parent process. These are set up when the process enters the

identifiers Created state during the fork system call.

Event Valid when a process is in a sleeping state; when the event occurs, the process is transferred

descriptor to a ready-to-run state.

Priority Used for process scheduling.

Signal Enumerates signals sent to a process but not yet handled.

Timers Include process execution time, kernel resource utilization, and user-set timer used to send
alarm signal to a process.

P_link Pointer to the next link in the ready queue (valid if process is ready to execute).

Memory Indicates whether process image is in main memory or swapped out. If it is in memory,

status this field also indicates whether it may be swapped out or is temporarily locked into main
memory.

to each sharing process that the shared memory region is in its address space. When
a process is not running, the processor status information is stored in the register
context area.

The system-level context contains the remaining information that the OS
needs to manage the process. It consists of a static part, which is fixed in size and
stays with a process throughout its lifetime, and a dynamic part, which varies in
size through the life of the process. One element of the static part is the process
table entry. This is actually part of the process table maintained by the OS, with
one entry per process. The process table entry contains process control information
that is accessible to the kernel at all times; hence, in a virtual memory system, all
process table entries are maintained in main memory. Table 3.11 lists the contents
of a process table entry. The user area, or U area, contains additional process con-
trol information that is needed by the kernel when it is executing in the context of
this process; it is also used when paging processes to and from memory. Table 3.12
shows the contents of this table.

The distinction between the process table entry and the U area reflects the
fact that the UNIX kernel always executes in the context of some process. Much
of the time, the kernel will be dealing with the concerns of that process. However,
some of the time, such as when the kernel is performing a scheduling algorithm
preparatory to dispatching another process, it will need access to information about
other processes. The information in a process table can be accessed when the given
process is not the current one.

The third static portion of the system-level context is the per process region
table, which is used by the memory management system. Finally, the kernel stack is

3.7 / UNIX SVR4 PROCESS MANAGEMENT 151

Table 3.12 UNIX U Area

Process table
pointer

Indicates entry that corresponds to the U area.

User identifiers

Real and effective user IDs. Used to determine user privileges.

Timers

Record time that the process (and its descendants) spent executing in user mode and in
kernel mode.

Signal-handler

For each type of signal defined in the system, indicates how the process will react to

array receipt of that signal (exit, ignore, execute specified user function).
Control terminal Indicates login terminal for this process, if one exists.
Error field Records errors encountered during a system call.

Return value

Contains the result of system calls.

I/O parameters

Describe the amount of data to transfer, the address of the source (or target) data array
in user space, and file offsets for I/O.

File parameters Current directory and current root describe the file system environment of the process.

User file

descriptor table

Records the files the process has opened.

Limit fields

Restrict the size of the process and the size of a file it can write.

fields

Permission modes Mask mode settings on files the process creates.

the dynamic portion of the system-level context. This stack is used when the process
is executing in kernel mode and contains the information that must be saved and
restored as procedure calls and interrupts occur.

Process Control

Process creation in UNIX is made by means of the kernel system call, fork (). When
a process issues a fork request, the OS performs the following functions [BACHS86]:

1.
2.
3.

It allocates a slot in the process table for the new process.
It assigns a unique process ID to the child process.

It makes a copy of the process image of the parent, with the exception of any
shared memory.

It increments counters for any files owned by the parent, to reflect that an
additional process now also owns those files.

It assigns the child process to the Ready to Run state.
It returns the ID number of the child to the parent process, and a 0 value to
the child process.

All of this work is accomplished in kernel mode in the parent process. When

the kernel has completed these functions it can do one of the following, as part of
the dispatcher routine:

Stay in the parent process. Control returns to user mode at the point of the
fork call of the parent.

152 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

e Transfer control to the child process. The child process begins executing
at the same point in the code as the parent, namely at the return from the
fork call.

e Transfer control to another process. Both parent and child are left in the
Ready to Run state.

It is perhaps difficult to visualize this method of process creation because both
parent and child are executing the same passage of code. The difference is this:
When the return from the fork occurs, the return parameter is tested. If the value is
zero, then this is the child process, and a branch can be executed to the appropriate
user program to continue execution. If the value is nonzero, then this is the parent
process, and the main line of execution can continue.

3.8 SUMMARY

The most fundamental concept in a modern OS is the process. The principal func-
tion of the OS is to create, manage, and terminate processes. While processes are
active, the OS must see that each is allocated time for execution by the proces-
sor, coordinate their activities, manage conflicting demands, and allocate system
resources to processes.

To perform its process management functions, the OS maintains a description
of each process, or process image, which includes the address space within which the
process executes, and a process control block. The latter contains all of the informa-
tion that is required by the OS to manage the process, including its current state,
resources allocated to it, priority, and other relevant data.

During its lifetime, a process moves among a number of states. The most
important of these are Ready, Running, and Blocked. A ready process is one that
is not currently executing but that is ready to be executed as soon as the OS dis-
patches it. The running process is that process that is currently being executed by
the processor. In a multiple-processor system, more than one process can be in this
state. A blocked process is waiting for the completion of some event, such as an I/O
operation.

A running process is interrupted either by an interrupt, which is an event that
occurs outside the process and that is recognized by the processor, or by executing
a supervisor call to the OS. In either case, the processor performs a mode switch,
transferring control to an operating system routine. The OS, after it has completed
necessary work, may resume the interrupted process or switch to some other
process.

3.9 RECOMMENDED READING

Good descriptions of UNIX process management are found in [GOODY4] and
[GRAY97]. INEHMT75] is an interesting discussion of process states and the operat-
ing system primitives needed for process dispatching.

3.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 153

GOOD9%4 Goodheart, B., and Cox, J. The Magic Garden Explained: The Internals of
UNIX System V Release 4. Englewood Cliffs, NJ: Prentice Hall, 1994.

GRAYY97 Gray, J. Interprocess Communications in UNIX: The Nooks and Crannies.
Upper Saddle River, NJ: Prentice Hall, 1997.

NEHM?75 Nehmer, J. “Dispatcher Primitives for the Construction of Operating
System Kernels.” Acta Informatica, vol. 5, 1975.

3.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
blocked state privileged mode suspend state
child process process swapping
exit state process control block system mode
interrupt process image task
kernel mode process switch trace
mode switch program status word trap
new state ready state user mode
parent process round robin
preempt running state

Review Questions

3.1 What is an instruction trace?
3.2 What common events lead to the creation of a process?
3.3 For the processing model of Figure 3.6, briefly define each state.
3.4 What does it mean to preempt a process?
3.5 What is swapping and what is its purpose?
3.6 Why does Figure 3.9b have two blocked states?
3.7 List four characteristics of a suspended process.
3.8 For what types of entities does the OS maintain tables of information for management
purposes?
3.9 List three general categories of information in a process control block.
3.10 Why are two modes (user and kernel) needed?
3.11 What are the steps performed by an OS to create a new process?
3.12 What is the difference between an interrupt and a trap?
3.13 Give three examples of an interrupt.
3.14 What is the difference between a mode switch and a process switch?

Problems

3.1 The following state transition table is a simplified model of process management, with
the labels representing transitions between states of READY, RUN, BLOCKED, and
NONRESIDENT.

154 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

3.2

3.3

34

3.5

3.6

3.7

READY RUN BLOCKED NONRESIDENT
READY - 1 - 5
RUN 2 - 3 =
BLOCKED 4 - - 6

Give an example of an event that can cause each of the above transitions. Draw a
diagram if that helps.

Assume that at time 5 no system resources are being used except for the processor
and memory. Now consider the following events:

At time 5: P1 executes a command to read from disk unit 3.

At time 15: P5’s time slice expires.

At time 18: P7 executes a command to write to disk unit 3.

At time 20: P3 executes a command to read from disk unit 2.

At time 24: PS5 executes a command to write to disk unit 3.

At time 28: P5 is swapped out.

At time 33: An interrupt occurs from disk unit 2: P3’s read is complete.
At time 36: An interrupt occurs from disk unit 3: P1’s read is complete.
At time 38: PS8 terminates.

At time 40: An interrupt occurs from disk unit 3: P5’s write is complete.
At time 44: PS5 is swapped back in.

At time 48: An interrupt occurs from disk unit 3: P7’s write is complete.

For each time 22, 37, and 47, identify which state each process is in. If a process is
blocked, further identify the event on which is it blocked.

Figure 3.9b contains seven states. In principle, one could draw a transition between

any two states, for a total of 42 different transitions.

a. List all of the possible transitions and give an example of what could cause each
transition.

b. List all of the impossible transitions and explain why.

For the seven-state process model of Figure 3.9b, draw a queueing diagram similar to

that of Figure 3.8b.

Consider the state transition diagram of Figure 3.9b. Suppose that it is time for the

OS to dispatch a process and that there are processes in both the Ready state and the

Ready/Suspend state, and that at least one process in the Ready/Suspend state has

higher scheduling priority than any of the processes in the Ready state. Two extreme

policies are as follows: (1) Always dispatch from a process in the Ready state, to mini-

mize swapping, and (2) always give preference to the highest-priority process, even

though that may mean swapping when swapping is not necessary. Suggest an interme-

diate policy that tries to balance the concerns of priority and performance.

Table 3.13 shows the process states for the VAX/VMS operating system.

a. Can you provide a justification for the existence of so many distinct wait states?

b. Why do the following states not have resident and swapped-out versions: Page
Fault Wait, Collided Page Wait, Common Event Wait, Free Page Wait, and Re-
source Wait?

c. Draw the state transition diagram and indicate the action or occurrence that
causes each transition.

The VAX/VMS operating system makes use of four processor access modes to facili-

tate the protection and sharing of system resources among processes. The access mode

determines

¢ Instruction execution privileges: What instructions the processor may execute

* Memory access privileges: Which locations in virtual memory the current instruc-
tion may access

3.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 155

Table 3.13 VAX/VMS Process States

Process State Process Condition

Currently Executing Running process.

Computable (resident) Ready and resident in main memory.

Computable (outswapped) Ready, but swapped out of main memory.

Page Fault Wait Process has referenced a page not in main memory and must wait for
the page to be read in.

Collided Page Wait Process has referenced a shared page that is the cause of an existing

page fault wait in another process, or a private page that is in the
process of being read in or written out.

Common Event Wait Waiting for shared event flag (event flags are single-bit interprocess
signaling mechanisms).

Free Page Wait Waiting for a free page in main memory to be added to the collection of
pages in main memory devoted to this process (the working set of the
process).

Hibernate Wait (resident) Process puts itself in a wait state.

Hibernate Wait (outswapped) Hibernating process is swapped out of main memory.

Local Event Wait (resident) Process in main memory and waiting for local event flag (usually I/O
completion).

Local Event Wait (outswapped) Process in local event wait is swapped out of main memory.

Suspended Wait (resident) Process is put into a wait state by another process.

Suspended Wait (outswapped) Suspended process is swapped out of main memory.

Resource Wait Process waiting for miscellaneous system resource.

The four modes are as follows:

¢ Kernel: Executes the kernel of the VMS operating system, which includes memory
management, interrupt handling, and I/O operations

e Executive: Executes many of the OS service calls, including file and record (disk
and tape) management routines

e Supervisor: Executes other OS services, such as responses to user commands

e User: Executes user programs, plus utilities such as compilers, editors, linkers, and
debuggers

A process executing in a less-privileged mode often needs to call a procedure that

executes in a more-privileged mode; for example, a user program requires an operat-

ing system service. This call is achieved by using a change-mode (CHM) instruction,

which causes an interrupt that transfers control to a routine at the new access mode. A

return is made by executing the REI (return from exception or interrupt) instruction.

a. A number of operating systems have two modes, kernel and user. What are the
advantages and disadvantages of providing four modes instead of two?

b. Can you make a case for even more than four modes?

3.8 The VMS scheme discussed in the preceding problem is often referred to as a ring pro-
tection structure, as illustrated in Figure 3.18. Indeed, the simple kernel/user scheme,
as described in Section 3.3, is a two-ring structure. [SILB04] points out a problem with
this approach:

The main disadvantage of the ring (hierarchical) structure is that it does not
allow us to enforce the need-to-know principle. In particular, if an object must

156 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

3.9

3.10

311

3.12

Figure 3.18 VAX/VMS Access Modes

be accessible in domain Dj but not accessible in domain Di, then we must have
j < i.But this means that every segment accessible in Di is also accessible in Dj.

Explain clearly what the problem is that is referred to in the preceding quote.

Figure 3.8b suggests that a process can only be in one event queue at a time.

a. Is it possible that you would want to allow a process to wait on more than one
event at the same time? Provide an example.

b. In that case,how would you modify the queueing structure of the figure to support
this new feature?

In a number of early computers, an interrupt caused the register values to be stored in
fixed locations associated with the given interrupt signal. Under what circumstances
is this a practical technique? Explain why it is inconvenient in general.

In Section 3.4, it was stated that UNIX is unsuitable for real-time applications because
a process executing in kernel mode may not be preempted. Elaborate.

You have executed the following C program:

main ()
{ int pid;
pid = fork ();

printf (“%d \n”, pid);

}

What are the possible outputs, assuming the fork succeeded?

CHAPTER

THREADS

4.1 Processes and Threads
Multithreading
Thread Functionality

4.2 Types of Threads
User-Level and Kernel-Level Threads
Other Arrangements

4.3 Multicore and Multithreading
Performance of Software on Multicore
Application Example: Valve Game Software

4.4 Windows 7 Thread and SMP Management
Process and Thread Objects
Multithreading
Thread States
Support for OS Subsystems
Symmetric Multiprocessing Support

4.5 Solaris Thread and SMP Management
Multithreaded Architecture
Motivation
Process Structure
Thread Execution
Interrupts as Threads

4.6 Linux Process and Thread Management
Linux Tasks
Linux Threads

4.7 Mac OS X Grand Central Dispatch
4.8 Summary
4.9 Recommended Reading

4.10 Key Terms, Review Questions, and Problems

157

158 CHAPTER 4 / THREADS

The basic idea is that the several components in any complex system

will perform particular subfunctions that contribute to the overall
function.

— THE SCIENCES OF THE ARTIFICIAL, HERBERT SIMON

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Understand the distinction between process and thread.

Describe the basic design issues for threads.

Explain the difference between user-level threads and kernel-level threads.
Describe the thread management facility in Windows 7.

Describe the thread management facility in Solaris.

Describe the thread management facility in Linux.

This chapter examines some more advanced concepts related to process manage-
ment, which are found in a number of contemporary operating systems. We show
that the concept of process is more complex and subtle than presented so far and in
fact embodies two separate and potentially independent concepts: one relating to
resource ownership and another relating to execution. This distinction has led to the
development, in many operating systems, of a construct known as the thread.

4.1 PROCESSES AND THREADS

The discussion so far has presented the concept of a process as embodying two
characteristics:

¢ Resource ownership: A process includes a virtual address space to hold the

process image; recall from Chapter 3 that the process image is the collection of
program, data, stack, and attributes defined in the process control block. From
time to time, a process may be allocated control or ownership of resources,
such as main memory, I/O channels, I/O devices, and files. The OS performs a
protection function to prevent unwanted interference between processes with
respect to resources.

Scheduling/execution: The execution of a process follows an execution path
(trace) through one or more programs (e.g., Figure 1.5). This execution may
be interleaved with that of other processes. Thus, a process has an execution
state (Running, Ready, etc.) and a dispatching priority and is the entity that is
scheduled and dispatched by the OS.

Some thought should convince the reader that these two characteristics

are independent and could be treated independently by the OS. This is done in
a number of operating systems, particularly recently developed systems. To

4.1 / PROCESSES AND THREADS 159

distinguish the two characteristics, the unit of dispatching is usually referred to
as a thread or lightweight process, while the unit of resource ownership is usually
referred to as a process or task.!

Multithreading

Multithreading refers to the ability of an OS to support multiple, concurrent paths
of execution within a single process. The traditional approach of a single thread of
execution per process, in which the concept of a thread is not recognized, is referred
to as a single-threaded approach. The two arrangements shown in the left half of
Figure 4.1 are single-threaded approaches. MS-DOS is an example of an OS that
supports a single user process and a single thread. Other operating systems, such
as some variants of UNIX, support multiple user processes but only support one
thread per process. The right half of Figure 4.1 depicts multithreaded approaches.
A Java run-time environment is an example of a system of one process with multi-
ple threads. Of interest in this section is the use of multiple processes, each of which
supports multiple threads. This approach is taken in Windows, Solaris, and many
modern versions of UNIX, among others. In this section we give a general description

One process
One thread

One process
Multiple threads

Multiple processes
One thread per process

Multiple processes
Multiple threads per process

$ = Instruction trace

Figure 4.1 Threads and Processes [ANDE97]

! Alas, even this degree of consistency is not maintained. In IBM’s mainframe operating systems, the con-
cepts of address space and task, respectively, correspond roughly to the concepts of process and thread
that we describe in this section. Also, in the literature, the term lightweight process is used as either (1)
equivalent to the term thread, (2) a particular type of thread known as a kernel-level thread, or (3) in the
case of Solaris, an entity that maps user-level threads to kernel-level threads.

160 CHAPTER 4 / THREADS

of multithreading; the details of the Windows, Solaris, and Linux approaches are
discussed later in this chapter.

In a multithreaded environment, a process is defined as the unit of resource
allocation and a unit of protection. The following are associated with processes:

e A virtual address space that holds the process image

e Protected access to processors, other processes (for interprocess communica-
tion), files, and I/O resources (devices and channels)

Within a process, there may be one or more threads, each with the following:

e A thread execution state (Running, Ready, etc.)

¢ A saved thread context when not running; one way to view a thread is as an
independent program counter operating within a process

e An execution stack
e Some per-thread static storage for local variables

* Access to the memory and resources of its process, shared with all other
threads in that process

Figure 4.2 illustrates the distinction between threads and processes from the
point of view of process management. In a single-threaded process model (i.e.,
there is no distinct concept of thread), the representation of a process includes its
process control block and user address space, as well as user and kernel stacks to
manage the call/return behavior of the execution of the process. While the process
is running, it controls the processor registers. The contents of these registers are
saved when the process is not running. In a multithreaded environment, there is
still a single process control block and user address space associated with the proc-
ess, but now there are separate stacks for each thread, as well as a separate control

Single-threaded Multithreaded
process model process model
Thread Thiead Thread
: Thread : : Thread : : Thread :
Process User 1| control |1 || control |I | control |i
control stack | block | 1] block || 1| block |!
block l o L I
| [[|
I [[!
Process Il User : Il User : Il User :
User Kernel control : stack |1 : stack |1 : stack |1
address stack | - - |
- block : : : : : :
| [[|
I [[!
User 1| Kernel : 1| Kernel : I| Kernel :
address : stack || : stack || : stack ||
space : : : : : :
L=———=——= 1 L===== 1 === il

Figure 4.2 Single-Threaded and Multithreaded Process Models

4.1 / PROCESSES AND THREADS 161

block for each thread containing register values, priority, and other thread-related
state information.

Thus, all of the threads of a process share the state and resources of that
process. They reside in the same address space and have access to the same data.
When one thread alters an item of data in memory, other threads see the results if
and when they access that item. If one thread opens a file with read privileges, other
threads in the same process can also read from that file.

The key benefits of threads derive from the performance implications:

1. It takes far less time to create a new thread in an existing process than to
create a brand-new process. Studies done by the Mach developers show that
thread creation is ten times faster than process creation in UNIX [TEVAS87].

2. It takes less time to terminate a thread than a process.

3. It takes less time to switch between two threads within the same process than
to switch between processes.

4. Threads enhance efficiency in communication between different executing
programs. In most operating systems, communication between independent
processes requires the intervention of the kernel to provide protection and the
mechanisms needed for communication. However, because threads within the
same process share memory and files, they can communicate with each other
without invoking the kernel.

Thus, if there is an application or function that should be implemented as a
set of related units of execution, it is far more efficient to do so as a collection of
threads rather than a collection of separate processes.

An example of an application that could make use of threads is a file server.
As each new file request comes in, a new thread can be spawned for the file manage-
ment program. Because a server will handle many requests, many threads will be
created and destroyed in a short period. If the server runs on a multiprocessor com-
puter, then multiple threads within the same process can be executing simultaneously
on different processors. Further, because processes or threads in a file server must
share file data and therefore coordinate their actions, it is faster to use threads and
shared memory than processes and message passing for this coordination.

The thread construct is also useful on a single processor to simplify the structure
of a program that is logically doing several different functions.

[LETWSS] gives four examples of the uses of threads in a single-user multi-
processing system:

* Foreground and background work: For example, in a spreadsheet program,
one thread could display menus and read user input, while another thread
executes user commands and updates the spreadsheet. This arrangement often
increases the perceived speed of the application by allowing the program to
prompt for the next command before the previous command is complete.

e Asynchronous processing: Asynchronous elements in the program can be
implemented as threads. For example, as a protection against power failure,
one can design a word processor to write its random access memory (RAM)
buffer to disk once every minute. A thread can be created whose sole job is

162 CHAPTER 4 / THREADS

periodic backup and that schedules itself directly with the OS; there is no need
for fancy code in the main program to provide for time checks or to coordinate
input and output.

e Speed of execution: A multithreaded process can compute one batch of data
while reading the next batch from a device. On a multiprocessor system, mul-
tiple threads from the same process may be able to execute simultaneously.
Thus, even though one thread may be blocked for an I/O operation to read in
a batch of data, another thread may be executing.

* Modular program structure: Programs that involve a variety of activities or a
variety of sources and destinations of input and output may be easier to design
and implement using threads.

In an OS that supports threads, scheduling and dispatching is done on a thread
basis; hence, most of the state information dealing with execution is maintained in
thread-level data structures. There are, however, several actions that affect all of the
threads in a process and that the OS must manage at the process level. For example,
suspension involves swapping the address space of one process out of main memory
to make room for the address space of another process. Because all threads in a
process share the same address space, all threads are suspended at the same time.
Similarly, termination of a process terminates all threads within that process.

Thread Functionality

Like processes, threads have execution states and may synchronize with one
another. We look at these two aspects of thread functionality in turn.

THREAD STATES As with processes, the key states for a thread are Running, Ready,
and Blocked. Generally, it does not make sense to associate suspend states with
threads because such states are process-level concepts. In particular, if a process is
swapped out, all of its threads are necessarily swapped out because they all share
the address space of the process.

There are four basic thread operations associated with a change in thread
state [ANDEO04]:

e Spawn: Typically, when a new process is spawned, a thread for that process
is also spawned. Subsequently, a thread within a process may spawn another
thread within the same process, providing an instruction pointer and argu-
ments for the new thread. The new thread is provided with its own register
context and stack space and placed on the ready queue.

e Block: When a thread needs to wait for an event, it will block (saving its user
registers, program counter, and stack pointers). The processor may now
turn to the execution of another ready thread in the same or a different
process.

e Unblock: When the event for which a thread is blocked occurs, the thread is
moved to the Ready queue.

e Finish: When a thread completes, its register context and stacks are
deallocated.

4.1 / PROCESSES AND THREADS 163

A significant issue is whether the blocking of a thread results in the blocking
of the entire process. In other words, if one thread in a process is blocked, does
this prevent the running of any other thread in the same process even if that other
thread is in a ready state? Clearly, some of the flexibility and power of threads is lost
if the one blocked thread blocks an entire process.

We return to this issue subsequently in our discussion of user-level versus
kernel-level threads, but for now let us consider the performance benefits of threads
that do not block an entire process. Figure 4.3 (based on one in [KLEI96]) shows a
program that performs two remote procedure calls (RPCs)? to two different hosts
to obtain a combined result. In a single-threaded program, the results are obtained
in sequence, so the program has to wait for a response from each server in turn.
Rewriting the program to use a separate thread for each RPC results in a substantial
speedup. Note that if this program operates on a uniprocessor, the requests must be
generated sequentially and the results processed in sequence; however, the program
waits concurrently for the two replies.

Time ——>

RPC RPC
request request
Process 1 | PRI RN]

(a) RPC using single thread

RPC

request

Thread A (Process 1) | ||]

Thread B (Process 1) []

RPC

request

(b) RPC using one thread per server (on a uniprocessor)

X Blocked, waiting for response to RPC
1 Blocked, waiting for processor, which is in use by Thread B

1 Running
Figure 4.3 Remote Procedure Call (RPC) Using Threads

2An RPC is a technique by which two programs, which may execute on different machines, interact using
procedure call/return syntax and semantics. Both the called and calling program behave as if the partner
program were running on the same machine. RPCs are often used for client/server applications and are
discussed in Chapter 16.

164 CHAPTER 4 / THREADS

Time

1/0 Request Time quantum
request complete expires

Thread A (Process 1) | I]

Thread B (Process 1) | I I]

/S

Thread C (Process 2) Tim:x‘;?fe?um /I I I
Process
created
1 Blocked [___1Ready 1 Running

Figure 4.4 Multithreading Example on a Uniprocessor

On a uniprocessor, multiprogramming enables the interleaving of multiple
threads within multiple processes. In the example of Figure 4.4, three threads in
two processes are interleaved on the processor. Execution passes from one thread
to another either when the currently running thread is blocked or when its time slice
is exhausted.’

THREAD SYNCHRONIZATION All of the threads of a process share the same address
space and other resources, such as open files. Any alteration of a resource by
one thread affects the environment of the other threads in the same process. It is
therefore necessary to synchronize the activities of the various threads so that they
do not interfere with each other or corrupt data structures. For example, if two
threads each try to add an element to a doubly linked list at the same time, one
element may be lost or the list may end up malformed.

The issues raised and the techniques used in the synchronization of threads
are, in general, the same as for the synchronization of processes. These issues and
techniques are the subject of Chapters 5 and 6.

4.2 TYPES OF THREADS

User-Level and Kernel-Level Threads

There are two broad categories of thread implementation: user-level threads
(ULTs) and kernel-level threads (KLTs).* The latter are also referred to in the lit-
erature as kernel-supported threads or lightweight processes.

USER-LEVEL THREADS 1In a pure ULT facility, all of the work of thread
management is done by the application and the kernel is not aware of the existence
of threads. Figure 4.5a illustrates the pure ULT approach. Any application can be

3In this example, thread C begins to run after thread A exhausts its time quantum, even though thread B
is also ready to run. The choice between B and C is a scheduling decision, a topic covered in Part Four.
“The acronyms ULT and KLT are not widely used but are introduced for conciseness.

4.2 / TYPES OF THREADS 165

R ﬁ ‘ﬁ SR

\ |/

L ~~

Threads User User Threads User
library space Space library space
Kernel Kernel Kernel

space space space

O O O © O©

®
o D ®
(a) Pure user-level (b) Pure kernel-level (c) Combined

g User-level thread @ Kernel-level thread @ Process

Figure 4.5 User-Level and Kernel-Level Threads

programmed to be multithreaded by using a threads library, which is a package of
routines for ULT management. The threads library contains code for creating and
destroying threads, for passing messages and data between threads, for scheduling
thread execution, and for saving and restoring thread contexts.

By default, an application begins with a single thread and begins running in
that thread. This application and its thread are allocated to a single process man-
aged by the kernel. At any time that the application is running (the process is in
the Running state), the application may spawn a new thread to run within the
same process. Spawning is done by invoking the spawn utility in the threads library.
Control is passed to that utility by a procedure call. The threads library creates a
data structure for the new thread and then passes control to one of the threads
within this process that is in the Ready state, using some scheduling algorithm.
When control is passed to the library, the context of the current thread is saved,
and when control is passed from the library to a thread, the context of that thread
is restored. The context essentially consists of the contents of user registers, the
program counter, and stack pointers.

All of the activity described in the preceding paragraph takes place in user
space and within a single process. The kernel is unaware of this activity. The kernel
continues to schedule the process as a unit and assigns a single execution state
(Ready, Running, Blocked, etc.) to that process. The following examples should
clarify the relationship between thread scheduling and process scheduling. Suppose
that process B is executing in its thread 2; the states of the process and two ULTs
that are part of the process are shown in Figure 4.6a. Each of the following is a
possible occurrence:

1. The application executing in thread 2 makes a system call that blocks B. For
example, an I/O call is made. This causes control to transfer to the kernel. The
kernel invokes the I/0 action, places process B in the Blocked state, and switches
to another process. Meanwhile, according to the data structure maintained by

991

(a)

—

Thread 2

(Reaty T
Blocked

Thread 1

Blocked
Process B

(Reaty TX
Blocked

(b)
Thread 1

(Reaty T
Blocked

Process B

(Reasy TX

Thread 2

(Reaty T
Blocked

Blocked

(c)

—

Thread 2

(Reaty T
Blocked

Thread 1

Blocked
Process B

(Reasy T
Blocked

(d)
Thread 1

(Reaty T
Blocked

Process B

(Reaty X

Thread 2

(Reaty T
Blocked

Blocked

Figure 4.6 Examples of the Relationships between User-Level Thread States and Process States

4.2 / TYPES OF THREADS 167

the threads library, thread 2 of process B is still in the Running state. It is impor-
tant to note that thread 2 is not actually running in the sense of being executed
on a processor; but it is perceived as being in the Running state by the threads
library. The corresponding state diagrams are shown in Figure 4.6b.

A clock interrupt passes control to the kernel, and the kernel determines
that the currently running process (B) has exhausted its time slice. The
kernel places process B in the Ready state and switches to another process.
Meanwhile, according to the data structure maintained by the threads library,
thread 2 of process B is still in the Running state. The corresponding state
diagrams are shown in Figure 4.6c.

Thread 2 has reached a point where it needs some action performed by thread
1 of process B. Thread 2 enters a Blocked state and thread 1 transitions from
Ready to Running. The process itself remains in the Running state. The
corresponding state diagrams are shown in Figure 4.6d.

In cases 1 and 2 (Figures 4.6b and 4.6c), when the kernel switches control

back to process B, execution resumes in thread 2. Also note that a process can be
interrupted, either by exhausting its time slice or by being preempted by a higher-
priority process, while it is executing code in the threads library. Thus, a process
may be in the midst of a thread switch from one thread to another when inter-
rupted. When that process is resumed, execution continues within the threads
library, which completes the thread switch and transfers control to another thread
within that process.

There are a number of advantages to the use of ULTs instead of KLTs,

including the following:

1.

Thread switching does not require kernel mode privileges because all of the
thread management data structures are within the user address space of a
single process. Therefore, the process does not switch to the kernel mode to
do thread management. This saves the overhead of two mode switches (user
to kernel; kernel back to user).

Scheduling can be application specific. One application may benefit most
from a simple round-robin scheduling algorithm, while another might benefit
from a priority-based scheduling algorithm. The scheduling algorithm can be
tailored to the application without disturbing the underlying OS scheduler.

ULTs can run on any OS. No changes are required to the underlying kernel
to support ULTs. The threads library is a set of application-level functions
shared by all applications.

There are two distinct disadvantages of ULTs compared to KLTs:

In a typical OS, many system calls are blocking. As a result, when a ULT
executes a system call, not only is that thread blocked, but also all of the
threads within the process are blocked.

In a pure ULT strategy, a multithreaded application cannot take advantage
of multiprocessing. A kernel assigns one process to only one processor at a
time. Therefore, only a single thread within a process can execute at a time.
In effect, we have application-level multiprogramming within a single process.

168 CHAPTER 4 / THREADS

While this multiprogramming can result in a significant speedup of the appli-
cation, there are applications that would benefit from the ability to execute
portions of code simultaneously.

There are ways to work around these two problems. For example, both prob-
lems can be overcome by writing an application as multiple processes rather than
multiple threads. But this approach eliminates the main advantage of threads: Each
switch becomes a process switch rather than a thread switch, resulting in much
greater overhead.

Another way to overcome the problem of blocking threads is to use a tech-
nique referred to as jacketing. The purpose of jacketing is to convert a blocking
system call into a nonblocking system call. For example, instead of directly calling
a system I/O routine, a thread calls an application-level I/O jacket routine. Within
this jacket routine is code that checks to determine if the I/O device is busy. If it is,
the thread enters the Blocked state and passes control (through the threads library)
to another thread. When this thread later is given control again, the jacket routine
checks the I/O device again.

KERNEL-LEVEL THREADS In a pure KLT facility, all of the work of thread
management is done by the kernel. There is no thread management code in the
application level, simply an application programming interface (API) to the kernel
thread facility. Windows is an example of this approach.

Figure 4.5b depicts the pure KLT approach. The kernel maintains context
information for the process as a whole and for individual threads within the process.
Scheduling by the kernel is done on a thread basis. This approach overcomes the
two principal drawbacks of the ULT approach. First, the kernel can simultaneously
schedule multiple threads from the same process on multiple processors. Second,
if one thread in a process is blocked, the kernel can schedule another thread of
the same process. Another advantage of the KLT approach is that kernel routines
themselves can be multithreaded.

The principal disadvantage of the KLT approach compared to the ULT
approach is that the transfer of control from one thread to another within the same
process requires a mode switch to the kernel. To illustrate the differences, Table 4.1
shows the results of measurements taken on a uniprocessor VAX computer running
a UNIX-like OS. The two benchmarks are as follows: Null Fork, the time to create,
schedule, execute, and complete a process/thread that invokes the null procedure
(i.e., the overhead of forking a process/thread); and Signal-Wait, the time for a
process/thread to signal a waiting process/thread and then wait on a condition (i.e.,
the overhead of synchronizing two processes/threads together). We see that there is
an order of magnitude or more of difference between ULTs and KLTs and similarly
between KLTs and processes.

Table 4.1 Thread and Process Operation Latencies (us)

Operation User-Level Threads Kernel-Level Threads Processes

Null Fork

34

948

11,300

Signal Wait

37

441

1,840

4.2 / TYPES OF THREADS 169

Thus, on the face of it, while there is a significant speedup by using KLT mul-
tithreading compared to single-threaded processes, there is an additional signifi-
cant speedup by using ULTs. However, whether or not the additional speedup is
realized depends on the nature of the applications involved. If most of the thread
switches in an application require kernel mode access, then a ULT-based scheme
may not perform much better than a KLT-based scheme.

COMBINED APPROACHES Some operating systems provide a combined ULT/
KLT facility (Figure 4.5c). In a combined system, thread creation is done
completely in user space, as is the bulk of the scheduling and synchronization of
threads within an application. The multiple ULTs from a single application are
mapped onto some (smaller or equal) number of KLTs. The programmer may
adjust the number of KLTs for a particular application and processor to achieve
the best overall results.

In a combined approach, multiple threads within the same application can
run in parallel on multiple processors, and a blocking system call need not block
the entire process. If properly designed, this approach should combine the advan-
tages of the pure ULT and KLT approaches while minimizing the disadvantages.

Solaris is a good example of an OS using this combined approach. The current
Solaris version limits the ULT/KLT relationship to be one-to-one.

Other Arrangements

As we have said, the concepts of resource allocation and dispatching unit have
traditionally been embodied in the single concept of the process—thatis,asal:1
relationship between threads and processes. Recently, there has been much inter-
est in providing for multiple threads within a single process, which is a many-to-
one relationship. However, as Table 4.2 shows, the other two combinations have
also been investigated, namely, a many-to-many relationship and a one-to-many
relationship.

MANY-1O-MANY RELATIONSHIP The idea of having a many-to-many relationship

between threads and processes has been explored in the experimental operating
system TRIX [PAZZ92, WARDSO]. In TRIX, there are the concepts of domain

Table 4.2 Relationship between Threads and Processes

Threads: Processes Description Example Systems
1:1 Each thread of execution is a unique process with its Traditional UNIX

own address space and resources. implementations

M:1 A process defines an address space and dynamic Windows NT, Solaris,
resource ownership. Multiple threads may be created Linux, OS/2, OS/390,
and executed within that process. MACH

1:M A thread may migrate from one process environment Ra (Clouds),
to another. This allows a thread to be easily moved Emerald
among distinct systems.

M:N Combines attributes of M:1 and 1:M cases. TRIX

170 CHAPTER 4 / THREADS

and thread. A domain is a static entity, consisting of an address space and “ports”
through which messages may be sent and received. A thread is a single execution
path, with an execution stack, processor state, and scheduling information.

As with the multithreading approaches discussed so far, multiple threads
may execute in a single domain, providing the efficiency gains discussed earlier.
However, it is also possible for a single user activity, or application, to be per-
formed in multiple domains. In this case, a thread exists that can move from one
domain to another.

The use of a single thread in multiple domains seems primarily motivated by
a desire to provide structuring tools for the programmer. For example, consider a
program that makes use of an I/O subprogram. In a multiprogramming environ-
ment that allows user-spawned processes, the main program could generate a new
process to handle I/O and then continue to execute. However, if the future progress
of the main program depends on the outcome of the I/O operation, then the main
program will have to wait for the other I/O program to finish. There are several
ways to implement this application:

1. The entire program can be implemented as a single process. This is a rea-
sonable and straightforward solution. There are drawbacks related to
memory management. The process as a whole may require considerable
main memory to execute efficiently, whereas the I/O subprogram requires
a relatively small address space to buffer I/O and to handle the relatively
small amount of program code. Because the I/O program executes in the
address space of the larger program, either the entire process must remain
in main memory during the I/O operation or the I/O operation is subject
to swapping. This memory management effect would also exist if the main
program and the I/O subprogram were implemented as two threads in the
same address space.

2. The main program and I/O subprogram can be implemented as two separate
processes. This incurs the overhead of creating the subordinate process. If the
I/O activity is frequent, one must either leave the subordinate process alive,
which consumes management resources, or frequently create and destroy the
subprogram, which is inefficient.

3. Treat the main program and the I/O subprogram as a single activity that is to
be implemented as a single thread. However, one address space (domain)
could be created for the main program and one for the I/O subprogram.
Thus, the thread can be moved between the two address spaces as execu-
tion proceeds. The OS can manage the two address spaces independently,
and no process creation overhead is incurred. Furthermore, the address
space used by the I/O subprogram could also be shared by other simple I/O
programs.

The experiences of the TRIX developers indicate that the third option has
merit and may be the most effective solution for some applications.

ONE-T1O-MANY RELATIONSHIP In the field of distributed operating systems
(designed to control distributed computer systems), there has been interest in the

4.3 / MULTICORE AND MULTITHREADING 171

concept of a thread as primarily an entity that can move among address spaces.5 A
notable example of this research is the Clouds operating system, and especially its
kernel, known as Ra [DASG92]. Another example is the Emerald system [STEE95].

A thread in Clouds is a unit of activity from the user’s perspective. A process
is a virtual address space with an associated process control block. Upon creation,
a thread starts executing in a process by invoking an entry point to a program in
that process. Threads may move from one address space to another and actually
span computer boundaries (i.e., move from one computer to another). As a thread
moves, it must carry with it certain information, such as the controlling terminal,
global parameters, and scheduling guidance (e.g., priority).

The Clouds approach provides an effective way of insulating both users and
programmers from the details of the distributed environment. A user’s activity may
be represented as a single thread, and the movement of that thread among comput-
ers may be dictated by the OS for a variety of system-related reasons, such as the
need to access a remote resource, and load balancing.

4.3 MULTICORE AND MULTITHREADING

The use of a multicore system to support a single application with multiple threads,
such as might occur on a workstation, a video-game console, or a personal computer
running a processor-intense application, raises issues of performance and applica-
tion design. In this section, we first look at some of the performance implications
of a multithreaded application on a multicore system and then describe a specific
example of an application designed to exploit multicore capabilities.

Performance of Software on Multicore

The potential performance benefits of a multicore organization depend on the
ability to effectively exploit the parallel resources available to the application. Let
us focus first on a single application running on a multicore system. Amdahl’s law
(see Appendix E) states that:

time to execute program on a single processor 1
Speedup = 7

1-=7+ N

The law assumes a program in which a fraction (1 — f) of the execution time
involves code that is inherently serial and a fraction f that involves code that is infi-
nitely parallelizable with no scheduling overhead.

This law appears to make the prospect of a multicore organization attractive.
But as Figure 4.7a shows, even a small amount of serial code has a noticeable impact.
If only 10% of the code is inherently serial (f = 0.9), running the program on a
multicore system with eight processors yields a performance gain of only a factor
of 4.7. In addition, software typically incurs overhead as a result of communication

time to execute program on N parallel processors

>The movement of processes or threads among address spaces, or thread migration, on different machines
has become a hot topic in recent years. Chapter 18 explores this topic.

172 CHAPTER 4 / THREADS

0%
8
/ b
6 5%
=9
=
3
3 10%
e 4
£
o}
~
2
0 —L | | | | | | |
1 2 3 4 5 6 7 8
Number of processors
(a) Speedup with 0%, 2%, 5%, and 10% sequential portions
2.5

) /\5%

/\ 10%
15%
/\ 20%
15

Relative speedup
=

0.5

0 —L I I I I I I I
1 2 3 4 5 6 7 8

Number of processors

(b) Speedup with overheads
Figure 4.7 Performance Effect of Multiple Cores

and distribution of work to multiple processors and cache coherence overhead. This
results in a curve where performance peaks and then begins to degrade because
of the increased burden of the overhead of using multiple processors. Figure 4.7b,
from [MCDOO07], is a representative example.

However, software engineers have been addressing this problem and there are
numerous applications in which it is possible to effectively exploit a multicore sys-
tem. [MCDOO7] reports on a set of database applications, in which great attention

4.3 / MULTICORE AND MULTITHREADING 173

64
+'® Oracle DSS 4-way join
,*/® TMC data mining
'//;/. DB2 DSS scan & aggs
’
4 /)' Oracle ad hoc insurance OLTP
48
o0
5
T 32
1973
16
O 1 1 1 1 1 1

0 16 32 48 64
Number of CPUs
Figure 4.8 Scaling of Database Workloads on Multiple-Processor Hardware

was paid to reducing the serial fraction within hardware architectures, operating
systems, middleware, and the database application software. Figure 4.8 shows the
result. As this example shows, database management systems and database applica-
tions are one area in which multicore systems can be used effectively. Many kinds of
servers can also effectively use the parallel multicore organization, because servers
typically handle numerous relatively independent transactions in parallel.

In addition to general-purpose server software, a number of classes of applica-
tions benefit directly from the ability to scale throughput with the number of cores.
[MCDOO06] lists the following examples:

* Multithreaded native applications: Multithreaded applications are charac-
terized by having a small number of highly threaded processes. Examples
of threaded applications include Lotus Domino or Siebel CRM (Customer
Relationship Manager).

e Multiprocess applications: Multiprocess applications are characterized by
the presence of many single-threaded processes. Examples of multiprocess
applications include the Oracle database, SAP, and PeopleSoft.

e Java applications: Java applications embrace threading in a fundamental way.
Not only does the Java language greatly facilitate multithreaded applications,
but the Java Virtual Machine is a multithreaded process that provides sched-
uling and memory management for Java applications. Java applications that
can benefit directly from multicore resources include application servers such
as Sun’s Java Application Server, BEA’s Weblogic, IBM’s Websphere, and
the open-source Tomcat application server. All applications that use a Java 2
Platform, Enterprise Edition (J2EE platform) application server can immedi-
ately benefit from multicore technology.

174 CHAPTER 4 / THREADS

e Multiinstance applications: Even if an individual application does not scale
to take advantage of a large number of threads, it is still possible to gain from
multicore architecture by running multiple instances of the application in
parallel. If multiple application instances require some degree of isolation,
virtualization technology (for the hardware of the operating system) can be
used to provide each of them with its own separate and secure environment.

Application Example: Valve Game Software

Valve is an entertainment and technology company that has developed a number
of popular games, as well as the Source engine, one of the most widely played game
engines available. Source is an animation engine used by Valve for its games and
licensed for other game developers.

In recent years, Valve has reprogrammed the Source engine software to use
multithreading to exploit the power of multicore processor chips from Intel and
AMD [REIMO6]. The revised Source engine code provides more powerful support
for Valve games such as Half Life 2.

From Valve’s perspective, threading granularity options are defined as follows
[HARROG]:

¢ Coarse threading: Individual modules, called systems, are assigned to individ-
ual processors. In the Source engine case, this would mean putting rendering
on one processor, Al (artificial intelligence) on another, physics on another,
and so on. This is straightforward. In essence, each major module is single
threaded and the principal coordination involves synchronizing all the threads
with a timeline thread.

* Fine-grained threading: Many similar or identical tasks are spread across mul-
tiple processors. For example, a loop that iterates over an array of data can be
split up into a number of smaller parallel loops in individual threads that can
be scheduled in parallel.

e Hybrid threading: This involves the selective use of fine-grained threading for
some systems and single threading for other systems.

Valve found that through coarse threading, it could achieve up to twice the
performance across two processors compared to executing on a single processor.
But this performance gain could only be achieved with contrived cases. For real-
world gameplay, the improvement was on the order of a factor of 1.2. Valve also
found that effective use of fine-grained threading was difficult. The time per work
unit can be variable, and managing the timeline of outcomes and consequences
involved complex programming.

Valve found that a hybrid threading approach was the most promising and
would scale the best, as multicore systems with 8 or 16 processors became available.
Valve identified systems that operate very effectively being permanently assigned
to a single processor. An example is sound mixing, which has little user interaction,
is not constrained by the frame configuration of windows, and works on its own set
of data. Other modules, such as scene rendering, can be organized into a number
of threads so that the module can execute on a single processor but achieve greater
performance as it is spread out over more and more processors.

4.3 / MULTICORE AND MULTITHREADING 175

(Render)
I
I I

(Skybox) (Mainlview) (Monitor) (Etc.)

(Scene list)
I—(For each object)

—(Particles)

Sim and draw)

—(Character)

Bone setup)

Draw

—

L e)

Figure 4.9 Hybrid Threading for Rendering Module

Figure 4.9 illustrates the thread structure for the rendering module. In this hier-
archical structure, higher-level threads spawn lower-level threads as needed. The
rendering module relies on a critical part of the Source engine, the world list, which
is a database representation of the visual elements in the game’s world. The first task
is to determine what are the areas of the world that need to be rendered. The next
task is to determine what objects are in the scene as viewed from multiple angles.
Then comes the processor-intensive work. The rendering module has to work out
the rendering of each object from multiple points of view, such as the player’s view,
the view of TV monitors, and the point of view of reflections in water.

Some of the key elements of the threading strategy for the rendering module
are listed in [LEONO07] and include the following:

e Construct scene-rendering lists for multiple scenes in parallel (e.g., the world
and its reflection in water).
e Overlap graphics simulation.

e Compute character bone transformations for all characters in all scenes in
parallel.

e Allow multiple threads to draw in parallel.

The designers found that simply locking key databases, such as the world list, for
a thread was too inefficient. Over 95% of the time, a thread is trying to read from a data
set, and only 5% of the time at most is spent in writing to a data set. Thus, a concurrency
mechanism known as the single-writer-multiple-readers model works effectively.

176 CHAPTER 4 / THREADS

4.4 WINDOWS 7 THREAD AND SMP MANAGEMENT

Windows process design is driven by the need to provide support for a variety of OS
environments. Processes supported by different OS environments differ in a number
of ways, including the following:

* How processes are named

Whether threads are provided within processes

e How processes are represented

e How process resources are protected

e What mechanisms are used for interprocess communication and synchronization
e How processes are related to each other

Accordingly, the native process structures and services provided by the
Windows Kernel are relatively simple and general purpose, allowing each OS
subsystem to emulate a particular process structure and functionality. Important
characteristics of Windows processes are the following:

e Windows processes are implemented as objects.

e A process can be created as new process, or as a copy of an existing process.
* An executable process may contain one or more threads.

e Both process and thread objects have built-in synchronization capabilities.

Figure 4.10, based on one in [RUSS11], illustrates the way in which a process
relates to the resources it controls or uses. Each process is assigned a security access

Access
token
Virtual address descriptors
Process
object >
Available
Handle table objects
T T
Handlel : : —
[
Handle2 : : —
1
Handle3 : : —

Figure 4.10 A Windows Process and Its Resources

4.4 / WINDOWS 7 THREAD AND SMP MANAGEMENT 177

token, called the primary token of the process. When a user first logs on, Windows
creates an access token that includes the security ID for the user. Every process that
is created by or runs on behalf of this user has a copy of this access token. Windows
uses the token to validate the user’s ability to access secured objects or to perform
restricted functions on the system and on secured objects. The access token controls
whether the process can change its own attributes. In this case, the process does not
have a handle opened to its access token. If the process attempts to open such a han-
dle, the security system determines whether this is permitted and therefore whether
the process may change its own attributes.

Also related to the process is a series of blocks that define the virtual address
space currently assigned to this process. The process cannot directly modify these
structures but must rely on the virtual memory manager, which provides a memory-
allocation service for the process.

Finally, the process includes an object table, with handles to other objects
known to this process. Figure 4.10 shows a single thread. In addition, the process
has access to a file object and to a section object that defines a section of shared
memory.

Process and Thread Objects

The object-oriented structure of Windows facilitates the development of a gen-
eral-purpose process facility. Windows makes use of two types of process-related
objects: processes and threads. A process is an entity corresponding to a user job
or application that owns resources, such as memory and open files. A thread is a
dispatchable unit of work that executes sequentially and is interruptible, so that the
processor can turn to another thread.

Each Windows process is represented by an object whose general structure
is shown in Figure 4.11a. Each process is defined by a number of attributes and
encapsulates a number of actions, or services, that it may perform. A process will
perform a service when called upon through a set of published interface methods.
When Windows creates a new process, it uses the object class, or type, defined for
the Windows process as a template to generate a new object instance. At the time of
creation, attribute values are assigned. Table 4.3 gives a brief definition of each of
the object attributes for a process object.

A Windows process must contain at least one thread to execute. That thread
may then create other threads. In a multiprocessor system, multiple threads from
the same process may execute in parallel. Figure 4.11b depicts the object structure
for a thread object, and Table 4.4 defines the thread object attributes. Note that
some of the attributes of a thread resemble those of a process. In those cases, the
thread attribute value is derived from the process attribute value. For example,
the thread processor affinity is the set of processors in a multiprocessor system
that may execute this thread; this set is equal to or a subset of the process processor
affinity.

Note that one of the attributes of a thread object is context, which contains the
values of the processor registers when the thread last ran. This information enables
threads to be suspended and resumed. Furthermore, it is possible to alter the behav-
ior of a thread by altering its context while it is suspended.

178 CHAPTER 4 / THREADS

s
Object type Process Object type Thread
Process ID Thread ID
Security descriptor Thread context
Base priority Dynamic priority
) Default processor affinity) Base priority
Object body Quota limits Object body Thread processor affinity
attributes Execution time attributes Thread execution time
1/O counters Alert status
VM operation counters Suspension count
Exception/debugging ports Impersonation token
Exit status Termination port
Thread exit status
Create process
Open process Create thread
Services Query process information Open thread
Set process information Query thread information
Current process Set thread information
Terminate process Services Current thread
S) Terminate thread
Get context
(a) Process object Set context
Suspend
Resume
Alert thread
Test thread alert
Register termination port
- /
(b) Thread object

Figure 411 Windows Process and Thread Objects

Table 4.3 Windows Process Object Attributes

Process ID

A unique value that identifies the process to the operating system.

Security descriptor

Describes who created an object, who can gain access to or use the object, and
who is denied access to the object.

Base priority

A baseline execution priority for the process’s threads.

Default processor affinity

The default set of processors on which the process’s threads can run.

Quota limits

The maximum amount of paged and nonpaged system memory, paging file
space, and processor time a user’s processes can use.

Execution time

The total amount of time all threads in the process have executed.

I/O counters

Variables that record the number and type of I/O operations that the process’s
threads have performed.

'VM operation counters

Variables that record the number and types of virtual memory operations that
the process’s threads have performed.

Exception/debugging ports

Interprocess communication channels to which the process manager sends a
message when one of the process’s threads causes an exception. Normally,
these are connected to environment subsystem and debugger processes,
respectively.

Exit status

The reason for a process’s termination.

4.4 / WINDOWS 7 THREAD AND SMP MANAGEMENT 179

Table 4.4 Windows Thread Object Attributes

Thread ID

A unique value that identifies a thread when it calls a server.

Thread context

The set of register values and other volatile data that defines the execution state
of a thread.

Dynamic priority

The thread’s execution priority at any given moment.

Base priority

The lower limit of the thread’s dynamic priority.

Thread processor affinity

The set of processors on which the thread can run, which is a subset or all of the
processor affinity of the thread’s process.

Thread execution time

The cumulative amount of time a thread has executed in user mode and in
kernel mode.

Alert status

A flag that indicates whether a waiting thread may execute an asynchronous
procedure call.

Suspension count

The number of times the thread’s execution has been suspended without being
resumed.

Impersonation token

A temporary access token allowing a thread to perform operations on behalf of
another process (used by subsystems).

Termination port

An interprocess communication channel to which the process manager sends a
message when the thread terminates (used by subsystems).

Thread exit status

The reason for a thread’s termination.

Multithreading

Windows supports concurrency among processes because threads in different
processes may execute concurrently (appear to run at the same time). Moreover, mul-
tiple threads within the same process may be allocated to separate processors and
execute simultaneously (actually run at the same time). A multithreaded process
achieves concurrency without the overhead of using multiple processes. Threads
within the same process can exchange information through their common address
space and have access to the shared resources of the process. Threads in different
processes can exchange information through shared memory that has been set up
between the two processes.

An object-oriented multithreaded process is an efficient means of implementing
a server application. For example, one server process can service a number of clients

concurrently.

Thread States

An existing Windows thread is in one of six states (Figure 4.12):

e Ready: A ready thread may be scheduled for execution. The Kernel dispatcher
keeps track of all ready threads and schedules them in priority order.

e Standby: A standby thread has been selected to run next on a particular proc-
essor. The thread waits in this state until that processor is made available.
If the standby thread’s priority is high enough, the running thread on that

180 CHAPTER 4 / THREADS

Runnable
Pick to

Switch

Preempted

Unblock/resume
Resource available

Resource
available

Terminate

Unblock
Resource not available

Not runnable

Figure 412 Windows Thread States

processor may be preempted in favor of the standby thread. Otherwise, the
standby thread waits until the running thread blocks or exhausts its time slice.

* Running: Once the Kernel dispatcher performs a thread switch, the standby
thread enters the Running state and begins execution and continues execution
until it is preempted by a higher-priority thread, exhausts its time slice, blocks,
or terminates. In the first two cases, it goes back to the Ready state.

e Waiting: A thread enters the Waiting state when (1) it is blocked on an event
(e.g., I/O), (2) it voluntarily waits for synchronization purposes, or (3) an
environment subsystem directs the thread to suspend itself. When the waiting
condition is satisfied, the thread moves to the Ready state if all of its resources
are available.

e Transition: A thread enters this state after waiting if it is ready to run but the
resources are not available. For example, the thread’s stack may be paged
out of memory. When the resources are available, the thread goes to the
Ready state.

e Terminated: A thread can be terminated by itself, by another thread, or when
its parent process terminates. Once housekeeping chores are completed, the
thread is removed from the system, or it may be retained by the Executive® for
future reinitialization.

The Windows Executive is described in Chapter 2. It contains the base operating system services, such as
memory management, process and thread management, security, I/O, and interprocess communication.

4.4 / WINDOWS 7 THREAD AND SMP MANAGEMENT 181

Support for OS Subsystems

The general-purpose process and thread facility must support the particular process
and thread structures of the various OS environments. It is the responsibility of
each OS subsystem to exploit the Windows process and thread features to emulate
the process and thread facilities of its corresponding OS. This area of process/thread
management is complicated, and we give only a brief overview here.

Process creation begins with a request for a new process from an application.
The application issues a create-process request to the corresponding protected
subsystem, which passes the request to the Executive. The Executive creates a proc-
ess object and returns a handle for that object to the subsystem. When Windows
creates a process, it does not automatically create a thread. In the case of Win32, a
new process must always be created with an initial thread. Therefore, for the Win32
subsystem calls the Windows process manager again to create a thread for the new
process, receiving a thread handle back from Windows. The appropriate thread and
process information are then returned to the application. In the case of POSIX,
threads are not supported. Therefore, the POSIX subsystem obtains a thread for
the new process from Windows so that the process may be activated but returns only
process information to the application. The fact that the POSIX process is imple-
mented using both a process and a thread from the Windows Executive is not visible
to the application.

When a new process is created by the Executive, the new process inherits
many of its attributes from the creating process. However, in the Win32 environ-
ment, this process creation is done indirectly. An application client process issues
its process creation request to the Win32 subsystem; then the subsystem in turn
issues a process request to the Windows executive. Because the desired effect is
that the new process inherits characteristics of the client process and not of the server
process, Windows enables the subsystem to specify the parent of the new process.
The new process then inherits the parent’s access token, quota limits, base priority,
and default processor affinity.

Symmetric Multiprocessing Support

Windows supports SMP hardware configurations. The threads of any process,
including those of the executive, can run on any processor. In the absence of affin-
ity restrictions, explained in the next paragraph, the kernel dispatcher assigns a
ready thread to the next available processor. This assures that no processor is
idle or is executing a lower-priority thread when a higher-priority thread is ready.
Multiple threads from the same process can be executing simultaneously on
multiple processors.

As a default, the kernel dispatcher uses the policy of soft affinity in assign-
ing threads to processors: The dispatcher tries to assign a ready thread to the same
processor it last ran on. This helps reuse data still in that processor’s memory caches
from the previous execution of the thread. It is possible for an application to restrict
its thread execution only to certain processors (hard affinity).

182 CHAPTER 4 / THREADS

4.5 SOLARIS THREAD AND SMP MANAGEMENT

Solaris implements multilevel thread support designed to provide considerable
flexibility in exploiting processor resources.

Multithreaded Architecture
Solaris makes use of four separate thread-related concepts:

e Process: This is the normal UNIX process and includes the user’s address
space, stack, and process control block.

e User-level threads: Implemented through a threads library in the address
space of a process, these are invisible to the OS. A user-level thread (ULT) is
a user-created unit of execution within a process.

e Lightweight processes: A lightweight process (LWP) can be viewed as a map-
ping between ULTs and kernel threads. Each LWP supports ULT and maps
to one kernel thread. LWPs are scheduled by the kernel independently and
may execute in parallel on multiprocessors.

e Kernel threads: These are the fundamental entities that can be scheduled and
dispatched to run on one of the system processors.

Figure 4.13 illustrates the relationship among these four entities. Note that
there is always exactly one kernel thread for each LWP. An LWP is visible within a
process to the application. Thus, LWP data structures exist within their respective
process address space. At the same time, each LWP is bound to a single dispatchable
kernel thread, and the data structure for that kernel thread is maintained within the
kernel’s address space.

Process
User User
thread thread
/ Lightweight Lightweight
process (LWP) process (LWP)
syscall() ‘ 1 ‘ f syscall()
Kernel Kernel
thread thread

_|

System calls

Kernel

Hardware

Figure 4.13 Processes and Threads in Solaris [MCDO07]

7 Again, the acronym ULT is unique to this book and is not found in the Solaris literature.

4.5 / SOLARIS THREAD AND SMP MANAGEMENT 183

A process may consist of a single ULT bound to a single LWP. In this case, there
is a single thread of execution, corresponding to a traditional UNIX process. When
concurrency is not required within a single process, an application uses this process
structure. If an application requires concurrency, its process contains multiple threads,
each bound to a single LWP, which in turn are each bound to a single kernel thread.

In addition, there are kernel threads that are not associated with LWPs. The
kernel creates, runs, and destroys these kernel threads to execute specific system
functions. The use of kernel threads rather than kernel processes to implement
system functions reduces the overhead of switching within the kernel (from a
process switch to a thread switch).

Motivation

The three-level thread structure (ULT, LWP, kernel thread) in Solaris is intended
to facilitate thread management by the OS and to provide a clean interface to appli-
cations. The ULT interface can be a standard thread library. A defined ULT maps
onto a LWP, which is managed by the OS and which has defined states of execution,
defined subsequently. An LWP is bound to a kernel thread with a one-to-one corre-
spondence in execution states. Thus, concurrency and execution are managed at the
level of the kernel thread.

In addition, an application has access to hardware through an application pro-
gramming interface consisting of system calls. The API allows the user to invoke
kernel services to perform privileged tasks on behalf of the calling process, such as
read or write a file, issue a control command to a device, create a new process or
thread, allocate memory for the process to use, and so on.

Process Structure

Figure 4.14 compares, in general terms, the process structure of a traditional UNIX
system with that of Solaris. On a typical UNIX implementation, the process struc-
ture includes the process ID; the user 1Ds; a signal dispatch table, which the kernel
uses to decide what to do when sending a signal to a process; file descriptors, which
describe the state of files in use by this process; a memory map, which defines the
address space for this process; and a processor state structure, which includes the
kernel stack for this process. Solaris retains this basic structure but replaces the pro-
cessor state block with a list of structures containing one data block for each LWP.
The LWP data structure includes the following elements:

e An LWP identifier

e The priority of this LWP and hence the kernel thread that supports it
e A signal mask that tells the kernel which signals will be accepted

e Saved values of user-level registers (when the LWP is not running)

e The kernel stack for this LWP, which includes system call arguments, results,
and error codes for each call level

e Resource usage and profiling data
e Pointer to the corresponding kernel thread

¢ Pointer to the process structure

184 CHAPTER 4 / THREADS

UNIX process structure Solaris process structure
Process ID Process ID
User IDs User IDs
Signal dispatch table Signal dispatch table

Memory map Memory map

Priority
Signal mask
Registers
File descriptors eoe File descriptors
Processor state

LWP2 LWP 1
LWP ID - LWP ID
Priority Priority
Signal mask Signal mask
Registers Registers
STACK STACK
X X) XX

Figure 4.14 Process Structure in Traditional UNIX and Solaris [LEWI96]

Thread Execution

Figure 4.15 shows a simplified view of both thread execution states. These states
reflect the execution status of both a kernel thread and the LWP bound to it. As
mentioned, some kernel threads are not associated with an LWP; the same execu-
tion diagram applies. The states are as follows:

RUN: The thread is runnable; that is, the thread is ready to execute.
ONPROC: The thread is executing on a processor.

SLEEP: The thread is blocked.

STOP: The thread is stopped.

ZOMBIE: The thread has terminated.

FREE: Thread resources have been released and the thread is awaiting
removal from the OS thread data structure.

A thread moves from ONPROC to RUN if it is preempted by a higher-priority

thread or because of time slicing. A thread moves from ONPROC to SLEEP if it

4.5 / SOLARIS THREAD AND SMP MANAGEMENT 185

IDL PINNED
thread_create() intr ()
swtch ()
syscall ()
RUN NPROC SLEEP
).
preempt ()
wakeup ()
STOP OMBIE ——m88m FREE
prun () pstop() exit() reap ()

Figure 4.15 Solaris Thread States

is blocked and must await an event to return the RUN state. Blocking occurs if the
thread invokes a system call and must wait for the system service to be performed.
A thread enters the STOP state if its process is stopped; this might be done for
debugging purposes.

Interrupts as Threads

Most operating systems contain two fundamental forms of concurrent activity:
processes and interrupts. Processes (or threads) cooperate with each other and
manage the use of shared data structures by means of a variety of primitives
that enforce mutual exclusion (only one process at a time can execute certain
code or access certain data) and that synchronize their execution. Interrupts are
synchronized by preventing their handling for a period of time. Solaris unifies
these two concepts into a single model, namely kernel threads and the mechanisms
for scheduling and executing kernel threads. To do this, interrupts are converted
to kernel threads.

The motivation for converting interrupts to threads is to reduce overhead.
Interrupt handlers often manipulate data shared by the rest of the kernel. Therefore,
while a kernel routine that accesses such data is executing, interrupts must be
blocked, even though most interrupts will not affect that data. Typically, the way
this is done is for the routine to set the interrupt priority level higher to block inter-
rupts and then lower the priority level after access is completed. These operations
take time. The problem is magnified on a multiprocessor system. The kernel must
protect more objects and may need to block interrupts on all processors.

186 CHAPTER 4 / THREADS

The solution in Solaris can be summarized as follows:

Solaris employs a set of kernel threads to handle interrupts. As with any kernel
thread, an interrupt thread has its own identifier, priority, context, and stack.

The kernel controls access to data structures and synchronizes among inter-
rupt threads using mutual exclusion primitives, of the type discussed in
Chapter 5. That is, the normal synchronization techniques for threads are used
in handling interrupts.

Interrupt threads are assigned higher priorities than all other types of kernel
threads.

When an interrupt occurs, it is delivered to a particular processor and the

thread that was executing on that processor is pinned. A pinned thread cannot
move to another processor and its context is preserved; it is simply suspended until
the interrupt is processed. The processor then begins executing an interrupt thread.
There is a pool of deactivated interrupt threads available, so that a new thread crea-
tion is not required. The interrupt thread then executes to handle the interrupt.
If the handler routine needs access to a data structure that is currently locked in
some fashion for use by another executing thread, the interrupt thread must wait for
access to that data structure. An interrupt thread can only be preempted by another
interrupt thread of higher priority.

Experience with Solaris interrupt threads indicates that this approach provides

superior performance to the traditional interrupt-handling strategy [KLEI95].

4.6 LINUX PROCESS AND THREAD MANAGEMENT

Linux Tasks

A process, or task, in Linux is represented by a task struct data structure. The
task_struct data structure contains information in a number of categories:

State: The execution state of the process (executing, ready, suspended,
stopped, zombie). This is described subsequently.

Scheduling information: Information needed by Linux to schedule processes.
A process can be normal or real time and has a priority. Real-time processes
are scheduled before normal processes, and within each category, relative pri-
orities can be used. A counter keeps track of the amount of time a process is
allowed to execute.

Identifiers: Each process has a unique process identifier and also has user and
group identifiers. A group identifier is used to assign resource access privi-
leges to a group of processes.

Interprocess communication: Linux supports the IPC mechanisms found in
UNIX SVR4, described in Chapter 6.

Links: Each process includes a link to its parent process, links to its siblings
(processes with the same parent), and links to all of its children.

4.6 / LINUX PROCESS AND THREAD MANAGEMENT 187

e Times and timers: Includes process creation time and the amount of proces-
sor time so far consumed by the process. A process may also have associated
one or more interval timers. A process defines an interval timer by means of a
system call; as a result, a signal is sent to the process when the timer expires. A
timer may be single use or periodic.

e File system: Includes pointers to any files opened by this process, as well as
pointers to the current and the root directories for this process.

* Address space: Defines the virtual address space assigned to this process.

¢ Processor-specific context: The registers and stack information that constitute
the context of this process.
Figure 4.16 shows the execution states of a process. These are as follows:

* Running: This state value corresponds to two states. A Running process is
either executing or it is ready to execute.

e Interruptible: This is a blocked state, in which the process is waiting for an
event, such as the end of an I/O operation, the availability of a resource, or a
signal from another process.

e Uninterruptible: This is another blocked state. The difference between this
and the Interruptible state is that in an Uninterruptible state, a process is wait-
ing directly on hardware conditions and therefore will not handle any signals.

Signal

Running
state Termination

Creation

Signal
or
event

Figure 4.16 Linux Process/Thread Model

188 CHAPTER 4 / THREADS

e Stopped: The process has been halted and can only resume by positive action
from another process. For example, a process that is being debugged can be
put into the Stopped state.

e Zombie: The process has been terminated but, for some reason, still must
have its task structure in the process table.

Linux Threads

Traditional UNIX systems support a single thread of execution per process, while
modern UNIX systems typically provide support for multiple kernel-level threads
per process. As with traditional UNIX systems, older versions of the Linux ker-
nel offered no support for multithreading. Instead, applications would need to
be written with a set of user-level library functions, the most popular of which is
known as pthread (POSIX thread) libraries, with all of the threads mapping into
a single kernel-level process.® We have seen that modern versions of UNIX offer
kernel-level threads. Linux provides a unique solution in that it does not recog-
nize a distinction between threads and processes. Using a mechanism similar to the
lightweight processes of Solaris, user-level threads are mapped into kernel-level
processes. Multiple user-level threads that constitute a single user-level process
are mapped into Linux kernel-level processes that share the same group ID. This
enables these processes to share resources such as files and memory and to avoid
the need for a context switch when the scheduler switches among processes in the
same group.

A new process is created in Linux by copying the attributes of the current
process. A new process can be cloned so that it shares resources, such as files, sig-
nal handlers, and virtual memory. When the two processes share the same virtual
memory, they function as threads within a single process. However, no separate
type of data structure is defined for a thread. In place of the usual fork() com-
mand, processes are created in Linux using the clone() command. This command
includes a set of flags as arguments, defined in Table 4.5. The traditional fork()
system call is implemented by Linux as a clone() system call with all of the clone
flags cleared.

When the Linux kernel performs a switch from one process to another, it
checks whether the address of the page directory of the current process is the same
as that of the to-be-scheduled process. If they are, then they are sharing the same
address space, so that a context switch is basically just a jump from one location of
code to another location of code.

Although cloned processes that are part of the same process group can share
the same memory space, they cannot share the same user stacks. Thus the clone()
call creates separate stack spaces for each process.

8POSIX (Portable Operating Systems based on UNIX) is an IEEE API standard that includes a stan-
dard for a thread API. Libraries implementing the POSIX Threads standard are often named Pthreads.
Pthreads are most commonly used on UNIX-like POSIX systems such as Linux and Solaris, but Microsoft
Windows implementations also exist.

4.7 / MAC OS X GRAND CENTRAL DISPATCH 189

Table 4.5 Linux clone () flags

CLONE_CLEARID

Clear the task ID.

CLONE_DETACHED

The parent does not want a SIGCHLD signal sent on exit.

CLONE_FILES

Share the table that identifies the open files.

CLONE_FS

Share the table that identifies the root directory and the current working directory, as
well as the value of the bit mask used to mask the initial file permissions of a new file.

CLONE_IDLETASK

Set PID to zero, which refers to an idle task. The idle task is employed when all
available tasks are blocked waiting for resources.

CLONE_NEWNS

Create a new namespace for the child.

CLONE_PARENT

Caller and new task share the same parent process.

CLONE_PTRACE

If the parent process is being traced, the child process will also be traced.

CLONE_SETTID

Write the TID back to user space.

CLONE_SETTLS

Create a new TLS for the child.

CLONE_SIGHAND

Share the table that identifies the signal handlers.

CLONE_SYSVSEM

Share System V SEM_UNDO semantics.

CLONE_THREAD

Insert this process into the same thread group of the parent. If this flag is true, it
implicitly enforces CLONE_PARENT.

CLONE_VFORK

If set, the parent does not get scheduled for execution until the child invokes the
execve() system call.

CLONE_VM

Share the address space (memory descriptor and all page tables).

4.7 MAC OS X GRAND CENTRAL DISPATCH

As was mentioned in Chapter 2, Mac OS X Grand Central Dispatch (GCD) pro-
vides a pool of available threads. Designers can designate portions of applications,
called blocks, that can be dispatched independently and run concurrently. The OS
will provide as much concurrency as possible based on the number of cores avail-
able and the thread capacity of the system. Although other operating systems have
implemented thread pools, GCD provides a qualitative improvement in ease of use
and efficiency.

A block is a simple extension to C or other languages, such as C++. The pur-
pose of defining a block is to define a self-contained unit of work, including code
plus data. Here is a simple example of a block definition:

x = *~{ printf(“hello world\n”); }

A block is denoted by a caret at the start of the function, which is enclosed in
curly brackets. The above block definition defines x as a way of calling the func-
tion, so that invoking the function x () would print the words hello world.

190 CHAPTER 4 / THREADS

Blocks enable the programmer to encapsulate complex functions, together
with their arguments and data, so that they can easily be referenced and passed
around in a program, much like a variable.” Symbolically:

F = F + data

Blocks are scheduled and dispatched by means of queues. The application
makes use of system queues provided by GCD and may also set up private queues.
Blocks are put onto a queue as they are encountered during program execution.
GCD then uses those queues to describe concurrency, serialization, and callbacks.
Queues are lightweight user-space data structures, which generally makes them far
more efficient than manually managing threads and locks. For example, this queue
has three blocks:

H G IF

Queue

Depending on the queue and how it is defined, GCD either treats these blocks
as potentially concurrent activities, or treats them as serial activities. In either case,
blocks are dispatched on a first-in-first-out basis. If this is a concurrent queue, then
the dispatcher assigns F to a thread as soon as one is available, then G, then H. If
this is a serial queue, the dispatcher assigns F to a thread, and then only assigns G
to a thread after F has completed. The use of predefined threads saves the cost of
creating a new thread for each request, reducing the latency associated with process-
ing a block. Thread pools are automatically sized by the system to maximize the
performance of the applications using GCD while minimizing the number of idle or
competing threads.

H G [F

In addition to scheduling blocks directly, the application can associate a sin-
gle block and queue with an event source, such as a timer, network socket, or file
descriptor. Every time the source issues an event, the block is scheduled if it is not

“Much of the material in the remainder of this section is based on [APPL09].

4.7 / MAC OS X GRAND CENTRAL DISPATCH 191

already running. This allows rapid response without the expense of polling or “park-
ing a thread” on the event source.

Source | E

An example from [SIRA09] indicates the ease of using GCD. Consider a
document-based application with a button that, when clicked, will analyze the
current document and display some interesting statistics about it. In the common
case, this analysis should execute in under a second, so the following code is used
to connect the button with an action:

- (Inaction)analyzeDocument: (NSButton *)sender
NSDictionary *stats = [myDoc analyzel;
[myModel setDict:stats];

[myStatsView setNeedsDisplay:YES];
[stats release];

}

The first line of the function body analyzes the document, the second line
updates the application’s internal state, and the third line tells the application that
the statistics view needs to be updated to reflect this new state. This code, which fol-
lows a common pattern, is executed in the main thread. The design is acceptable so
long as the analysis does not take too long, because after the user clicks the button,
the main thread of the application needs to handle that user input as fast as pos-
sible so it can get back to the main event loop to process the next user action. But
if the user opens a very large or complex document, the analyze step may take an
unacceptably long amount of time. A developer may be reluctant to alter the code
to meet this unlikely event, which may involve application-global objects, thread
management, callbacks, argument marshalling, context objects, new variables, and
so on. But with GCD, a modest addition to the code produces the desired result:

- (IBAction)analyzeDocument: (NSButton *)sender
{dispatch _async(dispatch get global queue(0, 0), *{
NSDictionary *stats = [myDoc analyzel];
dispatch async(dispatch get main queue(), “{
[myModel setDict:stats];
[myStatsView setNeedsDisplay:YES];
[stats release];
DE
DE

192 CHAPTER 4 / THREADS

All functions in GCD begin with dispatch_ . The outer dispatch
async () call puts a task on a global concurrent queue. This tells the OS that the
block can be assigned to a separate concurrent queue, off the main queue, and exe-
cuted in parallel. Therefore, the main thread of execution is not delayed. When the
analyze function is complete, the inner dispatch _async () call is encountered.
This directs the OS to put the following block of code at the end of the main queue,
to be executed when it reaches the head of the queue. So, with very little work on
the part of the programmer, the desired requirement is met.

4.8 SUMMARY

Some operating systems distinguish the concepts of process and thread, the for-
mer related to resource ownership and the latter related to program execution.
This approach may lead to improved efficiency and coding convenience. In a mul-
tithreaded system, multiple concurrent threads may be defined within a single
process. This may be done using either user-level threads or kernel-level threads.
User-level threads are unknown to the OS and are created and managed by a
threads library that runs in the user space of a process. User-level threads are
very efficient because a mode switch is not required to switch from one thread
to another. However, only a single user-level thread within a process can execute
at a time, and if one thread blocks, the entire process is blocked. Kernel-level
threads are threads within a process that are maintained by the kernel. Because
they are recognized by the kernel, multiple threads within the same process can
execute in parallel on a multiprocessor and the blocking of a thread does not
block the entire process. However, a mode switch is required to switch from one
thread to another.

4.9 RECOMMENDED READING

[LEWI96] and [KLEI96] provide good overviews of thread concepts and a discus-
sion of programming strategies; the former focuses more on concepts and the latter
more on programming, but both provide useful coverage of both topics. [PHAM96]
discusses the Windows NT thread facility in depth. Good coverage of UNIX threads
concepts is found in [ROBBO04].

KLEI9% Kleiman, S., Shah, D., and Smallders, B. Programming with Threads. Upper
Saddle River, NJ: Prentice Hall, 1996.

LEWI9 Lewis, B., and Berg, D. Threads Primer. Upper Saddle River, NJ: Prentice
Hall, 1996.

PHAMY96 Pham, T., and Garg, P. Multithreaded Programming with Windows NT.
Upper Saddle River, NJ: Prentice Hall, 1996.

ROBB04 Robbins, K., and Robbins, S. UNIX Systems Programming: Communication,
Concurrency, and Threads. Upper Saddle River, NJ: Prentice Hall, 2004.

4.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 193

4.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
kernel-level thread multithreading task
lightweight process port thread
message process user-level thread

Review Questions

4.1 Table 3.5 lists typical elements found in a process control block for an unthreaded OS.
Of these, which should belong to a thread control block and which should belong to a
process control block for a multithreaded system?

4.2 List reasons why a mode switch between threads may be cheaper than a mode switch
between processes.

4.3 What are the two separate and potentially independent characteristics embodied in
the concept of process?

4.4 Give four general examples of the use of threads in a single-user multiprocessing sys-
tem.

4.5 What resources are typically shared by all of the threads of a process?

4.6 List three advantages of ULTs over KLTs.

4.7 List two disadvantages of ULTs compared to KLTs.

4.8 Define jacketing.

Problems

4.1 It was pointed out that two advantages of using multiple threads within a process
are that (1) less work is involved in creating a new thread within an existing process
than in creating a new process, and (2) communication among threads within the
same process is simplified. Is it also the case that a mode switch between two threads
within the same process involves less work than a mode switch between two threads
in different processes?

4.2 Inthe discussion of ULTs versus KLTs, it was pointed out that a disadvantage of ULTs
is that when a ULT executes a system call, not only is that thread blocked, but also all
of the threads within the process are blocked. Why is that so?

4.3 0OS/2 is an obsolete OS for PCs from IBM. In OS/2, what is commonly embodied in

the concept of process in other operating systems is split into three separate types
of entities: session, processes, and threads. A session is a collection of one or more
processes associated with a user interface (keyboard, display, and mouse). The ses-
sion represents an interactive user application, such as a word processing program
or a spreadsheet. This concept allows the personal-computer user to open more than
one application, giving each one or more windows on the screen. The OS must keep
track of which window, and therefore which session, is active, so that keyboard and
mouse input are routed to the appropriate session. At any time, one session is in
foreground mode, with other sessions in background mode. All keyboard and mouse
input is directed to one of the processes of the foreground session, as dictated by

194 CHAPTER 4 / THREADS

4.4

4.5

4.6

4.7

the applications. When a session is in foreground mode, a process performing video
output sends it directly to the hardware video buffer and thence to the user’s screen.
When the session is moved to the background, the hardware video buffer is saved to
a logical video buffer for that session. While a session is in background, if any of the
threads of any of the processes of that session executes and produces screen output,
that output is directed to the logical video buffer. When the session returns to fore-
ground, the screen is updated to reflect the current contents of the logical video buffer
for the new foreground session.

There is a way to reduce the number of process-related concepts in OS/2 from
three to two. Eliminate sessions, and associate the user interface (keyboard, mouse,
and screen) with processes. Thus, one process at a time is in foreground mode. For
further structuring, processes can be broken up into threads.

a. What benefits are lost with this approach?

b. If you go ahead with this modification, where do you assign resources (memory,

files, etc.): at the process or thread level?

Consider an environment in which there is a one-to-one mapping between user-level
threads and kernel-level threads that allows one or more threads within a process
to issue blocking system calls while other threads continue to run. Explain why this
model can make multithreaded programs run faster than their single-threaded coun-
terparts on a uniprocessor computer.

If a process exits and there are still threads of that process running, will they continue
to run?

The OS/390 mainframe operating system is structured around the concepts of
address space and task. Roughly speaking, a single address space corresponds to
a single application and corresponds more or less to a process in other operat-
ing systems. Within an address space, a number of tasks may be generated and
execute concurrently; this corresponds roughly to the concept of multithreading.
Two data structures are key to managing this task structure. An address space
control block (ASCB) contains information about an address space needed
by OS/390 whether or not that address space is executing. Information in the
ASCB includes dispatching priority, real and virtual memory allocated to this
address space, the number of ready tasks in this address space, and whether
each is swapped out. A task control block (TCB) represents a user program in
execution. It contains information needed for managing a task within an address
space, including processor status information, pointers to programs that are part
of this task, and task execution state. ASCBs are global structures maintained in
system memory, while TCBs are local structures maintained within their address
space. What is the advantage of splitting the control information into global and
local portions?

Many current language specifications, such as for C and C++, are inadequate for
multithreaded programs. This can have an impact on compilers and the correctness
of code, as this problem illustrates. Consider the following declarations and function
definition:
int global positives = 0;
typedef struct list {
struct list *next;
double val;
} * list;

4.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 195

void count positives(list 1)
{
list p;
for (p = 1; p; p = p -> next)
if (p -> val > 0.0)
++global positives;

}

Now consider the case in which thread A performs

count positives(<list containing only negative values>) ;

while thread B performs
++global positives;

a. What does the function do?
b. The C language only addresses single-threaded execution. Does the use of two
parallel threads create any problems or potential problems?

4.8 But some existing optimizing compilers (including gcc, which tends to be relatively
conservative) will “optimize” count_positives to something similar to

void count positives(list 1)
{
list p;
register int r;
r = global positives;
for (p = 1; p; p = p -> next)
if (p -> val > 0.0) ++r;
global positives = r;

}

What problem or potential problem occurs with this compiled version of the program
if threads A and B are executed concurrently?

4.9 Consider the following code using the POSIX Pthreads API:

thread2.c
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
int myglobal;
void *thread function(void *arg) {
int i,73;
for (i=0; i<20; i++) {
j=myglobal;
J=3+1;
printf (*.”);
fflush (stdout) ;
sleep (1) ;
myglobal=7j;

196 CHAPTER 4 / THREADS

4.10

411

return NULL;

}
int main(void)
pthread t mythread;

int i;
if (pthread create(&mythread, NULL, thread function,
NULL)) {
printf (ldquo;error creating thread.”);
abort () ;
}
for (i=0; i<20; i++)

myglobal=myglobal+l;
printf (“o”) ;
fflush(stdout) ;

sleep (1) ;

}

if (pthread join (mythread, NULL)) {
printf (Yerror joining thread.”);
abort () ;

}

printf (“\nmyglobal equals %d\n”,myglobal) ;

exit (0) ;

}

In main() we first declare a variable called mythread, which has a type of
pthread t. This is essentially an ID for a thread. Next, the if statement cre-
ates a thread associated with mythread. The call pthread create () returns
zero on success and a nonzero value on failure. The third argument of pthread
create () is the name of a function that the new thread will execute when it starts.
When this thread function () returns, the thread terminates. Meanwhile, the
main program itself defines a thread, so that there are two threads executing. The
pthread join function enables the main thread to wait until the new thread
completes.

a. What does this program accomplish?

b. Here is the output from the executed program:

$./thread2
..0.0.0.0.00.0.0.0.0.0.0.0.0.0..0.0.0.0.0
myglobal equals 21

Is this the output you would expect? If not, what has gone wrong?

The Solaris documentation states that a ULT may yield to another thread of the same

priority. Isn’t it possible that there will be a runnable thread of higher priority and that

therefore the yield function should result in yielding to a thread of the same or higher

priority?

In Solaris 9 and Solaris 10, there is a one-to-one mapping between ULTs and LWPs. In

Solaris 8, a single LWP supports one or more ULTs.

a. What is the possible benefit of allowing a many-to-one mapping of ULTs to
LWPs?

4.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 197

Stop

Continue

User-level threads

Dispatch

lcping

Time slice
or preempt

Dispatch

Lightweight processes

Stop

Blocking
system
call

Continue

Figure 4.17 Solaris User-Level Thread and LWP States

b. In Solaris 8, the thread execution state of a ULT is distinct from that of its LWP.

C.

Explain why.

Figure 4.17 shows the state transition diagrams for a ULT and its associated

LWP in Solaris 8 and 9. Explain the operation of the two diagrams and their
relationships.

4.12. Explain the rationale for the Uninterruptible state in Linux.

CONCURRENCY:
MUTUAL EXCLUSION AND
SYNCHRONIZATION

198

5.1

5.2

5.3

54

5.5

5.6

Sv7/
5.8
5.9

Principles of Concurrency
A Simple Example
Race Condition
Operating System Concerns
Process Interaction
Requirements for Mutual Exclusion

Mutual Exclusion: Hardware Support
Interrupt Disabling
Special Machine Instructions

Semaphores
Mutual Exclusion
The Producer/Consumer Problem
Implementation of Semaphores

Monitors
Monitor with Signal
Alternate Model of Monitors with Notify and Broadcast

Message Passing
Synchronization
Addressing
Message Format
Queueing Discipline
Mutual Exclusion

Readers/Writers Problem
Readers Have Priority
Writers Have Priority

Summary
Recommended Reading

Key Terms, Review Questions, and Problems

CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION 199

Designing correct routines for controlling concurrent activities proved
to be one of the most difficult aspects of systems programming. The
ad hoc techniques used by programmers of early multiprogramming
and real-time systems were always vulnerable to subtle programming
errors whose effects could be observed only when certain relatively
rare sequences of actions occurred. The errors are particularly difficult
to locate, since the precise conditions under which they appear are very
hard to reproduce.

— THE COMPUTER SCIENCE AND ENGINEERING RESEARCH STUDY, MIT PRESS, 1980

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

e Discuss basic concepts related to concurrency, such as race conditions,
OS concerns, and mutual exclusion requirements.

e Understand hardware approaches to supporting mutual exclusion.

e Define and explain semaphores.

¢ Define and explain monitors.

e Define and explain monitors.

e Explain the readers/writers problem.

The central themes of operating system design are all concerned with the manage-
ment of processes and threads:

* Multiprogramming: The management of multiple processes within a unipro-
cessor system

e Multiprocessing: The management of multiple processes within a multiprocessor

e Distributed processing: The management of multiple processes executing on
multiple, distributed computer systems. The recent proliferation of clusters is
a prime example of this type of system.

Fundamental to all of these areas, and fundamental to OS design, is concurrency.

Concurrency encompasses a host of design issues, including communication among pro-

cesses, sharing of and competing for resources (such as memory, files, and I/O access),

synchronization of the activities of multiple processes, and allocation of processor time

to processes. We shall see that these issues arise not just in multiprocessing and distrib-

uted processing environments but even in single-processor multiprogramming systems.
Concurrency arises in three different contexts:

e Multiple applications: Multiprogramming was invented to allow processing
time to be dynamically shared among a number of active applications.

e Structured applications: As an extension of the principles of modular design

and structured programming, some applications can be effectively programmed
as a set of concurrent processes.

200 CHAPTER 5/ CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

¢ Operating system structure: The same structuring advantages apply to systems
programs, and we have seen that operating systems are themselves often im-
plemented as a set of processes or threads.

Because of the importance of this topic, four chapters and an appendix focus
on concurrency-related issues. Chapters 5 and 6 deal with concurrency in multipro-
gramming and multiprocessing systems. Chapters 16 and 18 examine concurrency
issues related to distributed processing.

This chapter begins with an introduction to the concept of concurrency and the
implications of the execution of multiple concurrent processes.! We find that the basic
requirement for support of concurrent processes is the ability to enforce mutual exclu-
sion; that is, the ability to exclude all other processes from a course of action while one
process is granted that ability. Next, we examine some hardware mechanisms that can
support mutual exclusion. Then we look at solutions that do not involve busy waiting
and that can be supported either by the OS or enforced by language compilers. We
examine three approaches: semaphores, monitors, and message passing.

Two classic problems in concurrency are used to illustrate the concepts and
compare the approaches presented in this chapter. The producer/consumer prob-
lem is introduced in Section 5.3 and used as a running example. The chapter closes
with the readers/writers problem.

Our discussion of concurrency continues in Chapter 6, and we defer a discus-
sion of the concurrency mechanisms of our example systems until the end of that
chapter. Appendix A covers additional topics on concurrency. Table 5.1 lists some
key terms related to concurrency. A set of animations that illustrate concepts in this
chapter is available online. Click on the rotating globe at this book’s Web site at
WilliamStallings.com/OS/OS7e.html for access.

Table 5.1 Some Key Terms Related to Concurrency

atomic operation A function or action implemented as a sequence of one or more instructions that appears

to be indivisible; that is, no other process can see an intermediate state or interrupt the
operation. The sequence of instruction is guaranteed to execute as a group, or not execute
at all, having no visible effect on system state. Atomicity guarantees isolation from
concurrent processes.

critical section A section of code within a process that requires access to shared resources and that must

not be executed while another process is in a corresponding section of code.

deadlock A situation in which two or more processes are unable to proceed because each is waiting

for one of the others to do something.

A situation in which two or more processes continuously change their states in response
to changes in the other process(es) without doing any useful work.

mutual exclusion The requirement that when one process is in a critical section that accesses shared resources,

no other process may be in a critical section that accesses any of those shared resources.

race condition A situation in which multiple threads or processes read and write a shared data item and

the final result depends on the relative timing of their execution.

starvation A situation in which a runnable process is overlooked indefinitely by the scheduler;

although it is able to proceed, it is never chosen.

IFor simplicity, we generally refer to the concurrent execution of processes. In fact, as we have seen in the
preceding chapter, in some systems the fundamental unit of concurrency is a thread rather than a process.

5.1 / PRINCIPLES OF CONCURRENCY 201

5.1 PRINCIPLES OF CONCURRENCY

In a single-processor multiprogramming system, processes are interleaved in time
to yield the appearance of simultaneous execution (Figure 2.12a). Even though
actual parallel processing is not achieved, and even though there is a certain amount
of overhead involved in switching back and forth between processes, interleaved
execution provides major benefits in processing efficiency and in program structuring.
In a multiple-processor system, it is possible not only to interleave the execution of
multiple processes but also to overlap them (Figure 2.12b).

At first glance, it may seem that interleaving and overlapping represent funda-
mentally different modes of execution and present different problems. In fact, both
techniques can be viewed as examples of concurrent processing, and both present
the same problems. In the case of a uniprocessor, the problems stem from a basic
characteristic of multiprogramming systems: The relative speed of execution of
processes cannot be predicted. It depends on the activities of other processes, the
way in which the OS handles interrupts, and the scheduling policies of the OS. The
following difficulties arise:

1. The sharing of global resources is fraught with peril. For example, if two processes
both make use of the same global variable and both perform reads and writes on
that variable, then the order in which the various reads and writes are executed
is critical. An example of this problem is shown in the following subsection.

2. It is difficult for the OS to manage the allocation of resources optimally. For
example, process A may request use of, and be granted control of, a particular
I/O channel and then be suspended before using that channel. It may be unde-
sirable for the OS simply to lock the channel and prevent its use by other pro-
cesses; indeed this may lead to a deadlock condition, as described in Chapter 6.

3. It becomes very difficult to locate a programming error because results are

typically not deterministic and reproducible (e.g., see [LEBL87, CARRS9,
SHENO2] for a discussion of this point).

All of the foregoing difficulties present themselves in a multiprocessor system
as well, because here too the relative speed of execution of processes is unpredictable.
A multiprocessor system must also deal with problems arising from the simultaneous
execution of multiple processes. Fundamentally, however, the problems are the same
as those for uniprocessor systems. This should become clear as the discussion proceeds.

A Simple Example

Consider the following procedure:

void echo ()

{
chin = getchar () ;
chout = chin;
putchar (chout) ;

}

202 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

This procedure shows the essential elements of a program that will provide a char-
acter echo procedure; input is obtained from a keyboard one keystroke at a time.
Each input character is stored in variable chin. It is then transferred to variable
chout and sent to the display. Any program can call this procedure repeatedly to
accept user input and display it on the user’s screen.

Now consider that we have a single-processor multiprogramming system
supporting a single user. The user can jump from one application to another,
and each application uses the same keyboard for input and the same screen for
output. Because each application needs to use the procedure echo, it makes
sense for it to be a shared procedure that is loaded into a portion of memory
global to all applications. Thus, only a single copy of the echo procedure is used,
saving space.

The sharing of main memory among processes is useful to permit efficient and
close interaction among processes. However, such sharing can lead to problems.
Consider the following sequence:

1. Process P1 invokes the echo procedure and is interrupted immediately after
getchar returns its value and stores it in chin. At this point, the most recently
entered character, x, is stored in variable chin.

2. Process P2 is activated and invokes the echo procedure, which runs to conclu-
sion, inputting and then displaying a single character, y, on the screen.

3. Process P1 is resumed. By this time, the value x has been overwritten in chin
and therefore lost. Instead, chin contains y, which is transferred to chout
and displayed.

Thus, the first character is lost and the second character is displayed twice.
The essence of this problem is the shared global variable, chin. Multiple processes
have access to this variable. If one process updates the global variable and then is
interrupted, another process may alter the variable before the first process can use
its value. Suppose, however, that we permit only one process at a time to be in that
procedure. Then the foregoing sequence would result in the following:

1. Process P1 invokes the echo procedure and is interrupted immediately after
the conclusion of the input function. At this point, the most recently entered
character, x, is stored in variable chin.

2. Process P2 is activated and invokes the echo procedure. However, because P1
is still inside the echo procedure, although currently suspended, P2 is blocked
from entering the procedure. Therefore, P2 is suspended awaiting the avail-
ability of the echo procedure.

3. Atsome later time, process P1 is resumed and completes execution of echo.
The proper character, x, is displayed.

4. When P1 exits echo, this removes the block on P2. When P2 is later resumed,
the echo procedure is successfully invoked.

This example shows that it is necessary to protect shared global variables
(and other shared global resources) and that the only way to do that is to control
the code that accesses the variable. If we impose the discipline that only one

5.1 / PRINCIPLES OF CONCURRENCY 203

process at a time may enter echo and that once in echo the procedure must run
to completion before it is available for another process, then the type of error
just discussed will not occur. How that discipline may be imposed is a major topic
of this chapter.

This problem was stated with the assumption that there was a single-processor,
multiprogramming OS. The example demonstrates that the problems of concur-
rency occur even when there is a single processor. In a multiprocessor system, the
same problems of protected shared resources arise, and the same solution works.
First, suppose that there is no mechanism for controlling access to the shared global
variable:

1. Processes P1 and P2 are both executing, each on a separate processor. Both
processes invoke the echo procedure.

2. The following events occur; events on the same line take place in parallel:

Process Pl Process P2
[) [)
chin = getchar(); °
° chin = getchar();
chout = chin; chout = chin;
putchar (chout) ; .
° putchar (chout) ;
[) [)

The result is that the character input to P1 is lost before being displayed, and
the character input to P2 is displayed by both P1 and P2. Again, let us add the capa-
bility of enforcing the discipline that only one process at a time may be in echo.
Then the following sequence occurs:

1. Processes P1 and P2 are both executing, each on a separate processor. P1
invokes the echo procedure.

2. While P1 is inside the echo procedure, P2 invokes echo. Because P1 is still
inside the echo procedure (whether P1 is suspended or executing), P2 is
blocked from entering the procedure. Therefore, P2 is suspended awaiting the
availability of the echo procedure.

3. Atalater time, process P1 completes execution of echo, exits that procedure,
and continues executing. Immediately upon the exit of P1 from echo, P2 is
resumed and begins executing echo.

In the case of a uniprocessor system, the reason we have a problem is that an
interrupt can stop instruction execution anywhere in a process. In the case of a mul-
tiprocessor system, we have that same condition and, in addition, a problem can be
caused because two processes may be executing simultaneously and both trying to
access the same global variable. However, the solution to both types of problem is
the same: control access to the shared resource.

204 CHAPTER 5/ CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Race Condition

A race condition occurs when multiple processes or threads read and write data
items so that the final result depends on the order of execution of instructions in the
multiple processes. Let us consider two simple examples.

As a first example, suppose that two processes, P1 and P2, share the global
variable a. At some point in its execution, P1 updates a to the value 1, and at some
point in its execution, P2 updates a to the value 2. Thus, the two tasks are in a race
to write variable a. In this example, the “loser” of the race (the process that updates
last) determines the final value of a.

For our second example, consider two process, P3 and P4, that share global
variables b and ¢, with initial valuesb = 1 and ¢ = 2. Atsome point in its execu-
tion, P3 executes the assignmentb = b + ¢, and at some point in its execution,
P4 executes the assignment ¢ = b + c. Note that the two processes update differ-
ent variables. However, the final values of the two variables depend on the order in
which the two processes execute these two assignments. If P3 executes its assignment
statement first, then the final values are b = 3 and ¢ = 5. If P4 executes its assign-
ment statement first, then the final valuesareb = 4andc = 3.

Appendix A includes a discussion of race conditions using semaphores as an
example.

Operating System Concerns

What design and management issues are raised by the existence of concurrency?
We can list the following concerns:

1. The OS must be able to keep track of the various processes. This is done with
the use of process control blocks and was described in Chapter 4.

2. The OS must allocate and deallocate various resources for each active process.
At times, multiple processes want access to the same resource. These resources
include

¢ Processor time: This is the scheduling function, discussed in Part Four.

e Memory: Most operating systems use a virtual memory scheme. The topic
is addressed in Part Three.

¢ Files: Discussed in Chapter 12.
e 1/O devices: Discussed in Chapter 11.

3. The OS must protect the data and physical resources of each process against
unintended interference by other processes. This involves techniques that
relate to memory, files, and I/O devices. A general treatment of protection is
found in Part Seven.

4. The functioning of a process, and the output it produces, must be independent
of the speed at which its execution is carried out relative to the speed of other
concurrent processes. This is the subject of this chapter.

To understand how the issue of speed independence can be addressed, we
need to look at the ways in which processes can interact.

5.1 / PRINCIPLES OF CONCURRENCY 205

Process Interaction

We can classify the ways in which processes interact on the basis of the degree to
which they are aware of each other’s existence. Table 5.2 lists three possible degrees
of awareness plus the consequences of each:

¢ Processes unaware of each other: These are independent processes that are not
intended to work together. The best example of this situation is the multipro-
gramming of multiple independent processes. These can either be batch jobs
or interactive sessions or a mixture. Although the processes are not working
together, the OS needs to be concerned about competition for resources. For
example, two independent applications may both want to access the same disk
or file or printer. The OS must regulate these accesses.

* Processes indirectly aware of each other: These are processes that are not nec-
essarily aware of each other by their respective process IDs but that share
access to some object, such as an I/O buffer. Such processes exhibit cooperation
in sharing the common object.

e Processes directly aware of each other: These are processes that are able to
communicate with each other by process ID and that are designed to work
jointly on some activity. Again, such processes exhibit cooperation.

Conditions will not always be as clear-cut as suggested in Table 5.2. Rather,
several processes may exhibit aspects of both competition and cooperation.
Nevertheless, it is productive to examine each of the three items in the preceding
list separately and determine their implications for the OS.

Table 5.2 Process Interaction

Degree of Awareness Relationship Influence that One Potential Control
Process Has on the Problems
Other
Processes unaware of Competition * Results of one process | ® Mutual exclusion
each other independent of the ¢ Deadlock (renewable
action of others resource)
e Timing of process may | e Starvation
be affected
Processes indirectly Cooperation by sharing e Results of one process | ¢ Mutual exclusion
aware of each other may depend on infor- e Deadlock (renewable
(e.g., shared object) mation obtained from resource)
others e Starvation
* Timing of process may | ® Data coherence
be affected
Processes directly aware Cooperation by commu- | © Results of one process | © Deadlock (consum-
of each other (have nication may depend on infor- able resource)
communication mation obtained from | e Starvation
primitives available others
to them) e Timing of process may
be affected

206 CHAPTER 5/ CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

COMPETITION AMONG PROCESSES FOR RESOURCES Concurrent processes come
into conflict with each other when they are competing for the use of the same
resource. In its pure form, we can describe the situation as follows. Two or more
processes need to access a resource during the course of their execution. Each
process is unaware of the existence of other processes, and each is to be unaffected
by the execution of the other processes. It follows from this that each process should
leave the state of any resource that it uses unaffected. Examples of resources include
1/0 devices, memory, processor time, and the clock.

There is no exchange of information between the competing processes.
However, the execution of one process may affect the behavior of competing
processes. In particular, if two processes both wish access to a single resource, then
one process will be allocated that resource by the OS, and the other will have to wait.
Therefore, the process that is denied access will be slowed down. In an extreme case,
the blocked process may never get access to the resource and hence will never termi-
nate successfully.

In the case of competing processes three control problems must be faced.
First is the need for mutual exclusion. Suppose two or more processes require
access to a single nonsharable resource, such as a printer. During the course of
execution, each process will be sending commands to the I/O device, receiving
status information, sending data, and/or receiving data. We will refer to such a
resource as a critical resource, and the portion of the program that uses it as a
critical section of the program. It is important that only one program at a time be
allowed in its critical section. We cannot simply rely on the OS to understand and
enforce this restriction because the detailed requirements may not be obvious. In
the case of the printer, for example, we want any individual process to have con-
trol of the printer while it prints an entire file. Otherwise, lines from competing
processes will be interleaved.

The enforcement of mutual exclusion creates two additional control problems.
One is that of deadlock. For example, consider two processes, P1 and P2, and two
resources, R1 and R2. Suppose that each process needs access to both resources to
perform part of its function. Then it is possible to have the following situation: the OS
assigns R1 to P2, and R2 to P1. Each process is waiting for one of the two resources.
Neither will release the resource that it already owns until it has acquired the other
resource and performed the function requiring both resources. The two processes are
deadlocked.

A final control problem is starvation. Suppose that three processes (P1, P2,
P3) each require periodic access to resource R. Consider the situation in which
P1 is in possession of the resource, and both P2 and P3 are delayed, waiting for
that resource. When P1 exits its critical section, either P2 or P3 should be allowed
access to R. Assume that the OS grants access to P3 and that P1 again requires
access before P3 completes its critical section. If the OS grants access to P1 after
P3 has finished, and subsequently alternately grants access to P1 and P3, then P2
may indefinitely be denied access to the resource, even though there is no deadlock
situation.

Control of competition inevitably involves the OS because it is the OS that
allocates resources. In addition, the processes themselves will need to be able to

5.1 / PRINCIPLES OF CONCURRENCY 207

/* PROCESS 1 */

void P1
{
while (true) ({

/* preceding code */;
entercritical (Ra);
/* critical section */;
exitcritical (Ra);
/* following code */;

/* PROCESS 2 */

void P2
{
while (true) {

/* preceding code */;
entercritical (Ra);
/* critical section */;
exitcritical (Ra);
/* following code */;

/* PROCESS n */

void Pn
{
while (true) {

/* preceding code */;
entercritical (Ra);
/* critical section */;
exitcritical (Ra);
/* following code */;

Figure 5.1 Illustration of Mutual Exclusion

express the requirement for mutual exclusion in some fashion, such as locking a
resource prior to its use. Any solution will involve some support from the OS, such
as the provision of the locking facility. Figure 5.1 illustrates the mutual exclusion
mechanism in abstract terms. There are n processes to be executed concurrently.
Each process includes (1) a critical section that operates on some resource Ra, and
(2) additional code preceding and following the critical section that does not involve
access to Ra. Because all processes access the same resource Ra, it is desired that
only one process at a time be in its critical section. To enforce mutual exclusion, two
functions are provided: entercritical and exitcritical. Each function takes
as an argument the name of the resource that is the subject of competition. Any
process that attempts to enter its critical section while another process is in its critical
section, for the same resource, is made to wait.

It remains to examine specific mechanisms for providing the functions
entercritical and exitcritical. For the moment, we defer this issue while
we consider the other cases of process interaction.

COOPERATION AMONG PROCESSES BY SHARING The case of cooperation by sharing
covers processes that interact with other processes without being explicitly aware
of them. For example, multiple processes may have access to shared variables or
to shared files or databases. Processes may use and update the shared data without
reference to other processes but know that other processes may have access to the
same data. Thus the processes must cooperate to ensure that the data they share
are properly managed. The control mechanisms must ensure the integrity of the
shared data.

Because data are held on resources (devices, memory), the control problems
of mutual exclusion, deadlock, and starvation are again present. The only difference
is that data items may be accessed in two different modes, reading and writing, and
only writing operations must be mutually exclusive.

However, over and above these problems, a new requirement is introduced:
that of data coherence. As a simple example, consider a bookkeeping application in
which various data items may be updated. Suppose two items of data a and b are to
be maintained in the relationship a = b. That is, any program that updates one value

208 CHAPTER 5/ CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

must also update the other to maintain the relationship. Now consider the following
two processes:

P1:
a = a 1;
b = b 1;
P2:
b =2 * b;

a =2 * a;

If the state is initially consistent, each process taken separately will leave the
shared data in a consistent state. Now consider the following concurrent execution
sequence, in which the two processes respect mutual exclusion on each individual
data item (a and b):

1;

* +

I

!

a
b =
b
a

I
N DN
* +

v o~ T

At the end of this execution sequence, the condition a = b no longer holds. For
example, if we start with a = b = 1, at the end of this execution sequence we have
a =4 and b = 3. The problem can be avoided by declaring the entire sequence in each
process to be a critical section.

Thus, we see that the concept of critical section is important in the case of
cooperation by sharing. The same abstract functions of entercritical and
exitcritical discussed earlier (Figure 5.1) can be used here. In this case, the
argument for the functions could be a variable, a file, or any other shared object.
Furthermore, if critical sections are used to provide data integrity, then there may
be no specific resource or variable that can be identified as an argument. In that
case, we can think of the argument as being an identifier that is shared among con-
current processes to identify critical sections that must be mutually exclusive.

COOPERATION AMONG PROCESSES BY COMMUNICATION In the first two cases
that we have discussed, each process has its own isolated environment that does
not include the other processes. The interactions among processes are indirect. In
both cases, there is a sharing. In the case of competition, they are sharing resources
without being aware of the other processes. In the second case, they are sharing
values, and although each process is not explicitly aware of the other processes,
it is aware of the need to maintain data integrity. When processes cooperate by
communication, however, the various processes participate in a common effort that
links all of the processes. The communication provides a way to synchronize, or
coordinate, the various activities.

Typically, communication can be characterized as consisting of messages of
some sort. Primitives for sending and receiving messages may be provided as part of
the programming language or provided by the OS kernel.

Because nothing is shared between processes in the act of passing messages,
mutual exclusion is not a control requirement for this sort of cooperation. However,

5.2 / MUTUAL EXCLUSION: HARDWARE SUPPORT 209

the problems of deadlock and starvation are still present. As an example of dead-
lock, two processes may be blocked, each waiting for a communication from the
other. As an example of starvation, consider three processes, P1, P2, and P3, that
exhibit the following behavior. P1 is repeatedly attempting to communicate with
either P2 or P3, and P2 and P3 are both attempting to communicate with P1. A
sequence could arise in which P1 and P2 exchange information repeatedly, while P3
is blocked waiting for a communication from P1. There is no deadlock, because P1
remains active, but P3 is starved.

Requirements for Mutual Exclusion

Any facility or capability that is to provide support for mutual exclusion should
meet the following requirements:

1. Mutual exclusion must be enforced: Only one process at a time is allowed into
its critical section, among all processes that have critical sections for the same
resource or shared object.

2. A process that halts in its noncritical section must do so without interfering
with other processes.

3. It must not be possible for a process requiring access to a critical section to be
delayed indefinitely: no deadlock or starvation.

4. When no process is in a critical section, any process that requests entry to its
critical section must be permitted to enter without delay.

5. No assumptions are made about relative process speeds or number of processors.
6. A process remains inside its critical section for a finite time only.

There are a number of ways in which the requirements for mutual exclusion
can be satisfied. One approach is to leave the responsibility with the processes
that wish to execute concurrently. Processes, whether they are system programs or
application programs, would be required to coordinate with one another to enforce
mutual exclusion, with no support from the programming language or the OS. We
can refer to these as software approaches. Although this approach is prone to high
processing overhead and bugs, it is nevertheless useful to examine such approaches
to gain a better understanding of the complexity of concurrent processing. This
topic is covered in Appendix A. A second approach involves the use of special-
purpose machine instructions. These have the advantage of reducing overhead but
nevertheless will be shown to be unattractive as a general-purpose solution; they are
covered in Section 5.2. A third approach is to provide some level of support within
the OS or a programming language. Three of the most important such approaches
are examined in Sections 5.3 through 5.5.

MUTUAL EXCLUSION: HARDWARE SUPPORT

In this section, we look at several interesting hardware approaches to mutual
exclusion.

210 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Interrupt Disabling

In a uniprocessor system, concurrent processes cannot have overlapped execution;
they can only be interleaved. Furthermore, a process will continue to run until it
invokes an OS service or until it is interrupted. Therefore, to guarantee mutual
exclusion, it is sufficient to prevent a process from being interrupted. This capability
can be provided in the form of primitives defined by the OS kernel for disabling and
enabling interrupts. A process can then enforce mutual exclusion in the following
way (compare Figure 5.1):

while (true) {
/* disable interrupts */;
/* critical section */;
/* enable interrupts */;
/* remainder */;

}

Because the critical section cannot be interrupted, mutual exclusion is guar-
anteed. The price of this approach, however, is high. The efficiency of execution
could be noticeably degraded because the processor is limited in its ability to
interleave processes. Another problem is that this approach will not work in a
multiprocessor architecture. When the computer includes more than one proces-
sor, it is possible (and typical) for more than one process to be executing at a time.
In this case, disabled interrupts do not guarantee mutual exclusion.

Special Machine Instructions

In a multiprocessor configuration, several processors share access to a common
main memory. In this case, there is not a master/slave relationship; rather the pro-
cessors behave independently in a peer relationship. There is no interrupt mecha-
nism between processors on which mutual exclusion can be based.

At the hardware level, as was mentioned, access to a memory location
excludes any other access to that same location. With this as a foundation, proc-
essor designers have proposed several machine instructions that carry out two
actions atomically,” such as reading and writing or reading and testing, of a single
memory location with one instruction fetch cycle. During execution of the instruc-
tion, access to the memory location is blocked for any other instruction referencing
that location.

In this section, we look at two of the most commonly implemented instruc-
tions. Others are described in [RAYNS86] and [STONO93].

CoOMPARE&SWAP INSTRUCTION The compare&swap instruction, also called a
compare and exchange instruction, can be defined as follows [HERL90]:

The term atomic means that the instruction is treated as a single step that cannot be interrupted.

5.2 / MUTUAL EXCLUSION: HARDWARE SUPPORT 211

int compare and swap (int *word, int testval, int newval)

{
int oldval;
oldval = *word
if (oldval
return oldval;

== testval) *word = newval;

}

This version of the instruction checks a memory location (*word) against a test
value (testval). If the memory location’s current value is testval, it is replaced with
newval; otherwise it is left unchanged. The old memory value is always returned;
thus, the memory location has been updated if the returned value is the same as
the test value. This atomic instruction therefore has two parts: A compare is made
between a memory value and a test value; if the values are the same, a swap occurs.
The entire compare&swap function is carried out atomically—that is, it is not sub-
ject to interruption.

Another version of this instruction returns a Boolean value: true if the swap
occurred; false otherwise. Some version of this instruction is available on nearly all
processor families (x86, IA64, sparc, IBM z series, etc.), and most operating systems
use this instruction for support of concurrency.

Figure 5.2a shows a mutual exclusion protocol based on the use of this instruc-
tion.> A shared variable bolt is initialized to 0. The only process that may enter
its critical section is one that finds bolt equal to 0. All other processes attempting

/* program mutualexclusion */
const int n = /* number of processes */;
int bolt;
void P(int 1)
{
while (true) ({
while (compare_and swap (bolt,
/* do nothing */;

/* critical section */;

bolt = 0;

/* remainder */;

}

O) ==118)

}
void main ()
{

bolt = 0;

parbegin (P (1)

/* program mutualexclusion */
int const n = /* number of processes */;
int bolt;
void P(int 1)
{
int keyi = 1;
while (true) ({
do exchange
while

(&keyi,
(keyi != 0);
/* critical section */;
bolt = 0;

/* remainder */;

&bolt)

}

}

void main ()

{
bolt = 0;
parbegin (P (1)

P(2), ..., P(n));

(a) Compare and swap instruction

Figure 5.2 Hardware Support for Mutual Exclusion

(b) Exchange instruction

3The construct parbegin (P1, P2, .., Pn) means the following: suspend the execution of the main
rogram; initiate concurrent execution of procedures P1, P2, ..., Pn; when all of P1, P2, ..., Pn have ter-

prog p

minated, resume the main program.

212 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

to enter their critical section go into a busy waiting mode. The term busy waiting,
or spin waiting, refers to a technique in which a process can do nothing until it gets
permission to enter its critical section but continues to execute an instruction or set
of instructions that tests the appropriate variable to gain entrance. When a process
leaves its critical section, it resets bolt to 0; at this point one and only one of the wait-
ing processes is granted access to its critical section. The choice of process depends
on which process happens to execute the compare&swap instruction next.

ExcHANGE INSTRUCTION The exchange instruction can be defined as follows:

void exchange (int *register, int *memory)

{
int temp;
temp = *memory;
*memory = *register;
*register = temp;

}

The instruction exchanges the contents of a register with that of a memory location.
Both the Intel IA-32 architecture (Pentium) and the IA-64 architecture (Itanium)
contain an XCHG instruction.

Figure 5.2b shows a mutual exclusion protocol based on the use of an exchange
instruction. A shared variable bolt is initialized to 0. Each process uses a local vari-
able key that is initialized to 1. The only process that may enter its critical section
is one that finds bolt equal to 0. It excludes all other processes from the critical sec-
tion by setting bolt to 1. When a process leaves its critical section, it resets bolt to 0,
allowing another process to gain access to its critical section.

Note that the following expression always holds because of the way in which
the variables are initialized and because of the nature of the exchange algorithm:

bolt + Ekeyl- =n

If bolt = 0, then no process is in its critical section. If bolt = 1, then exactly one pro-
cess is in its critical section, namely the process whose key value equals 0.

PROPERTIES OF THE MACHINE-INSTRUCTION APPROACH The use of a special
machine instruction to enforce mutual exclusion has a number of advantages:

e Jtis applicable to any number of processes on either a single processor or mul-
tiple processors sharing main memory.

e Itis simple and therefore easy to verify.

e It can be used to support multiple critical sections; each critical section can be
defined by its own variable.
There are some serious disadvantages:

* Busy waiting is employed: Thus, while a process is waiting for access to a criti-
cal section, it continues to consume processor time.

5.3 / SEMAPHORES 213

e Starvation is possible: When a process leaves a critical section and more than
one process is waiting, the selection of a waiting process is arbitrary. Thus,
some process could indefinitely be denied access.

e Deadlock is possible: Consider the following scenario on a single-processor
system. Process P1 executes the special instruction (e.g., compare&swap,
exchange) and enters its critical section. P1 is then interrupted to give the
processor to P2, which has higher priority. If P2 now attempts to use the same
resource as P1, it will be denied access because of the mutual exclusion mecha-
nism. Thus, it will go into a busy waiting loop. However, P1 will never be dis-
patched because it is of lower priority than another ready process, P2.

Because of the drawbacks of both the software and hardware solutions, we
need to look for other mechanisms.

5.3 SEMAPHORES

We now turn to OS and programming language mechanisms that are used to pro-
vide concurrency. Table 5.3 summarizes mechanisms in common use. We begin, in
this section, with semaphores. The next two sections discuss monitors and message
passing. The other mechanisms in Table 5.3 are discussed when treating specific
OS examples, in Chapters 6 and 13.

Table 5.3 Common Concurrency Mechanisms

Semaphore An integer value used for signaling among processes. Only three operations may be
performed on a semaphore, all of which are atomic: initialize, decrement, and incre-
ment. The decrement operation may result in the blocking of a process, and the incre-
ment operation may result in the unblocking of a process. Also known as a counting
semaphore or a general semaphore.

Binary Semaphore A semaphore that takes on only the values 0 and 1.

Mutex Similar to a binary semaphore. A key difference between the two is that the process that
locks the mutex (sets the value to zero) must be the one to unlock it (sets the value to 1).

Condition Variable A data type that is used to block a process or thread until a particular condition is true.

Monitor A programming language construct that encapsulates variables, access procedures, and
initialization code within an abstract data type. The monitor’s variable may only be
accessed via its access procedures and only one process may be actively accessing the
monitor at any one time. The access procedures are critical sections. A monitor may
have a queue of processes that are waiting to access it.

Event Flags A memory word used as a synchronization mechanism. Application code may associ-
ate a different event with each bit in a flag. A thread can wait for either a single event
or a combination of events by checking one or multiple bits in the corresponding flag.
The thread is blocked until all of the required bits are set (AND) or until at least one
of the bits is set (OR).

Mailboxes/Messages | A means for two processes to exchange information and that may be used for
synchronization.

Spinlocks Mutual exclusion mechanism in which a process executes in an infinite loop waiting for
the value of a lock variable to indicate availability.

214 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

The first major advance in dealing with the problems of concurrent proc-
esses came in 1965 with Dijkstra’s treatise [DIJK65]. Dijkstra was concerned with
the design of an OS as a collection of cooperating sequential processes and with
the development of efficient and reliable mechanisms for supporting cooperation.
These mechanisms can just as readily be used by user processes if the processor and
OS make the mechanisms available.

The fundamental principle is this: Two or more processes can cooperate by
means of simple signals, such that a process can be forced to stop at a specified place
until it has received a specific signal. Any complex coordination requirement can
be satisfied by the appropriate structure of signals. For signaling, special variables
called semaphores are used. To transmit a signal via semaphore s, a process exe-
cutes the primitive semSignal (s). To receive a signal via semaphore s, a process
executes the primitive semWait (s); if the corresponding signal has not yet been
transmitted, the process is suspended until the transmission takes place.*

To achieve the desired effect, we can view the semaphore as a variable that
has an integer value upon which only three operations are defined:

1. A semaphore may be initialized to a nonnegative integer value.

2. The semWait operation decrements the semaphore value. If the value
becomes negative, then the process executing the semWait is blocked.
Otherwise, the process continues execution.

3. The semSignal operation increments the semaphore value. If the resulting
value is less than or equal to zero, then a process blocked by a semWait oper-
ation, if any, is unblocked.

Other than these three operations, there is no way to inspect or manipulate
semaphores.

We explain these operations as follows. To begin, the semaphore has a zero or
positive value. If the value is positive, that value equals the number of processes that
can issue a wait and immediately continue to execute. If the value is zero, either by
initialization or because a number of processes equal to the initial semaphore value
have issued a wait, the next process to issue a wait is blocked, and the semaphore
value goes negative. Each subsequent wait drives the semaphore value further into
minus territory. The negative value equals the number of processes waiting to be
unblocked. Each signal unblocks one of the waiting processes when the semaphore
value is negative.

[DOWNOS] points out three interesting consequences of the semaphore
definition:

¢ In general, there is no way to know before a process decrements a semaphore
whether it will block or not.

“In Dijkstra’s original paper and in much of the literature, the letter P is used for semWait and the letter
v for semSignal;these are the initials of the Dutch words for test (proberen) and increment (verhogen).
In some of the literature, the terms wait and signal are used. This book uses semWait and semSig-
nal for clarity, and to avoid confusion with similar wait and signal operations in monitors, discussed
subsequently

5.3 / SEMAPHORES 215

struct semaphore {
int count;
queueType queue;
I
void semWait (semaphore s)
{
s.count--;
if (s.count < 0) {
/* place this process in s.queue */;
/* block this process */;
}
}
void semSignal (semaphore s)
{
s.count++;
if (s.count<= 0) {
/* remove a process P from s.queue */;
/* place process P on ready list */;

}

}

Figure 5.3 A Definition of Semaphore Primitives

e After a process increments a semaphore and another process gets woken
up, both processes continue running concurrently. There is no way to
know which process, if either, will continue immediately on a uniprocessor
system.

* When you signal a semaphore, you don’t necessarily know whether another
process is waiting, so the number of unblocked processes may be zero or one.

Figure 5.3 suggests a more formal definition of the primitives for sema-
phores. The semWait and semSignal primitives are assumed to be atomic. A
more restricted version, known as the binary semaphore, is defined in Figure 5.4.
A binary semaphore may only take on the values 0 and 1 and can be defined by the
following three operations:

1. A binary semaphore may be initialized to 0 or 1.

2. The semWaitB operation checks the semaphore value. If the value is zero,
then the process executing the semWaitB is blocked. If the value is one, then
the value is changed to zero and the process continues execution.

3. The semSignalB operation checks to see if any processes are blocked on
this semaphore (semaphore value equals 0). If so, then a process blocked by a
semWaitB operation is unblocked. If no processes are blocked, then the value
of the semaphore is set to one.

In principle, it should be easier to implement the binary semaphore, and it
can be shown that it has the same expressive power as the general semaphore (see
Problem 5.16). To contrast the two types of semaphores, the nonbinary semaphore
is often referred to as either a counting semaphore or a general semaphore.

A concept related to the binary semaphore is the mutex. A key difference
between the two is that the process that locks the mutex (sets the value to zero)

216 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

struct binary semaphore {
enum {zero, one} value;
queueType queue;
ha
void semWaitB (binary semaphore s)
{
if (s.value == one)
s.value = zero;
else {
/* place this process in s.gqueue */;
/* block this process */;
}
}
void semSignalB (semaphore s)
{
if (s.queue is empty())
s.value = one;
else {
/* remove a process P from s.queue */;
/* place process P on ready list */;

}

Figure 5.4 A Definition of Binary Semaphore Primitives

must be the one to unlock it (sets the value to 1). In contrast, it is possible for one
process to lock a binary semaphore and for another to unlock it.>

For both counting semaphores and binary semaphores, a queue is used to
hold processes waiting on the semaphore. The question arises of the order in
which processes are removed from such a queue. The fairest removal policy is
first-in-first-out (FIFO): The process that has been blocked the longest is released
from the queue first; a semaphore whose definition includes this policy is called
a strong semaphore. A semaphore that does not specify the order in which proc-
esses are removed from the queue is a weak semaphore. Figure 5.5, based on
one in [DENNS4], is an example of the operation of a strong semaphore. Here
processes A, B, and C depend on a result from process D. Initially (1), A is run-
ning; B, C, and D are ready; and the semaphore count is 1, indicating that one of
D’s results is available. When A issues a semWait instruction on semaphore s,
the semaphore decrements to 0, and A can continue to execute; subsequently it
rejoins the ready queue. Then B runs (2), eventually issues a semWait instruc-
tion, and is blocked, allowing D to run (3). When D completes a new result, it
issues a semSignal instruction, which allows B to move to the ready queue (4).
D rejoins the ready queue and C begins to run (5) but is blocked when it issues a
semWait instruction. Similarly, A and B run and are blocked on the semaphore,
allowing D to resume execution (6). When D has a result, it issues a semSignal,
which transfers C to the ready queue. Later cycles of D will release A and B from
the Blocked state.

5In some of the literature, and in some textbooks, no distinction is made between a mutex and a binary
semaphore. However, in practice, a number of operating systems, such as Linux, Windows, and Solaris
offer a mutex facility which conforms to the definition in this book.

0

Processor

T

5.3 / SEMAPHORES

s=1

Blocked queue

©)

Semaphore

Processor
B

T

Ready queue

[8 |
= |

Blocked queue

®

Semaphore

Processor

- T

Ready queue

D
- |

s=—1

Blocked queue

@

Semaphore

Processor
D

T

Ready queue

[b |
= |

s=0

Blocked queue

®

Semaphore

Processor
C

T

Ready queue

[¢ |
= |

Blocked queue

©

Semaphore

Processor
D

Ready queue

[b |
= |

— B|A|C

Blocked queue

@

Semaphore

Processor

— B|A

Ready queue

Blocked queue

Semaphore

Ready queue

Figure 5.5 Example of Semaphore Mechanism

217

218 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

/* program mutualexclusion */
/* number of processes */;
1;

const int n =
semaphore s =
void P(int i)
{
while (true) {
semWait (s) ;
/* critical section */;
semSignal (s) ;
/* remainder */;
}
}
void main()

{

parbegin (P(1), P(2),.., P(n));

}

Figure 5.6 Mutual Exclusion Using Semaphores

For the mutual exclusion algorithm discussed in the next subsection and illus-
trated in Figure 5.6, strong semaphores guarantee freedom from starvation, while
weak semaphores do not. We will assume strong semaphores because they are more
convenient and because this is the form of semaphore typically provided by operat-
ing systems.

Mutual Exclusion

Figure 5.6 shows a straightforward solution to the mutual exclusion problem using
a semaphore s (compare Figure 5.1). Consider n processes, identified in the array
P(i), all of which need access to the same resource. Each process has a critical sec-
tion used to access the resource. In each process, a semWait (s) is executed just
before its critical section. If the value of s becomes negative, the process is blocked.
If the value is 1, then it is decremented to 0 and the process immediately enters its
critical section; because s is no longer positive, no other process will be able to enter
its critical section.

The semaphore is initialized to 1. Thus, the first process that executes a
semWait will be able to enter the critical section immediately, setting the value
of s to 0. Any other process attempting to enter the critical section will find it busy
and will be blocked, setting the value of s to —1. Any number of processes may
attempt entry; each such unsuccessful attempt results in a further decrement of the
value of s. When the process that initially entered its critical section departs, s is
incremented and one of the blocked processes (if any) is removed from the queue of
blocked processes associated with the semaphore and put in a Ready state. When it
is next scheduled by the OS, it may enter the critical section.

Figure 5.7, based on one in [BACOO03], shows a possible sequence for three
processes using the mutual exclusion discipline of Figure 5.6. In this example three
processes (A, B, C) access a shared resource protected by the semaphore lock.
Process A executes semWait (lock); because the semaphore has a value of 1 at
the time of the semWait operation, A can immediately enter its critical section and
the semaphore takes on the value 0. While A is in its critical section, both B and C

5.3 / SEMAPHORES 219

Queue for Value of
semaphore lock semaphore lock A B C
Critical
region
. Normal
e semWaitlocl)) ———— 1 execution
[T [0] ' Blockedon
____________________________ semWait(lock) | : semaphore
1

: §
! fock

i

Note that normal
execution can
proceed in parallel
but that critical
regions are serialized.

Figure 5.7 Processes Accessing Shared Data Protected by a Semaphore

perform a semWait operation and are blocked pending the availability of the sema-
phore. When A exits its critical section and performs semSignal (lock), B, which
was the first process in the queue, can now enter its critical section.

The program of Figure 5.6 can equally well handle a requirement that more
than one process be allowed in its critical section at a time. This requirement is met
simply by initializing the semaphore to the specified value. Thus, at any time, the
value of s.count can be interpreted as follows:

e s.count > 0: s.count is the number of processes that can execute semWait (s)
without suspension (if no semSignal (s) is executed in the meantime). Such
situations will allow semaphores to support synchronization as well as mutual
exclusion.

e s.count < 0: The magnitude of s.count is the number of processes suspended in
s.queue.

The Producer/Consumer Problem

We now examine one of the most common problems faced in concurrent process-
ing: the producer/consumer problem. The general statement is this: There are one
or more producers generating some type of data (records, characters) and placing

220 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

these in a buffer. There is a single consumer that is taking items out of the buffer
one at a time. The system is to be constrained to prevent the overlap of buffer oper-
ations. That is, only one agent (producer or consumer) may access the buffer at any
one time. The problem is to make sure that the producer won’t try to add data into
the buffer if it’s full and that the consumer won’t try to remove data from an empty
buffer. We will look at a number of solutions to this problem to illustrate both the
power and the pitfalls of semaphores.

To begin, let us assume that the buffer is infinite and consists of a linear array
of elements. In abstract terms, we can define the producer and consumer functions

as follows:
producer: consumer :
while (true) { while (true) {
/* produce item v */; while (in <= out)
bl[in] = v; /* do nothing */;
in++; w = blout];
} out++;

/* consume item w */;

Figure 5.8 illustrates the structure of buffer b. The producer can generate
items and store them in the buffer at its own pace. Each time, an index (in) into the
buffer is incremented. The consumer proceeds in a similar fashion but must make
sure that it does not attempt to read from an empty buffer. Hence, the consumer
makes sure that the producer has advanced beyond it (in> out) before proceeding.

Let us try to implement this system using binary semaphores. Figure 5.9 is a
first attempt. Rather than deal with the indices in and out, we can simply keep track
of the number of items in the buffer, using the integer variable n (= in — out). The
semaphore s is used to enforce mutual exclusion; the semaphore delay is used to
force the consumer to semWait if the buffer is empty.

This solution seems rather straightforward. The producer is free to add
to the buffer at any time. It performs semWaitB (s) before appending and
semSignalB (s) afterward to prevent the consumer or any other producer from

b[1] | bl2] [b[3] | b4l [b[5] | o o o e

Out In

Note: Shaded area indicates portion of buffer that is occupied

Figure 5.8 Infinite Buffer for the
Producer/Consumer Problem

5.3 / SEMAPHORES 221

/* program producerconsumer */
int n;
binary semaphore s = 1, delay = 0;
void producer ()
{
while (true) {
produce () ;
semWaitB(s) ;
append () ;
n++;
if (n==1) semSignalB (delay) ;
semSignalB(s) ;
}
}
void consumer ()
{
semWaitB (delay) ;
while (true) {
semWaitB(s) ;
take () ;
n--;
semSignalB(s) ;
consume () ;
if (n==0) semWaitB(delay) ;
}
}
void main()
{
mo= g
parbegin (producer, consumer) ;

}

Figure 5.9 An Incorrect Solution to the Infinite-Buffer Producer/Consumer Problem
Using Binary Semaphores

accessing the buffer during the append operation. Also, while in the critical section,
the producer increments the value of n. If n = 1, then the buffer was empty just prior
to this append, so the producer performs semSignalB (delay) to alert the con-
sumer of this fact. The consumer begins by waiting for the first item to be produced,
using semWaitB (delay). It then takes an item and decrements # in its critical
section. If the producer is able to stay ahead of the consumer (a common situation),
then the consumer will rarely block on the semaphore delay because n will usually
be positive. Hence both producer and consumer run smoothly.

There is, however, a flaw in this program. When the consumer has exhausted
the buffer, it needs to reset the delay semaphore so that it will be forced to wait until
the producer has placed more items in the buffer. This is the purpose of the state-
ment: if n == 0 semWaitB (delay). Consider the scenario outlined in Table 5.4.
In line 14, the consumer fails to execute the semWaitB operation. The consumer did
indeed exhaust the buffer and set n to 0 (line 8), but the producer has incremented n
before the consumer can test it in line 14. The result is a semSignalB not matched
by a prior semWaitB. The value of -1 for #z in line 20 means that the consumer has
consumed an item from the buffer that does not exist. It would not do simply to move
the conditional statement inside the critical section of the consumer because this
could lead to deadlock (e.g., after line 8 of Table 5.4).

222 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Table 5.4 Possible Scenario for the Program of Figure 5.9

Producer Consumer s n Delay
1 1 0 0
2 semWaitB (s) 0 0 0
3 n++ 0 1 0
4 if (n==1)
(semSignalB (delay)) 0 1 1
5 semSignalB(s) 1 1 1
6 semWaitB (delay) 1 1 0
7 semWaitB (s) 0 1 0
8 n-- 0 0 0
9 semSignalB(s) 1 0 0
10 semWaitB (s) 0 0 0
11 n++ 0 1 0
12 if (n==1)
(semSignalB (delay)) 0 1 1
13 semSignalB(s) 1 1 1
14 if (n==0)
(semWaitB (delay)) 1 1 1
15 semWaitB (s) 0 1 1
16 n-- 0 0 1
17 semSignalB(s) 1 0 1
18 if (n==0)
(semWaitB (delay)) 1 0 0
19 semWaitB (s) 0 0 0
20 n-- 0 -1 0
21 semSignalB(s) 1 -1 0

Note: White areas represent the critical section controlled by semaphore s.

A fix for the problem is to introduce an auxiliary variable that can be set in the
consumer’s critical section for use later on. This is shown in Figure 5.10. A careful
trace of the logic should convince you that deadlock can no longer occur.

A somewhat cleaner solution can be obtained if general semaphores (also
called counting semaphores) are used, as shown in Figure 5.11. The variable n
is now a semaphore. Its value still is equal to the number of items in the buffer.
Suppose now that in transcribing this program, a mistake is made and the opera-
tions semSignal (s) and semSignal (n) are interchanged. This would require
that the semSignal (n) operation be performed in the producer’s critical sec-
tion without interruption by the consumer or another producer. Would this affect

5.3 / SEMAPHORES 223

/* program producerconsumer */
int n;
binary semaphore s = 1,
void producer ()

{

delay = 0;

while (true) {
produce () ;
semWaitB(s) ;
append () ;
n++;
if (n==1) semSignalB (delay) ;
semSignalB(s) ;
}
}
void consumer ()
{
int m; /* a local variable */
semWaitB (delay) ;
while (true) {
semWaitB(s) ;
take () ;
n--;
m = n;
semSignalB(s) ;
consume () ;
if (m==0) semWaitB(delay) ;
}
}
void main()
{
mo= g
parbegin (producer, consumer) ;

}

Figure 5.10 A Correct Solution to the Infinite-Buffer Producer/Consumer Problem Using

Binary Semaphores

the program? No, because the consumer must wait on both semaphores before

proceeding in any case.

Now suppose that the semWait (n) and semWait (s) operations are acci-
dentally reversed. This produces a serious, indeed a fatal, flaw. If the consumer ever
enters its critical section when the buffer is empty (n.count = 0), then no producer
can ever append to the buffer and the system is deadlocked. This is a good example
of the subtlety of semaphores and the difficulty of producing correct designs.

Finally, let us add a new and realistic restriction to the producer/consumer
problem: namely, that the buffer is finite. The buffer is treated as a circular storage
(Figure 5.12), and pointer values must be expressed modulo the size of the buffer.

The following relationships hold:

Block on:

Unblock on:

Producer: insert in full buffer

Consumer: item inserted

Consumer: remove from empty buffer

Producer: item removed

224 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

/* program producerconsumer */
semaphore n = 0, s = 1;
void producer ()

{
while (true) {
produce () ;
semWait (s) ;
append () ;
semSignal (s) ;
semSignal (n) ;
}
}
void consumer ()
{
while (true) {
semWait (n) ;
semWait (s) ;
take () ;
semSignal (s) ;
consume () ;
}
}
void main()

{
}

parbegin (producer, consumer) ;

Figure 5.11 A Solution to the Infinite-Buffer Producer/Consumer Problem Using

Semaphores

The producer and consumer functions can be expressed as follows (variable in
and out are initialized to 0 and # is the size of the buffer):

producer:
while (true) f{

/* produce item v */

while ((in + 1) % n == out)

/* do nothing */;
bl[in] = v;

in = (in + 1) % n;

consumer :
while (true) ({
while (in == out)
/* do nothing */;
w = b[out];
out = (out + 1) % n;

/* consume item w */;

Figure 5.13 shows a solution using general semaphores. The semaphore e has
been added to keep track of the number of empty spaces.

Another instructive example in the use of semaphores is the barbershop prob-
lem, described in Appendix A. Appendix A also includes additional examples of
the problem of race conditions when using semaphores.

Implementation of Semaphores

As was mentioned earlier, it is imperative that the semWait and semSignal oper-
ations be implemented as atomic primitives. One obvious way is to implement them

5.3 / SEMAPHORES 225

b[1] | b[2] | b[3] | b[4] | bS] | e e e e |b[nl

Out In
(@

b[1] [b[2] | b[3] | b[4] | b[5] e o o o |bn

I

In Out
(b)

Figure 5.12 Finite Circular Buffer for the
Producer/Consumer Problem

in hardware or firmware. Failing this, a variety of schemes have been suggested. The
essence of the problem is one of mutual exclusion: Only one process at a time may
manipulate a semaphore with either a semWait or semSignal operation. Thus,
any of the software schemes, such as Dekker’s algorithm or Peterson’s algorithm
(Appendix A), could be used; this would entail a substantial processing overhead.

/* program boundedbuffer */
const int sizeofbuffer = /* buffer size */;
semaphore s = 1, n = 0, e = sizeofbuffer;
void producer ()

{
while (true) {
produce () ;
semWait (e) ;
semWait (s) ;
append () ;
semSignal (s) ;
semSignal (n) ;
}
}
void consumer ()
{
while (true) {
semWait (n) ;
semWait (s) ;
take () ;
semSignal (s) ;
semSignal (e) ;
consume () ;
}
1
void main ()

{
}

parbegin (producer, consumer) ;

Figure 5.13 A Solution to the Bounded-Buffer Producer/Consumer Problem Using
Semaphores

226 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

semWait (s) semWait (s)

{ {

while (compare and swap(s.flag, 0 , 1) == 1) inhibit interrupts;
/* do nothing */; s.count--;
s.count--;

if (s.count < 0) {
/* place this process in s.queue */;
/* block this process and allow inter-

if (s.count < 0) {
/* place this process in s.queue*/;
/* block this process (must also set

rupts*/;
s.flag to 0) */; }
} else

s.flag = 0;
) }

semSignal (s)

allow interrupts;

semSignal (s)

{ {

while (compare and swap(s.flag, 0 , 1) == 1) inhibit interrupts;
/* do nothing */; s.count++;
S.count++; if (s.count<= 0) {

if (s.count<= 0) {

/* remove a process P from s.queue */;
/* remove a process P from s.queue */;

/* place process P on ready list */;

/* place process P on ready list */; }
1 allow interrupts;
s.flag = 0;
}
}
(a) Compare and Swap Instruction (b) Interrupts

Figure 5.14 Two Possible Implementations of Semaphores

Another alternative is to use one of the hardware-supported schemes for mutual
exclusion. For example, Figure 5.14a shows the use of a compare&swap instruc-
tion. In this implementation, the semaphore is again a structure, as in Figure 5.3,
but now includes a new integer component, s.flag. Admittedly, this involves a form
of busy waiting. However, the semWait and semSignal operations are relatively
short, so the amount of busy waiting involved should be minor.

For a single-processor system, it is possible to inhibit interrupts for the duration
of a semWait or semSignal operation, as suggested in Figure 5.14b. Once again, the
relatively short duration of these operations means that this approach is reasonable.

5.4 MONITORS

Semaphores provide a primitive yet powerful and flexible tool for enforcing mutual
exclusion and for coordinating processes. However, as Figure 5.9 suggests, it may be
difficult to produce a correct program using semaphores. The difficulty is that sem-
Wait and semSignal operations may be scattered throughout a program and it is
not easy to see the overall effect of these operations on the semaphores they affect.

The monitor is a programming-language construct that provides equivalent
functionality to that of semaphores and that is easier to control. The concept was
first formally defined in [HOAR74]. The monitor construct has been implemented
in a number of programming languages, including Concurrent Pascal, Pascal-Plus,
Modula-2, Modula-3, and Java. It has also been implemented as a program library.
This allows programmers to put a monitor lock on any object. In particular, for

5.4 / MONITORS 227

something like a linked list, you may want to lock all linked lists with one lock, or
have one lock for each list, or have one lock for each element of each list.
We begin with a look at Hoare’s version and then examine a refinement.

Monitor with Signal

A monitor is a software module consisting of one or more procedures, an initial-
ization sequence, and local data. The chief characteristics of a monitor are the
following:

1. The local data variables are accessible only by the monitor’s procedures and
not by any external procedure.

2. A process enters the monitor by invoking one of its procedures.

3. Only one process may be executing in the monitor at a time; any other pro-
cesses that have invoked the monitor are blocked, waiting for the monitor to
become available.

The first two characteristics are reminiscent of those for objects in object-oriented
software. Indeed, an object-oriented OS or programming language can readily
implement a monitor as an object with special characteristics.

By enforcing the discipline of one process at a time, the monitor is able to pro-
vide a mutual exclusion facility. The data variables in the monitor can be accessed
by only one process at a time. Thus, a shared data structure can be protected by
placing it in a monitor. If the data in a monitor represent some resource, then the
monitor provides a mutual exclusion facility for accessing the resource.

To be useful for concurrent processing, the monitor must include synchroni-
zation tools. For example, suppose a process invokes the monitor and, while in the
monitor, must be blocked until some condition is satisfied. A facility is needed by
which the process is not only blocked but releases the monitor so that some other
process may enter it. Later, when the condition is satisfied and the monitor is again
available, the process needs to be resumed and allowed to reenter the monitor at
the point of its suspension.

A monitor supports synchronization by the use of condition variables that are
contained within the monitor and accessible only within the monitor. Condition var-
iables are a special data type in monitors, which are operated on by two functions:

e cwait (c¢):Suspend execution of the calling process on condition c. The mon-
itor is now available for use by another process.

e csignal (c): Resume execution of some process blocked after a cwait on
the same condition. If there are several such processes, choose one of them; if
there is no such process, do nothing.

Note that monitor wait and signal operations are different from those for the
semaphore. If a process in a monitor signals and no task is waiting on the condition
variable, the signal is lost.

Figure 5.15 illustrates the structure of a monitor. Although a process can enter
the monitor by invoking any of its procedures, we can think of the monitor as hav-
ing a single entry point that is guarded so that only one process may be in the moni-
tor at a time. Other processes that attempt to enter the monitor join a queue of

228 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

1

Queue of
entering
processes
Monitor waiting area Entrance
0|0
MONITOR
Local data

Condition c1

cwait (cl)
Condition variables

Procedure 1

Condition cn

cud o) Procedure k

—0—0O | ™00

—

Urgent queue E

csignal

Initialization code

Elll:i
Exit

Figure 5.15 Structure of a Monitor

processes blocked waiting for monitor availability. Once a process is in the monitor,
it may temporarily block itself on condition x by issuing cwait (x);itis then placed
in a queue of processes waiting to reenter the monitor when the condition changes,
and resume execution at the point in its program following the cwait (x) call.

If a process that is executing in the monitor detects a change in the condition
variable x, it issues csignal (x), which alerts the corresponding condition queue
that the condition has changed.

As an example of the use of a monitor, let us return to the bounded-buffer
producer/consumer problem. Figure 5.16 shows a solution using a monitor. The
monitor module, boundedbuf fer, controls the buffer used to store and retrieve
characters. The monitor includes two condition variables (declared with the con-
struct cond): notfull is true when there is room to add at least one character to the
buffer, and notempty is true when there is at least one character in the buffer.

5.4 / MONITORS 229

/* program producerconsumer */
monitor boundedbuffer;

char buffer [N]; /* space for N items */
int nextin, nextout; /* buffer pointers */
int count; /* number of items in buffer */
cond notfull, notempty; /* condition variables for synchronization */

void append (char x)

{

if (count == N) cwait (notfull) ; /* buffer is full; avoid overflow */
buffer [nextin] = x;

nextin = (nextin + 1) % N;

count++;

/* one more item in buffer */

csignal (nonempty) ; /*resume any waiting consumer */

}

void take (char x)
{

if (count == 0) cwait (notempty) ; /* buffer is empty; avoid underflow */
x = buffer[nextout];
(

nextout = (nextout + 1) % N);
count--; /* one fewer item in buffer */
csignal (notfull); /* resume any waiting producer */
}
{ /* monitor body */
nextin = 0; nextout = 0; count = 0; /* buffer initially empty */

void producer ()
{
char x;
while (true) {
produce (x) ;
append (x) ;
}
}
void consumer ()
{
char x;
while (true) {
take (x) ;
consume (x) ;
}
}
void main ()

{
}

parbegin (producer, consumer) ;

Figure 5.16 A Solution to the Bounded-Buffer Producer/Consumer Problem Using a
Monitor

A producer can add characters to the buffer only by means of the procedure
append inside the monitor; the producer does not have direct access to buffer. The
procedure first checks the condition notfull to determine if there is space available
in the buffer. If not, the process executing the monitor is blocked on that condition.
Some other process (producer or consumer) may now enter the monitor. Later,
when the buffer is no longer full, the blocked process may be removed from the
queue, reactivated, and resume processing. After placing a character in the buffer,

230 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

the process signals the notempty condition. A similar description can be made of the
consumer function.

This example points out the division of responsibility with monitors compared
to semaphores. In the case of monitors, the monitor construct itself enforces mutual
exclusion: It is not possible for both a producer and a consumer simultaneously to
access the buffer. However, the programmer must place the appropriate cwait and
csignal primitives inside the monitor to prevent processes from depositing items in
a full buffer or removing them from an empty one. In the case of semaphores, both
mutual exclusion and synchronization are the responsibility of the programmer.

Note that in Figure 5.16, a process exits the monitor immediately after executing
the csignal function. If the csignal does not occur at the end of the procedure,
then, in Hoare’s proposal, the process issuing the signal is blocked to make the moni-
tor available and placed in a queue until the monitor is free. One possibility at this
point would be to place the blocked process in the entrance queue, so that it would
have to compete for access with other processes that had not yet entered the monitor.
However, because a process blocked on a csignal function has already partially
performed its task in the monitor, it makes sense to give this process precedence over
newly entering processes by setting up a separate urgent queue (Figure 5.15). One
language that uses monitors, Concurrent Pascal, requires that csignal only appear
as the last operation executed by a monitor procedure.

If there are no processes waiting on condition x, then the execution of
csignal (x) has no effect.

As with semaphores, it is possible to make mistakes in the synchroniza-
tion function of monitors. For example, if either of the csignal functions in the
boundedbuf fer monitor are omitted, then processes entering the corresponding
condition queue are permanently hung up. The advantage that monitors have over
semaphores is that all of the synchronization functions are confined to the monitor.
Therefore, it is easier to verify that the synchronization has been done correctly and
to detect bugs. Furthermore, once a monitor is correctly programmed, access to the
protected resource is correct for access from all processes. In contrast, with sema-
phores, resource access is correct only if all of the processes that access the resource
are programmed correctly.

Alternate Model of Monitors with Notify and Broadcast

Hoare’s definition of monitors [HOAR74] requires that if there is at least one pro-
cess in a condition queue, a process from that queue runs immediately when another
process issues a csignal for that condition. Thus, the process issuing the csignal
must either immediately exit the monitor or be blocked on the monitor.

There are two drawbacks to this approach:

1. If the process issuing the csignal has not finished with the monitor, then two
additional process switches are required: one to block this process and another
to resume it when the monitor becomes available.

2. Process scheduling associated with a signal must be perfectly reliable. When

a csignal is issued, a process from the corresponding condition queue must
be activated immediately and the scheduler must ensure that no other process

5.4 / MONITORS 231

enters the monitor before activation. Otherwise, the condition under which
the process was activated could change. For example, in Figure 5.16, when a
csignal (notempty) is issued, a process from the notempty queue must
be activated before a new consumer enters the monitor. Another example:
a producer process may append a character to an empty buffer and then fail
before signaling; any processes in the notempty queue would be permanently
hung up.

Lampson and Redell developed a different definition of monitors for the lan-
guage Mesa [LAMPS80]. Their approach overcomes the problems just listed and
supports several useful extensions. The Mesa monitor structure is also used in the
Modula-3 systems programming language [NELS91]. In Mesa, the csignal prim-
itive is replaced by cnotify, with the following interpretation: When a process
executing in a monitor executes cnotify (x), it causes the x condition queue to be
notified, but the signaling process continues to execute. The result of the notifica-
tion is that the process at the head of the condition queue will be resumed at some
convenient future time when the monitor is available. However, because there is
no guarantee that some other process will not enter the monitor before the waiting
process, the waiting process must recheck the condition. For example, the proce-
dures in the boundedbuf fer monitor would now have the code of Figure 5.17.

The if statements are replaced by while loops. Thus, this arrangement results
in at least one extra evaluation of the condition variable. In return, however, there
are no extra process switches, and no constraints on when the waiting process must
run after a cnotify.

One useful refinement that can be associated with the cnotify primitive is
a watchdog timer associated with each condition primitive. A process that has been
waiting for the maximum timeout interval will be placed in a Ready state regard-
less of whether the condition has been notified. When activated, the process checks
the condition and continues if the condition is satisfied. The timeout prevents the
indefinite starvation of a process in the event that some other process fails before
signaling a condition.

void append (char x)

{

while (count == N) cwait (notfull) ; /* buffer is full; avoid overflow */
buffer[nextin] = x;

nextin = (nextin + 1) % N;

count++; /* one more item in buffer */
cnotify (notempty) ; /* notify any waiting consumer */

}

void take (char x)

{

while (count == 0) cwait (notempty) ; /* buffer is empty; avoid underflow */
x = buffer [nextout];

nextout = (nextout + 1) % N);

count--; /* one fewer item in buffer */
cnotify (notfull) ; /* notify any waiting producer */

}

Figure 5.17 Bounded-Buffer Monitor Code for Mesa Monitor

232 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

With the rule that a process is notified rather than forcibly reactivated, it is
possible to add a cbroadcast primitive to the repertoire. The broadcast causes all
processes waiting on a condition to be placed in a Ready state. This is convenient
in situations where a process does not know how many other processes should be
reactivated. For example, in the producer/consumer program, suppose that both
the append and the take functions can apply to variable length blocks of charac-
ters. In that case, if a producer adds a block of characters to the buffer, it need not
know how many characters each waiting consumer is prepared to consume. It sim-
ply issues a cbroadcast and all waiting processes are alerted to try again.

In addition, a broadcast can be used when a process would have difficulty fig-
uring out precisely which other process to reactivate. A good example is a memory
manager. The manager has j bytes free; a process frees up an additional k bytes, but it
does not know which waiting process can proceed with a total of k + j bytes. Hence it
uses broadcast, and all processes check for themselves if there is enough memory free.

An advantage of Lampson/Redell monitors over Hoare monitors is that the
Lampson/Redell approach is less prone to error. In the Lampson/Redell approach,
because each procedure checks the monitor variable after being signaled, with the
use of the while construct, a process can signal or broadcast incorrectly without
causing an error in the signaled program. The signaled program will check the rel-
evant variable and, if the desired condition is not met, continue to wait.

Another advantage of the Lampson/Redell monitor is that it lends itself to a
more modular approach to program construction. For example, consider the imple-
mentation of a buffer allocator. There are two levels of conditions to be satisfied for
cooperating sequential processes:

1. Consistent data structures. Thus, the monitor enforces mutual exclusion and
completes an input or output operation before allowing another operation on
the buffer.

2. Level 1, plus enough memory for this process to complete its allocation request.

In the Hoare monitor, each signal conveys the level 1 condition but also car-
ries the implicit message, “I have freed enough bytes for your particular allocate call
to work now.” Thus, the signal implicitly carries the level 2 condition. If the pro-
grammer later changes the definition of the level 2 condition, it will be necessary to
reprogram all signaling processes. If the programmer changes the assumptions made
by any particular waiting process (i.e., waiting for a slightly different level 2 invari-
ant), it may be necessary to reprogram all signaling processes. This is unmodular and
likely to cause synchronization errors (e.g., wake up by mistake) when the code is
modified. The programmer has to remember to modify all procedures in the monitor
every time a small change is made to the level 2 condition. With a Lampson/Redell
monitor, a broadcast ensures the level 1 condition and carries a hint that level 2 might
hold; each process should check the level 2 condition itself. If a change is made in
the level 2 condition in either a waiter or a signaler, there is no possibility of errone-
ous wakeup because each procedure checks its own level 2 condition. Therefore, the
level 2 condition can be hidden within each procedure. With the Hoare monitor,
the level 2 condition must be carried from the waiter into the code of every signaling
process, which violates data abstraction and interprocedural modularity principles.

5.5 / MESSAGE PASSING 233

5.5 MESSAGE PASSING

When processes interact with one another, two fundamental requirements must
be satisfied: synchronization and communication. Processes need to be synchro-
nized to enforce mutual exclusion; cooperating processes may need to exchange
information. One approach to providing both of these functions is message passing.
Message passing has the further advantage that it lends itself to implementation in
distributed systems as well as in shared-memory multiprocessor and uniprocessor
systems.

Message-passing systems come in many forms. In this section, we provide a
general introduction that discusses features typically found in such systems. The
actual function of message passing is normally provided in the form of a pair of
primitives:

send (destination, message)
receive (source, message)

This is the minimum set of operations needed for processes to engage in mes-
sage passing. A process sends information in the form of a message to another proc-
ess designated by a destination. A process receives information by executing the
receive primitive, indicating the source and the message.

A number of design issues relating to message-passing systems are listed in
Table 5.5, and examined in the remainder of this section.

Table 5.5 Design Characteristics of Message Systems for Interprocess Communication
and Synchronization

Synchronization Format
Send Content
blocking Length
nonblocking fixed
Receive variable
blocking
nonblocking Queueing Discipline
test for arrival FIFO
Priority
Addressing
Direct
send
receive
explicit
implicit
Indirect
static
dynamic
ownership

234 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Synchronization

The communication of a message between two processes implies some level of syn-
chronization between the two: The receiver cannot receive a message until it has
been sent by another process. In addition, we need to specify what happens to a
process after it issues a send or receive primitive.

Consider the send primitive first. When a send primitive is executed in a
process, there are two possibilities: Either the sending process is blocked until the
message is received, or it is not. Similarly, when a process issues a receive primi-
tive, there are two possibilities:

1. If a message has previously been sent, the message is received and execution
continues.

2. If there is no waiting message, then either (a) the process is blocked until
a message arrives, or (b) the process continues to execute, abandoning the
attempt to receive.

Thus, both the sender and receiver can be blocking or nonblocking. Three
combinations are common, although any particular system will usually have only
one or two combinations implemented:

¢ Blocking send, blocking receive: Both the sender and receiver are blocked un-
til the message is delivered; this is sometimes referred to as a rendezvous. This
combination allows for tight synchronization between processes.

e Nonblocking send, blocking receive: Although the sender may continue on,
the receiver is blocked until the requested message arrives. This is probably
the most useful combination. It allows a process to send one or more messages
to a variety of destinations as quickly as possible. A process that must receive
a message before it can do useful work needs to be blocked until such a mes-
sage arrives. An example is a server process that exists to provide a service or
resource to other processes.

¢ Nonblocking send, nonblocking receive: Neither party is required to wait.

The nonblocking send is more natural for many concurrent programming
tasks. For example, if it is used to request an output operation, such as printing, it
allows the requesting process to issue the request in the form of a message and then
carry on. One potential danger of the nonblocking send is that an error could lead
to a situation in which a process repeatedly generates messages. Because there is no
blocking to discipline the process, these messages could consume system resources,
including processor time and buffer space, to the detriment of other processes and
the OS. Also, the nonblocking send places the burden on the programmer to deter-
mine that a message has been received: Processes must employ reply messages to
acknowledge receipt of a message.

For the receive primitive, the blocking version appears to be more natural
for many concurrent programming tasks. Generally, a process that requests a mes-
sage will need the expected information before proceeding. However, if a message
is lost, which can happen in a distributed system, or if a process fails before it sends
an anticipated message, a receiving process could be blocked indefinitely. This

5.5 / MESSAGE PASSING 235

problem can be solved by the use of the nonblocking receive. However, the dan-
ger of this approach is that if a message is sent after a process has already executed
a matching receive, the message will be lost. Other possible approaches are to
allow a process to test whether a message is waiting before issuing a receive and
allow a process to specify more than one source in a receive primitive. The latter
approach is useful if a process is waiting for messages from more than one source
and can proceed if any of these messages arrive.

Addressing

Clearly, it is necessary to have a way of specifying in the send primitive which pro-
cess is to receive the message. Similarly, most implementations allow a receiving
process to indicate the source of a message to be received.

The various schemes for specifying processes in send and receive primi-
tives fall into two categories: direct addressing and indirect addressing. With direct
addressing, the send primitive includes a specific identifier of the destination proc-
ess. The receive primitive can be handled in one of two ways. One possibility is
to require that the process explicitly designate a sending process. Thus, the proc-
ess must know ahead of time from which process a message is expected. This will
often be effective for cooperating concurrent processes. In other cases, however,
it is impossible to specify the anticipated source process. An example is a printer-
server process, which will accept a print request message from any other process.
For such applications, a more effective approach is the use of implicit addressing. In
this case, the source parameter of the receive primitive possesses a value returned
when the receive operation has been performed.

The other general approach is indirect addressing. In this case, messages are
not sent directly from sender to receiver but rather are sent to a shared data struc-
ture consisting of queues that can temporarily hold messages. Such queues are gen-
erally referred to as mailboxes. Thus, for two processes to communicate, one proc-
ess sends a message to the appropriate mailbox and the other process picks up the
message from the mailbox.

A strength of the use of indirect addressing is that, by decoupling the sender
and receiver, it allows for greater flexibility in the use of messages. The relationship
between senders and receivers can be one to one, many to one, one to many, or
many to many (Figure 5.18). A one-to-one relationship allows a private communi-
cations link to be set up between two processes. This insulates their interaction from
erroneous interference from other processes. A many-to-one relationship is use-
ful for client/server interaction; one process provides service to a number of other
processes. In this case, the mailbox is often referred to as a port. A one-to-many
relationship allows for one sender and multiple receivers; it is useful for applications
where a message or some information is to be broadcast to a set of processes. A
many-to-many relationship allows multiple server processes to provide concurrent
service to multiple clients.

The association of processes to mailboxes can be either static or dynamic.
Ports are often statically associated with a particular process; that is, the port is
created and assigned to the process permanently. Similarly, a one-to-one relation-
ship is typically defined statically and permanently. When there are many senders,

236 CHAPTER 5/ CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

&51>—> Mailbox | R Port ‘@

(a) One to one (b) Many to one

Mailbox

®—> Mailbox :

) G/
. 5

(c) One to many (d) Many to many

Figure 5.18 Indirect Process Communication

the association of a sender to a mailbox may occur dynamically. Primitives such as
connect and disconnect may be used for this purpose.

A related issue has to do with the ownership of a mailbox. In the case of a port,
it is typically owned by and created by the receiving process. Thus, when the process is
destroyed, the port is also destroyed. For the general mailbox case, the OS may offer
a create-mailbox service. Such mailboxes can be viewed either as being owned by the
creating process, in which case they terminate with the process, or as being owned by
the OS, in which case an explicit command will be required to destroy the mailbox.

Message Format

The format of the message depends on the objectives of the messaging facility and
whether the facility runs on a single computer or on a distributed system. For some
operating systems, designers have preferred short, fixed-length messages to mini-
mize processing and storage overhead. If a large amount of data is to be passed, the
data can be placed in a file and the message then simply references that file. A more
flexible approach is to allow variable-length messages.

Figure 5.19 shows a typical message format for operating systems that support
variable-length messages. The message is divided into two parts: a header, which
contains information about the message, and a body, which contains the actual con-
tents of the message. The header may contain an identification of the source and
intended destination of the message, a length field, and a type field to discriminate
among various types of messages. There may also be additional control information,

5.5 / MESSAGE PASSING 237

Message type

Destination ID

Header Source ID

Message length

Control information

Body Message contents

Figure 5.19 General Message
Format

such as a pointer field so that a linked list of messages can be created; a sequence
number, to keep track of the number and order of messages passed between source
and destination; and a priority field.

Queueing Discipline

The simplest queueing discipline is first-in-first-out, but this may not be sufficient
if some messages are more urgent than others. An alternative is to allow the speci-
fying of message priority, on the basis of message type or by designation by the
sender. Another alternative is to allow the receiver to inspect the message queue
and select which message to receive next.

Mutual Exclusion

Figure 5.20 shows one way in which message passing can be used to enforce mutual
exclusion (compare Figures 5.1, 5.2, and 5.6). We assume the use of the blocking
receive primitive and the nonblocking send primitive. A set of concurrent pro-
cesses share a mailbox, box, which can be used by all processes to send and receive.

/* program mutualexclusion */
const int n = /* number of process */
void P (int i)
{
message msg;
while (true) ({
receive (box, msg) ;
/* critical section */;
send (box, msg) ;
/* remainder */;
1
}
void main ()
{
create mailbox (box) ;
send (box, null) ;
parbegin (P(1), P(2),.., P(n));

Figure 5.20 Mutual Exclusion Using Messages

238 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

The mailbox is initialized to contain a single message with null content. A process
wishing to enter its critical section first attempts to receive a message. If the mailbox
is empty, then the process is blocked. Once a process has acquired the message,
it performs its critical section and then places the message back into the mailbox.
Thus, the message functions as a token that is passed from process to process.

The preceding solution assumes that if more than one process performs the
receive operation concurrently, then:

e If there is a message, it is delivered to only one process and the others are
blocked, or

e If the message queue is empty, all processes are blocked; when a message is
available, only one blocked process is activated and given the message.

These assumptions are true of virtually all message-passing facilities.

As an example of the use of message passing, Figure 5.21 is a solution to the
bounded-buffer producer/consumer problem. Using the basic mutual-exclusion
power of message passing, the problem could have been solved with an algorithmic
structure similar to that of Figure 5.13. Instead, the program of Figure 5.21 takes
advantage of the ability of message passing to be used to pass data in addition to
signals. Two mailboxes are used. As the producer generates data, it is sent as mes-
sages to the mailbox mayconsume. As long as there is at least one message in that
mailbox, the consumer can consume. Hence mayconsume serves as the buffer; the
data in the buffer are organized as a queue of messages. The “size” of the buffer is

const int
capacity = /* buffering capacity */ ;
null = /* empty message */ ;
int i;
void producer ()
{ message pmsg;
while (true) ({
receive (mayproduce,pmsg) ;
pmsg = produce () ;
send (mayconsume,pmsg) ;
1
}

void consumer ()
{ message cmsg;
while (true) ({
receive (mayconsume,cmsg) ;
consume (cmsg) ;
send (mayproduce,null) ;
1
}
void main()
{
create_mailbox (mayproduce) ;
create_mailbox (mayconsume) ;
for (int i1 = 1;i<= capacity;i++) send (mayproduce,null) ;
parbegin (producer, consumer) ;

}

Figure 5.21 A Solution to the Bounded-Buffer Producer/Consumer Problem Using Messages

5.6 / READERS/WRITERS PROBLEM 239

determined by the global variable capacity. Initially, the mailbox mayproduce
is filled with a number of null messages equal to the capacity of the buffer. The
number of messages in mayproduce shrinks with each production and grows with
each consumption.

This approach is quite flexible. There may be multiple producers and consum-
ers, as long as all have access to both mailboxes. The system may even be distrib-
uted, with all producer processes and the mayproduce mailbox at one site and all
the consumer processes and the mayconsume mailbox at another.

5.6 READERS/WRITERS PROBLEM

In dealing with the design of synchronization and concurrency mechanisms, it is
useful to be able to relate the problem at hand to known problems and to be able
to test any solution in terms of its ability to solve these known problems. In the
literature, several problems have assumed importance and appear frequently, both
because they are examples of common design problems and because of their edu-
cational value. One such problem is the producer/consumer problem, which has
already been explored. In this section, we look at another classic problem: the read-
ers/writers problem.

The readers/writers problem is defined as follows: There is a data area shared
among a number of processes. The data area could be a file, a block of main mem-
ory, or even a bank of processor registers. There are a number of processes that
only read the data area (readers) and a number that only write to the data area
(writers). The conditions that must be satisfied are as follows:

1. Any number of readers may simultaneously read the file.
2. Only one writer at a time may write to the file.

3. If a writer is writing to the file, no reader may read it.

Thus, readers are processes that are not required to exclude one another and
writers are processes that are required to exclude all other processes, readers and
writers alike.

Before proceeding, let us distinguish this problem from two others: the general
mutual exclusion problem and the producer/consumer problem. In the readers/writ-
ers problem readers do not also write to the data area, nor do writers read the data
area while writing. A more general case, which includes this case, is to allow any of
the processes to read or write the data area. In that case, we can declare any por-
tion of a process that accesses the data area to be a critical section and impose the
general mutual exclusion solution. The reason for being concerned with the more
restricted case is that more efficient solutions are possible for this case and that the
less efficient solutions to the general problem are unacceptably slow. For example,
suppose that the shared area is a library catalog. Ordinary users of the library read
the catalog to locate a book. One or more librarians are able to update the catalog.
In the general solution, every access to the catalog would be treated as a critical sec-
tion, and users would be forced to read the catalog one at a time. This would clearly
impose intolerable delays. At the same time, it is important to prevent writers from

240 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

interfering with each other and it is also required to prevent reading while writing is
in progress to prevent the access of inconsistent information.

Can the producer/consumer problem be considered simply a special case of
the readers/writers problem with a single writer (the producer) and a single reader
(the consumer)? The answer is no. The producer is not just a writer. It must read
queue pointers to determine where to write the next item, and it must determine if
the buffer is full. Similarly, the consumer is not just a reader, because it must adjust
the queue pointers to show that it has removed a unit from the buffer.

We now examine two solutions to the problem.

Readers Have Priority

Figure 5.22 is a solution using semaphores, showing one instance each of a reader
and a writer; the solution does not change for multiple readers and writers. The
writer process is simple. The semaphore wsem is used to enforce mutual exclusion.
As long as one writer is accessing the shared data area, no other writers and no
readers may access it. The reader process also makes use of wsem to enforce mutual
exclusion. However, to allow multiple readers, we require that, when there are no
readers reading, the first reader that attempts to read should wait on wsem. When

/* program readersandwriters */
int readcount;
semaphore x = 1,wsem = 1;
void reader ()
{
while (true){
semWait (x);
readcount++;
if (readcount == 1)
semWait (wsem) ;
semSignal (x) ;
READUNIT() ;
semWait (x);
readcount ;
if (readcount == 0)
semSignal (wsem) ;
semSignal (x) ;
}
}
void writer ()
{
while (true){
semWait (wsem) ;
WRITEUNIT () ;
semSignal (wsem) ;
}
}

void main ()

{

readcount = 0;
parbegin (reader,writer) ;

}

Figure 5.22 A Solution to the Readers/Writers Problem Using Semaphore: Readers Have
Priority

5.6 / READERS/WRITERS PROBLEM 241

there is already at least one reader reading, subsequent readers need not wait before
entering. The global variable readcount is used to keep track of the number of
readers, and the semaphore x is used to assure that readcount is updated properly.

Writers Have Priority

In the previous solution, readers have priority. Once a single reader has begun to
access the data area, it is possible for readers to retain control of the data area as
long as there is at least one reader in the act of reading. Therefore, writers are sub-
ject to starvation.

Figure 5.23 shows a solution that guarantees that no new readers are allowed
access to the data area once at least one writer has declared a desire to write. For

/* program readersandwriters */
int readcount,writecount;
void reader ()
{
while (true) {
semWait (z);
semWait (rsem) ;
semWait (x);
readcount++;
if (readcount == 1)
semWait (wsem) ;
semSignal (x);
semSignal (rsem) ;
semSignal (z);
READUNIT () ;
semWait (x);
readcount--;
if (readcount == 0) semSignal (wsem) ;
semSignal (x);
}
}
void writer ()
{
while (true) {
semWait (y);
writecount++;
if (writecount == 1)
semWait (rsem) ;
semSignal (y);
semWait (wsem) ;
WRITEUNIT () ;
semSignal (wsem) ;
semWait (y);
writecount;
if (writecount == 0) semSignal (rsem) ;
semSignal (y);
}
1
void main ()
{
readcount = writecount = 0;
parbegin (reader, writer) ;

}

Figure 5.23 A Solution to the Readers/Writers Problem Using Semaphore: Writers Have
Priority

242 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Table 5.6 State of the Process Queues for Program of Figure 5.23

Readers only in the system ° wsem set
° no queues

Writers only in the system e wsem and rsem set
® writers queue on wsem

Both readers and writers with read first wsem set by reader

rsem set by writer

all writers queue on wsem
one reader queues on rsem

other readers queue on z

Both readers and writers with write first wsem set by writer

rsem set by writer

writers queue on wsem
one reader queues on rsem

other readers queue on z

writers, the following semaphores and variables are added to the ones already
defined:

e A semaphore rsem that inhibits all readers while there is at least one writer
desiring access to the data area

e A variable writecount that controls the setting of rsem

e A semaphore y that controls the updating of writecount

For readers, one additional semaphore is needed. A long queue must not
be allowed to build up on rsem; otherwise writers will not be able to jump the
queue. Therefore, only one reader is allowed to queue on rsem, with any additional
readers queueing on semaphore z, immediately before waiting on rsem. Table 5.6
summarizes the possibilities.

An alternative solution, which gives writers priority and which is implemented
using message passing, is shown in Figure 5.24. In this case, there is a controller
process that has access to the shared data area. Other processes wishing to access
the data area send a request message to the controller, are granted access with an
“OK” reply message, and indicate completion of access with a “finished” message.
The controller is equipped with three mailboxes, one for each type of message that
it may receive.

The controller process services write request messages before read request
messages to give writers priority. In addition, mutual exclusion must be enforced.
To do this the variable count is used, which is initialized to some number greater
than the maximum possible number of readers. In this example, we use a value of
100. The action of the controller can be summarized as follows:

e If count > 0, then no writer is waiting and there may or may not be read-
ers active. Service all “finished” messages first to clear active readers. Then
service write requests and then read requests.

e If count = 0, then the only request outstanding is a write request. Allow the
writer to proceed and wait for a “finished” message.

5.7 / SUMMARY 243

void reader (int i)
{
message rmsg;
while (true) ({
rmsg = 1i;
send (readrequest, rmsg) ;
receive (mbox[i], rmsg);
READUNIT () ;
rmsg = 1i;
send (finished, rmsg) ;
}
}
void writer (int j)
{
message rmsg;
while (true)
rmsg = J;
send (writerequest, rmsg);
receive (mbox[j], rmsg);
WRITEUNIT () ;
rmsg = J;
send (finished, rmsg);

void controller ()
{
while (true)
{
if (count > 0) {
if (lempty (finished)) ({
receive (finished, msg);
count++;
}
else if (!empty (writerequest)) {
receive (writerequest, msg) ;
writer id = msg.id;
count = count - 100;
}
else if (!empty (readrequest)) {
receive (readrequest, msg) ;
count--;
send (msg.id, “OK”) ;

}

if (count == 0) {
send (writer id, “OK”);
receive (finished, msg);
count = 100;

}

while (count < 0) {
receive (finished, msg);
count++;

}

Figure 5.24 A Solution to the Readers/Writers Problem Using Message Passing

e If count < 0, then a writer has made a request and is being made to wait
to clear all active readers. Therefore, only “finished” messages should be

serviced.

5.7 SUMMARY

The central themes of modern operating systems are multiprogramming, multipro-
cessing, and distributed processing. Fundamental to these themes, and fundamen-
tal to the technology of OS design, is concurrency. When multiple processes are
executing concurrently, either actually in the case of a multiprocessor system or vir-
tually in the case of a single-processor multiprogramming system, issues of conflict

resolution and cooperation arise.

Concurrent processes may interact in a number of ways. Processes that are
unaware of each other may nevertheless compete for resources, such as processor
time or access to 1/0 devices. Processes may be indirectly aware of one another
because they share access to a common object, such as a block of main memory or
a file. Finally, processes may be directly aware of each other and cooperate by the
exchange of information. The key issues that arise in these interactions are mutual

exclusion and deadlock.

244 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Mutual exclusion is a condition in which there is a set of concurrent processes,
only one of which is able to access a given resource or perform a given function
at any time. Mutual exclusion techniques can be used to resolve conflicts, such as
competition for resources, and to synchronize processes so that they can coop-
erate. An example of the latter is the producer/consumer model, in which one
process is putting data into a buffer and one or more processes are extracting data
from that buffer.

One approach to supporting mutual exclusion involves the use of special-pur-
pose machine instructions. This approach reduces overhead but is still inefficient
because it uses busy waiting.

Another approach to supporting mutual exclusion is to provide features within
the OS. Two of the most common techniques are semaphores and message facili-
ties. Semaphores are used for signaling among processes and can be readily used to
enforce a mutual-exclusion discipline. Messages are useful for the enforcement of
mutual exclusion and also provide an effective means of interprocess communication.

5.8 RECOMMENDED READING

The misnamed Little Book of Semaphores (291 pages) [DOWNO8] provides numer-
ous examples of the uses of semaphores; available free online.

[ANDRS3] surveys many of the mechanisms described in this chapter.
[BENS82] provides a very clear and even entertaining discussion of concurrency,
mutual exclusion, semaphores, and other related topics. A more formal treatment,
expanded to include distributed systems, is contained in [BENO06]. [AXFOS88]
is another readable and useful treatment; it also contains a number of problems
with worked-out solutions. [RAYNS86] is a comprehensive and lucid collection of
algorithms for mutual exclusion, covering software (e.g., Dekker) and hardware
approaches, as well as semaphores and messages. [HOARS5] is a very readable
classic that presents a formal approach to defining sequential processes and concur-
rency. [LAMPS6] is a lengthy formal treatment of mutual exclusion. [RUDO90] is
a useful aid in understanding concurrency. [BACOO03] is a well-organized treatment
of concurrency. [BIRR89] provides a good practical introduction to programming
using concurrency. [BUHR95] is an exhaustive survey of monitors. [KANG98] is
an instructive analysis of 12 different scheduling policies for the readers/writers
problem.

ANDRS3 Andrews, G., and Schneider, F. “Concepts and Notations for Concurrent
Programming.” Computing Surveys, March 1983.

AXFO88 Axford, T. Concurrent Programming: Fundamental Techniques for Real-
Time and Parallel Software Design. New York: Wiley, 1988.

BACOO03 Bacon, J., and Harris, T. Operating Systems: Concurrent and Distributed
Software Design. Reading, MA: Addison-Wesley, 2003.

BENS82 Ben-Ari, M. Principles of Concurrent Programming. Englewood Cliffs, NJ:
Prentice Hall, 1982.

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 245

BENO06 Ben-Ari, M. Principles of Concurrent and Distributed Programming. Harlow,
England: Addison-Wesley, 2006.

BIRRS89 Birrell, A. An Introduction to Programming with Threads. SRC Research
Report 35, Compaq Systems Research Center, Palo Alto, CA, January 1989.
Available at http://www.research.compaq.com/SRC

BUHRY5 Buhr, P., and Fortier, M. “Monitor Classification.” ACM Computing
Surveys, March 1995.

DOWNO08 Downey, A. The Little Book of Semaphores. www.greenteapress.com
/semaphores/

HOARS5 Hoare, C. Communicating Sequential Processes. Englewood Cliffs, NJ:
Prentice-Hall, 1985.

KANGY98 Kang,S., and Lee, J. “Analysis and Solution of Non-Preemptive Policies for
Scheduling Readers and Writers.” Operating Systems Review, July 1998.

LAMP86 Lamport, L. “The Mutual Exclusion Problem.” Journal of the ACM, April
1986.

RAYNS86 Raynal, M. Algorithms for Mutual Exclusion. Cambridge, MA: MIT Press,
1986.

RUDO90 Rudolph, B. “Self-Assessment Procedure XXI: Concurrency.”
Communications of the ACM, May 1990.

5.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
atomic critical resource nonblocking
binary semaphore critical section race condition
blocking deadlock semaphore
busy waiting general semaphore spin waiting
concurrency message passing starvation
concurrent processes monitor strong semaphore
coroutine mutual exclusion weak semaphore
counting semaphore mutex

Review Questions

5.1 List four design issues for which the concept of concurrency is relevant.

5.2 What are three contexts in which concurrency arises?

5.3 What is the basic requirement for the execution of concurrent processes?

5.4 List three degrees of awareness between processes and briefly define each.

5.5 What is the distinction between competing processes and cooperating processes?

5.6 List the three control problems associated with competing processes and briefly de-
fine each.

5.7 List the requirements for mutual exclusion.
5.8 What operations can be performed on a semaphore?

http://www.research.compaq.com/SRC
www.greenteapress.com/semaphores/
www.greenteapress.com/semaphores/

246 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

5.9 What is the difference between binary and general semaphores?
5.10 What is the difference between strong and weak semaphores?
5.11 What is a monitor?
5.12 What is the distinction between blocking and nonblocking with respect to messages?
5.13 What conditions are generally associated with the readers/writers problem?
Problems
5.1 At the beginning of Section 5.1, it is stated that multiprogramming and multiprocess-
ing present the same problems, with respect to concurrency. This is true as far as it
goes. However, cite two differences in terms of concurrency between multiprogram-
ming and multiprocessing.
5.2 Processes and threads provide a powerful structuring tool for implementing programs

that would be much more complex as simple sequential programs. An earlier con-
struct that is instructive to examine is the coroutine. The purpose of this problem is to
introduce coroutines and compare them to processes. Consider this simple problem
from [CONW63]:

Read 80-column cards and print them on 125-character lines, with the following
changes. After every card image an extra blank is inserted, and every adjacent
pair of asterisks (**) on a card is replaced by the character.

a. Develop a solution to this problem as an ordinary sequential program. You
will find that the program is tricky to write. The interactions among the various
elements of the program are uneven because of the conversion from a length of
80 to 125; furthermore, the length of the card image, after conversion, will vary
depending on the number of double asterisk occurrences. One way to improve
clarity, and to minimize the potential for bugs, is to write the application as three
separate procedures. The first procedure reads in card images, pads each image
with a blank, and writes a stream of characters to a temporary file. After all of
the cards have been read, the second procedure reads the temporary file, does the
character substitution, and writes out a second temporary file. The third procedure
reads the stream of characters from the second temporary file and prints lines of
125 characters each.

b. The sequential solution is unattractive because of the overhead of I/O and tempo-
rary files. Conway proposed a new form of program structure, the coroutine, that
allows the application to be written as three programs connected by one-character
buffers (Figure 5.25). In a traditional procedure, there is a master/slave relation-
ship between the called and calling procedure. The calling procedure may execute
a call from any point in the procedure; the called procedure is begun at its entry
point and returns to the calling procedure at the point of call. The coroutine exhib-
its a more symmetric relationship. As each call is made, execution takes up from
the last active point in the called procedure. Because there is no sense in which
a calling procedure is “higher” than the called, there is no return. Rather, any co-
routine can pass control to any other coroutine with a resume command. The first
time a coroutine is invoked, it is “resumed” at its entry point. Subsequently, the co-
routine is reactivated at the point of its own last resume command. Note that only
one coroutine in a program can be in execution at one time and that the transition
points are explicitly defined in the code, so this is not an example of concurrent
processing. Explain the operation of the program in Figure 5.25.

c¢. The program does not address the termination condition. Assume that the I/O
routine READCARD returns the value true if it has placed an 80-character image
in inbuf; otherwise it returns false. Modify the program to include this contingency.
Note that the last printed line may therefore contain less than 125 characters.

d. Rewrite the solution as a set of three processes using semaphores.

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

247

char rs, sp;
char inbuf [80], outbuf[125] ;
void read()
{
while (true) {
READCARD (inbuf) ;
for (int i=0; i < 80; i++){
rs = inbuf [i];
RESUME squash
1
rs = “ “;
RESUME squash;
}
}
void print ()
{
while (true) {
for (int j = 0; j < 125; j++){
outbuf [j] = sp;
RESUME squash

}

OUTPUT (outbuf) ;

void squash/()

{

while (true) {
if (rs 1= “*7) {
sp = rs;
RESUME print;
}
elsef
RESUME read;
if (rs == “*7) {
sp = " "
RESUME print;
}
else {
sp = “*7;
RESUME print;
sp = rs;

RESUME print;
}
}

RESUME read;

Figure 5.25 An Application of Coroutines

5.3 Consider the following program:

P1: { P2:{
shared int x; shared int x;
x = 10; x = 10;
while (1) ({ while (1) {

X =x - 1; X =x - 1;

X =x + 1; X =X + 1;

if (x != 10) if (x!=10)
printf (“x is %d”,x) printf (“x is %d”,x)
} }
} }
} }

Note that the scheduler in a uniprocessor system would implement pseudo-parallel
execution of these two concurrent processes by interleaving their instructions, without
restriction on the order of the interleaving.

a. Show a sequence (i.e., trace the sequence of interleavings of statements) such that
the statement “x is 10” is printed.

b. Show a sequence such that the statement “x is 8” is printed. You should remember
that the increment/decrements at the source language level are not done atomi-
cally, that is, the assembly language code:

LD R0,X /* load RO from memory location x */

INCR RO
STO

/* increment RO */
RO,X /* store the incremented value back in X */

implements the single C increment instruction (x = x + 1).

248 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

5.4 Consider the following program:

const int n = 50;
int tally;
void total()
{
int count;
for (count = 1; count<= n; count++) {
tally++;
}
}

void main()

{
tally = 0;
parbegin (total (), total ());
write (tally);

}

a. Determine the proper lower bound and upper bound on the final value of the
shared variable fally output by this concurrent program. Assume processes can
execute at any relative speed and that a value can only be incremented after it has
been loaded into a register by a separate machine instruction.

b. Suppose that an arbitrary number of these processes are permitted to execute in
parallel under the assumptions of part (a). What effect will this modification have
on the range of final values of tally?

5.5 Isbusy waiting always less efficient (in terms of using processor time) than a blocking
wait? Explain.
5.6 Consider the following program:

boolean blocked [2];
int turn;
void P (int id)

while (true) ({
blocked[id] = true;
while (turn != id)
while (blocked[1-1d])
/* do nothing */;
turn = id;
!
/* critical section */
blocked[id] = false;
/* remainder */
}
1

void main ()

blocked[0] = false;
blocked[1] false;
turn = 0;

parbegin (P(0), P(1));

This software solution to the mutual exclusion problem for two processes is proposed
in [HYMAG6]. Find a counterexample that demonstrates that this solution is incor-
rect. It is interesting to note that even the Communications of the ACM was fooled
on this one.

5.7

5.8

5.9

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 249

A software approach to mutual exclusion is Lamport’s bakery algorithm [LAMP74],
so called because it is based on the practice in bakeries and other shops in which every
customer receives a numbered ticket on arrival, allowing each to be served in turn.
The algorithm is as follows:

boolean choosing[n] ;
int number [n];
while (true) ({

choosing[i] = true;
number [i] = 1 + getmax (number[], n);
choosing[i] = false;
for (int j = 0; j < n; j++){
while (choosingl([j]) { };
while ((number([j] != 0) && (number[j],j) < (number([i],i)) { };

}

/* critical section */;
number [i] = 0;
/* remainder */;

}

The arrays choosing and number are initialized to false and 0, respectively. The ith
element of each array may be read and written by process i but only read by other
processes. The notation (a, b) < (c, d) is defined as:

(a<c)or(a=candb<d)

a. Describe the algorithm in words.

b. Show that this algorithm avoids deadlock.

c. Show that it enforces mutual exclusion.

Now consider a version of the bakery algorithm without the variable choosing.
Then we have

]

1 int number [n
2 while (true)
]

(

3 number [i 1 + getmax (number[], n);

4 for (int j = 0; j < n; j++){

5 while ((number([j] != 0) && (number[j]l,j) < (number[i],i)) { };
6 1

7 /* critical section */;

8 number [i] = 0;

9 /* remainder */;

10 }

Does this version violate mutual exclusion? Explain why or why not.
Consider the following program which provides a software approach to mutual
exclusion:

integer array control [1 :NJ; integer k

where 1 <k <N, and each element of “control” is either 0, 1,

or 2. All elements of “control” are initially zero; the initial value

of k is immaterial.

The program of the ith process (1 <i<N) is

begin integer j;

LO: control [1i] := 1;
LI: for j:=k step 1 until N, 1 step 1 until k do
begin

if j = i then goto L2;

250 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

510

511

512

if control [j] # O then goto L1

end;
L2: control [i] := 2;
for j := 1 step 1 until N do

if j # i and control [j] = 2 then goto LO;
L3: if control [k] # 0 and k # 1 then goto LO;

L4: k := 1i;
critical section;
L5: for j := k step 1 until N, 1 step 1 until k do
if j # k and control [j] # 0 then
begin
k := 3J;
goto L6
end;
L6: control [i] := 0;
L7: remainder of cycle;
goto LO;
end

This is referred to as the Eisenberg-McGuire algorithm. Explain its operation and its
key features.

Consider the first instance of the statement bolt = 0 in Figure 5.2b.

a. Achieve the same result using the exchange instruction.
b. Which method is preferable?

When a special machine instruction is used to provide mutual exclusion in the fash-
ion of Figure 5.2, there is no control over how long a process must wait before being
granted access to its critical section. Devise an algorithm that uses the compare&swap
instruction but that guarantees that any process waiting to enter its critical section will
do so within n — 1 turns, where # is the number of processes that may require access
to the critical section and a “turn” is an event consisting of one process leaving the
critical section and another process being granted access.

Consider the following definition of semaphores:

void semWait (s)

{
if (s.count > 0) {
s.count--;
else {
place this process in s.queue;
block;
}
}
void semSignal (s)
{

if (there is at least one process blocked on
semaphore s) {
remove a process P from s.queue;
place process P on ready list;

else
s.count++;

513

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 251

Compare this set of definitions with that of Figure 5.3. Note one difference: With
the preceding definition, a semaphore can never take on a negative value. Is there
any difference in the effect of the two sets of definitions when used in programs?
That is, could you substitute one set for the other without altering the meaning of the
program?

Consider a sharable resource with the following characteristics: (1) As long as there
are fewer than three processes using the resource, new processes can start using it
right away. (2) Once there are three process using the resource, all three must leave
before any new processes can begin using it. We realize that counters are needed to
keep track of how many processes are waiting and active, and that these counters are
themselves shared resources that must be protected with mutual exclusion. So we
might create the following solution:

semaphore mutex = 1, block

int active = 0, waiting =
boolean must_wait = false;

1

2

3

4

5 semWait (mutex) ;
6 if (must_wait) {
7

8

9

1

/* share variables: semaphores,
/* counters, and
/* state information

/* Enter the mutual exclusion
/* If there are (or were) 3, then

*/
*/
*/

*/
*/

++waiting; /* we must wait, but we must leave */

semSignal (mutex) ; /* the mutual exclusion first */

semWait (block) ; /* Wait for all current users to depart */

0 SemWait (mutex) ; /* Reenter the mutual exclusion */

11 --waiting; /* and update the waiting count */
12}

13 ++active;

14 must_wait = active == 3;
15 semSignal (mutex) ;

16

17 /* critical section */
18

/* Update active count, and remember
/* if the count reached 3
/* Leave the mutual exclusion

*/
*/
*/

19 semWait (mutex) ; /* Enter mutual exclusion */
20 --active; /* and update the active count */
21 if(active == 0) { /* Last one to leave? */
22 int n;

23 if (waiting < 3) n = waiting;

24 else n = 3; /* If so, unblock up to 3 */
25 while(n > 0) { /* waiting processes */
26 semSignal (block) ;

27 --n;

28 }

29 must_wait = false; /* All active processes have left */
30 }

31 semSignal (mutex) ; /* Leave the mutual exclusion */

The solution appears to do everything right: All accesses to the shared variables are
protected by mutual exclusion, processes do not block themselves while in the mutual
exclusion, new processes are prevented from using the resource if there are (or
were) three active users, and the last process to depart unblocks up to three waiting
processes.

a. The program is nevertheless incorrect. Explain why.
b. Suppose we change the if in line 6 to a while. Does this solve any problem in the
program? Do any difficulties remain?

252 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

5.14

5.15

Now consider this correct solution to the preceding problem:

W g oUW N R

e}

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

a.
b.

C.

semaphore mutex = 1,

block = 0;

/* share variables: semaphores,

int active = 0, waiting = 0; /* counters, and
boolean must _wait = false; /* state information
semWait (mutex) ; /* Enter the mutual exclusion
if (must_wait) { /* If there are (or were) 3, then
++waiting; /* we must wait, but we must leave
semSignal (mutex) ; /* the mutual exclusion first
semWait (block) ; /* Wait for all current users to depart
} else {
++active; /* Update active count, and
must_wait = active == 3; /* remember if the count reached 3

semSignal (mutex) ;

/* Leave mutual exclusion

/* critical section */

semWait (mutex) ;

--active;

if (active == 0) {
int n;
if (waiting < 3)

else n = 3;

waiting -= n;
active = n;
while(n > 0) {

semSignal (block) ;

--n;

}

must_wait =

}

semSignal (mutex) ;

n =

active == 3;

/* Enter mutual exclusion
/* and update the active count
/* Last one to leave?

waiting;
/* 1f so, see how many processes to unblock
/* Deduct this
/* and set active to this number

/*

number from waiting count

Now unblock the processes
/* one by one

/* Remember if the count is 3

/* Leave the mutual exclusion

Explain how this program works and why it is correct.
This solution does not completely prevent newly arriving processes from cutting
in line but it does make it less likely. Give an example of cutting in line.
This program is an example of a general design pattern that is a uniform way to
implement solutions to many concurrency problems using semaphores. It has been
referred to as the I’ll Do It For You pattern. Describe the pattern.

Now consider another correct solution to the preceding problem:

0 g oUW N R

[e = S e}
w N R o

semaphore mutex = 1, block = 0; /* share variables: semaphores,
int active = 0, waiting = 0; /* counters, and
boolean must_wait = false; /* state information

semWait (mutex) ;

if (must_wait) {
++waiting;
semSignal (mutex) ;
semWait (block) ;
--waiting;

}

++active;

active

must_wait =

/* Enter the mutual exclusion
/* If there are 3, then

/* we must wait, but we must leave

(or were)

/* the mutual exclusion first
/* Wait for all current users to depart
/* We’ve got the mutual exclusion; update count

/* Update active count, and remember
3; /* if the count reached 3

*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/

*/

*/

*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/

5.16

5.17

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 253

14 if(waiting > 0 && !must_wait) /* If there are others waiting */
15 semSignal (block) ; ; /* and we don’t yet have 3 active, */
16 /* unblock a waiting process */
17 else semSignal (mutex) ; /* otherwise open the mutual exclusion */
18

19 /* critical section */

20

21 semWait (mutex) ; /* Enter mutual exclusion */
22 --active; /* and update the active count */
23 if (active == 0) /* If last one to leave? */
24 must_wait = false; /* set up to let new processes enter */
25 if (waiting == 0 && !must_ wait) /* 1f there are others waiting */
26 semSignal (block) ; ; /* and we don’t have 3 active, */
27 /* unblock a waiting process */
28 else semSignal (mutex) ; /* otherwise open the mutual exclusion */

a. Explain how this program works and why it is correct.

b. Does this solution differ from the preceding one in terms of the number of pro-
cesses that can be unblocked at a time? Explain.

c. This program is an example of a general design pattern that is a uniform way to
implement solutions to many concurrency problems using semaphores. It has been
referred to as the Pass The Baton pattern. Describe the pattern.

It should be possible to implement general semaphores using binary semaphores. We

can use the operations semWaitB and semSignalB and two binary semaphores,

delay and mutex. Consider the following:

void semWait (semaphore s)

{
semWaitB (mutex) ;
s--;
if (s < 0) {
semSignalB (mutex) ;
semWaitB (delay) ;
}
else SemsignalB (mutex) ;
}
void semSignal (semaphore s);
{
semWaitB (mutex) ;
S++;
if (s <= 0)

semSignalB (delay) ;
semSignalB (mutex) ;

}

Initially, s is set to the desired semaphore value. Each semWait operation decrements
s,and each semSignal operation increments s. The binary semaphore mutex, which
is initialized to 1, assures that there is mutual exclusion for the updating of s. The bi-
nary semaphore delay, which is initialized to 0, is used to block processes.

There is a flaw in the preceding program. Demonstrate the flaw and propose a
change that will fix it. Hint: Suppose two processes each call semWait (s) when s is
initially 0, and after the first has just performed semSignalB (mutex) but not per-
formed semWaitB (delay), the second call to semWait (s) proceeds to the same
point. All that you need to do is move a single line of the program.

In 1978, Dijkstra put forward the conjecture that there was no solution to the mutual
exclusion problem avoiding starvation, applicable to an unknown but finite number
of processes, using a finite number of weak semaphores. In 1979, J. M. Morris refuted

254 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

5.18

5.19

5.20

this conjecture by publishing an algorithm using three weak semaphores. The behavior
of the algorithm can be described as follows: If one or several process are waiting in a
semWait (S) operation and another process is executing semSignal (S), the value
of the semaphore S is not modified and one of the waiting processes is unblocked inde-
pendently of semWait (S).Apart from the three semaphores, the algorithm uses two
nonnegative integer variables as counters of the number of processes in certain sections
of the algorithm. Thus, semaphores A and B are initialized to 1, while semaphore M
and counters NA and NM are initialized to 0. The mutual exclusion semaphore B pro-
tects access to the shared variable NA. A process attempting to enter its critical section
must cross two barriers represented by semaphores A and M. Counters NA and NM,
respectively, contain the number of processes ready to cross barrier A and those having
already crossed barrier A but not yet barrier M. In the second part of the protocol, the
NM processes blocked at M will enter their critical sections one by one, using a cascade
technique similar to that used in the first part. Define an algorithm that conforms to this
description.

The following problem was once used on an exam:

Jurassic Park consists of a dinosaur museum and a park for safari riding. There
are m passengers and n single-passenger cars. Passengers wander around the
museum for a while, then line up to take a ride in a safari car. When a car is
available, it loads the one passenger it can hold and rides around the park for a
random amount of time. If the » cars are all out riding passengers around, then
a passenger who wants to ride waits; if a car is ready to load but there are no
waiting passengers, then the car waits. Use semaphores to synchronize the m
passenger processes and the 7 car processes.

The following skeleton code was found on a scrap of paper on the floor of the exam
room. Grade it for correctness. Ignore syntax and missing variable declarations.
Remember that P and V correspond to semWait and semSignal.

resource Jurassic_Park()
sem car_avail := 0, car_taken := 0, car_filled := 0, passenger_released := 0
process passenger(i := 1 to num_passengers)
do true -> nap(int(random(1000*wander_time)))
P(car_avail); V(car_taken); P(car_filled)
P(passenger_released)
od
end passenger

process car(j := 1 to num_cars)
do true -> V(car_avail); P(car_taken); V(car_filled)
nap(int(random(1000*ride_time)))
V(passenger_released)
od
end car
end Jurassic_Park

In the commentary on Figure 5.9 and Table 5.4, it was stated that “it would not do
simply to move the conditional statement inside the critical section (controlled by s)
of the consumer because this could lead to deadlock.” Demonstrate this with a table
similar to Table 5.4.

Consider the solution to the infinite-buffer producer/consumer problem defined in
Figure 5.10. Suppose we have the (common) case in which the producer and consumer
are running at roughly the same speed. The scenario could be:

Producer: append; semSignal; produce; ... ; append; semSignal; produce; ...
Consumer: consume; ... ; take; semWait; consume; ... ; take; semWait;...

5.21

5.22

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 255

The producer always manages to append a new element to the buffer and signal
during the consumption of the previous element by the consumer. The producer is
always appending to an empty buffer and the consumer is always taking the sole item
in the buffer. Although the consumer never blocks on the semaphore, a large number
of calls to the semaphore mechanism is made, creating considerable overhead.
Construct a new program that will be more efficient under these circumstances. Hints:
Allow n to have the value —1, which is to mean that not only is the buffer empty but
that the consumer has detected this fact and is going to block until the producer sup-
plies fresh data. The solution does not require the use of the local variable m found
in Figure 5.10.
Consider Figure 5.13. Would the meaning of the program change if the following were
interchanged?
a. semWait (e);semWait (s)
b. semSignal (s);semSignal (n)
c. semWait (n);semWait (s)
d. semSignal (s);semSignal (e)
The following pseudocode is a correct implementation of the producer/consumer
problem with a bounded buffer:

item[3] buffer; // initially empty
semaphore empty; // initialized to +3
semaphore full; // initialized to 0
binary semaphore mutex; // initialized to 1
void producer () void consumer ()
{ {
while (true) { while (true)
item = produce() ; cl: wait (full) ;
pl: wait (empty) ; / wait (mutex) ;
/ wait (mutex) ; c2: item = take();
p2: append (item) ; \ signal (mutex) ;
\ signal (mutex) ; c3: signal (empty) ;
p3: signal (full) ; consume (item) ;
} }
} }

Labels p1, p2, p3 and cl, c2, c3 refer to the lines of code shown above (p2 and c2 each
cover three lines of code). Semaphores empty and full are linear semaphores that can
take unbounded negative and positive values. There are multiple producer processes,
referred to as Pa, Pb, Pc, etc., and multiple consumer processes, referred to as Ca, Cb,
Cc, etc. Each semaphore maintains a FIFO (first-in-first-out) queue of blocked pro-
cesses. In the scheduling chart below, each line represents the state of the buffer and
semaphores after the scheduled execution has occurred. To simplify, we assume that
scheduling is such that processes are never interrupted while executing a given por-
tion of code p1, or p2, ..., or c3. Your task is to complete the following chart.

Scheduled full’s State and empty’s State
Step of Execution Queue Buffer and Queue
Initialization full =0 000 empty = +3
Ca executes cl full = -1 (Ca) 000 empty = +3
Cb executes cl full = -2 (Ca, Cb) 000 empty = +3

256 CHAPTER 5/ CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

5.23

5.24

Scheduled full’s State and empty’s State
Step of Execution Queue Buffer and Queue
Pa executes pl full = -2 (Ca, Cb) 000 empty = +2
Pa executes p2 full = -2 (Ca, Cb) X 00 empty = +2
Pa executes p3 full =1 (Cb) Ca X 00 empty = +2
Ca executes c2 full = -1 (Cb) 000 empty = +2
Ca executes c3 full = -1 (Cb) 000 empty = +3
Pb executes pl full = empty =
Pa executes pl full = empty =
Pa executes __ full = empty =
Pb executes __ full = empty =
Pb executes __ full = empty =
Pc executes pl full = empty =
Cb executes __ full = empty =
Pc executes __ full = empty =
Cb executes __ full = empty =
Pa executes __ full = empty =
Pb executes p1-p3 full = empty =
Pc executes __ full = empty =
Pa executes pl full = empty =
Pd executes pl full = empty =
Ca executes cl-c3 full = empty =
Pa executes __ full = empty =
Cc executes cl-c2 full = empty =
Pa executes __ full = empty =
Cc executes c3 full = empty =
Pd executes p2-p3 full = empty =

This problem demonstrates the use of semaphores to coordinate three types of pro-
cesses.® Santa Claus sleeps in his shop at the North Pole and can only be wakened by
either (1) all nine reindeer being back from their vacation in the South Pacific, or (2)
some of the elves having difficulties making toys; to allow Santa to get some sleep,
the elves can only wake him when three of them have problems. When three elves
are having their problems solved, any other elves wishing to visit Santa must wait for
those elves to return. If Santa wakes up to find three elves waiting at his shop’s door,
along with the last reindeer having come back from the tropics, Santa has decided that
the elves can wait until after Christmas, because it is more important to get his sleigh
ready. (It is assumed that the reindeer do not want to leave the tropics, and therefore
they stay there until the last possible moment.) The last reindeer to arrive must get
Santa while the others wait in a warming hut before being harnessed to the sleigh.
Solve this problem using semaphores.
Show that message passing and semaphores have equivalent functionality by
a. Implementing message passing using semaphores. Hint: Make use of a shared
buffer area to hold mailboxes, each one consisting of an array of message slots.
b. Implementing a semaphore using message passing. Hint: Introduce a separate
synchronization process.

8T am grateful to John Trono of St. Michael’s College in Vermont for supplying this problem.

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 257

int readcount;

Semaphore mutex, wrt;

// Writer

semWait (wrt) ;
/* Writing performed*/
semSignal (wrt) ;

5.25 Explain what is the problem with this implementation of the one-writer many-readers
problem?

// shared and initialized to 0

// shared and initialized to 1;

// Readers

semWait (mutex) ;
readcount := readcount
if readcount == 1 then
semSignal (mutex) ;
/*reading performed*/
semWait (mutex) ;
readcount := readcount
if readcount == 0 then

semSignal (mutex) ;

+ 1;
semWait (wrt) ;

Up (wrt) ;

CHAPTER

CONCURRENCY: DEADLOCK
AND STARVATION

6.1 Principles of Deadlock
Reusable Resources
Consumable Resources
Resource Allocation Graphs
The Conditions for Deadlock

6.2 Deadlock Prevention
Mutual Exclusion
Hold and Wait
No Preemption
Circular Wait

6.3 Deadlock Avoidance
Process Initiation Denial
Resource Allocation Denial

6.4 Deadlock Detection
Deadlock Detection Algorithm
Recovery

6.5 An Integrated Deadlock Strategy

6.6 Dining Philosophers Problem
Solution Using Semaphores
Solution Using a Monitor

6.7 UNIX Concurrency Mechanisms

6.8 Linux Kernel Concurrency Mechanisms
6.9 Solaris Thread Synchronization Primitives
6.10 Windows 7 Concurrency Mechanisms
6.11 Summary

6.12 Recommended Reading

6.13 Key Terms, Review Questions, and Problems

258

6.1 / PRINCIPLES OF DEADLOCK 259

When two trains approach each other at a crossing, both shall come
to a full stop and neither shall start up again until the other has gone.
STATUTE PASSED BY THE KANSAS STATE LEGISLATURE, EARLY IN THE 20TH CENTURY

— A TREASURY OF RAILROAD FOLKLORE,
B. A. BotkiN AND ALVIN F. HARLOW

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

e List and explain the conditions for deadlock.

¢ Define deadlock prevention and describe deadlock prevention strategies
related to each of the conditions for deadlock.

¢ Explain the difference between deadlock prevention and deadlock avoidance.
e Understand two approaches to deadlock avoidance.

e Explain the fundamental difference in approach between deadlock detection
and deadlock prevention or avoidance.

e Understand how an integrated deadlock strategy can be designed.
e Analyze the dining philosophers problem.

e Explain the concurrency and synchronization methods used in UNIX, Linux,
Solaris, and Windows 7.

This chapter examines two problems that plague all efforts to support concurrent
processing: deadlock and starvation. We begin with a discussion of the underlying
principles of deadlock and the related problem of starvation. Then we examine
the three common approaches to dealing with deadlock: prevention, detection,
and avoidance. We then look at one of the classic problems used to illustrate
both synchronization and deadlock issues: the dining philosophers problem.

As with Chapter 5, the discussion in this chapter is limited to a consideration
of concurrency and deadlock on a single system. Measures to deal with distributed
deadlock problems are assessed in Chapter 18. An animation illustrating deadlock
is available online. Click on the rotating globe at WilliamStallings.com/OS/OS7e.
html for access.

6.1 PRINCIPLES OF DEADLOCK

Deadlock can be defined as the permanent blocking of a set of processes that either
compete for system resources or communicate with each other. A set of processes
is deadlocked when each process in the set is blocked awaiting an event (typically
the freeing up of some requested resource) that can only be triggered by another
blocked process in the set. Deadlock is permanent because none of the events is
ever triggered. Unlike other problems in concurrent process management, there is
no efficient solution in the general case.

260 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

e

¢ a
[
| ol
I=
|
|
i

(a) Deadlock possible (b) Deadlock

Figure 6.1 Illustration of Deadlock

All deadlocks involve conflicting needs for resources by two or more proc-
esses. A common example is the traffic deadlock. Figure 6.1a shows a situation in
which four cars have arrived at a four-way stop intersection at approximately the
same time. The four quadrants of the intersection are the resources over which con-
trol is needed. In particular, if all four cars wish to go straight through the intersec-
tion, the resource requirements are as follows:

e Car 1, traveling north, needs quadrants a and b.
e Car 2 needs quadrants b and c.
e Car 3 needs quadrants c and d.

e Car 4 needs quadrants d and a.

The rule of the road in the United States is that a car at a four-way stop should
defer to a car immediately to its right. This rule works if there are only two or three
cars at the intersection. For example, if only the northbound and westbound cars
arrive at the intersection, the northbound car will wait and the westbound car pro-
ceeds. However, if all four cars arrive at about the same time and all four follow the
rule, each will refrain from entering the intersection. This causes a potential deadlock.
It is only a potential deadlock, because the necessary resources are available for any
of the cars to proceed. If one car eventually chooses to proceed, it can do so.

However, if all four cars ignore the rules and proceed (cautiously) into the
intersection at the same time, then each car seizes one resource (one quadrant) but
cannot proceed because the required second resource has already been seized by
another car. This is an actual deadlock.

Let us now look at a depiction of deadlock involving processes and com-
puter resources. Figure 6.2 (based on one in [BACOO03]), which we refer to as a
joint progress diagram, illustrates the progress of two processes competing for two

6.1 / PRINCIPLES OF DEADLOCK 261

Progress
of Q
2
Release
A
Pand Q
A want A
. Release
Required
B
Get A
B 3 | Deadlock Pand Q
Required inevitable want B
5
Get B
4
6
Progress
i Get A GetB Release A Release B of P
,A = Both P and Q want resource A y
A
= Both P and Q want resource B Required v

D = Deadlock-inevitable region

—

B Required

= Possible progress path of P and Q.

Horizontal portion of path indicates P is executing and Q is waiting.
Vertical portion of path indicates Q is executing and P is waiting.

Figure 6.2 Example of Deadlock

resources. Each process needs exclusive use of both resources for a certain period of
time. Two processes, P and Q, have the following general form:

Process P
LN N

Get A

L

Get B

LN N
Release A
L

Release B

Process Q
L N)

Get B

L)

Get A

L N)
Release B
L)

Release A

In Figure 6.2, the x-axis represents progress in the execution of P and the y-axis
represents progress in the execution of Q. The joint progress of the two processes
is therefore represented by a path that progresses from the origin in a northeasterly
direction. For a uniprocessor system, only one process at a time may execute, and
the path consists of alternating horizontal and vertical segments, with a horizontal

262 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

segment representing a period when P executes and Q waits and a vertical segment
representing a period when Q executes and P waits. The figure indicates areas in
which both P and Q require resource A (upward slanted lines); both P and Q require
resource B (downward slanted lines); and both P and Q require both resources.
Because we assume that each process requires exclusive control of any resource,
these are all forbidden regions; that is, it is impossible for any path representing the
joint execution progress of P and Q to enter these regions.

The figure shows six different execution paths. These can be summarized as
follows:

1. Qacquires B and then A and then releases B and A. When P resumes execution,
it will be able to acquire both resources.

2. Q acquires B and then A. P executes and blocks on a request for A. Q releases
B and A. When P resumes execution, it will be able to acquire both resources.

3. Q acquires B and then P acquires A. Deadlock is inevitable, because as execution
proceeds, Q will block on A and P will block on B.

4. P acquires A and then Q acquires B. Deadlock is inevitable, because as execu-
tion proceeds, Q will block on A and P will block on B.

5. P acquires A and then B. Q executes and blocks on a request for B. P releases
A and B. When Q resumes execution, it will be able to acquire both resources.

6. Pacquires A and then B and then releases A and B. When Q resumes execution,
it will be able to acquire both resources.

The gray-shaded area of Figure 6.2, which can be referred to as a fatal region,
applies to the commentary on paths 3 and 4. If an execution path enters this fatal
region, then deadlock is inevitable. Note that the existence of a fatal region depends
on the logic of the two processes. However, deadlock is only inevitable if the joint
progress of the two processes creates a path that enters the fatal region.

Whether or not deadlock occurs depends on both the dynamics of the execu-
tion and on the details of the application. For example, suppose that P does not need
both resources at the same time so that the two processes have the following form:

Process P Process Q
o0 0 o0 0

Get A Get B

LN N LN)
Release A Get A

o0 0 o0 0

Get B Release B
LN N L)
Release B Release A
LN N o0 0

This situation is reflected in Figure 6.3. Some thought should convince you that
regardless of the relative timing of the two processes, deadlock cannot occur.

As shown, the joint progress diagram can be used to record the execution his-
tory of two processes that share resources. In cases where more than two processes

6.1 / PRINCIPLES OF DEADLOCK 263

Progress
of Q
1 2 3
Release
A
4
A Rel P and
Required ¢ gase w?ilrllt S
Pand Q
GetA want B
B
Required
5
Get B
6
Progress
GetA Release A GetB Release B of P
%{_/ %(_/
A Required B Required

¥/ = Both P and Q want resource A

J = : . S ——> = Possible progress path of P and Q.
Both Pand Q want resource B Horizontal portion of path indicates P is executing and Q is waiting.

Vertical portion of path indicates Q is executing and P is waiting.

Figure 6.3 Example of No Deadlock [BACOO03]

may compete for the same resource, a higher-dimensional diagram would be
required. The principles concerning fatal regions and deadlock would remain
the same.

Reusable Resources

Two general categories of resources can be distinguished: reusable and consumable.
A reusable resource is one that can be safely used by only one process at a time and
is not depleted by that use. Processes obtain resource units that they later release
for reuse by other processes. Examples of reusable resources include processors;
I/O channels; main and secondary memory; devices; and data structures such as
files, databases, and semaphores.

As an example of deadlock involving reusable resources, consider two
processes that compete for exclusive access to a disk file D and a tape drive T. The
programs engage in the operations depicted in Figure 6.4. Deadlock occurs if each
process holds one resource and requests the other. For example, deadlock occurs
if the multiprogramming system interleaves the execution of the two processes as
follows:

Po P1 90 91 P2 92

264 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

Step Process P Action Step Process Q Action
Po Request (D) do Request (T)

P1 Lock (D) qi Lock (T)

P2 Request (T) qz Request (D)

P3 Lock (T) q3 Lock (D)

P4 Perform function q4 Perform function
Ps Unlock (D) gs Unlock (T)

Pe Unlock (T) de Unlock (D)

Figure 6.4 Example of Two Processes Competing for Reusable Resources

It may appear that this is a programming error rather than a problem for the OS
designer. However, we have seen that concurrent program design is challenging.
Such deadlocks do occur, and the cause is often embedded in complex program
logic, making detection difficult. One strategy for dealing with such a deadlock is
to impose system design constraints concerning the order in which resources can be
requested.

Another example of deadlock with a reusable resource has to do with requests
for main memory. Suppose the space available for allocation is 200 Kbytes, and the
following sequence of requests occurs:

P1 P2
Request 80 Kbytes; Request 70 Kbytes;
Request 60 Kbytes; Request 80 Kbytes;

Deadlock occurs if both processes progress to their second request. If the
amount of memory to be requested is not known ahead of time, it is difficult to deal
with this type of deadlock by means of system design constraints. The best way to
deal with this particular problem is, in effect, to eliminate the possibility by using
virtual memory, which is discussed in Chapter 8.

Consumable Resources

A consumable resource is one that can be created (produced) and destroyed (con-
sumed). Typically, there is no limit on the number of consumable resources of a
particular type. An unblocked producing process may create any number of such
resources. When a resource is acquired by a consuming process, the resource ceases
to exist. Examples of consumable resources are interrupts, signals, messages, and
information in I/O buffers.

6.1 / PRINCIPLES OF DEADLOCK 265

As an example of deadlock involving consumable resources, consider the
following pair of processes, in which each process attempts to receive a message
from the other process and then send a message to the other process:

P1

Receive (P2);

Send (P2, M1);

P2

Receive (P1);

Send (P1, M2);

Deadlock occurs if the Receive is blocking (i.e., the receiving process is
blocked until the message is received). Once again, a design error is the cause of
the deadlock. Such errors may be quite subtle and difficult to detect. Furthermore,
it may take a rare combination of events to cause the deadlock; thus a program

Table 6.1 Summary of Deadlock Detection, Prevention, and Avoidance Approaches for Operating
Systems [ISLOS80]

Resource
Allocation Different
Approach | Policy Schemes Major Advantages Major Disadvantages
Requesting all | ® Works well for processes | e Inefficient
resources at that perform a single e Delays process initiation
once burst of activity e Future resource require-
* No preemption necessary ments must be known by
processes
Prevention | Conservative; Preemption e Convenient when ® Preempts more often
undercommits applied to resources than necessary
resources whose state can be saved
and restored easily
Resource e Feasible to enforce via e Disallows incremental
ordering compile-time checks resource requests
e Needs no run-time com-
putation since problem is
solved in system design
Avoidance | Midway Manipulate to | ® No preemption e Future resource require-
between that find at least necessary ments must be known
of detection one safe path by OS
and prevention e Processes can be blocked
for long periods
Detection Very liberal; Invoke peri- e Never delays process e Inherent preemption
requested odically to initiation losses
resources are test for e Facilitates online
granted where deadlock handling
possible

266 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

could be in use for a considerable period of time, even years, before the deadlock
actually occurs.

There is no single effective strategy that can deal with all types of deadlock.
Table 6.1 summarizes the key elements of the most important approaches that have
been developed: prevention, avoidance, and detection. We examine each of these
in turn, after first introducing resource allocation graphs and then discussing the
conditions for deadlock.

Resource Allocation Graphs

A useful tool in characterizing the allocation of resources to processes is the
resource allocation graph, introduced by Holt [HOLT?72]. The resource allocation
graph is a directed graph that depicts a state of the system of resources and pro-
cesses, with each process and each resource represented by a node. A graph edge
directed from a process to a resource indicates a resource that has been requested
by the process but not yet granted (Figure 6.5a). Within a resource node, a dot is
shown for each instance of that resource. Examples of resource types that may have
multiple instances are I/O devices that are allocated by a resource management
module in the OS. A graph edge directed from a reusable resource node dot to a
process indicates a request that has been granted (Figure 6.5b); that is, the process

Requests Held by
P ® Ra P ® Ra
(a) Resource is requested (b) Resource is held
Ra Ra

oo

Rb Rb

(¢) Circular wait (d) No deadlock

Figure 6.5 Examples of Resource Allocation Graphs

6.1 / PRINCIPLES OF DEADLOCK 267

® ® ® ®

Ra Rb Rc Rd

Figure 6.6 Resource Allocation Graph for Figure 6.1b

has been assigned one unit of that resource. A graph edge directed from a consum-
able resource node dot to a process indicates that the process is the producer of that
resource.

Figure 6.5¢ shows an example deadlock. There is only one unit each of
resources Ra and Rb. Process P1 holds Rb and requests Ra, while P2 holds Ra but
requests Rb. Figure 6.5d has the same topology as Figure 6.5c, but there is no dead-
lock because multiple units of each resource are available.

The resource allocation graph of Figure 6.6 corresponds to the deadlock situa-
tion in Figure 6.1b. Note that in this case, we do not have a simple situation in which
two processes each have one resource the other needs. Rather, in this case, there is
a circular chain of processes and resources that results in deadlock.

The Conditions for Deadlock
Three conditions of policy must be present for a deadlock to be possible:

1. Mutual exclusion. Only one process may use a resource at a time. No process
may access a resource unit that has been allocated to another process.

2. Hold and wait. A process may hold allocated resources while awaiting assign-
ment of other resources.

3. No preemption. No resource can be forcibly removed from a process holding it.

In many ways these conditions are quite desirable. For example, mutual
exclusion is needed to ensure consistency of results and the integrity of a data-
base. Similarly, preemption should not be done arbitrarily. For example, when data
resources are involved, preemption must be supported by a rollback recovery mech-
anism, which restores a process and its resources to a suitable previous state from
which the process can eventually repeat its actions.

The first three conditions are necessary but not sufficient for a deadlock to
exist. For deadlock to actually take place, a fourth condition is required:

4. Circular wait. A closed chain of processes exists, such that each process holds
at least one resource needed by the next process in the chain (e.g., Figure 6.5¢
and Figure 6.6).

268 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

The fourth condition is, actually, a potential consequence of the first three.
That is, given that the first three conditions exist, a sequence of events may occur
that lead to an unresolvable circular wait. The unresolvable circular wait is in fact
the definition of deadlock. The circular wait listed as condition 4 is unresolvable
because the first three conditions hold. Thus, the four conditions, taken together,
constitute necessary and sufficient conditions for deadlock.

To clarify this discussion, it is useful to return to the concept of the joint
progress diagram, such as the one shown in Figure 6.2. Recall that we defined a
fatal region as one such that once the processes have progressed into that region,
those processes will deadlock. A fatal region exists only if all of the first three con-
ditions listed above are met. If one or more of these conditions are not met, there
is no fatal region and deadlock cannot occur. Thus, these are necessary conditions
for deadlock. For deadlock to occur, there must not only be a fatal region, but
also a sequence of resource requests that has led into the fatal region. If a circular
wait condition occurs, then in fact the fatal region has been entered. Thus, all four
conditions listed above are sufficient for deadlock. To summarize,

Possibility of Deadlock | Existence of Deadlock

1. Mutual exclusion 1. Mutual exclusion
2. No preemption 2. No preemption
3. Hold and wait 3. Hold and wait

4. Circular wait

Three general approaches exist for dealing with deadlock. First, one can
prevent deadlock by adopting a policy that eliminates one of the conditions
(conditions 1 through 4). Second, one can avoid deadlock by making the appropri-
ate dynamic choices based on the current state of resource allocation. Third, one
can attempt to detect the presence of deadlock (conditions 1 through 4 hold) and
take action to recover. We discuss each of these approaches in turn.

6.2 DEADLOCK PREVENTION

The strategy of deadlock prevention is, simply put, to design a system in such a
way that the possibility of deadlock is excluded. We can view deadlock prevention
methods as falling into two classes. An indirect method of deadlock prevention
is to prevent the occurrence of one of the three necessary conditions listed previ-
ously (items 1 through 3). A direct method of deadlock prevention is to prevent the
occurrence of a circular wait (item 4). We now examine techniques related to each
of the four conditions.

Wirtually all textbooks simply list these four conditions as the conditions needed for deadlock, but such
a presentation obscures some of the subtler issues. Item 4, the circular wait condition, is fundamentally
different from the other three conditions. Items 1 through 3 are policy decisions, while item 4 is a circum-
stance that might occur depending on the sequencing of requests and releases by the involved processes.
Linking circular wait with the three necessary conditions leads to inadequate distinction between preven-
tion and avoidance. See [SHUB90] and [SHUBO3] for a discussion.

6.2 / DEADLOCK PREVENTION 269

Mutual Exclusion

In general, the first of the four listed conditions cannot be disallowed. If access to
a resource requires mutual exclusion, then mutual exclusion must be supported by
the OS. Some resources, such as files, may allow multiple accesses for reads but
only exclusive access for writes. Even in this case, deadlock can occur if more than
one process requires write permission.

Hold and Wait

The hold-and-wait condition can be prevented by requiring that a process request
all of its required resources at one time and blocking the process until all requests
can be granted simultaneously. This approach is inefficient in two ways. First, a
process may be held up for a long time waiting for all of its resource requests to be
filled, when in fact it could have proceeded with only some of the resources. Second,
resources allocated to a process may remain unused for a considerable period,
during which time they are denied to other processes. Another problem is that a
process may not know in advance all of the resources that it will require.

There is also the practical problem created by the use of modular program-
ming or a multithreaded structure for an application. An application would need
to be aware of all resources that will be requested at all levels or in all modules to
make the simultaneous request.

No Preemption

This condition can be prevented in several ways. First, if a process holding certain
resources is denied a further request, that process must release its original resources
and, if necessary, request them again together with the additional resource.
Alternatively, if a process requests a resource that is currently held by another pro-
cess, the OS may preempt the second process and require it to release its resources.
This latter scheme would prevent deadlock only if no two processes possessed the
same priority.

This approach is practical only when applied to resources whose state can be
easily saved and restored later, as is the case with a processor.

Circular Wait

The circular-wait condition can be prevented by defining a linear ordering of
resource types. If a process has been allocated resources of type R, then it may
subsequently request only those resources of types following R in the ordering.

To see that this strategy works, let us associate an index with each resource
type. Then resource R; precedes R; in the ordering if i < j. Now suppose that two
processes, A and B, are deadlocked because A has acquired R; and requested R,
and B has acquired R; and requested R;. This condition is impossible because it
impliesi<jandj<i.

As with hold-and-wait prevention, circular-wait prevention may be inefficient,
slowing down processes and denying resource access unnecessarily.

270 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

6.3 DEADLOCK AVOIDANCE

An approach to solving the deadlock problem that differs subtly from deadlock
prevention is deadlock avoidance.? In deadlock prevention, we constrain resource
requests to prevent at least one of the four conditions of deadlock. This is either
done indirectly, by preventing one of the three necessary policy conditions (mutual
exclusion, hold and wait, no preemption), or directly, by preventing circular wait.
This leads to inefficient use of resources and inefficient execution of processes.
Deadlock avoidance, on the other hand, allows the three necessary conditions but
makes judicious choices to assure that the deadlock point is never reached. As such,
avoidance allows more concurrency than prevention. With deadlock avoidance, a
decision is made dynamically whether the current resource allocation request will,
if granted, potentially lead to a deadlock. Deadlock avoidance thus requires knowl-
edge of future process resource requests.
In this section, we describe two approaches to deadlock avoidance:

e Do not start a process if its demands might lead to deadlock.

e Do not grant an incremental resource request to a process if this allocation
might lead to deadlock.

Process Initiation Denial

Consider a system of n processes and m different types of resources. Let us define
the following vectors and matrices:

Resource = R = (R,R,, ... ,R,) Total amount of each resource in the system
Available = V = (V},V,,... .V,) Total amount of each resource not allocated to any process
Cll Clz oo Clm
. @ C oo (€
Claim = C = :21 :22 : 2m C;j = requirement of process i for resource j
Can Cm ooo Cum
Ay Ap .. Ay
Ay A . A
Allocation = A = 2 2 . o . . .
: : : : Ajj = current allocation to process i of resource j
Anl AnZ s Anm

The matrix Claim gives the maximum requirement of each process for
each resource, with one row dedicated to each process. This information must be

>The term avoidance is a bit confusing. In fact, one could consider the strategies discussed in this
section to be examples of deadlock prevention because they indeed prevent the occurrence of a
deadlock.

6.3 / DEADLOCK AVOIDANCE 271

declared in advance by a process for deadlock avoidance to work. Similarly, the
matrix Allocation gives the current allocation to each process. The following rela-
tionships hold:

n
LR =V + EAij, for all j All resources are either available or allocated.
=

2.Cj = Ry, forallij No process can claim more than the total
amount of resources in the system.

3.A; = Cy, forallij No process is allocated more resources of any

type than the process originally claimed to need.

ij>

With these quantities defined, we can define a deadlock avoidance policy that
refuses to start a new process if its resource requirements might lead to deadlock.
Start a new process P,.; only if

n
Rj = C(n+l)j + 21C,] for all]
i=

That is, a process is only started if the maximum claim of all current processes plus
those of the new process can be met. This strategy is hardly optimal, because it
assumes the worst: that all processes will make their maximum claims together.

Resource Allocation Denial

The strategy of resource allocation denial, referred to as the banker’s algorithm,’
was first proposed in [DIJK65]. Let us begin by defining the concepts of state and
safe state. Consider a system with a fixed number of processes and a fixed number
of resources. At any time a process may have zero or more resources allocated to it.
The state of the system reflects the current allocation of resources to processes. Thus,
the state consists of the two vectors, Resource and Available, and the two matrices,
Claim and Allocation, defined earlier. A safe state is one in which there is at least
one sequence of resource allocations to processes that does not result in a deadlock
(i.e., all of the processes can be run to completion). An unsafe state is, of course, a
state that is not safe.

The following example illustrates these concepts. Figure 6.7a shows the
state of a system consisting of four processes and three resources. The total
amount of resources R1, R2, and R3 are 9, 3, and 6 units, respectively. In the cur-
rent state allocations have been made to the four processes, leaving 1 unit of R2

3Dijkstra used this name because of the analogy of this problem to one in banking, with customers who
wish to borrow money corresponding to processes and the money to be borrowed corresponding to
resources. Stated as a banking problem, the bank has a limited reserve of money to lend and a list of
customers, each with a line of credit. A customer may choose to borrow against the line of credit a por-
tion at a time, and there is no guarantee that the customer will make any repayment until after having
taken out the maximum amount of loan. The banker can refuse a loan to a customer if there is a risk
that the bank will have insufficient funds to make further loans that will permit the customers to repay
eventually.

272 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

Rl R2 R3 Rl R2 R3 Rl R2 R3
PI| 3 2 2 PI| 1 0 0 PI| 2 2 2
P2| 6 1 3 P2| 6 1 2 P2 0 0 1
P3| 3 1 4 P3| 2 1 1 P3| 1 0 3
P4| 4 2 2 P4 O 0 2 P4| 4 2 0
Claim matrix C Allocation matrix A C-A
Rl R2 R3 Rl R2 R3
[9o [3 [6| (o[1 [1]
Resource vector R Available vector V
(a) Initial state
Rl R2 R3 R1 R2 R3 R1 R2 R3
PI| 3 2 2 PI| 1 0 0 PI| 2 2 2
P2 0 0 0 P2 0 0 0 P2 0 0 0
P3| 3 1 4 P3| 2 1 1 P3| 1 0 3
P4| 4 2 2 P4 O 0 2 P4| 4 2 0
Claim matrix C Allocation matrix A C-A
Rl R2 R3 Rl R2 R3
(9o [3 [6| (6 [2 [3]
Resource vector R Available vector V
(b) P2 runs to completion
Rl R2 R3 Rl R2 R3 Rl R2 R3
PI| O 0 0 PI| O 0 0 PI| O 0 0
P2 0O 0 0 P2 0O 0 0 P2 0 0 0
P3| 3 1 4 P3| 2 1 1 P3| 1 0 3
P4| 4 2 2 P4| O 0 2 P4| 4 2 0
Claim matrix C Allocation matrix A C-A
Rl R2 R3 Rl R2 R3
ENEREKE
Resource vector R Available vector V
(c) P1 runs to completion
Rl R2 R3 Rl R2 R3 Rl R2 R3
PI| O 0 0 PI| O 0 0 PI| O 0 0
P2 0 0 0 P2 0 0 0 P2 0 0 0
P3| O 0 0 P3| 0O 0 0 P3| 0O 0 0
P4| 4 2 2 P4 O 0 2 P4| 4 2 0
Claim matrix C Allocation matrix A C-A
Rl R2 R3 Rl R2 R3
[9o [3 [6| [o [3 [4]

Resource vector R Available vector V

(d) P3 runs to completion

Figure 6.7 Determination of a Safe State

6.3 / DEADLOCK AVOIDANCE 273

and 1 unit of R3 available. Is this a safe state? To answer this question, we ask an
intermediate question: Can any of the four processes be run to completion with
the resources available? That is, can the difference between the maximum require-
ment and current allocation for any process be met with the available resources?
In terms of the matrices and vectors introduced earlier, the condition to be met
for process i is:

Ci— A=V,

i, forallj

i

Clearly, this is not possible for P1, which has only 1 unit of R1 and requires 2
more units of R1, 2 units of R2, and 2 units of R3. However, by assigning one unit of
R3 to process P2, P2 has its maximum required resources allocated and can run to
completion. Let us assume that this is accomplished. When P2 completes, its resources
can be returned to the pool of available resources. The resulting state is shown in
Figure 6.7b. Now we can ask again if any of the remaining processes can be completed.
In this case, each of the remaining processes could be completed. Suppose we choose
P1, allocate the required resources, complete P1, and return all of P1’s resources to the
available pool. We are left in the state shown in Figure 6.7c. Next, we can complete
P3, resulting in the state of Figure 6.7d. Finally, we can complete P4. At this point, all
of the processes have been run to completion. Thus, the state defined by Figure 6.7a
is a safe state.

These concepts suggest the following deadlock avoidance strategy, which
ensures that the system of processes and resources is always in a safe state. When a
process makes a request for a set of resources, assume that the request is granted,
update the system state accordingly, and then determine if the result is a safe state.
If so, grant the request and, if not, block the process until it is safe to grant the
request.

Consider the state defined in Figure 6.8a. Suppose P2 makes a request for
one additional unit of R1 and one additional unit of R3. If we assume the request
is granted, then the resulting state is that of Figure 6.7a. We have already seen that
this is a safe state; therefore, it is safe to grant the request. Now let us return to
the state of Figure 6.8a and suppose that P1 makes the request for one additional
unit each of R1 and R3; if we assume that the request is granted, we are left in the
state of Figure 6.8b. Is this a safe state? The answer is no, because each process
will need at least one additional unit of R1, and there are none available. Thus, on
the basis of deadlock avoidance, the request by P1 should be denied and P1 should
be blocked.

It is important to point out that Figure 6.8b is not a deadlocked state. It merely
has the potential for deadlock. It is possible, for example, that if P1 were run from
this state it would subsequently release one unit of R1 and one unit of R3 prior
to needing these resources again. If that happened, the system would return to a
safe state. Thus, the deadlock avoidance strategy does not predict deadlock with
certainty; it merely anticipates the possibility of deadlock and assures that there is
never such a possibility.

274 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

Rl R2 R3 Rl R2 R3 Rl R2 R3
PI| 3 2 2 PI| 1 0 0 PI| 2 2 2
P2| 6 1 3 P2| 5 1 1 P2(1 0 2
P3| 3 1 4 P3| 2 1 1 P3| 1 0 3
P4| 4 2 2 P4 0O 0 2 P4| 4 2 0
Claim matrix C Allocation matrix A C-A
Rl R2 R3 Rl R2 R3
9o [3] 6]
Resource vector R Available vector V

(a) Initial state

Rl R2 R3 Rl R2 R3 R1 R2 R3
P1| 3 2 2 PI| 2 0 1 PI| 1 2 1
P2| 6 1 3 P2| 5 1 1 P2| 1 0 2
P3| 3 1 4 P3| 2 1 1 P3| 1 0 3
P4| 4 2 2 P4 0O 0 2 P4| 4 2 0

Claim matrix C Allocation matrix A C-A

Rl R2 R3 Rl R2 R3
o[3]6] o[t |1]
Resource vector R Available vector V

(b) P1 requests one unit each of R1 and R3

Figure 6.8 Determination of an Unsafe State

Figure 6.9 gives an abstract version of the deadlock avoidance logic. The
main algorithm is shown in part (b). With the state of the system defined by the
data structure state, request [*] is a vector defining the resources requested
by process i. First, a check is made to assure that the request does not exceed the
original claim of the process. If the request is valid, the next step is to determine if
it is possible to fulfill the request (i.e., there are sufficient resources available). If
it is not possible, then the process is suspended. If it is possible, the final step is to
determine if it is safe to fulfill the request. To do this, the resources are tentatively
assigned to process i to form newstate. Then a test for safety is made using the
algorithm in Figure 6.9c.

Deadlock avoidance has the advantage that it is not necessary to preempt and
rollback processes, as in deadlock detection, and is less restrictive than deadlock
prevention. However, it does have a number of restrictions on its use:

e The maximum resource requirement for each process must be stated in
advance.

e The processes under consideration must be independent; that is, the order
in which they execute must be unconstrained by any synchronization
requirements.

e There must be a fixed number of resources to allocate.

e No process may exit while holding resources.

6.3 / DEADLOCK AVOIDANCE 275

struct state {
int resource [m] ;
int available[m] ;
int claim[n] [m] ;
int alloc[n] [m];

(a) Global data structures

if (alloc [i,*] + request [*] > claim [1,*])

<errors; /* total request > claim*/
else if (request [*] > available [*])

<suspend process>;

else { /* simulate alloc */
<define newstate by:
alloc [i,*] = alloc [i,*] + request [*];
available [*] = available [*] - request [*]>;

}

if (safe (newstate))
<carry out allocations;
else {
<restore original states>;
<suspend process>;

(b) Resource alloc algorithm

boolean safe (state S) (
int currentavail [m] ;
process rest [<number of processes>];
currentavail = available;
rest = {all processes};
possible = true;
while (possible)
<find a process Pk in rest such that

claim [k,*] - alloc [k, *]<= currentavail;
if (found) ({ /* simulate execution of Pk */
currentavalil = currentavail + alloc [k, *];

rest = rest - {Pk};

}

else possible = false;

return (rest == null) ;

(c) Test for safety algorithm (banker’s algorithm)
Figure 6.9 Deadlock Avoidance Logic

276 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

6.4 DEADLOCK DETECTION

Deadlock prevention strategies are very conservative; they solve the problem
of deadlock by limiting access to resources and by imposing restrictions on pro-
cesses. At the opposite extreme, deadlock detection strategies do not limit resource
access or restrict process actions. With deadlock detection, requested resources are
granted to processes whenever possible. Periodically, the OS performs an algorithm
that allows it to detect the circular wait condition described earlier in condition (4)
and illustrated in Figure 6.6.

Deadlock Detection Algorithm

A check for deadlock can be made as frequently as each resource request or,
less frequently, depending on how likely it is for a deadlock to occur. Checking
at each resource request has two advantages: It leads to early detection, and the
algorithm is relatively simple because it is based on incremental changes to the
state of the system. On the other hand, such frequent checks consume consider-
able processor time.

A common algorithm for deadlock detection is one described in [COFF71].
The Allocation matrix and Available vector described in the previous section are
used. In addition, a request matrix Q is defined such that Qij represents the amount
of resources of type j requested by process i. The algorithm proceeds by marking
processes that are not deadlocked. Initially, all processes are unmarked. Then the
following steps are performed:

1. Mark each process that has a row in the Allocation matrix of all zeros.
2. Initialize a temporary vector W to equal the Available vector.

3. Find an index i such that process i is currently unmarked and the ith row of Q
is less than or equal to W. Thatis, Q; = W, for 1 = k < m. If no such row is
found, terminate the algorithm.

4. If such a row is found, mark process i and add the corresponding row of the
allocation matrix to W. That is, set W, = W, + A, for 1 = k = m. Return
to step 3.

A deadlock exists if and only if there are unmarked processes at the end of
the algorithm. Each unmarked process is deadlocked. The strategy in this algo-
rithm is to find a process whose resource requests can be satisfied with the available
resources, and then assume that those resources are granted and that the process
runs to completion and releases all of its resources. The algorithm then looks for
another process to satisfy. Note that this algorithm does not guarantee to prevent
deadlock; that will depend on the order in which future requests are granted. All
that it does is determine if deadlock currently exists.

We can use Figure 6.10 to illustrate the deadlock detection algorithm. The
algorithm proceeds as follows:

1. Mark P4, because P4 has no allocated resources.
2. SetW=(00001).

Pl
P2
P3
P4

6.4 / DEADLOCK DETECTION 277

Rl R2 R3 R4 RS Rl R2 R3 R4 RS Rl R2 R3 R4 RS
0 1|00 1 PL| 1| O 1 1 {0 | 2 | 1 | 1 | 2 | 1 |
0|0 1 0 1 P2| 1 1 0010 Resource vector
0|10 f[0]|O0]1 P3O [0 | 0| 1O
1101 [0]1 P4l O[O | O] OF|O
Rl R2 R3 R4 RS
Request matrix Q Allocation matrix A

[ofofofo]y]

Auvailable vector

Figure 6.10 Example for Deadlock Detection

3.

4.

The request of process P3 is less than or equal to W, so mark P3 and set

W=W+(00010)=(00011).
No other unmarked process has a row in Q that is less than or equal to W.
Therefore, terminate the algorithm.

The algorithm concludes with P1 and P2 unmarked, indicating that these

processes are deadlocked.

Recovery

Once deadlock has been detected, some strategy is needed for recovery. The follow-
ing are possible approaches, listed in order of increasing sophistication:

1.

2.

Abort all deadlocked processes. This is, believe it or not, one of the most
common, if not the most common, solution adopted in operating systems.

Back up each deadlocked process to some previously defined checkpoint, and
restart all processes. This requires that rollback and restart mechanisms be built
in to the system. The risk in this approach is that the original deadlock may
recur. However, the nondeterminancy of concurrent processing may ensure that
this does not happen.

Successively abort deadlocked processes until deadlock no longer exists. The
order in which processes are selected for abortion should be on the basis of
some criterion of minimum cost. After each abortion, the detection algorithm
must be reinvoked to see whether deadlock still exists.

Successively preempt resources until deadlock no longer exists. As in (3), a cost-
based selection should be used, and reinvocation of the detection algorithm is
required after each preemption. A process that has a resource preempted from
it must be rolled back to a point prior to its acquisition of that resource.

For (3) and (4), the selection criteria could be one of the following. Choose the

process with the

least amount of processor time consumed so far
least amount of output produced so far
most estimated time remaining

278 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

least total resources allocated so far
lowest priority

Some of these quantities are easier to measure than others. Estimated time

remaining is particularly suspect. Also, other than by means of the priority measure,
there is no indication of the “cost” to the user, as opposed to the cost to the system
as a whole.

6.5 AN INTEGRATED DEADLOCK STRATEGY

As Table 6.1 suggests, there are strengths and weaknesses to all of the strategies for
dealing with deadlock. Rather than attempting to design an OS facility that employs
only one of these strategies, it might be more efficient to use different strategies in
different situations. [HOWA73] suggests one approach:

Group resources into a number of different resource classes.

Use the linear ordering strategy defined previously for the prevention of circular
wait to prevent deadlocks between resource classes.

Within a resource class, use the algorithm that is most appropriate for that class.
As an example of this technique, consider the following classes of resources:

Swappable space: Blocks of memory on secondary storage for use in swapping
processes

Process resources: Assignable devices, such as tape drives, and files

Main memory: Assignable to processes in pages or segments

Internal resources: Such as I/O channels

The order of the preceding list represents the order in which resources are

assigned. The order is a reasonable one, considering the sequence of steps that a
process may follow during its lifetime. Within each class, the following strategies
could be used:

Swappable space: Prevention of deadlocks by requiring that all of the required
resources that may be used be allocated at one time, as in the hold-and-wait
prevention strategy. This strategy is reasonable if the maximum storage
requirements are known, which is often the case. Deadlock avoidance is also a
possibility.

Process resources: Avoidance will often be effective in this category, because
it is reasonable to expect processes to declare ahead of time the resources that
they will require in this class. Prevention by means of resource ordering within
this class is also possible.

Main memory: Prevention by preemption appears to be the most appropriate
strategy for main memory. When a process is preempted, it is simply swapped
to secondary memory, freeing space to resolve the deadlock.

Internal resources: Prevention by means of resource ordering can be used.

6.6 / DINING PHILOSOPHERS PROBLEM 279

6.6 DINING PHILOSOPHERS PROBLEM

We now turn to the dining philosophers problem, introduced by Dijkstra [DIJK71].
Five philosophers live in a house, where a table is laid for them. The life of each phi-
losopher consists principally of thinking and eating, and through years of thought,
all of the philosophers had agreed that the only food that contributed to their think-
ing efforts was spaghetti. Due to a lack of manual skill, each philosopher requires
two forks to eat spaghetti.

The eating arrangements are simple (Figure 6.11): a round table on which is
set a large serving bowl of spaghetti, five plates, one for each philosopher, and five
forks. A philosopher wishing to eat goes to his or her assigned place at the table
and, using the two forks on either side of the plate, takes and eats some spaghetti.
The problem: Devise a ritual (algorithm) that will allow the philosophers to eat. The
algorithm must satisfy mutual exclusion (no two philosophers can use the same fork
at the same time) while avoiding deadlock and starvation (in this case, the term has
literal as well as algorithmic meaning!).

This problem may not seem important or relevant in itself. However, it does
illustrate basic problems in deadlock and starvation. Furthermore, attempts to
develop solutions reveal many of the difficulties in concurrent programming (e.g.,
see [GINGY0]). In addition, the dining philosophers problem can be seen as repre-
sentative of problems dealing with the coordination of shared resources, which may

Figure 6.11 Dining Arrangement for Philosophers

280 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

occur when an application includes concurrent threads of execution. Accordingly,
this problem is a standard test case for evaluating approaches to synchronization.

Solution Using Semaphores

Figure 6.12 suggests a solution using semaphores. Each philosopher picks up first
the fork on the left and then the fork on the right. After the philosopher is finished
eating, the two forks are replaced on the table. This solution, alas, leads to deadlock:
If all of the philosophers are hungry at the same time, they all sit down, they all pick
up the fork on their left, and they all reach out for the other fork, which is not there.
In this undignified position, all philosophers starve.

To overcome the risk of deadlock, we could buy five additional forks (a more
sanitary solution!) or teach the philosophers to eat spaghetti with just one fork.
As another approach, we could consider adding an attendant who only allows four
philosophers at a time into the dining room. With at most four seated philosophers,
at least one philosopher will have access to two forks. Figure 6.13 shows such a solu-
tion, again using semaphores. This solution is free of deadlock and starvation.

Solution Using a Monitor

Figure 6.14 shows a solution to the dining philosophers problem using a monitor. A
vector of five condition variables is defined, one condition variable per fork. These
condition variables are used to enable a philosopher to wait for the availability of a
fork. In addition, there is a Boolean vector that records the availability status of each
fork (true means the fork is available). The monitor consists of two procedures.
The get forks procedure is used by a philosopher to seize his or her left and

/* program diningphilosophers */
semaphore fork [5] = {1};

int i;
void philosopher (int i)
{

while (true) {
think () ;
wait (fork[i]) ;
wait (fork [(i+1) mod 5]) ;
eat () ;
signal (fork [(i+1) mod 5]) ;
signal (fork[il) ;

}
}
void main ()
{

parbegin (philosopher (0), philosopher (1),
philosopher (2), philosopher (3),
philosopher (4)) ;

}

Figure 6.12 A First Solution to the Dining Philosophers Problem

6.7 / UNIX CONCURRENCY MECHANISMS 281

/* program diningphilosophers */
semaphore fork[5] = {1};
semaphore room = {4};

int i;
void philosopher (int i)
{
while (true) {
think () ;
walt (room) ;

(
wait (forkl[il]) ;
wait (fork [(i+1) mod 5]) ;
eat () ;
signal (fork [(i+1) mod 5]) ;
signal (fork([il]) ;
signal (room) ;
}
}

void main ()

{
parbegin (philosopher (0), philosopher (1),
philosopher (2), philosopher (3),
philosopher (4));
}

Figure 6.13 A Second Solution to the Dining Philosophers Problem

right forks. If either fork is unavailable, the philosopher process is queued on the
appropriate condition variable. This enables another philosopher process to enter
the monitor. The release-forks procedure is used to make two forks available.
Note that the structure of this solution is similar to that of the semaphore solution
proposed in Figure 6.12. In both cases, a philosopher seizes first the left fork and
then the right fork. Unlike the semaphore solution, this monitor solution does not
suffer from deadlock, because only one process at a time may be in the monitor. For
example, the first philosopher process to enter the monitor is guaranteed that it can
pick up the right fork after it picks up the left fork before the next philosopher to the
right has a chance to seize its left fork, which is this philosopher’s right fork.

6.7 UNIX CONCURRENCY MECHANISMS

UNIX provides a variety of mechanisms for interprocessor communication and syn-
chronization. Here, we look at the most important of these:

e Pipes

e Messages

e Shared memory

e Semaphores

e Signals

282 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

monitor dining controller;
cond ForkReady [5] ; /* condition variable for synchronization
boolean fork[5] = {true}; /* availability status of each fork

void get forks (int pid) /* pid is the philosopher id number
{
int left = pid;
int right = (++pid) % 5;
/*grant the left fork*/
if (!fork(left)
cwait (ForkReady [left]); /* queue on condition variable
fork (left) = false;
/*grant the right fork*/
if (!fork(right)
cwait (ForkReady (right); /* queue on condition variable
fork (right) = false:

}

void release forks (int pid)
{
int left = pid;
int right = (++pid) % 5;
/*release the left fork*/
if (empty (ForkReady[left])/*no one is waiting for this fork
fork (left) = true;
else /* awaken a process waiting on this fork
csignal (ForkReady[left]) ;
/*release the right fork*/
if (empty (ForkReady [right])/*no one is waiting for this fork
fork (right) = true;
else /* awaken a process waiting on this fork
csignal (ForkReady [right]) ;

*/
*/

*/

*/

*/

*/
*/

*/
*/

void philosopher [k=0 to 4] /* the five philosopher clients
{
while (true) ({
<think>;
get forks (k) ; /* client requests two forks via monitor
<eat spaghettis;
release forks(k);/* client releases forks via the monitor

}

*/

*/
*/

Figure 6.14 A Solution to the Dining Philosophers Problem Using a Monitor

6.7 / UNIX CONCURRENCY MECHANISMS 283

Pipes, messages, and shared memory can be used to communicate data between
processes, whereas semaphores and signals are used to trigger actions by other
processes.

Pipes

One of the most significant contributions of UNIX to the development of operating
systems is the pipe. Inspired by the concept of coroutines [RITC84], a pipe is a circu-
lar buffer allowing two processes to communicate on the producer-consumer model.
Thus, it is a first-in-first-out queue, written by one process and read by another.

When a pipe is created, it is given a fixed size in bytes. When a process attempts
to write into the pipe, the write request is immediately executed if there is sufficient
room; otherwise the process is blocked. Similarly, a reading process is blocked if
it attempts to read more bytes than are currently in the pipe; otherwise the read
request is immediately executed. The OS enforces mutual exclusion: that is, only
one process can access a pipe at a time.

There are two types of pipes: named and unnamed. Only related processes
can share unnamed pipes, while either related or unrelated processes can share
named pipes.

Messages

A message is a block of bytes with an accompanying type. UNIX provides msgsnd
and msgrcv system calls for processes to engage in message passing. Associated
with each process is a message queue, which functions like a mailbox.

The message sender specifies the type of message with each message sent, and
this can be used as a selection criterion by the receiver. The receiver can either
retrieve messages in first-in-first-out order or by type. A process will block when
trying to send a message to a full queue. A process will also block when trying to
read from an empty queue. If a process attempts to read a message of a certain type
and fails because no message of that type is present, the process is not blocked.

Shared Memory

The fastest form of interprocess communication provided in UNIX is shared
memory. This is a common block of virtual memory shared by multiple processes.
Processes read and write shared memory using the same machine instructions they
use to read and write other portions of their virtual memory space. Permission is
read-only or read-write for a process, determined on a per-process basis. Mutual
exclusion constraints are not part of the shared-memory facility but must be provided
by the processes using the shared memory.

Semaphores

The semaphore system calls in UNIX System V are a generalization of the semWait
and semSignal primitives defined in Chapter 5; several operations can be per-
formed simultaneously and the increment and decrement operations can be values
greater than 1. The kernel does all of the requested operations atomically; no other
process may access the semaphore until all operations have completed.

284 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

A semaphore consists of the following elements:

e Current value of the semaphore
e Process ID of the last process to operate on the semaphore

* Number of processes waiting for the semaphore value to be greater than its
current value

e Number of processes waiting for the semaphore value to be zero

Associated with the semaphore are queues of processes blocked on that semaphore.

Semaphores are actually created in sets, with a semaphore set consisting of
one or more semaphores. There is a semct1 system call that allows all of the sema-
phore values in the set to be set at the same time. In addition, there is a sem_op
system call that takes as an argument a list of semaphore operations, each defined
on one of the semaphores in a set. When this call is made, the kernel performs the
indicated operations one at a time. For each operation, the actual function is speci-
fied by the value sem_op. The following are the possibilities:

e If sem op is positive, the kernel increments the value of the semaphore and
awakens all processes waiting for the value of the semaphore to increase.

e If sem opis 0, the kernel checks the semaphore value. If the semaphore value
equals 0, the kernel continues with the other operations on the list. Otherwise,
the kernel increments the number of processes waiting for this semaphore to be
0 and suspends the process to wait for the event that the value of the semaphore
equals 0.

e If sem op is negative and its absolute value is less than or equal to the sema-
phore value, the kernel adds sem_op (a negative number) to the semaphore
value. If the result is 0, the kernel awakens all processes waiting for the value
of the semaphore to equal 0.

e If sem op is negative and its absolute value is greater than the semaphore
value, the kernel suspends the process on the event that the value of the sema-
phore increases.

This generalization of the semaphore provides considerable flexibility in per-
forming process synchronization and coordination.

Signals

A signal is a software mechanism that informs a process of the occurrence of asyn-
chronous events. A signal is similar to a hardware interrupt but does not employ
priorities. That is, all signals are treated equally; signals that occur at the same time
are presented to a process one at a time, with no particular ordering.

Processes may send each other signals, or the kernel may send signals inter-
nally. A signal is delivered by updating a field in the process table for the process
to which the signal is being sent. Because each signal is maintained as a single bit,
signals of a given type cannot be queued. A signal is processed just after a process
wakes up to run or whenever the process is preparing to return from a system call.
A process may respond to a signal by performing some default action (e.g., termina-
tion), executing a signal-handler function, or ignoring the signal.

Table 6.2 lists signals defined for UNIX SVR4.

6.8 / LINUX KERNEL CONCURRENCY MECHANISMS 285

Table 6.2 UNIX Signals

Value | Name Description
01 SIGHUP Hang up; sent to process when kernel assumes that the user of that process is doing
no useful work
02 SIGINT Interrupt
03 SIGQUIT Quit; sent by user to induce halting of process and production of core dump
04 SIGILL Illegal instruction
05 SIGTRAP Trace trap; triggers the execution of code for process tracing
06 SIGIOT 10T instruction
07 SIGEMT EMT instruction
08 SIGFPE Floating-point exception
09 SIGKILL Kill; terminate process
10 SIGBUS Bus error
11 SIGSEGV Segmentation violation; process attempts to access location outside its virtual
address space
12 SIGSYS Bad argument to system call
13 SIGPIPE Write on a pipe that has no readers attached to it
14 SIGALRM Alarm clock; issued when a process wishes to receive a signal after a period of time
15 SIGTERM Software termination
16 SIGUSR1 User-defined signal 1
17 SIGUSR2 User-defined signal 2
18 SIGCHLD Death of a child
19 SIGPWR Power failure

6.8 LINUX KERNEL CONCURRENCY MECHANISMS

Linux includes all of the concurrency mechanisms found in other UNIX systems,
such as SVR4, including pipes, messages, shared memory, and signals. In addi-
tion, Linux 2.6 includes a rich set of concurrency mechanisms specifically intended
for use when a thread is executing in kernel mode. That is, these are mechanisms
used within the kernel to provide concurrency in the execution of kernel code. This
section examines the Linux kernel concurrency mechanisms.

Atomic Operations

Linux provides a set of operations that guarantee atomic operations on a variable.
These operations can be used to avoid simple race conditions. An atomic operation
executes without interruption and without interference. On a uniprocessor system,
a thread performing an atomic operation cannot be interrupted once the operation
has started until the operation is finished. In addition, on a multiprocessor system,

286 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

the variable being operated on is locked from access by other threads until this oper-
ation is completed.

Two types of atomic operations are defined in Linux: integer operations,
which operate on an integer variable, and bitmap operations, which operate
on one bit in a bitmap (Table 6.3). These operations must be implemented on
any architecture that implements Linux. For some architectures, there are cor-
responding assembly language instructions for the atomic operations. On other
architectures, an operation that locks the memory bus is used to guarantee that
the operation is atomic.

For atomic integer operations, a special data type is used, atomic_t. The
atomic integer operations can be used only on this data type, and no other operations

Table 6.3 Linux Atomic Operations

Atomic Integer Operations

ATOMIC INIT (int 1)

At declaration: initialize an atomic_t to i

int atomic read(atomic_t *v)

Read integer value of v

void atomic_set (atomic t *v, int i)

Set the value of v to integer i

void atomic_add(int i, atomic_t *v)

Additov

void atomic sub(int i, atomic_t *v)

Subtract i from v

void atomic_ inc(atomic_t *v)

Add1tov

void atomic_dec (atomic t *v)

Subtract 1 from v

int atomic sub and test (int i,
atomic_t *v)

Subtract i from v; return 1 if the result is zero;
return O otherwise

int atomic_add negative (int i,
atomic_t *v)

Add i to v; return 1 if the result is negative;
return 0 otherwise (used for implementing
semaphores)

int atomic_dec and test (atomic_t *v)

Subtract 1 from v; return 1 if the result is
zero; return 0 otherwise

int atomic_inc_and test (atomic_t *v)

Add 1 to v; return 1 if the result is zero;
return 0 otherwise

Atomic Bitmap Operations

void set bit (int nr, void *addr)

Set bit nr in the bitmap pointed to by addr

void clear bit (int nr, void *addr)

Clear bit nr in the bitmap pointed to by addr

void change bit (int nr, void *addr)

Invert bit nr in the bitmap pointed to by addr

int test and set bit (int nr,
void *addr)

Set bit nr in the bitmap pointed to by addr;
return the old bit value

int test and clear bit (int nr,
void *addr)

Clear bit nr in the bitmap pointed to by addr;
return the old bit value

int test_and change bit (int nr,
void *addr)

Invert bit nr in the bitmap pointed to by addr;
return the old bit value

int test_bit (int nr, void *addr)

Return the value of bit nr in the bitmap
pointed to by addr

6.8 / LINUX KERNEL CONCURRENCY MECHANISMS 287

are allowed on this data type. [LOVEO04] lists the following advantages for these
restrictions:

1. The atomic operations are never used on variables that might in some circum-
stances be unprotected from race conditions.

2. Variables of this data type are protected from improper use by nonatomic
operations.

3. The compiler cannot erroneously optimize access to the value (e.g., by using
an alias rather than the correct memory address).

4. This data type serves to hide architecture-specific differences in its imple-
mentation.

A typical use of the atomic integer data type is to implement counters.

The atomic bitmap operations operate on one of a sequence of bits at an arbi-
trary memory location indicated by a pointer variable. Thus, there is no equivalent
to the atomic_t data type needed for atomic integer operations.

Atomic operations are the simplest of the approaches to kernel synchroniza-
tion. More complex locking mechanisms can be built on top of them.

Spinlocks

The most common technique used for protecting a critical section in Linux is the spin-
lock. Only one thread at a time can acquire a spinlock. Any other thread attempting
to acquire the same lock will keep trying (spinning) until it can acquire the lock. In
essence a spinlock is built on an integer location in memory that is checked by each
thread before it enters its critical section. If the value is 0, the thread sets the value to
1 and enters its critical section. If the value is nonzero, the thread continually checks
the value until it is zero. The spinlock is easy to implement but has the disadvantage
that locked-out threads continue to execute in a busy-waiting mode. Thus spinlocks
are most effective in situations where the wait time for acquiring a lock is expected
to be very short, say on the order of less than two context changes.
The basic form of use of a spinlock is the following:

spin lock (&lock)
/* critical section */
spin unlock (&lock)

Basic SpinLocks The basic spinlock (as opposed to the reader—writer spinlock
explained subsequently) comes in four flavors (Table 6.4):

e Plain: If the critical section of code is not executed by interrupt handlers or if
the interrupts are disabled during the execution of the critical section, then the
plain spinlock can be used. It does not affect the interrupt state on the processor
on which it is run.

e _irq: If interrupts are always enabled, then this spinlock should be used.

e _irgsave: If it is not known if interrupts will be enabled or disabled at the time
of execution, then this version should be used. When a lock is acquired, the cur-
rent state of interrupts on the local processor is saved, to be restored when the
lock is released.

288 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

Table 6.4 Linux Spinlocks

void spin lock (spinlock t *lock) Acquires the specified lock, spinning if needed
until it is available

void spin lock irg(spinlock_t *lock) Like spin_lock, but also disables interrupts on the
local processor

void spin lock irgsave (spinlock t *lock, Like spin_lock_irq, but also saves the current
unsigned long flags) interrupt state in flags
void spin lock bh(spinlock t *lock) Like spin_lock, but also disables the execution

of all bottom halves

void spin unlock (spinlock_t *lock) Releases given lock

void spin unlock irg(spinlock t *lock) Releases given lock and enables local interrupts

void spin unlock irgrestore (spinlock t Releases given lock and restores local interrupts

*lock, unsigned long flags) to given previous state

void spin_unlock_bh(spinlock t *lock) Releases given lock and enables bottom halves

void spin lock_init (spinlock t *lock) Initializes given spinlock

int spin_trylock (spinlock t *lock) Tries to acquire specified lock; returns nonzero if
lock is currently held and zero otherwise

int spin_is_locked (spinlock_t *lock) Returns nonzero if lock is currently held and zero
otherwise

e _bh: When an interrupt occurs, the minimum amount of work necessary is
performed by the corresponding interrupt handler. A piece of code, called
the bottom half, performs the remainder of the interrupt-related work, allow-
ing the current interrupt to be enabled as soon as possible. The bh spinlock
is used to disable and then enable bottom halves to avoid conflict with the
protected critical section.

The plain spinlock is used if the programmer knows that the protected data
is not accessed by an interrupt handler or bottom half. Otherwise, the appropriate
nonplain spinlock is used.

Spinlocks are implemented differently on a uniprocessor system versus a mul-
tiprocessor system. For a uniprocessor system, the following considerations apply.
If kernel preemption is turned off, so that a thread executing in kernel mode cannot
be interrupted, then the locks are deleted at compile time; they are not needed.
If kernel preemption is enabled, which does permit interrupts, then the spinlocks
again compile away (i.e., no test of a spinlock memory location occurs) but are sim-
ply implemented as code that enables/disables interrupts. On a multiple processor
system, the spinlock is compiled into code that does in fact test the spinlock loca-
tion. The use of the spinlock mechanism in a program allows it to be independent
of whether it is executed on a uniprocessor or multiprocessor system.

READER-WRITER SPINLOCK The reader—writer spinlock is a mechanism that
allows a greater degree of concurrency within the kernel than the basic spinlock.
The reader—writer spinlock allows multiple threads to have simultaneous access
to the same data structure for reading only but gives exclusive access to the

6.8 / LINUX KERNEL CONCURRENCY MECHANISMS 289

spinlock for a thread that intends to update the data structure. Each reader—writer
spinlock consists of a 24-bit reader counter and an unlock flag, with the following
interpretation:

Counter Flag Interpretation

0 1 The spinlock is released and available for use

0 0 Spinlock has been acquired for writing by one thread
n(n>0) 0 Spinlock has been acquired for reading by » threads
n(n>0) 1 Not valid

As with the basic spinlock, there are plain, irg, and irgsave versions of
the reader—writer spinlock.

Note that the reader—writer spinlock favors readers over writers. If the spin-
lock is held for readers, then so long as there is at least one reader, the spinlock
cannot be preempted by a writer. Furthermore, new readers may be added to the
spinlock even while a writer is waiting.

Semaphores

At the user level, Linux provides a semaphore interface corresponding to that in
UNIX SVRA4. Internally, Linux provides an implementation of semaphores for its
own use. That is, code that is part of the kernel can invoke kernel semaphores.
These kernel semaphores cannot be accessed directly by the user program via sys-
tem calls. They are implemented as functions within the kernel and are thus more
efficient than user-visible semaphores.

Linux provides three types of semaphore facilities in the kernel: binary sema-
phores, counting semaphores, and reader—writer semaphores.

BINARY AND COUNTING SEMAPHORES The binary and counting semaphores
defined in Linux 2.6 (Table 6.5) have the same functionality as described for
such semaphores in Chapter 5. The function names down and up are used for the
functions referred to in Chapter 5 as semWait and semSignal, respectively.

A counting semaphore is initialized using the sema_init function, which gives
the semaphore a name and assigns an initial value to the semaphore. Binary sema-
phores, called MUTEXes in Linux, are initialized using the init MUTEX and init
MUTEX LOCKED functions, which initialize the semaphore to 1 or 0, respectively.

Linux provides three versions of the down (semWait) operation.

1. The down function corresponds to the traditional semWait operation. That
is, the thread tests the semaphore and blocks if the semaphore is not available.
The thread will awaken when a corresponding up operation on this sema-
phore occurs. Note that this function name is used for an operation on either a
counting semaphore or a binary semaphore.

2. The down_interruptible function allows the thread to receive and
respond to a kernel signal while being blocked on the down operation. If the
thread is woken up by a signal, the down interruptible function incre-
ments the count value of the semaphore and returns an error code known in

290 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

Linux as -EINTR. This alerts the thread that the invoked semaphore function
has aborted. In effect, the thread has been forced to “give up” the semaphore.
This feature is useful for device drivers and other services in which it is conve-
nient to override a semaphore operation.

3. The down_trylock function makes it possible to try to acquire a semaphore
without being blocked. If the semaphore is available, it is acquired. Otherwise,
this function returns a nonzero value without blocking the thread.

READER-WRITER SEMAPHORES The reader—writer semaphore divides users into
readers and writers; it allows multiple concurrent readers (with no writers) but only
a single writer (with no concurrent readers). In effect, the semaphore functions as
a counting semaphore for readers but a binary semaphore (MUTEX) for writers.
Table 6.5 shows the basic reader—writer semaphore operations. The reader—writer
semaphore uses uninterruptible sleep, so there is only one version of each of the
down operations.

Table 6.5 Linux Semaphores

Traditional Semaphores

void sema_init (struct semaphore *sem, Initializes the dynamically created semaphore to the

int count) given count

void init MUTEX (struct semaphore *sem) Initializes the dynamically created semaphore with a
count of 1 (initially unlocked)

void init MUTEX LOCKED (struct sema- Initializes the dynamically created semaphore with a

phore *sem) count of 0 (initially locked)

void down (struct semaphore *sem) Attempts to acquire the given semaphore, entering

uninterruptible sleep if semaphore is unavailable

int down_interruptible (struct Attempts to acquire the given semaphore, enter-

semaphore *sem) ing interruptible sleep if semaphore is unavailable;
returns-EINTR value if a signal other than the result
of an up operation is received

int down trylock (struct semaphore Attempts to acquire the given semaphore, and
*sem) returns a nonzero value if semaphore is unavailable
void up (struct semaphore *sem) Releases the given semaphore

Reader-Writer Semaphores

void init rwsem(struct rw_semaphore, Initializes the dynamically created semaphore with a
*rwsem) count of 1

void down_ read(struct rw_semaphore, Down operation for readers

*rwsem)

void up_read(struct rw_semaphore, Up operation for readers

*rwsem)

void down write (struct rw_semaphore, Down operation for writers

*rwsem)

void up write (struct rw_semaphore, Up operation for writers

*rwsem)

6.8 / LINUX KERNEL CONCURRENCY MECHANISMS 291

Barriers

In some architectures, compilers and/or the processor hardware may reorder mem-
ory accesses in source code to optimize performance. These reorderings are done
to optimize the use of the instruction pipeline in the processor. The reordering
algorithms contain checks to ensure that data dependencies are not violated. For
example, the code:

a=1;

b = 1;
may be reordered so that memory location b is updated before memory location a
is updated. However, the code:

a = 1;

b = a;
will not be reordered. Even so, there are occasions when it is important that reads
or writes are executed in the order specified because of use of the information that
is made by another thread or a hardware device.

To enforce the order in which instructions are executed, Linux provides the
memory barrier facility. Table 6.6 lists the most important functions that are defined
for this facility. The rmb () operation insures that no reads occur across the bar-
rier defined by the place of the rmb () in the code. Similarly, the wmb () operation
insures that no writes occur across the barrier defined by the place of the wmb () in
the code. The mb () operation provides both a load and store barrier.

Two important points to note about the barrier operations:

1. The barriers relate to machine instructions, namely loads and stores. Thus the
higher-level language instruction a = b involves both a load (read) from loca-
tion b and a store (write) to location a.

2. The rmb, wmb, and mb operations dictate the behavior of both the compiler
and the processor. In the case of the compiler, the barrier operation dictates
that the compiler not reorder instructions during the compile process. In the
case of the processor, the barrier operation dictates that any instructions pend-
ing in the pipeline before the barrier must be committed for execution before
any instructions encountered after the barrier.

Table 6.6 Linux Memory Barrier Operations

rmb () Prevents loads from being reordered across the barrier

wmb () Prevents stores from being reordered across the barrier

mb () Prevents loads and stores from being reordered across the barrier
Barrier () Prevents the compiler from reordering loads or stores across the barrier
smp_rmb () On SMP, provides a rmb () and on UP provides a barrier ()
smp_wmb () On SMP, provides a wmb () and on UP provides a barrier ()

smp_mb () On SMP, provides a mb () and on UP provides a barrier ()

Note: SMP = symmetric multiprocessor;
UP = uniprocessor

292 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

The barrier () operation is a lighter-weight version of the mb () operation,
in that it only controls the compiler’s behavior. This would be useful if it is known
that the processor will not perform undesirable reorderings. For example, the Intel
x86 processors do not reorder writes.

The smp_rmb, smp wmb, and smp_mb operations provide an optimization for
code that may be compiled on either a uniprocessor (UP) or a symmetric multiproc-
essor (SMP). These instructions are defined as the usual memory barriers for an
SMP, but for a UP, they are all treated only as compiler barriers. The smp_ opera-
tions are useful in situations in which the data dependencies of concern will only
arise in an SMP context.

SOLARIS THREAD SYNCHRONIZATION PRIMITIVES

In addition to the concurrency mechanisms of UNIX SVR4, Solaris supports four
thread synchronization primitives:

e Mutual exclusion (mutex) locks

e Semaphores

e Multiple readers, single writer (readers/writer) locks
¢ Condition variables

Solaris implements these primitives within the kernel for kernel threads; they
are also provided in the threads library for user-level threads. Figure 6.15 shows
the data structures for these primitives. The initialization functions for the primi-
tives fill in some of the data members. Once a synchronization object is created,
there are essentially only two operations that can be performed: enter (acquire
lock) and release (unlock). There are no mechanisms in the kernel or the threads
library to enforce mutual exclusion or to prevent deadlock. If a thread attempts to
access a piece of data or code that is supposed to be protected but does not use the
appropriate synchronization primitive, then such access occurs. If a thread locks
an object and then fails to unlock it, no kernel action is taken.

All of the synchronization primitives require the existence of a hardware
instruction that allows an object to be tested and set in one atomic operation.

Mutual Exclusion Lock

A mutex is used to ensure that only one thread at a time can access the resource
protected by the mutex. The thread that locks the mutex must be the one that
unlocks it. A thread attempts to acquire a mutex lock by executing the mutex_
enter primitive. If mutex_enter cannot set the lock (because it is already set
by another thread), the blocking action depends on type-specific information
stored in the mutex object. The default blocking policy is a spinlock: A blocked
thread polls the status of the lock while executing in a busy waiting loop.
An interrupt-based blocking mechanism is optional. In this latter case, the
mutex includes a turnstile id thatidentifies a queue of threads sleeping on
this lock.

6.9 / SOLARIS THREAD SYNCHRONIZATION PRIMITIVES 293

Owner (3 octets)

Type (1 octet)

wlock (1 octet)

Lock (1 octet)

Waiters (2 octets)

Waiters (2 octets)

Type-specific info (4 octets)
(possibly a turnstile id,
lock type filler,
or statistics pointer)

Union (4 octets)
(statistic pointer or
number of write requests)

(a) MUTEX lock

Thread owner (4 octets)

Type (1 octet)

wlock (1 octet)

Waiters (2 octets)

(c) Reader/writer lock

Count (4 octets)

Waiters (2 octets)

(b) Semaphore

Figure 6.15 Solaris Synchronization Data Structures

The operations on a mutex lock are:

mutex enter ()

mutex exit ()

(d) Condition variable

Acquires the lock, potentially blocking if it is already

Releases the lock, potentially unblocking a waiter

mutex tryenter () Acquires the lock if it is not already held

The mutex tryenter () primitive provides a nonblocking way of performing
the mutual exclusion function. This enables the programmer to use a busy-wait
approach for user-level threads, which avoids blocking the entire process because

one thread is blocked.

Semaphores

Solaris provides classic counting semaphores, with the following primitives:

sema_p () Decrements the semaphore, potentially blocking the thread
sema_v () Increments the semaphore, potentially unblocking a waiting
thread

sema_tryp () Decrements the semaphore if blocking is not required

Again, the sema_tryp () primitive permits busy waiting.

294 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

Readers/Writer Lock

The readers/writer lock allows multiple threads to have simultaneous read-only
access to an object protected by the lock. It also allows a single thread to access the
object for writing at one time, while excluding all readers. When the lock is acquired
for writing it takes on the status of write lock: All threads attempting access
for reading or writing must wait. If one or more readers have acquired the lock, its
status is read lock. The primitives are as follows:

rw_enter () Attempts to acquire a lock as reader or writer.
rw_exit () Releases a lock as reader or writer.

rw_tryenter () Acquires the lock if blocking is not required.
rw_downgrade () A thread that has acquired a write lock converts it to a

read lock. Any waiting writer remains waiting until this

thread releases the lock. If there are no waiting writers,

the primitive wakes up any pending readers.
rw_tryupgrade () Attempts to convert a reader lock into a writer lock.

Condition Variables

A condition variable is used to wait until a particular condition is true. Condition
variables must be used in conjunction with a mutex lock. This implements a monitor
of the type illustrated in Figure 6.14. The primitives are as follows:

cv_wait () Blocks until the condition is signaled
cv_signal () Wakes up one of the threads blocked in cv_wait ()
cv_broadcast () Wakes up all of the threads blocked in cv_wait ()

cv_wait () releases the associated mutex before blocking and reacquires
it before returning. Because reacquisition of the mutex may be blocked by other
threads waiting for the mutex, the condition that caused the wait must be retested.
Thus, typical usage is as follows:

mutex enter (&m)
* %

while (some condition)
cv_wait (&cv, &m) ;

}

* %
mutex exit (&m) ;

This allows the condition to be a complex expression, because it is protected by the
mutex.

6.10 WINDOWS 7 CONCURRENCY MECHANISMS

Windows provides synchronization among threads as part of the object architecture.
The most important methods of synchronization are Executive dispatcher objects,
user—-mode critical sections, slim reader—writer locks, condition variables, and lock-free

6.10 / WINDOWS 7 CONCURRENCY MECHANISMS 295
operations. Dispatcher objects make use of wait functions. We first describe wait func-
tions and then look at the synchronization methods.

Wait Functions

The wait functions allow a thread to block its own execution. The wait functions
do not return until the specified criteria have been met. The type of wait func-
tion determines the set of criteria used. When a wait function is called, it checks
whether the wait criteria have been met. If the criteria have not been met, the
calling thread enters the wait state. It uses no processor time while waiting for the
criteria to be met.

The most straightforward type of wait function is one that waits on a single
object. The WaitForSingleObject function requires a handle to one synchroni-

zation object. The function returns when one of the following occurs:

e The specified object is in the signaled state.

e The time-out interval elapses. The time-out interval can be set to INFINITE
to specify that the wait will not time out.

Dispatcher Objects

The mechanism used by the Windows Executive to implement synchronization
facilities is the family of dispatcher objects, which are listed with brief descriptions
in Table 6.7.

Table 6.7 Windows Synchronization Objects

of time

interval expires

Set to Signaled State Effect on Waiting

Object Type Definition When Threads
Notification An announcement that a Thread sets the event All released
event system event has occurred
Synchronization An announcement that a Thread sets the event One thread released
event system event has occurred.
Mutex A mechanism that provides Owning thread or other One thread released

mutual exclusion capabilities; thread releases the

equivalent to a binary semaphore mutex
Semaphore A counter that regulates the number Semaphore count drops All released

of threads that can use a resource to zero
Waitable timer A counter that records the passage Set time arrives or time All released

File An instance of an opened file or 1/O operation completes All released
1/0O device

Process A program invocation, including Last thread terminates All released
the address space and resources
required to run the program

Thread An executable entity within a process | Thread terminates All released

Note: Shaded rows correspond to objects that exist for the sole purpose of synchronization.

296 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

The first five object types in the table are specifically designed to support
synchronization. The remaining object types have other uses but also may be used
for synchronization.

Each dispatcher object instance can be in either a signaled or unsignaled
state. A thread can be blocked on an object in an unsignaled state; the thread
is released when the object enters the signaled state. The mechanism is straight-
forward: A thread issues a wait request to the Windows Executive, using the
handle of the synchronization object. When an object enters the signaled state, the
Windows Executive releases one or all of the thread objects that are waiting on
that dispatcher object.

The event object is useful in sending a signal to a thread indicating that a par-
ticular event has occurred. For example, in overlapped input and output, the system
sets a specified event object to the signaled state when the overlapped operation
has been completed. The mutex object is used to enforce mutually exclusive access
to a resource, allowing only one thread object at a time to gain access. It there-
fore functions as a binary semaphore. When the mutex object enters the signaled
state, only one of the threads waiting on the mutex is released. Mutexes can be used
to synchronize threads running in different processes. Like mutexes, semaphore
objects may be shared by threads in multiple processes. The Windows semaphore is
a counting semaphore. In essence, the waitable timer object signals at a certain time
and/or at regular intervals.

Critical Sections

Critical sections provide a synchronization mechanism similar to that provided by
mutex objects, except that critical sections can be used only by the threads of a
single process. Event, mutex, and semaphore objects can also be used in a single-
process application, but critical sections provide a much faster, more efficient mech-
anism for mutual-exclusion synchronization.

The process is responsible for allocating the memory used by a critical section.
Typically, this is done by simply declaring a variable of type CRITICAL SECTION.
Before the threads of the process can use it, initialize the critical section by using the
InitializeCriticalSection function.

Athreadusesthe EnterCriticalSection orTryEnterCriticalSection
function torequest ownership of acritical section. Itusesthe LeaveCriticalSection
function to release ownership of a critical section. If the critical section is currently
owned by another thread, EnterCriticalSection waits indefinitely for owner-
ship. In contrast, when a mutex object is used for mutual exclusion, the wait functions
accept a specified time-out interval. The TryEnterCriticalSection function
attempts to enter a critical section without blocking the calling thread.

Critical sections use a sophisticated algorithm when trying to acquire the
mutex. If the system is a multiprocessor, the code will attempt to acquire a spinlock.
This works well in situations where the critical section is acquired for only a short
time. Effectively the spinlock optimizes for the case where the thread that currently
owns the critical section is executing on another processor. If the spinlock cannot
be acquired within a reasonable number of iterations, a dispatcher object is used to
block the thread so that the Kernel can dispatch another thread onto the processor.

6.10 / WINDOWS 7 CONCURRENCY MECHANISMS 297

The dispatcher object is only allocated as a last resort. Most critical sections are
needed for correctness, but in practice are rarely contended. By lazily allocating the
dispatcher object the system saves significant amounts of kernel virtual memory.

Slim Read-Writer Locks and Condition Variables

Windows Vista added a user mode reader—writer. Like critical sections, the reader—
writer lock enters the kernel to block only after attempting to use a spinlock. It is
slim in the sense that it normally only requires allocation of a single pointer-sized
piece of memory.

Touse an SRW lock, a process declares a variable of type SRWLOCK and a calls
InitializeSRWLocktoinitializeit. ThreadscallAcquireSRWLockExclusiveor
AcquireSRWLockShared to acquire the lock and ReleaseSRWLockExclusive
or ReleaseSRWLockShared to release it.

Windows also has condition variables. The process must declare a
CONDITION_VARIABLE and initialize it in some thread by calling
InitializeConditionVariable.Condition variablescanbe used with either crit-
ical sections or SRW locks, so there are two methods, SleepConditionVariableCS
and SleepConditionVariableSRW, which sleep on the specified condition and
releases the specified lock as an atomic operation.

There are two wake methods, WakeConditionVariable and Wake
AllConditionVariable, which wake one or all of the sleeping threads, respec-
tively. Condition variables are used as follows:

1. Acquire exclusive lock

2. While (predicate() == FALSE) SleepConditionVariable()
3. Perform the protected operation

4. Release the lock

Lock-free Synchronization

Windows also relies heavily on interlocked operations for synchronization.
Interlocked operations use hardware facilities to guarantee that memory locations
can be read, modified, and written in a single atomic operation. Examples include
InterlockedIncrement and InterlockedCompareExchange; the latter
allows a memory location to be updated only if it hasn’t changed values since
being read.

Many of the synchronization primitives use interlocked operations within
their implementation, but these operations are also available to programmers for
situations where they want to synchronize without taking a software lock. These
so-called lock-free synchronization primitives have the advantage that a thread can
never be switched away from a processor, say at the end of its timeslice, while still
holding a lock. Thus they cannot block another thread from running.

More complex lock-free primitives can be built out of the interlocked oper-
ations, most notably Windows SLists, which provide a lock-free LIFO queue.
SLists are managed using functions like InterlockedPushEntrySList and
InterlockedPopEntrySList.

298 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

6.11 SUMMARY

Deadlock is the blocking of a set of processes that either compete for system
resources or communicate with each other. The blockage is permanent unless the
OS takes some extraordinary action, such as killing one or more processes or forcing
one or more processes to backtrack. Deadlock may involve reusable resources or
consumable resources. A reusable resource is one that is not depleted or destroyed
by use, such as an I/O channel or a region of memory. A consumable resource is one
that is destroyed when it is acquired by a process; examples include messages and
information in I/O buffers.

There are three general approaches to dealing with deadlock: prevention,
detection, and avoidance. Deadlock prevention guarantees that deadlock will not
occur, by assuring that one of the necessary conditions for deadlock is not met.
Deadlock detection is needed if the OS is always willing to grant resource requests;
periodically, the OS must check for deadlock and take action to break the deadlock.
Deadlock avoidance involves the analysis of each new resource request to deter-
mine if it could lead to deadlock, and granting it only if deadlock is not possible.

6.12 RECOMMENDED READING

The classic paper on deadlocks, [HOLT72], is still well worth a read, as is [COFF71].
Another good survey is [ISLO80]. [CORB96] is a thorough treatment of deadlock
detection. [DIMI98] is a nice overview of deadlocks. Two papers by Levine [LEVI03a,
LEVIO03b] clarify some of the concepts used in discussions of deadlock. [SHUBO3] is
a useful overview of deadlock. [ABRAUO06] describes a deadlock detection package.

The concurrency mechanisms in UNIX SVR4, Linux, and Solaris 2 are well covered
in [GRAYY7], [LOVEI10], and [MCDO07], respectively. [HALL10] is a thorough treat-
ment of UNIX concurrency and interprocess communication mechanisms.

ABRAO6 Abramson, T. “Detecting Potential Deadlocks.” Dr. Dobb’s Journal,
January 2006.

COFF71 Coffman, E., Elphick, M., and Shoshani, A. “System Deadlocks.” Computing
Surveys, June 1971.

CORBY96 Corbett, J. “Evaluating Deadlock Detection Methods for Concurrent
Software.” IEEE Transactions on Software Engineering, March 1996.

DIMI98 Dimitoglou, G. “Deadlocks and Methods for Their Detection, Prevention, and
Recovery in Modern Operating Systems.” Operating Systems Review, July 1998.

GRAYY97 Gray, J. Interprocess Communications in UNIX: The Nooks and Crannies.
Upper Saddle River, NJ: Prentice Hall, 1997.

HALL10 Hall, B. Beej’s Guide to Unix IPC. 2010. Document available in premium
content section for this book.

HOLT72 Holt, R. “Some Deadlock Properties of Computer Systems.” Computing
Surveys, September 1972.

6.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 299

ISLO80 Isloor, S., and Marsland, T. “The Deadlock Problem: An Overview.”

LEVIO3a Levine, G. “Defining Deadlock.” Operating Systems Review, January 2003.
LEVIO3b Levine, G. “Defining Deadlock with Fungible Resources.” Operating

LOVE10 Love, R. Linux Kernel Development. Upper Saddle River, NJ: Addison-
MCDOO07 McDougall, R., and Mauro, J. Solaris Internals: Solaris 10 and OpenSolaris

SHUBO03 Shub, C. “A Unified Treatment of Deadlock.” Journal of Computing in

Computer, September 1980.

Systems Review, July 2003.
Wesley, 2010.
Kernel Architecture. Palo Alto, CA: Sun Microsystems Press, 2007.

Small Colleges, October 2003. Available through the ACM digital library.

6.13 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

banker’s algorithm
circular wait
consumable resource
deadlock

deadlock avoidance
deadlock detection

deadlock prevention
hold and wait

joint progress diagram
memory barrier
message

mutual exclusion

pipe

preemption

resource allocation graph
reusable resource
spinlock

starvation

Review Questions

6.1 Give examples of reusable and consumable resources.

6.2 What are the three conditions that must be present for deadlock to be possible?

6.3 What are the four conditions that create deadlock?

6.4 How can the hold-and-wait condition be prevented?

6.5 List two ways in which the no-preemption condition can be prevented.

6.6 How can the circular wait condition be prevented?

6.7 What is the difference among deadlock avoidance, detection, and prevention?

Problems

6.1 Show that the four conditions of deadlock apply to Figure 6.1a.

6.2 Show how each of the techniques of prevention, avoidance, and detection can be
applied to Figure 6.1.

6.3 For Figure 6.3, provide a narrative description of each of the six depicted paths, simi-
lar to the description of the paths of Figure 6.2 provided in Section 6.1.

6.4 It was stated that deadlock cannot occur for the situation reflected in Figure 6.3.

Justify that statement.

300 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

6.5 Given the following state for the Banker’s Algorithm.
6 processes PO through P5

4 resource types: A (15 instances); B (6 instances)

C (9 instances); D (10 instances)

Snapshot at time TO:
Available
A B C D
L 6 [3 [5 4|

Current allocation Maximum demand

Process A B C D A B C D
PO 2 0 2 1 9 5 5 5
P1 0 1 1 1 2 2 3 3
P2 4 1 0 2 7 5 4 4
P3 1 0 0 1 3 3 3 2
P4 1 1 0 0 5 2 2 1
P5 1 0 1 1 4 4 4 4

T

Verify that the Available array has been calculated correctly.
Calculate the Need matrix.

c. Show that the current state is safe, that is, show a safe sequence of processes. In
addition, to the sequence show how the Available (working array) changes as each
process terminates.

d. Given the request (3,2,3,3) from Process P5. Should this request be granted? Why

or why not?

6.6 In the code below, three processes are competing for six resources labeled A to F.
a. Using a resource allocation graph (Figures 6.5 and 6.6), show the possibility of a
deadlock in this implementation.
b. Modify the order of some of the get requests to prevent the possibility of any
deadlock. You cannot move requests across procedures, only change the order

inside each procedure. Use a resource allocation graph to justify your answer.

void PO ()
{
while (true) ({
get (A) ;
get (B) ;
get (C) ;
// critical region:
// use A, B, C
release (A) ;
release (B) ;
release (C) ;

void P1()
{
while (true) ({
get (D) ;
get (E) ;
get (B) ;
// critical region:
// use D, E, B
release (D) ;
release (E) ;
release (B) ;

void P2 ()
{
while (true) ({
get (C) ;
get (F) ;
get (D) ;
// critical region:
// use C, F, D
release (C) ;
release (F) ;
release (D) ;

6.7 A spooling system (Figure 6.16) consists of an input process I, a user process P,
and an output process O connected by two buffers. The processes exchange data in

6.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 301

Input { \ Output
d buffer w buffer Q

Figure 6.16 A Spooling System

where

blocks of equal size. These blocks are buffered on a disk using a floating boundary
between the input and the output buffers, depending on the speed of the processes.
The communication primitives used ensure that the following resource constraint
is satisfied:

[+ 0 = max

max = maximum number of blocks on disk
i = number of input blocks on disk
o = number of output blocks on disk

The following is known about the processes:

6.8

6.9

6.10

1. Aslong as the environment supplies data, process I will eventually input it to the
disk (provided disk space becomes available).

2. Aslong as input is available on the disk, process P will eventually consume it and
output a finite amount of data on the disk for each block input (provided disk
space becomes available).

3. Aslong as output is available on the disk, process O will eventually consume it.

Show that this system can become deadlocked.

Suggest an additional resource constraint that will prevent the deadlock in Problem
6.7 but still permit the boundary between input and output buffers to vary in accor-
dance with the present needs of the processes.

In the THE multiprogramming system [DIJK68], a drum (precursor to the disk for
secondary storage) is divided into input buffers, processing areas, and output buffers,
with floating boundaries, depending on the speed of the processes involved. The current
state of the drum can be characterized by the following parameters:

max = maximum number of pages on drum
i = number of input pages on drum
p = number of processing pages on drum
o = number of output pages on drum
reso = minimum number of pages reserved for output
resp = minimum number of pages reserved for processing

Formulate the necessary resource constraints that guarantee that the drum capacity
is not exceeded and that a minimum number of pages is reserved permanently for
output and processing.

In the THE multiprogramming system, a page can make the following state transitions:

1. empty — input buffer (input production)

2. input buffer — processing area (input consumption)

3. processing area — output buffer (output production)

4. output buffer — empty (output consumption)

5. empty — processing area (procedure call)

6. processing area — empty (procedure return)

a. Define the effect of these transitions in terms of the quantities 7, 0, and p.

b. Can any of them lead to a deadlock if the assumptions made in Problem 6.6 about

input processes, user processes, and output processes hold?

302 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

6.11 Consider a system with a total of 150 units of memory, allocated to three processes as

6.12
6.13

6.14

6.15

shown:
Process Max Hold
1 70 45
2 60 40
3 60 15

Apply the banker’s algorithm to determine whether it would be safe to grant each of

the following requests. If yes, indicate a sequence of terminations that could be guar-

anteed possible. If no, show the reduction of the resulting allocation table.

a. A fourth process arrives, with a maximum memory need of 60 and an initial need
of 25 units.

b. A fourth process arrives, with a maximum memory need of 60 and an initial need
of 35 units.

Evaluate the banker’s algorithm for its usefulness in an OS.

A pipeline algorithm is implemented so that a stream of data elements of type T pro-

duced by a process P passes through a sequence of processes Py, Py, ..., P, _1, which

operates on the elements in that order.

a. Define a generalized message buffer that contains all the partially consumed data
elements and write an algorithm for process Pi (0 < i < n - 1), of the form

repeat
receive from predecessor;
consume element;
send to successor:

forever

Assume Pjreceives input elements sent by P,, _. The algorithm should enable
the processes to operate directly on messages stored in the buffer so that copying
is unnecessary.

b. Show that the processes cannot be deadlocked with respect to the common buffer.
Suppose the following two processes, foo and bar are executed concurrently and
share the semaphore variables S and R (each initialized to 1) and the integer variable
X (initialized to 0).

void foo() { void bar() {

do {

do {

semWait (S) ;
semWait (R) ;
X++;

semWait (R) ;
semWait (S) ;
R==7p

semSignal (S) ;
SemSignal (R) ; SemSignal (R) ;
} while (1); } while (1);

} }

semSignal (S;

a. Can the concurrent execution of these two processes result in one or both being
blocked forever? If yes, give an execution sequence in which one or both are
blocked forever.

b. Can the concurrent execution of these two processes result in the indefinite
postponement of one of them? If yes, give an execution sequence in which one is
indefinitely postponed.

Consider a system consisting of four processes and a single resource. The current state
of the claim and allocation matrices are:

6.16

6.17

6.18

6.19

6.20

6.21

6.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 303

O N W
W = =

7 2

What is the minimum number of units of the resource needed to be available for this

state to be safe?

Consider the following ways of handling deadlock: (1) banker’s algorithm, (2) detect

deadlock and kill thread, releasing all resources, (3) reserve all resources in advance,

(4) restart thread and release all resources if thread needs to wait, (5) resource order-

ing, and (6) detect deadlock and roll back thread’s actions.

a. One criterion to use in evaluating different approaches to deadlock is which
approach permits the greatest concurrency. In other words, which approach allows
the most threads to make progress without waiting when there is no deadlock?
Give a rank order from 1 to 6 for each of the ways of handling deadlock just listed,
where 1 allows the greatest degree of concurrency. Comment on your ordering.

b. Another criterion is efficiency; in other words, which requires the least processor
overhead. Rank order the approaches from 1 to 6, with 1 being the most efficient,
assuming that deadlock is a very rare event. Comment on your ordering. Does
your ordering change if deadlocks occur frequently?

Comment on the following solution to the dining philosophers problem. A hungry phi-

losopher first picks up his left fork; if his right fork is also available, he picks up his right

fork and starts eating; otherwise he puts down his left fork again and repeats the cycle.

Suppose that there are two types of philosophers. One type always picks up his left

fork first (a “lefty”), and the other type always picks up his right fork first (a “righty”).

The behavior of a lefty is defined in Figure 6.12. The behavior of a righty is as follows:

begin
repeat
think;
wait (fork[(i+1) mod 5]);
wait (forkI[i]);
eat;
signal (fork[i]);
signal (fork[(i+1) mod 5]);
forever
end;

Prove the following:

a. Any seating arrangement of lefties and righties with at least one of each avoids
deadlock.

b. Any seating arrangement of lefties and righties with at least one of each prevents
starvation.

Figure 6.17 shows another solution to the dining philosophers problem using moni-
tors. Compare to Figure 6.14 and report your conclusions.

In Table 6.3, some of the Linux atomic operations do not involve two accesses to a
variable, such as atomic_read(atomic_t *v). A simple read operation is obvi-
ously atomic in any architecture. Therefore, why is this operation added to the reper-
toire of atomic operations?

Consider the following fragment of code on a Linux system.
read lock (&mr_ rwlock) ;
write lock (&mr_ rwlock) ;
Where mr_rwlock is a reader—writer lock. What is the effect of this code?

304 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

monitor dining controller;
enum states {thinking, hungry, eating} state[5];

cond needFork([5] /* condition variable */
void get forks (int pid) /* pid is the philosopher id number */
{
state[pid] = hungry; /* announce that I’'m hungry */
if (state[(pid+l) % 5] == eating || (state[(pid-1) % 5] == eating)
cwait (needFork [pid]) ; /* wait if either neighbor is eating */
state[pid] = eating; /* proceed if neither neighbor is eating */

}

void release forks (int pid)

{
state[pid] = thinking;
/* give right (higher) neighbor a chance to eat */
if (statel[(pid+1l) % 5] == hungry) && (statel[(pid+2)
% 5]) != eating)

csignal (needFork [pid+1]) ;

/* give left (lower) neighbor a chance to eat */

else if (state[(pid-1) % 5] == hungry) && (state[(pid-2)

% 5]) != eating)

csignal (needFork [pid-1]) ;

}

void philosopher [k=0 to 4] /* the five philosopher clients */

{

while (true) ({

<think>;

get forks (k) ; /* client requests two forks via monitor */
<eat spaghettis;

release forks (k) ; /* client releases forks via the monitor */

}

Figure 6.17 Another Solution to the Dining Philosophers Problem Using a Monitor

6.22 The two variables a and b have initial values of 1 and 2, respectively. The following
code is for a Linux system:

Thread 1 Thread 2
a = 3; -
mb () ; —
b = 4; c = b;
- rmb () ;
- d = a;

What possible errors are avoided by the use of the memory barriers?

PART 3 Memory

MEMORY MANAGEMENT

7.1

7.2

7.3
7.4
7.5

7.6
1.7
7.8

Memory Management Requirements
Relocation
Protection
Sharing
Logical Organization
Physical Organization

Memory Partitioning
Fixed Partitioning
Dynamic Partitioning
Buddy System
Relocation

Paging
Segmentation

Security Issues
Buffer Overflow Attacks
Defending against Buffer Overflows

Summary
Recommended Reading

Key Terms, Review Questions, and Problems

APPENDIX 7A Loading and Linking

305

306 CHAPTER 7 / MEMORY MANAGEMENT

I cannot guarantee that I carry all the facts in my mind. Intense mental
concentration has a curious way of blotting out what has passed.
Each of my cases displaces the last, and Mlle. Caréere has blurred my
recollection of Baskerville Hall. Tomorrow some other little problem
may be submitted to my notice which will in turn dispossess the fair
French lady and the infamous Upwood.

— THE HOUND OF THE BASKERVILLES,
ARTHUR CONAN DOYLE.

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

¢ Discuss the principal requirements for memory management.

e Understand the reason for memory partitioning and explain the various
techniques that are used.

e Understand and explain the concept of paging.

¢ Understand and explain the concept of segmentation.

e Assess the relative advantages of paging and segmentation.

e Summarize key security issues related to memory management.
¢ Describe the concepts of loading and linking.

In a uniprogramming system, main memory is divided into two parts: one part for
the operating system (resident monitor, kernel) and one part for the program cur-
rently being executed. In a multiprogramming system, the “user” part of memory
must be further subdivided to accommodate multiple processes. The task of subdi-
vision is carried out dynamically by the operating system and is known as memory
management.

Effective memory management is vital in a multiprogramming system. If only
a few processes are in memory, then for much of the time all of the processes
will be waiting for I/O and the processor will be idle. Thus memory needs to be
allocated to ensure a reasonable supply of ready processes to consume available
processor time.

We begin with the requirements that memory management is intended to
satisfy. Next, we discuss a variety of simple schemes that have been used for
memory management

Table 7.1 introduces some key terms for our discussion. A set of animations
that illustrate concepts in this chapter is available online. Click on the rotating globe
at WilliamStallings.com/OS/OS7e.html for access.

7.1 / MEMORY MANAGEMENT REQUIREMENTS 307

Table 7.1 Memory Management Terms

Frame A fixed-length block of main memory.

Page A fixed-length block of data that resides in secondary memory (such as disk). A page of data may
temporarily be copied into a frame of main memory.

Segment | A variable-length block of data that resides in secondary memory. An entire segment may tempo-
rarily be copied into an available region of main memory (segmentation) or the segment may be
divided into pages which can be individually copied into main memory (combined segmentation
and paging).

7.1 MEMORY MANAGEMENT REQUIREMENTS

While surveying the various mechanisms and policies associated with memory man-
agement, it is helpful to keep in mind the requirements that memory management is
intended to satisfy. These requirements include the following:

e Relocation

e Protection

e Sharing

e Logical organization

Physical organization

Relocation

In a multiprogramming system, the available main memory is generally shared
among a number of processes. Typically, it is not possible for the programmer to
know in advance which other programs will be resident in main memory at the time
of execution of his or her program. In addition, we would like to be able to swap
active processes in and out of main memory to maximize processor utilization by
providing a large pool of ready processes to execute. Once a program is swapped
out to disk, it would be quite limiting to specify that when it is next swapped back in,
it must be placed in the same main memory region as before. Instead, we may need
to relocate the process to a different area of memory.

Thus, we cannot know ahead of time where a program will be placed, and we
must allow for the possibility that the program may be moved about in main memory
due to swapping. These facts raise some technical concerns related to addressing,
as illustrated in Figure 7.1. The figure depicts a process image. For simplicity, let
us assume that the process image occupies a contiguous region of main memory.
Clearly, the operating system will need to know the location of process control
information and of the execution stack, as well as the entry point to begin execution
of the program for this process. Because the operating system is managing mem-
ory and is responsible for bringing this process into main memory, these addresses
are easy to come by. In addition, however, the processor must deal with memory

308 CHAPTER 7 / MEMORY MANAGEMENT

Process control

information Entry point Process control block
to program
Branch
Program instruction
Increasing
address
values
Reference
to data
Data
Current top
of stack
Stack

Figure 7.1 Addressing Requirements for a Process

references within the program. Branch instructions contain an address to reference
the instruction to be executed next. Data reference instructions contain the address
of the byte or word of data referenced. Somehow, the processor hardware and oper-
ating system software must be able to translate the memory references found in the
code of the program into actual physical memory addresses, reflecting the current
location of the program in main memory.

Protection

Each process should be protected against unwanted interference by other
processes, whether accidental or intentional. Thus, programs in other processes
should not be able to reference memory locations in a process for reading or writing
purposes without permission. In one sense, satisfaction of the relocation require-
ment increases the difficulty of satisfying the protection requirement. Because
the location of a program in main memory is unpredictable, it is impossible to
check absolute addresses at compile time to assure protection. Furthermore, most
programming languages allow the dynamic calculation of addresses at run time
(e.g., by computing an array subscript or a pointer into a data structure). Hence all
memory references generated by a process must be checked at run time to ensure
that they refer only to the memory space allocated to that process. Fortunately,
we shall see that mechanisms that support relocation also support the protection
requirement.

Normally, a user process cannot access any portion of the operating system,
neither program nor data. Again, usually a program in one process cannot branch
to an instruction in another process. Without special arrangement, a program in one
process cannot access the data area of another process. The processor must be able
to abort such instructions at the point of execution.

7.1 / MEMORY MANAGEMENT REQUIREMENTS 309

Note that the memory protection requirement must be satisfied by the proces-
sor (hardware) rather than the operating system (software). This is because the OS
cannot anticipate all of the memory references that a program will make. Even if
such anticipation were possible, it would be prohibitively time consuming to screen
each program in advance for possible memory-reference violations. Thus, it is only
possible to assess the permissibility of a memory reference (data access or branch)
at the time of execution of the instruction making the reference. To accomplish this,
the processor hardware must have that capability.

Sharing

Any protection mechanism must have the flexibility to allow several processes to
access the same portion of main memory. For example, if a number of processes are
executing the same program, it is advantageous to allow each process to access the
same copy of the program rather than have its own separate copy. Processes that
are cooperating on some task may need to share access to the same data structure.
The memory management system must therefore allow controlled access to shared
areas of memory without compromising essential protection. Again, we will see that
the mechanisms used to support relocation support sharing capabilities.

Logical Organization

Almost invariably, main memory in a computer system is organized as a linear,
or one-dimensional, address space, consisting of a sequence of bytes or words.
Secondary memory, at its physical level, is similarly organized. While this organi-
zation closely mirrors the actual machine hardware, it does not correspond to the
way in which programs are typically constructed. Most programs are organized into
modules, some of which are unmodifiable (read only, execute only) and some of
which contain data that may be modified. If the operating system and computer
hardware can effectively deal with user programs and data in the form of modules
of some sort, then a number of advantages can be realized:

1. Modules can be written and compiled independently, with all references from
one module to another resolved by the system at run time.

2. With modest additional overhead, different degrees of protection (read only,
execute only) can be given to different modules.

3. Itis possible to introduce mechanisms by which modules can be shared among
processes. The advantage of providing sharing on a module level is that this
corresponds to the user’s way of viewing the problem, and hence it is easy for
the user to specify the sharing that is desired.

The tool that most readily satisfies these requirements is segmentation, which is one
of the memory management techniques explored in this chapter.
Physical Organization

As we discussed in Section 1.5, computer memory is organized into at least two
levels, referred to as main memory and secondary memory. Main memory provides
fast access at relatively high cost. In addition, main memory is volatile; that is, it

310 CHAPTER 7 / MEMORY MANAGEMENT

does not provide permanent storage. Secondary memory is slower and cheaper than
main memory and is usually not volatile. Thus secondary memory of large capacity
can be provided for long-term storage of programs and data, while a smaller main
memory holds programs and data currently in use.

In this two-level scheme, the organization of the flow of information between
main and secondary memory is a major system concern. The responsibility for this
flow could be assigned to the individual programmer, but this is impractical and
undesirable for two reasons:

1. The main memory available for a program plus its data may be insufficient. In
that case, the programmer must engage in a practice known as overlaying, in
which the program and data are organized in such a way that various modules
can be assigned the same region of memory, with a main program responsible
for switching the modules in and out as needed. Even with the aid of compiler
tools, overlay programming wastes programmer time.

2. In a multiprogramming environment, the programmer does not know at the
time of coding how much space will be available or where that space will be.

It is clear, then, that the task of moving information between the two levels
of memory should be a system responsibility. This task is the essence of memory
management.

7.2 MEMORY PARTITIONING

The principal operation of memory management is to bring processes into main
memory for execution by the processor. In almost all modern multiprogramming
systems, this involves a sophisticated scheme known as virtual memory. Virtual
memory is, in turn, based on the use of one or both of two basic techniques: segmen-
tation and paging. Before we can look at these virtual memory techniques, we must
prepare the ground by looking at simpler techniques that do not involve virtual
memory (Table 7.2 summarizes all the techniques examined in this chapter and the
next). One of these techniques, partitioning, has been used in several variations in
some now-obsolete operating systems. The other two techniques, simple paging and
simple segmentation, are not used by themselves. However, it will clarify the dis-
cussion of virtual memory if we look first at these two techniques in the absence of
virtual memory considerations.

Fixed Partitioning

In most schemes for memory management, we can assume that the OS occupies
some fixed portion of main memory and that the rest of main memory is available
for use by multiple processes. The simplest scheme for managing this available
memory is to partition it into regions with fixed boundaries.

Parririon Sizes Figure 7.2 shows examples of two alternatives for fixed
partitioning. One possibility is to make use of equal-size partitions. In this case,
any process whose size is less than or equal to the partition size can be loaded into

Table 7.2 Memory Management Techniques

7.2 / MEMORY PARTITIONING 311

Technique Description Strengths Weaknesses
Fixed Main memory is divided into | Simple to implement; little Inefficient use of memory
Partitioning a number of static partitions operating system overhead. | due to internal fragmenta-
at system generation time. tion; maximum number of
A process may be loaded active processes is fixed.
into a partition of equal or
greater size.
Dynamic Partitions are created No internal fragmentation; Inefficient use of processor
Partitioning dynamically, so that each more efficient use of main due to the need for com-
process is loaded into a memory. paction to counter external
partition of exactly the same fragmentation.
size as that process.
Simple Paging Main memory is divided No external fragmentation. | A small amount of internal
into a number of equal-size fragmentation.
frames. Each process is
divided into a number of
equal-size pages of the same
length as frames. A process
is loaded by loading all of its
pages into available, not nec-
essarily contiguous, frames.
Simple Each process is divided into No internal fragmentation; | External fragmentation.
Segmentation a number of segments. A improved memory utiliza-
process is loaded by load- tion and reduced overhead
ing all of its segments into compared to dynamic
dynamic partitions that need | partitioning.
not be contiguous.
Virtual Memory | As with simple paging, No external fragmentation; | Overhead of complex
Paging except that it is not necessary | higher degree of multipro- memory management.
to load all of the pages of a gramming; large virtual
process. Nonresident pages address space.
that are needed are brought
in later automatically.
Virtual Memory | As with simple segmenta- No internal fragmentation, Overhead of complex
Segmentation tion, except that it is not higher degree of multipro- memory management.
necessary to load all of gramming; large virtual
the segments of a process. address space; protection
Nonresident segments that and sharing support.
are needed are brought in
later automatically.

any available partition. If all partitions are full and no process is in the Ready or
Running state, the operating system can swap a process out of any of the partitions
and load in another process, so that there is some work for the processor.

There are two difficulties with the use of equal-size fixed partitions:

e A program may be too big to fit into a partition. In this case, the programmer
must design the program with the use of overlays so that only a portion of the
program need be in main memory at any one time. When a module is needed

312 CHAPTER 7 / MEMORY MANAGEMENT

Operating system Operating system
8M 8M
2M
M aMm
6M
8M
8M
&M
8M
8M
12M
&M
8M
16M
&M
(a) Equal-size partitions (b) Unequal-size partitions

Figure 7.2 Example of Fixed Partitioning of a 64-Mbyte Memory

that is not present, the user’s program must load that module into the pro-
gram’s partition, overlaying whatever programs or data are there.

e Main memory utilization is extremely inefficient. Any program, no matter
how small, occupies an entire partition. In our example, there may be a pro-
gram whose length is less than 2 Mbytes; yet it occupies an 8-Mbyte partition
whenever it is swapped in. This phenomenon, in which there is wasted space
internal to a partition due to the fact that the block of data loaded is smaller
than the partition, is referred to as internal fragmentation.

Both of these problems can be lessened, though not solved, by using unequal-
size partitions (Figure 7.2b). In this example, programs as large as 16 Mbytes can
be accommodated without overlays. Partitions smaller than 8 Mbytes allow smaller
programs to be accommodated with less internal fragmentation.

PLACEMENT ALGORITHM With equal-size partitions, the placement of processes
in memory is trivial. As long as there is any available partition, a process can be

7.2 / MEMORY PARTITIONING 313

loaded into that partition. Because all partitions are of equal size, it does not matter
which partition is used. If all partitions are occupied with processes that are not
ready to run, then one of these processes must be swapped out to make room for a
new process. Which one to swap out is a scheduling decision; this topic is explored
in Part Four.

With unequal-size partitions, there are two possible ways to assign processes
to partitions. The simplest way is to assign each process to the smallest partition
within which it will fit." In this case, a scheduling queue is needed for each parti-
tion, to hold swapped-out processes destined for that partition (Figure 7.3a). The
advantage of this approach is that processes are always assigned in such a way as to
minimize wasted memory within a partition (internal fragmentation).

Although this technique seems optimum from the point of view of an indi-
vidual partition, it is not optimum from the point of view of the system as a whole.
In Figure 7.2b, for example, consider a case in which there are no processes with a
size between 12 and 16M at a certain point in time. In that case, the 16M partition
will remain unused, even though some smaller process could have been assigned to
it. Thus, a preferable approach would be to employ a single queue for all processes
(Figure 7.3b). When it is time to load a process into main memory, the smallest
available partition that will hold the process is selected. If all partitions are occupied,
then a swapping decision must be made. Preference might be given to swapping out
of the smallest partition that will hold the incoming process. It is also possible to

Operating Operating
system system

[T >
T

T T
ITTTTITY

New New
processes processes

(a) One process queue per partition (b) Single queue

Figure 7.3 Memory Assignment for Fixed Partitioning

I'This assumes that one knows the maximum amount of memory that a process will require. This is not
always the case. If it is not known how large a process may become, the only alternatives are an overlay
scheme or the use of virtual memory.

314 CHAPTER 7 / MEMORY MANAGEMENT

consider other factors, such as priority, and a preference for swapping out blocked
processes versus ready processes.

The use of unequal-size partitions provides a degree of flexibility to fixed
partitioning. In addition, it can be said that fixed-partitioning schemes are relatively
simple and require minimal OS software and processing overhead. However, there
are disadvantages:

e The number of partitions specified at system generation time limits the number
of active (not suspended) processes in the system.

e Because partition sizes are preset at system generation time, small jobs will not
utilize partition space efficiently. In an environment where the main storage
requirement of all jobs is known beforehand, this may be reasonable, but in
most cases, it is an inefficient technique.

The use of fixed partitioning is almost unknown today. One example of a suc-
cessful operating system that did use this technique was an early IBM mainframe
operating system, OS/MFT (Multiprogramming with a Fixed Number of Tasks).

Dynamic Partitioning

To overcome some of the difficulties with fixed partitioning, an approach known
as dynamic partitioning was developed. Again, this approach has been supplanted
by more sophisticated memory management techniques. An important operating
system that used this technique was IBM’s mainframe operating system, OS/MVT
(Multiprogramming with a Variable Number of Tasks).

With dynamic partitioning, the partitions are of variable length and number.
When a process is brought into main memory, it is allocated exactly as much mem-
ory as it requires and no more. An example, using 64 Mbytes of main memory, is
shown in Figure 7.4. Initially, main memory is empty, except for the OS (a). The
first three processes are loaded in, starting where the operating system ends and
occupying just enough space for each process (b, c, d). This leaves a “hole” at
the end of memory that is too small for a fourth process. At some point, none of
the processes in memory is ready. The operating system swaps out process 2 (e),
which leaves sufficient room to load a new process, process 4 (f). Because process
4 is smaller than process 2, another small hole is created. Later, a point is reached
at which none of the processes in main memory is ready, but process 2, in the
Ready-Suspend state, is available. Because there is insufficient room in memory
for process 2, the operating system swaps process 1 out (g) and swaps process 2
back in (h).

As this example shows, this method starts out well, but eventually it leads to a
situation in which there are a lot of small holes in memory. As time goes on, mem-
ory becomes more and more fragmented, and memory utilization declines. This
phenomenon is referred to as external fragmentation, indicating that the memory
that is external to all partitions becomes increasingly fragmented. This is in contrast
to internal fragmentation, referred to earlier.

One technique for overcoming external fragmentation is compaction: From
time to time, the OS shifts the processes so that they are contiguous and so that all of
the free memory is together in one block. For example, in Figure 7.4h, compaction

7.2 / MEMORY PARTITIONING 315

Operating Operating Operating Operating
system 8M system system system
Process 1 20M Process 1 20M Process 1 20M
56M Process 2 14M Process 2 14M
36M
9M Process 3 18M
M
(@) (b) (©) d
Operating Operating Operating Operating
system system system system
Process 2 14M
Process 1 20M Process 1 20M 20M
6M
Process 4 SM Process 4 SM Process 4 M
14M
6M 6M 6M
Process 3 18M Process 3 18M Process 3 18M Process 3 18M
AM iM iM M
(e () (g) (h)

Figure 7.4 The Effect of Dynamic Partitioning

will result in a block of free memory of length 16M. This may well be sufficient
to load in an additional process. The difficulty with compaction is that it is a time-
consuming procedure and wasteful of processor time. Note that compaction implies
the need for a dynamic relocation capability. That is, it must be possible to move a
program from one region to another in main memory without invalidating the
memory references in the program (see Appendix 7A).

PLACEMENT ALGORITHM Because memory compaction is time consuming, the OS
designer must be clever in deciding how to assign processes to memory (how to plug
the holes). When it is time to load or swap a process into main memory, and if there
is more than one free block of memory of sufficient size, then the operating system
must decide which free block to allocate.

Three placement algorithms that might be considered are best-fit, first-fit, and
next-fit. All, of course, are limited to choosing among free blocks of main memory
that are equal to or larger than the process to be brought in. Best-fit chooses the
block that is closest in size to the request. First-fit begins to scan memory from the

316 CHAPTER 7 / MEMORY MANAGEMENT

8M SM
12M First fit 12M
22M >
6M
Best fit
Last 18M \—,
allocated M
block (14K)
8M SM
6M 6M
I:l Allocated block
I:l Free block
14M I:l Possible new allocation 14M
Next fit
36M
20M
(a) Before (b) After

Figure 7.5 Example Memory Configuration before and after Allocation of
16-Mbyte Block

beginning and chooses the first available block that is large enough. Next-fit begins
to scan memory from the location of the last placement, and chooses the next avail-
able block that is large enough.

Figure 7.5a shows an example memory configuration after a number of place-
ment and swapping-out operations. The last block that was used was a 22-Mbyte
block from which a 14-Mbyte partition was created. Figure 7.5b shows the
difference between the best-, first-, and next-fit placement algorithms in satisfying
a 16-Mbyte allocation request. Best-fit will search the entire list of available blocks
and make use of the 18-Mbyte block, leaving a 2-Mbyte fragment. First-fit results
in a 6-Mbyte fragment, and next-fit results in a 20-Mbyte fragment.

Which of these approaches is best will depend on the exact sequence of proc-
ess swappings that occurs and the size of those processes. However, some general
comments can be made (see also [BRENS&9], [SHOR75], and [BAYS77]). The
first-fit algorithm is not only the simplest but usually the best and fastest as well.
The next-fit algorithm tends to produce slightly worse results than the first-fit. The
next-fit algorithm will more frequently lead to an allocation from a free block at the
end of memory. The result is that the largest block of free memory, which usually

7.2 / MEMORY PARTITIONING 317

appears at the end of the memory space, is quickly broken up into small fragments.
Thus, compaction may be required more frequently with next-fit. On the other
hand, the first-fit algorithm may litter the front end with small free partitions that
need to be searched over on each subsequent first-fit pass. The best-fit algorithm,
despite its name, is usually the worst performer. Because this algorithm looks for
the smallest block that will satisfy the requirement, it guarantees that the fragment
left behind is as small as possible. Although each memory request always wastes
the smallest amount of memory, the result is that main memory is quickly littered
by blocks too small to satisfy memory allocation requests. Thus, memory compac-
tion must be done more frequently than with the other algorithms.

REPLACEMENT ALGORITHM In a multiprogramming system using dynamic
partitioning, there will come a time when all of the processes in main memory
are in a blocked state and there is insufficient memory, even after compaction,
for an additional process. To avoid wasting processor time waiting for an active
process to become unblocked, the OS will swap one of the processes out of main
memory to make room for a new process or for a process in a Ready-Suspend state.
Therefore, the operating system must choose which process to replace. Because
the topic of replacement algorithms will be covered in some detail with respect to
various virtual memory schemes, we defer a discussion of replacement algorithms
until then.

Buddy System

Both fixed and dynamic partitioning schemes have drawbacks. A fixed partition-
ing scheme limits the number of active processes and may use space inefficiently
if there is a poor match between available partition sizes and process sizes. A
dynamic partitioning scheme is more complex to maintain and includes the over-
head of compaction. An interesting compromise is the buddy system ([KNUT97],
[PETET77]).

In a buddy system, memory blocks are available of size 2K words, L < K < U,
where

2L = smallest size block that is allocated

2V = largest size block that is allocated; generally 2V is the size of the entire
memory available for allocation

To begin, the entire space available for allocation is treated as a single block
of size 2U. If a request of size s such that 2Y~! < s < 2V is made, then the entire block
is allocated. Otherwise, the block is split into two equal buddies of size 2V~!. 1f 2U-2
< s <2U" then the request is allocated to one of the two buddies. Otherwise, one
of the buddies is split in half again. This process continues until the smallest block
greater than or equal to s is generated and allocated to the request. At any time, the
buddy system maintains a list of holes (unallocated blocks) of each size 2‘. A hole
may be removed from the (i + 1) list by splitting it in half to create two buddies of
size 2! in the i list. Whenever a pair of buddies on the i list both become unallocated,
they are removed from that list and coalesced into a single block on the (i + 1)

318 CHAPTER 7 / MEMORY MANAGEMENT

list. Presented with a request for an allocation of size k such that 27l < k <2 the
following recursive algorithm is used to find a hole of size 2"

void get hole(int 1)
{
if (i == (U + 1)) <failures>;
if (<i list emptys)
get_hole(i + 1);
<split hole into buddiess;
<put buddies on i list>;

}

<take first hole on i list>;

Figure 7.6 gives an example using a 1-Mbyte initial block. The first request, A,
is for 100 Kbytes, for which a 128K block is needed. The initial block is divided into
two 512K buddies. The first of these is divided into two 256K buddies, and the first
of these is divided into two 128K buddies, one of which is allocated to A. The next
request, B, requires a 256K block. Such a block is already available and is allocated.
The process continues with splitting and coalescing occurring as needed. Note that
when E is released, two 128K buddies are coalesced into a 256K block, which is
immediately coalesced with its buddy.

Figure 7.7 shows a binary tree representation of the buddy allocation immedi-
ately after the Release B request. The leaf nodes represent the current partitioning
of the memory. If two buddies are leaf nodes, then at least one must be allocated;
otherwise they would be coalesced into a larger block.

1-Mbyte block | M |
Request 100K [A = 128K | 128K | 256K | 512K |
Request 240K [A = 128K | 128K | B = 256K | 512K |
Request 64K [A = 128K Jc = 64k] 64K | B = 256K | 512K |
Request 256K [A = 128K o = s4k] 64K | B = 256K | D = 256K | 256K |
Release B | A = 128K [c = 64k] 64K | 256K | D = 256K | 256K |
Release A| 128K [c=64] 64K | 256K | D = 256K | 256K |
Request 75K | E = 128K |c = 64k] 64K | 256K | D = 256K | 256K |
Release C| E = 128K | 128K | 256K | D = 256K | 256K |
Release E | 512K | D = 256K | 256K |
Release D | IM |

Figure 7.6 Example of Buddy System

7.2 / MEMORY PARTITIONING 319

IM

512K

256K

128K

64K

[A= 128K [c=6] 64K | 256K D = 256K | 256K

O Leaf node for O Leaf node for @ Non-leaf node
allocated block

unallocated block

Figure 7.7 Tree Representation of Buddy System

The buddy system is a reasonable compromise to overcome the disadvantages
of both the fixed and variable partitioning schemes, but in contemporary operating
systems, virtual memory based on paging and segmentation is superior. However,
the buddy system has found application in parallel systems as an efficient means
of allocation and release for parallel programs (e.g., see [JOHN92]). A modified
form of the buddy system is used for UNIX kernel memory allocation (described in
Chapter 8).

Relocation

Before we consider ways of dealing with the shortcomings of partitioning, we must
clear up one loose end, which relates to the placement of processes in memory.
When the fixed partition scheme of Figure 7.3a is used, we can expect that a pro-
cess will always be assigned to the same partition. That is, whichever partition is
selected when a new process is loaded will always be used to swap that process back
into memory after it has been swapped out. In that case, a simple relocating loader,
such as is described in Appendix 7A, can be used: When the process is first loaded,
all relative memory references in the code are replaced by absolute main memory
addresses, determined by the base address of the loaded process.

In the case of equal-size partitions (Figure 7.2), and in the case of a single proc-
ess queue for unequal-size partitions (Figure 7.3b), a process may occupy different
partitions during the course of its life. When a process image is first created, it is

320 CHAPTER 7 / MEMORY MANAGEMENT

loaded into some partition in main memory. Later, the process may be swapped out;
when it is subsequently swapped back in, it may be assigned to a different partition
than the last time. The same is true for dynamic partitioning. Observe in Figure 7.4c
and Figure 7.4h that process 2 occupies two different regions of memory on the two
occasions when it is brought in. Furthermore, when compaction is used, processes
are shifted while they are in main memory. Thus, the locations (of instructions and
data) referenced by a process are not fixed. They will change each time a process is
swapped in or shifted. To solve this problem, a distinction is made among several
types of addresses. A logical address is a reference to a memory location independ-
ent of the current assignment of data to memory; a translation must be made to a
physical address before the memory access can be achieved. A relative address is a
particular example of logical address, in which the address is expressed as a location
relative to some known point, usually a value in a processor register. A physical
address, or absolute address, is an actual location in main memory.

Programs that employ relative addresses in memory are loaded using dynamic
run-time loading (see Appendix 7A for a discussion). Typically, all of the memory
references in the loaded process are relative to the origin of the program. Thus a hard-
ware mechanism is needed for translating relative addresses to physical main memory
addresses at the time of execution of the instruction that contains the reference.

Figure 7.8 shows the way in which this address translation is typically accom-
plished. When a process is assigned to the Running state, a special processor register,
sometimes called the base register, is loaded with the starting address in main memory
of the program. There is also a “bounds” register that indicates the ending location

Relative address

° Process control block
Base register |===—=—==——=—=——q-———m—————————— >
Adder Program
Absolute
address
—— N
1 T !
1 1 |
1 1 H
I I emm——- >
: * Data
1 Interrupt to
i operating system
1
| e e e >
Stack

Process image in
main memory

Figure 7.8 Hardware Support for Relocation

7.3 / PAGING 321

of the program; these values must be set when the program is loaded into memory or
when the process image is swapped in. During the course of execution of the proc-
ess, relative addresses are encountered. These include the contents of the instruc-
tion register, instruction addresses that occur in branch and call instructions, and
data addresses that occur in load and store instructions. Each such relative address
goes through two steps of manipulation by the processor. First, the value in the base
register is added to the relative address to produce an absolute address. Second, the
resulting address is compared to the value in the bounds register. If the address is
within bounds, then the instruction execution may proceed. Otherwise, an interrupt is
generated to the operating system, which must respond to the error in some fashion.

The scheme of Figure 7.8 allows programs to be swapped in and out of mem-
ory during the course of execution. It also provides a measure of protection: Each
process image is isolated by the contents of the base and bounds registers and safe
from unwanted accesses by other processes.

7.3 PAGING

Both unequal fixed-size and variable-size partitions are inefficient in the use of
memory; the former results in internal fragmentation, the latter in external frag-
mentation. Suppose, however, that main memory is partitioned into equal fixed-size
chunks that are relatively small, and that each process is also divided into small
fixed-size chunks of the same size. Then the chunks of a process, known as pages,
could be assigned to available chunks of memory, known as frames, or page frames.
We show in this section that the wasted space in memory for each process is due
to internal fragmentation consisting of only a fraction of the last page of a process.
There is no external fragmentation.

Figure 7.9 illustrates the use of pages and frames. At a given point in time, some
of the frames in memory are in use and some are free. A list of free frames is main-
tained by the OS. Process A, stored on disk, consists of four pages. When it is time to
load this process, the OS finds four free frames and loads the four pages of process A
into the four frames (Figure 7.9b). Process B, consisting of three pages, and process C,
consisting of four pages, are subsequently loaded. Then process B is suspended and is
swapped out of main memory. Later, all of the processes in main memory are blocked,
and the OS needs to bring in a new process, process D, which consists of five pages.

Now suppose, as in this example, that there are not sufficient unused contiguous
frames to hold the process. Does this prevent the operating system from loading D?
The answer is no, because we can once again use the concept of logical address.
A simple base address register will no longer suffice. Rather, the operating system
maintains a page table for each process. The page table shows the frame location for
each page of the process. Within the program, each logical address consists of a page
number and an offset within the page. Recall that in the case of simple partition, a
logical address is the location of a word relative to the beginning of the program; the
processor translates that into a physical address. With paging, the logical-to-physical
address translation is still done by processor hardware. Now the processor must
know how to access the page table of the current process. Presented with a logical

322 CHAPTER 7 / MEMORY MANAGEMENT

Frame

Main memory Main memory Main memory
number
0 0 A.0 0 A.0
1 1 Al 1 Al
2 2 A2 2 A2
3 3 A3 3 A3
4 4 4 \B.0
5 5 5 B.1
6 6 6 B2
7 7 7
8 8 8
9 9 9
10 10 10
11 11 11
12 12 12
13 13 13
14 14 14
(a) Fifteen available frames (b) Load process A (c) Load process B
Main memory Main memory Main memory
0 A.0 0 A.0 0 A.0
1 Al 1 Al 1 Al
2 A2 2 A2 2 A2
3 A3 3 A3 3 A3
4 \B.0 4 4 D.0
5 B.1 5 5 D.1
6 B2 6 6 D.2
7 C” 7 C” 7 C7
8 1 8 1 8 cr
9 5 9 5 9 5
10 C3 10 C3 10 C3
11 11 11 D.3
12 12 12 D.4
13 13 13
14 14 14
(d) Load process C (e) Swap out B (f) Load process D

Figure 7.9 Assignment of Process to Free Frames

address (page number, offset), the processor uses the page table to produce a physi-
cal address (frame number, offset).

Continuing our example, the five pages of process D are loaded into frames 4,
5, 6,11, and 12. Figure 7.10 shows the various page tables at this time. A page table
contains one entry for each page of the process, so that the table is easily indexed by
the page number (starting at page 0). Each page table entry contains the number of
the frame in main memory, if any, that holds the corresponding page. In addition,
the OS maintains a single free-frame list of all the frames in main memory that are
currently unoccupied and available for pages.

Thus we see that simple paging, as described here, is similar to fixed parti-
tioning. The differences are that, with paging, the partitions are rather small; a

7.3 / PAGING 323

0 0 0 — 0 7 0 4 13
1 1 1 — 1 8 1 5 14
2 2 2 — 2 9 2 6 Free frame
3 3 Process B 3 10 3 11 list
Process A page table Process C 4 12
page table page table Process D
page table

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

program may occupy more than one partition; and these partitions need not be
contiguous.

To make this paging scheme convenient, let us dictate that the page size,
hence the frame size, must be a power of 2. With the use of a page size that is a
power of 2, it is easy to demonstrate that the relative address, which is defined with
reference to the origin of the program, and the logical address, expressed as a page
number and offset, are the same. An example is shown in Figure 7.11. In this exam-
ple, 16-bit addresses are used, and the page size is 1K = 1,024 bytes. The relative
address 1502, in binary form, is 0000010111011110. With a page size of 1K, an offset
field of 10 bits is needed, leaving 6 bits for the page number. Thus a program can
consist of a maximum of 2° = 64 pages of 1K bytes each. As Figure 7.11b shows, rel-
ative address 1502 corresponds to an offset of 478 (0111011110) on page 1 (000001),
which yields the same 16-bit number, 0000010111011110.

The consequences of using a page size that is a power of 2 are twofold. First,
the logical addressing scheme is transparent to the programmer, the assembler, and

Logical address = Logical address =
Relative address = 1502 Page# = 1, Offset = 478 Segment# = 1, Offset = 752
0000010111011110 0000010111011110 0001/001011110000]
S »
28
IS} g 2
0 Ho
=) o "
£ AE
>
2% (2
L2
2z g "
o —
5= ~ S < ol
=g g 52
£ o
PR
S
>
S
(5]
& g
A~ = E
(a) Partitioning g 'QE) (c) Segmentation
= £
B
i

(b) Paging
(page size = 1K)

Figure 7.11 Logical Addresses

324 CHAPTER 7 / MEMORY MANAGEMENT

the linker. Each logical address (page number, offset) of a program is identical to
its relative address. Second, it is a relatively easy matter to implement a function in
hardware to perform dynamic address translation at run time. Consider an address
of n + m bits, where the leftmost n bits are the page number and the rightmost m
bits are the offset. In our example (Figure 7.11b), n = 6 and m = 10. The following
steps are needed for address translation:

e Extract the page number as the leftmost n bits of the logical address.

e Use the page number as an index into the process page table to find the frame
number, k.

e The starting physical address of the frame is k x 2,,,, and the physical address
of the referenced byte is that number plus the offset. This physical address
need not be calculated; it is easily constructed by appending the frame number
to the offset.

In our example, we have the logical address 0000010111011110, which is page
number 1, offset 478. Suppose that this page is residing in main memory frame
6 = binary 000110. Then the physical address is frame number 6, offset 478 =
0001100111011110 (Figure 7.12a).

16-bit logical address
6-bit page # 10-bit offset
[ofofofoJo]1]o[2][1]1]o]1[Z]1]1]0O]
L

000101
000110

011001
Process

page table

DO

[ofofolx]aofofa]a]a]ol2]2]1]1]0]

16-bit physical address
(a) Paging

16-bit logical address
4-bit segment # 12-bit offset

[oJoJoJx]oJoJxfo x[2]1]x]o]o]0]0]

Length Base
0[001011101110[0000010000000000]
1[011110011110[0010000000100000]

Process segment table

[oJo[z]oJofoJz]2]ofoJofz]o[ofo]0]

16-bit physical address
(b) Segmentation

Figure 7.12 Examples of Logical-to-Physical Address Translation

7.4 / SEGMENTATION 325

To summarize, with simple paging, main memory is divided into many small
equal-size frames. Each process is divided into frame-size pages. Smaller processes
require fewer pages; larger processes require more. When a process is brought in,
all of its pages are loaded into available frames, and a page table is set up. This
approach solves many of the problems inherent in partitioning.

7.4 SEGMENTATION

A user program can be subdivided using segmentation, in which the program and its
associated data are divided into a number of segments. It is not required that all seg-
ments of all programs be of the same length, although there is a maximum segment
length. As with paging, a logical address using segmentation consists of two parts, in
this case a segment number and an offset.

Because of the use of unequal-size segments, segmentation is similar to
dynamic partitioning. In the absence of an overlay scheme or the use of virtual
memory, it would be required that all of a program’s segments be loaded into mem-
ory for execution. The difference, compared to dynamic partitioning, is that with
segmentation a program may occupy more than one partition, and these partitions
need not be contiguous. Segmentation eliminates internal fragmentation but, like
dynamic partitioning, it suffers from external fragmentation. However, because a
process is broken up into a number of smaller pieces, the external fragmentation
should be less.

Whereas paging is invisible to the programmer, segmentation is usually visible
and is provided as a convenience for organizing programs and data. Typically, the
programmer or compiler will assign programs and data to different segments. For
purposes of modular programming, the program or data may be further broken
down into multiple segments. The principal inconvenience of this service is that the
programmer must be aware of the maximum segment size limitation.

Another consequence of unequal-size segments is that there is no simple rela-
tionship between logical addresses and physical addresses. Analogous to paging, a
simple segmentation scheme would make use of a segment table for each process
and a list of free blocks of main memory. Each segment table entry would have
to give the starting address in main memory of the corresponding segment. The
entry should also provide the length of the segment, to assure that invalid addresses
are not used. When a process enters the Running state, the address of its segment
table is loaded into a special register used by the memory management hardware.
Consider an address of n + m bits, where the leftmost n bits are the segment number
and the rightmost m bits are the offset. In our example (Figure 7.11c), n = 4 and
m = 12. Thus the maximum segment size is 2'> = 4096. The following steps are
needed for address translation:

e Extract the segment number as the leftmost n bits of the logical address.

e Use the segment number as an index into the process segment table to find the
starting physical address of the segment.

e Compare the offset, expressed in the rightmost m bits, to the length of the seg-
ment. If the offset is greater than or equal to the length, the address is invalid.

326 CHAPTER 7 / MEMORY MANAGEMENT

¢ The desired physical address is the sum of the starting physical address of the
segment plus the offset.

In our example, we have the logical address 0001001011110000, which is
segment number 1, offset 752. Suppose that this segment is residing in main mem-
ory starting at physical address 0010000000100000. Then the physical address is
0010000000100000 + 001011110000 = 0010001100010000 (Figure 7.12b).

To summarize, with simple segmentation, a process is divided into a number
of segments that need not be of equal size. When a process is brought in, all of its
segments are loaded into available regions of memory, and a segment table is set up.

7.5 SECURITY ISSUES

Main memory and virtual memory are system resources subject to security threats
and for which security countermeasures need to be taken. The most obvious secu-
rity requirement is the prevention of unauthorized access to the memory contents
of processes. If a process has not declared a portion of its memory to be sharable,
then no other process should have access to the contents of that portion of memory.
If a process declares that a portion of memory may be shared by other designated
processes, then the security service of the OS must ensure that only the designated
processes have access. The security threats and countermeasures discussed in
Chapter 3 are relevant to this type of memory protection.

In this section, we summarize another threat that involves memory protection.
Part Seven provides more detail.

Buffer Overflow Attacks

One serious security threat related to memory management remains to be intro-
duced: buffer overflow, also known as a buffer overrun, which is defined in the NIST
(National Institute of Standards and Technology) Glossary of Key Information
Security Terms as follows:

buffer overrun: A condition at an interface under which more input can be
placed into a buffer or data-holding area than the capacity allocated, overwrit-
ing other information. Attackers exploit such a condition to crash a system or to
insert specially crafted code that allows them to gain control of the system.

A buffer overflow can occur as a result of a programming error when a process
attempts to store data beyond the limits of a fixed-sized buffer and consequently
overwrites adjacent memory locations. These locations could hold other program
variables or parameters or program control flow data such as return addresses
and pointers to previous stack frames. The buffer could be located on the stack,
in the heap, or in the data section of the process. The consequences of this error
include corruption of data used by the program, unexpected transfer of control in
the program, possibly memory access violations, and very likely eventual program

7.5 / SECURITY ISSUES 327

termination. When done deliberately as part of an attack on a system, the transfer
of control could be to code of the attacker’s choosing, resulting in the ability to
execute arbitrary code with the privileges of the attacked process. Buffer overflow
attacks are one of the most prevalent and dangerous types of security attacks.

To illustrate the basic operation of a common type of buffer overflow,
known as stack overflow, consider the C main function given in Figure 7.13a. This
contains three variables (valid, stril, and str2),” whose values will typically
be saved in adjacent memory locations. Their order and location depends on the
type of variable (local or global), the language and compiler used, and the target
machine architecture. For this example, we assume that they are saved in consecu-
tive memory locations, from highest to lowest, as shown in Figure 7.14.% This is
typically the case for local variables in a C function on common processor archi-
tectures such as the Intel Pentium family. The purpose of the code fragment is to
call the function next tag(strl) to copy into strl some expected tag value.

int main(int argc, char *argv([]) {
int valid = FALSE;
char strl[8];
char str2([8];

next tag(strl) ;
gets (str2) ;
if (strncmp(strl, str2, 8) == 0)
valid = TRUE;
printf (“bufferl: strl(%s), str2(%s), valid(%d)\n”, strl, str2, valid);

(a) Basic buffer overflow C code

S cc -g -o bufferl bufferl.c

$./bufferil

START

bufferl: strl (START), str2 (START), valid (1)

$./bufferil

EVILINPUTVALUE

bufferl: strl (TVALUE), str2 (EVILINPUTVALUE), valid(0)

$./bufferil

BADINPUTBADINPUT

bufferl: strl (BADINPUT), str2 (BADINPUTBADINPUT), valid (1)

(b) Basic buffer overflow example runs

Figure 7.13 Basic Buffer Overflow Example

2In this example, the flag variable is saved as an integer rather than a Boolean. This is done both because
it is the classic C style and to avoid issues of word alignment in its storage. The buffers are deliberately
small to accentuate the buffer overflow issue being illustrated.

3Address and data values are specified in hexadecimal in this and related figures. Data values are also
shown in ASCII where appropriate.

328 CHAPTER 7 / MEMORY MANAGEMENT

Memory Before After Contains
Address gets (str2) gets (str2) Value of
bffffbf4 34fcffbf 34fcffbf argv
4 . .. 3
bffffbfo 01000000 01000000 argc
bffffbec c6bd0340 c6bd0340 return addr
. @ .. @
bffffbes 08fcffbf 08fcffbf old base ptr
bffffbe4 00000000 01000000 valid
bffffbe0 80640140 00640140
.d . e .d. e
bffffbdc 54001540 4e505554 strl[4-7]
T . . @ NPUT
bffffbds 53544152 42414449 strl[0-3]
STAR BADTI
bffffbd4 00850408 4e505554 str2[4-7]
NPUT
bffffbdo 30561540 42414449 str2[0-3]
0Ov . @ BADTI

Figure 7.14 Basic Buffer Overflow Stack Values

Let’s assume this will be the string START. It then reads the next line from the
standard input for the program using the C library gets () function, and then
compares the string read with the expected tag. If the next line did indeed contain
just the string START, this comparison would succeed, and the variable valid would
be set to TRUE.* This case is shown in the first of the three example program runs
in Figure 7.13b. Any other input tag would leave it with the value FALSE. Such a
code fragment might be used to parse some structured network protocol interac-
tion or formatted text file.

The problem with this code exists because the traditional C library gets ()
function does not include any checking on the amount of data copied. It reads the
next line of text from the program’s standard input up until the first newline’ char-
acter occurs and copies it into the supplied buffer followed by the NULL terminator

“In C the logical values FALSE and TRUE are simply integers with the values 0 and 1 (or indeed any
nonzero value), respectively. Symbolic defines are often used to map these symbolic names to their
underlying value, as was done in this program.

>The newline (NL) or linefeed (LF) character is the standard end of line terminator for UNIX systems,
and hence for C, and is the character with the ASCII value 0x0a.

7.5 / SECURITY ISSUES 329

used with C s‘[rings.6 If more than seven characters are present on the input line,
when read in they will (along with the terminating NULL character) require more
room than is available in the str2 buffer. Consequently, the extra characters will
overwrite the values of the adjacent variable, str1 in this case. For example, if the
input line contained EVILINPUTVALUE, the result will be that str1 will be over-
written with the characters TVALUE, and str2 will use not only the eight characters
allocated to it but seven more from strl as well. This can be seen in the second
example run in Figure 7.13b. The overflow has resulted in corruption of a variable
not directly used to save the input. Because these strings are not equal, valid also
retains the value FALSE. Further, if 16 or more characters were input, additional
memory locations would be overwritten.

The preceding example illustrates the basic behavior of a buffer overflow. At
its simplest, any unchecked copying of data into a buffer could result in corruption
of adjacent memory locations, which may be other variables, or possibly program
control addresses and data. Even this simple example could be taken further.
Knowing the structure of the code processing it, an attacker could arrange for the
overwritten value to set the value in str1 equal to the value placed in str2, result-
ing in the subsequent comparison succeeding. For example, the input line could
be the string BADINPUTBADINPUT. This results in the comparison succeeding, as
shown in the third of the three example program runs in Figure 7.13b, and illus-
trated in Figure 7.14, with the values of the local variables before and after the call
to gets (). Note also that the terminating NULL for the input string was written to
the memory location following str1. This means the flow of control in the program
will continue as if the expected tag was found, when in fact the tag read was some-
thing completely different. This will almost certainly result in program behavior
that was not intended. How serious this is depends very much on the logic in the
attacked program. One dangerous possibility occurs if instead of being a tag, the
values in these buffers were an expected and supplied password needed to access
privileged features. If so, the buffer overflow provides the attacker with a means of
accessing these features without actually knowing the correct password.

To exploit any type of buffer overflow, such as those we have illustrated here,
the attacker needs:

1. To identify a buffer overflow vulnerability in some program that can be trig-
gered using externally sourced data under the attackers control, and

2. To understand how that buffer will be stored in the processes memory, and
hence the potential for corrupting adjacent memory locations and potentially
altering the flow of execution of the program.

Identifying vulnerable programs may be done by inspection of program source,
tracing the execution of programs as they process oversized input, or using tools
such as fuzzing, which we discuss in Part Seven, to automatically identify potentially

GStrings in C are stored in an array of characters and terminated with the NULL character, which has the
ASCII value 0x00. Any remaining locations in the array are undefined, and typically contain whatever
value was previously saved in that area of memory. This can be clearly seen in the value in the variable
str2 in the “Before” column of Figure 7.14.

330 CHAPTER 7 / MEMORY MANAGEMENT

vulnerable programs. What the attacker does with the resulting corruption of
memory varies considerably, depending on what values are being overwritten.

Defending against Buffer Overflows

Finding and exploiting a stack buffer overflow is not that difficult. The large num-
ber of exploits over the previous couple of decades clearly illustrates this. There
is consequently a need to defend systems against such attacks by either prevent-
ing them or at least detecting and aborting such attacks. Countermeasures can be
broadly classified into two categories:

e Compile-time defenses, which aim to harden programs to resist attacks in new
programs

e Run-time defenses, which aim to detect and abort attacks in existing programs

While suitable defenses have been known for a couple of decades, the very
large existing base of vulnerable software and systems hinders their deployment.
Hence the interest in run-time defenses, which can be deployed in operating
systems and updates and can provide some protection for existing vulnerable
programs.

7.6 SUMMARY

One of the most important and complex tasks of an operating system is memory
management. Memory management involves treating main memory as a resource
to be allocated to and shared among a number of active processes. To use the pro-
cessor and the I/O facilities efficiently, it is desirable to maintain as many processes
in main memory as possible. In addition, it is desirable to free programmers from
size restrictions in program development.

The basic tools of memory management are paging and segmentation. With
paging, each process is divided into relatively small, fixed-size pages. Segmentation
provides for the use of pieces of varying size. It is also possible to combine segmen-
tation and paging in a single memory management scheme.

7.7 RECOMMENDED READING

Because partitioning has been supplanted by virtual memory techniques, most OS
books offer only cursory coverage. One of the more complete and interesting treat-
ments is in [MILE92]. A thorough discussion of partitioning strategies is found in
[KNUT97].

The topics of linking and loading are covered in many books on program
development, computer architecture, and operating systems. A particularly detailed
treatment is [BECK97]. [CLAR9S] also contains a good discussion. A thorough
practical discussion of this topic, with numerous OS examples, is [LEVIO00].

7.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 331

BECK9Y97 Beck, L. System Software. Reading, MA: Addison-Wesley, 1997.

CLARY8 Clarke, D., and Merusi, D. System Software Programming: The Way Things
Work. Upper Saddle River, NJ: Prentice Hall, 1998.

KNUT97 Knuth, D. The Art of Computer Programming, Volume 1: Fundamental
Algorithms. Reading, MA: Addison-Wesley, 1997.

LEVIO0 Levine,J. Linkers and Loaders. San Francisco: Morgan Kaufmann, 2000.

MILE92 Milenkovic, M. Operating Systems: Concepts and Design. New York:
McGraw-Hill, 1992.

7.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
absolute loading linkage editor physical address
buddy system linking physical organization
compaction loading protection
dynamic linking logical address relative address
dynamic partitioning logical organization relocatable loading
dynamic run-time loading memory management relocation
external fragmentation page segment
fixed partitioning page table segmentation
frame paging sharing
internal fragmentation partitioning

Review Questions

7.1 What requirements is memory management intended to satisfy?
7.2 Why is the capability to relocate processes desirable?
7.3 Why is it not possible to enforce memory protection at compile time?

7.4 What are some reasons to allow two or more processes to all have access to a particu-
lar region of memory?

7.5 In a fixed-partitioning scheme, what are the advantages of using unequal-size
partitions?

7.6 What is the difference between internal and external fragmentation?

7.7 What are the distinctions among logical, relative, and physical addresses?

7.8 What is the difference between a page and a frame?

7.9 What is the difference between a page and a segment?

Problems

7.1 In Section 2.3, we listed five objectives of memory management, and in Section 7.1,
we listed five requirements. Argue that each list encompasses all of the concerns ad-
dressed in the other.

332 CHAPTER 7 / MEMORY MANAGEMENT

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

Consider a fixed partitioning scheme with equal-size partitions of 2!° bytes and a total
main memory size of 2°* bytes. A process table is maintained that includes a pointer
to a partition for each resident process. How many bits are required for the pointer?
Consider a dynamic partitioning scheme. Show that, on average, the memory contains
half as many holes as segments.

To implement the various placement algorithms discussed for dynamic partitioning
(Section 7.2), a list of the free blocks of memory must be kept. For each of the three
methods discussed (best-fit, first-fit, next-fit), what is the average length of the search?
Another placement algorithm for dynamic partitioning is referred to as worst-fit. In
this case, the largest free block of memory is used for bringing in a process.

a. Discuss the pros and cons of this method compared to first-, next-, and best-fit.

b. What is the average length of the search for worst-fit?

This diagram shows an example of memory configuration under dynamic partition-
ing, after a number of placement and swapping-out operations have been carried out.
Addresses go from left to right; gray areas indicate blocks occupied by processes;
white areas indicate free memory blocks. The last process placed is 2-Mbyte and is
marked with an X. Only one process was swapped out after that.

1
4M M X | SM SM 2M| |4M 3M

What was the maximum size of the swapped out process?

What was the size of the free block just before it was partitioned by X?

c. A new 3-Mbyte allocation request must be satisfied next. Indicate the intervals of
memory where a partition will be created for the new process under the following
four placement algorithms: best-fit, first-fit, next-fit, worst-fit. For each algorithm,
draw a horizontal segment under the memory strip and label it clearly.

A 1-Mbyte block of memory is allocated using the buddy system.

a. Show the results of the following sequence in a figure similar to Figure 7.6: Request 70;
Request 35; Request 80; Return A; Request 60; Return B; Return D; Return C.

b. Show the binary tree representation following Return B.

Consider a buddy system in which a particular block under the current allocation has

an address of 011011110000.

a. If the block is of size 4, what is the binary address of its buddy?

b. If the block is of size 16, what is the binary address of its buddy?

Let buddy,(x) = address of the buddy of the block of size 2F whose address is x. Write

a general expression for buddy(x).

The Fibonacci sequence is defined as follows:
F():O’ Flzla Fn+2:Fn+1+Fn7 n=0

a. Could this sequence be used to establish a buddy system?
b. What would be the advantage of this system over the binary buddy system
described in this chapter?

During the course of execution of a program, the processor will increment the contents

of the instruction register (program counter) by one word after each instruction fetch,

but will alter the contents of that register if it encounters a branch or call instruction

that causes execution to continue elsewhere in the program. Now consider Figure 7.8.

There are two alternatives with respect to instruction addresses:

e Maintain a relative address in the instruction register and do the dynamic address
translation using the instruction register as input. When a successful branch or call
is encountered, the relative address generated by that branch or call is loaded into
the instruction register.

e Maintain an absolute address in the instruction register. When a successful branch
or call is encountered, dynamic address translation is employed, with the results
stored in the instruction register.

Which approach is preferable?

gw

712

7.13

7.14

7.15

7.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 333
Consider a simple paging system with the following parameters: 2%
memory; page size of 2!V bytes; 2!° pages of logical address space.
How many bits are in a logical address?
How many bytes in a frame?
How many bits in the physical address specify the frame?
How many entries in the page table?
How many bits in each page table entry? Assume each page table entry contains a
valid/invalid bit.
Write the binary translation of the logical address 0001010010111010 under the
following hypothetical memory management schemes, and explain your answer:
a. apaging system with a 256-address page size, using a page table in which the frame
number happens to be four times smaller than the page number
b. asegmentation system with a 1K-address maximum segment size, using a segment
table in which bases happen to be regularly placed at real addresses: 22 + 4,096 X
segment #

Consider a simple segmentation system that has the following segment table:

bytes of physical

paoTs

Starting Address | Length (bytes)
660 248
1,752 422
222 198
996 604

For each of the following logical addresses, determine the physical address or indicate
if a segment fault occurs:

0,198

2,156

c. 1,530

d. 3,444

e. 0,222

Consider a memory in which contiguous segments Sy, S,,...,S,, are placed in their
order of creation from one end of the store to the other, as suggested by the following
figure:

Fe

S S, e o o S, Hole

When segment S, .1 is being created, it is placed immediately after segment S,, even

though some of the segments S1, S2,...,S,, may already have been deleted. When the

boundary between segments (in use or deleted) and the hole reaches the other end of

the memory, the segments in use are compacted.

a. Show that the fraction of time F spent on compacting obeys the following
inequality:

1 - t
f where k= — —1

F =
1+ kf 2s

where
s = average length of a segment, in words
t = average lifetime of a segment, in memory references
f = fraction of the memory that is unused under equilibrium conditions

Hint: Find the average speed at which the boundary crosses the memory and
assume that the copying of a single word requires at least two memory references.
b. Find Ffor f=0.2,¢t = 1,000, and s = 50.

334 CHAPTER 7 / MEMORY MANAGEMENT

APPENDIX 7A LOADING AND LINKING

The first step in the creation of an active process is to load a program into main
memory and create a process image (Figure 7.15). Figure 7.16 depicts a scenario typ-
ical for most systems. The application consists of a number of compiled or assembled
modules in object-code form. These are linked to resolve any references between
modules. At the same time, references to library routines are resolved. The library
routines themselves may be incorporated into the program or referenced as shared
code that must be supplied by the operating system at run time. In this appendix, we
summarize the key features of linkers and loaders. For clarity in the presentation,
we begin with a description of the loading task when a single program module is
involved; no linking is required.

Loading

In Figure 7.16, the loader places the load module in main memory starting at loca-
tion x. In loading the program, the addressing requirement illustrated in Figure 7.1
must be satisfied. In general, three approaches can be taken:

e Absolute loading

e Relocatable loading

¢ Dynamic run-time loading

ABSOLUTE LOADING An absolute loader requires that a given load module
always be loaded into the same location in main memory. Thus, in the load module
presented to the loader, all address references must be to specific, or absolute, main

- Process control block
Program Program
Data Data
Object code -
Stack

Process image in
main memory

Figure 7.15 The Loading Function

APPENDIX 7A / LOADING AND LINKING 335

Static /'\/
library
x
—
Module 1
. Load Loader
Linker
module
Module 2
°
R Run-time
linker/ f——> {
loader
°
"
Main memory

Figure 7.16 A Linking and Loading Scenario

memory addresses. For example, if x in Figure 7.16 is location 1024, then the first
word in a load module destined for that region of memory has address 1024.

The assignment of specific address values to memory references within a
program can be done either by the programmer or at compile or assembly time
(Table 7.3a). There are several disadvantages to the former approach. First, every
programmer would have to know the intended assignment strategy for placing mod-
ules into main memory. Second, if any modifications are made to the program that
involve insertions or deletions in the body of the module, then all of the addresses
will have to be altered. Accordingly, it is preferable to allow memory references
within programs to be expressed symbolically and then resolve those symbolic refer-
ences at the time of compilation or assembly. This is illustrated in Figure 7.17. Every
reference to an instruction or item of data is initially represented by a symbol. In
preparing the module for input to an absolute loader, the assembler or compiler will
convert all of these references to specific addresses (in this example, for a module to
be loaded starting at location 1024), as shown in Figure 7.17b.

RELOCATABLE LOADING The disadvantage of binding memory references to
specific addresses prior to loading is that the resulting load module can only be
placed in one region of main memory. However, when many programs share main
memory, it may not be desirable to decide ahead of time into which region of memory
a particular module should be loaded. It is better to make that decision at load time.
Thus we need a load module that can be located anywhere in main memory.

To satisfy this new requirement, the assembler or compiler produces not
actual main memory addresses (absolute addresses) but addresses that are relative
to some known point, such as the start of the program. This technique is illustrated
in Figure 7.17c. The start of the load module is assigned the relative address 0, and

336 CHAPTER 7 / MEMORY MANAGEMENT

Table 7.3 Address Binding

(a) Loader

Binding Time

Function

Programming time

All actual physical addresses are directly specified by the programmer in the
program itself.

Compile or assembly time

The program contains symbolic address references, and these are converted to
actual physical addresses by the compiler or assembler.

Load time The compiler or assembler produces relative addresses. The loader translates
these to absolute addresses at the time of program loading.
Run time The loaded program retains relative addresses. These are converted dynamically
to absolute addresses by processor hardware.
(b) Linker
Linkage Time Function

Programming time

No external program or data references are allowed. The programmer must
place into the program the source code for all subprograms that are referenced.

Compile or assembly time

The assembler must fetch the source code of every subroutine that is referenced
and assemble them as a unit.

Load module creation

All object modules have been assembled using relative addresses. These
modules are linked together and all references are restated relative to the origin
of the final load module.

Load time External references are not resolved until the load module is to be loaded into
main memory. At that time, referenced dynamic link modules are appended to
the load module, and the entire package is loaded into main or virtual memory.

Run time External references are not resolved until the external call is executed by the
processor. At that time, the process is interrupted and the desired module is
linked to the calling program.

Symbolic Absolute Relative Main memory

addresses addresses addresses addresses

PROGRAM 1024 [PROGRAM 0[PROGRAM X [PROGRAM
JUMPX 4 JUMP 1424 4 JUMP 400 -+ JUMP 400 -

X B o w e]
LOADY + LOAD 2224 + LOAD 1200 + LOAD 1200 +
pAatA | | | DATA | | [DATA | | DATA |

Y 2224 1200 1200 + x

(a) Object module (b) Absolute load module (c) Relative load module (d) Relative load module

loaded into main memory
starting at location x

Figure 7.17 Absolute and Relocatable Load Modules

APPENDIX 7A / LOADING AND LINKING 337

all other memory references within the module are expressed relative to the begin-
ning of the module.

With all memory references expressed in relative format, it becomes a simple
task for the loader to place the module in the desired location. If the module is to be
loaded beginning at location x, then the loader must simply add x to each memory
reference as it loads the module into memory. To assist in this task, the load module
must include information that tells the loader where the address references are and
how they are to be interpreted (usually relative to the program origin, but also pos-
sibly relative to some other point in the program, such as the current location). This
set of information is prepared by the compiler or assembler and is usually referred
to as the relocation dictionary.

DynNamic RUN-TiME LOADING Relocatable loaders are common and provide
obvious benefits relative to absolute loaders. However, in a multiprogramming
environment, even one that does not depend on virtual memory, the relocatable
loading scheme is inadequate. We have referred to the need to swap process images
in and out of main memory to maximize the utilization of the processor. To maximize
main memory utilization, we would like to be able to swap the process image back into
different locations at different times. Thus, a program, once loaded, may be swapped
out to disk and then swapped back in at a different location. This would be impossible
if memory references had been bound to absolute addresses at the initial load time.

The alternative is to defer the calculation of an absolute address until it is
actually needed at run time. For this purpose, the load module is loaded into main
memory with all memory references in relative form (Figure 7.17¢). It is not until
an instruction is actually executed that the absolute address is calculated. To assure
that this function does not degrade performance, it must be done by special proces-
sor hardware rather than software. This hardware is described in Section 7.2.

Dynamic address calculation provides complete flexibility. A program can be
loaded into any region of main memory. Subsequently, the execution of the pro-
gram can be interrupted and the program can be swapped out of main memory, to
be later swapped back in at a different location.

Linking

The function of a linker is to take as input a collection of object modules and pro-
duce a load module, consisting of an integrated set of program and data modules, to
be passed to the loader. In each object module, there may be address references to
locations in other modules. Each such reference can only be expressed symbolically
in an unlinked object module. The linker creates a single load module that is the
contiguous joining of all of the object modules. Each intramodule reference must be
changed from a symbolic address to a reference to a location within the overall load
module. For example, module A in Figure 7.18a contains a procedure invocation
of module B. When these modules are combined in the load module, this symbolic
reference to module B is changed to a specific reference to the location of the entry
point of B within the load module.

LINKAGE Eprror The nature of this address linkage will depend on the type
of load module to be created and when the linkage occurs (Table 7.3b). If, as is

338 CHAPTER 7 / MEMORY MANAGEMENT

Relative
addresses
Module A 0 Module A
External wyn
CALL B; JSR"L
reference to Length L
module B
Return L—1|Return |
L Module B
Module B
JSR"L + M"
CALL C;
» Length M
L + M — 1| Return
Return L+M Module C
Module C
Length N L+M+N-1 Return
Return (b) Load module

(a) Object modules
Figure 7.18 The Linking Function

usually the case, a relocatable load module is desired, then linkage is usually done
in the following fashion. Each compiled or assembled object module is created with
references relative to the beginning of the object module. All of these modules are
put together into a single relocatable load module with all references relative to the
origin of the load module. This module can be used as input for relocatable loading
or dynamic run-time loading.

A linker that produces a relocatable load module is often referred to as a link-
age editor. Figure 7.18 illustrates the linkage editor function.

DyNamic LINKER As with loading, it is possible to defer some linkage functions.
The term dynamic linking is used to refer to the practice of deferring the linkage of
some external modules until after the load module has been created. Thus, the load
module contains unresolved references to other programs. These references can be
resolved either at load time or run time.

For load-time dynamic linking (involving upper dynamic library in Figure 7.16),
the following steps occur. The load module (application module) to be loaded is
read into memory. Any reference to an external module (target module) causes the
loader to find the target module, load it, and alter the reference to a relative address
in memory from the beginning of the application module. There are several advan-
tages to this approach over what might be called static linking:

APPENDIX 7A / LOADING AND LINKING 339

e [t becomes easier to incorporate changed or upgraded versions of the target
module, which may be an operating system utility or some other general-
purpose routine. With static linking, a change to such a supporting module
would require the relinking of the entire application module. Not only is this
inefficient, but it may be impossible in some circumstances. For example, in
the personal computer field, most commercial software is released in load
module form; source and object versions are not released.

e Having target code in a dynamic link file paves the way for automatic code
sharing. The operating system can recognize that more than one application is
using the same target code because it loaded and linked that code. It can use
that information to load a single copy of the target code and link it to both
applications, rather than having to load one copy for each application.

¢ [t becomes easier for independent software developers to extend the function-
ality of a widely used operating system such as Linux. A developer can come
up with a new function that may be useful to a variety of applications and
package it as a dynamic link module.

With run-time dynamic linking (involving lower dynamic library in
Figure 7.16), some of the linking is postponed until execution time. External refer-
ences to target modules remain in the loaded program. When a call is made to the
absent module, the operating system locates the module, loads it, and links it to the
calling module. Such modules are typically shareable. In the Windows environment,
these are call dynamic-link libraries (DLLs). Thus, if one process is already making
use of a dynamically-linked shared module, then that module is in main memory
and a new process can simply link to the already-loaded module.

The use of DLLs can lead to a problem commonly referred to as DLL hell.
DLL hell occurs if two or more processes are sharing a DLL module but expect dif-
ferent versions of the module. For example, an application or system function might
be reinstalled and bring in with it an older version of a DLL file.

We have seen that dynamic loading allows an entire load module to be moved
around; however, the structure of the module is static, being unchanged throughout
the execution of the process and from one execution to the next. However, in some
cases, it is not possible to determine prior to execution which object modules will
be required. This situation is typified by transaction-processing applications, such as
an airline reservation system or a banking application. The nature of the transaction
dictates which program modules are required, and they are loaded as appropriate
and linked with the main program. The advantage of the use of such a dynamic
linker is that it is not necessary to allocate memory for program units unless those
units are referenced. This capability is used in support of segmentation systems.

One additional refinement is possible: An application need not know the
names of all the modules or entry points that may be called. For example, a charting
program may be written to work with a variety of plotters, each of which is driven
by a different driver package. The application can learn the name of the plotter that
is currently installed on the system from another process or by looking it up in a
configuration file. This allows the user of the application to install a new plotter that
did not exist at the time the application was written.

CHAPTER

VIRTUAL MEMORY

8.1 Hardware and Control Structures
Locality and Virtual Memory
Paging
Segmentation
Combined Paging and Segmentation
Protection and Sharing

8.2 Operating System Software
Fetch Policy
Placement Policy
Replacement Policy
Resident Set Management
Cleaning Policy
Load Control

8.3 UNIX and Solaris Memory Management
Paging System
Kernel Memory Allocator

8.4 Linux Memory Management
Linux Virtual Memory
Kernel Memory Allocation

8.5 Windows Memory Management
Windows Virtual Address Map
Windows Paging

8.6 Summary
8.7 Recommended Reading and Web Sites

8.8 Key Terms, Review Questions, and Problems

340

8.1 / HARDWARE AND CONTROL STRUCTURES 341

You’re gonna need a bigger boat.

— STEVEN SPIELBERG, JAWS, 1975

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

e Define virtual memory.
e Describe the hardware and control structures that support virtual memory.
e Describe the various OS mechanisms used to implement virtual memory.

e Describe the virtual memory management mechanisms in UNIX, Linux, and
Windows 7.

Chapter 7 introduced the concepts of paging and segmentation and analyzed their
shortcomings. We now move to a discussion of virtual memory. An analysis of this
topic is complicated by the fact that memory management is a complex interrela-
tionship between processor hardware and operating system software. We focus first
on the hardware aspect of virtual memory, looking at the use of paging, segmenta-
tion, and combined paging and segmentation. Then we look at the issues involved in
the design of a virtual memory facility in operating systems.

Table 8.1 defines some key terms related to virtual memory. A set of anima-
tions that illustrate concepts in this chapter is available online. Click on the rotating
globe at WilliamStallings.com/OS/OS7e.html for access.

8.1 HARDWARE AND CONTROL STRUCTURES

Comparing simple paging and simple segmentation, on the one hand, with fixed and
dynamic partitioning, on the other, we see the foundation for a fundamental break-
through in memory management. Two characteristics of paging and segmentation
are the keys to this breakthrough:

Table 8.1 Virtual Memory Terminology

Virtual memory A storage allocation scheme in which secondary memory can be addressed as
though it were part of main memory. The addresses a program may use to reference
memory are distinguished from the addresses the memory system uses to identify
physical storage sites, and program-generated addresses are translated automatically
to the corresponding machine addresses. The size of virtual storage is limited by the
addressing scheme of the computer system and by the amount of secondary memory
available and not by the actual number of main storage locations.

Virtual address The address assigned to a location in virtual memory to allow that location to be
accessed as though it were part of main memory.

Virtual address space | The virtual storage assigned to a process.

Address space The range of memory addresses available to a process.

Real address The address of a storage location in main memory.

342 CHAPTER 8 / VIRTUAL MEMORY

1. All memory references within a process are logical addresses that are dynami-
cally translated into physical addresses at run time. This means that a process
may be swapped in and out of main memory such that it occupies different
regions of main memory at different times during the course of execution.

2. A process may be broken up into a number of pieces (pages or segments) and
these pieces need not be contiguously located in main memory during execu-
tion. The combination of dynamic run-time address translation and the use of
a page or segment table permits this.

Now we come to the breakthrough. If the preceding two characteristics are
present, then it is not necessary that all of the pages or all of the segments of a process
be in main memory during execution. If the piece (segment or page) that holds the
next instruction to be fetched and the piece that holds the next data location to be
accessed are in main memory, then at least for a time execution may proceed.

Let us consider how this may be accomplished. For now, we can talk in general
terms, and we will use the term piece to refer to either page or segment, depending
on whether paging or segmentation is employed. Suppose that it is time to bring a
new process into memory. The OS begins by bringing in only one or a few pieces, to
include the initial program piece and the initial data piece to which those instructions
refer. The portion of a process that is actually in main memory at any time is called
the resident set of the process. As the process executes, things proceed smoothly as
long as all memory references are to locations that are in the resident set. Using the
segment or page table, the processor always is able to determine whether this is so.
If the processor encounters a logical address that is not in main memory, it generates
an interrupt indicating a memory access fault. The OS puts the interrupted process
in a blocking state. For the execution of this process to proceed later, the OS must
bring into main memory the piece of the process that contains the logical address
that caused the access fault. For this purpose, the OS issues a disk I/O read request.
After the I/O request has been issued, the OS can dispatch another process to run
while the disk 1/O is performed. Once the desired piece has been brought into main
memory, an I/O interrupt is issued, giving control back to the OS, which places the
affected process back into a Ready state.

It may immediately occur to you to question the efficiency of this maneuver,
in which a process may be executing and have to be interrupted for no other reason
than that you have failed to load in all of the needed pieces of the process. For now,
let us defer consideration of this question with the assurance that efficiency is possible.
Instead, let us ponder the implications of our new strategy. There are two implications,
the second more startling than the first, and both lead to improved system utilization:

1. More processes may be maintained in main memory. Because we are only go-
ing to load some of the pieces of any particular process, there is room for more
processes. This leads to more efficient utilization of the processor because it
is more likely that at least one of the more numerous processes will be in a
Ready state at any particular time.

2. A process may be larger than all of main memory. One of the most fundamental
restrictions in programming is lifted. Without the scheme we have been discuss-
ing, a programmer must be acutely aware of how much memory is available.
If the program being written is too large, the programmer must devise ways to

8.1 / HARDWARE AND CONTROL STRUCTURES 343

structure the program into pieces that can be loaded separately in some sort of
overlay strategy. With virtual memory based on paging or segmentation, that
job is left to the OS and the hardware. As far as the programmer is concerned,
he or she is dealing with a huge memory, the size associated with disk storage.
The OS automatically loads pieces of a process into main memory as required.

Because a process executes only in main memory, that memory is referred to
as real memory. But a programmer or user perceives a potentially much larger mem-
ory—that which is allocated on disk. This latter is referred to as virtual memory.
Virtual memory allows for very effective multiprogramming and relieves the user
of the unnecessarily tight constraints of main memory. Table 8.2 summarizes char-

acteristics of paging and segmentation, with and without the use of virtual memory.

Table 8.2 Characteristics of Paging and Segmentation

Simple Paging

Virtual Memory
Paging

Simple Segmentation

Virtual Memory
Segmentation

Main memory parti-
tioned into small fixed-
size chunks called frames

Main memory parti-
tioned into small fixed-
size chunks called frames

Main memory not
partitioned

Main memory not
partitioned

Program broken into
pages by the compiler
or memory management
system

Program broken into
pages by the compiler
or memory management
system

Program segments speci-
fied by the programmer
to the compiler (i.e., the
decision is made by the
programmer)

Program segments speci-
fied by the programmer
to the compiler (i.e., the
decision is made by the
programmer)

Internal fragmentation
within frames

Internal fragmentation
within frames

No internal
fragmentation

No internal
fragmentation

No external
fragmentation

No external
fragmentation

External fragmentation

External fragmentation

Operating system must
maintain a page table
for each process showing
which frame each page
occupies

Operating system must
maintain a page table
for each process showing
which frame each page
occupies

Operating system must
maintain a segment table
for each process show-
ing the load address and
length of each segment

Operating system must
maintain a segment table
for each process show-
ing the load address and
length of each segment

Operating system must
maintain a free frame
list

Operating system must
maintain a free frame
list

Operating system must
maintain a list of free
holes in main memory

Operating system must
maintain a list of free
holes in main memory

Processor uses page
number, offset to calcu-
late absolute address

Processor uses page
number, offset to calcu-
late absolute address

Processor uses segment
number, offset to calcu-
late absolute address

Processor uses segment
number, offset to calcu-
late absolute address

All the pages of a
process must be in main
memory for process to
run, unless overlays are
used

Not all pages of a process
need be in main memory
frames for the process to
run. Pages may be read
in as needed

All the segments of a
process must be in main
memory for process to
run, unless overlays are
used

Not all segments of a
process need be in main
memory for the process
to run. Segments may be
read in as needed

Reading a page into
main memory may
require writing a page
out to disk

Reading a segment into
main memory may require
writing one or more seg-
ments out to disk

344 CHAPTER 8 / VIRTUAL MEMORY

Locality and Virtual Memory

The benefits of virtual memory are attractive, but is the scheme practical? At one
time, there was considerable debate on this point, but experience with numerous
operating systems has demonstrated beyond doubt that virtual memory does work.
Accordingly, virtual memory, based on either paging or paging plus segmentation,
has become an essential component of contemporary operating systems.

To understand the key issue and why virtual memory was a matter of much
debate, let us examine again the task of the OS with respect to virtual memory.
Consider a large process, consisting of a long program plus a number of arrays of
data. Over any short period of time, execution may be confined to a small section of
the program (e.g., a subroutine) and access to perhaps only one or two arrays of data.
If this is so, then it would clearly be wasteful to load in dozens of pieces for that proc-
ess when only a few pieces will be used before the program is suspended and swapped
out. We can make better use of memory by loading in just a few pieces. Then, if the
program branches to an instruction or references a data item on a piece not in main
memory, a fault is triggered. This tells the OS to bring in the desired piece.

Thus, at any one time, only a few pieces of any given process are in memory,
and therefore more processes can be maintained in memory. Furthermore, time is
saved because unused pieces are not swapped in and out of memory. However, the
OS must be clever about how it manages this scheme. In the steady state, practically
all of main memory will be occupied with process pieces, so that the processor and
OS have direct access to as many processes as possible. Thus, when the OS brings one
piece in, it must throw another out. If it throws out a piece just before it is used, then it
will just have to go get that piece again almost immediately. Too much of this leads to
a condition known as thrashing: The system spends most of its time swapping pieces
rather than executing instructions. The avoidance of thrashing was a major research
area in the 1970s and led to a variety of complex but effective algorithms. In essence,
the OS tries to guess, based on recent history, which pieces are least likely to be used
in the near future.

This reasoning is based on belief in the principle of locality, which was intro-
duced in Chapter 1 (see especially Appendix 1A). To summarize, the principle of
locality states that program and data references within a process tend to cluster.
Hence, the assumption that only a few pieces of a process will be needed over a
short period of time is valid. Also, it should be possible to make intelligent guesses
about which pieces of a process will be needed in the near future, which avoids
thrashing.

One way to confirm the principle of locality is to look at the performance of
processes in a virtual memory environment. Figure 8.1 is a rather famous diagram
that dramatically illustrates the principle of locality [HATF72]. Note that, during
the lifetime of the process, references are confined to a subset of pages.

Thus we see that the principle of locality suggests that a virtual memory
scheme may work. For virtual memory to be practical and effective, two ingre-
dients are needed. First, there must be hardware support for the paging and/or
segmentation scheme to be employed. Second, the OS must include software for
managing the movement of pages and/or segments between secondary memory
and main memory. In this section, we examine the hardware aspect and look at the

8.1 / HARDWARE AND CONTROL STRUCTURES 345

a4 g t
wlh bbbt Ihlm“i |,|I,,Ul,|LiL"“""“"‘“’“' et tndanudegmdi Lmuuiu

Adii

}II

* "”uull “P,.m""".lwl., lll]l[u m “ul'lrl'rll! "lml':i"
30 iy "'H o H"“HHHMMA 'UI I‘lei;li‘!l'j,r' -
(R N o W

(XY :_-—-—’-— -"F

f

8 . =Y

28

it NHJHM i .

j1- WA

. , " !@ *llllllﬂ.w'r !
2 4 i ' -
.!l'*"ﬂ') : P}#E ! B

muuuumu“ynﬁﬁﬁﬁgdﬁm '”m_ll !“llllllhw kmmm li

BHDLTRELIL T

i Lhihw "HM" P —————
L o ET ShEg——

l‘“‘“‘“‘“‘“‘“‘*“‘“&”&w 4o e o

Page numbers

Execution time —>

Figure 8.1 Paging Behavior

necessary control structures, which are created and maintained by the OS but are
used by the memory management hardware. An examination of the OS issues is
provided in the next section.

Paging

The term virtual memory is usually associated with systems that employ paging,
although virtual memory based on segmentation is also used and is discussed next.
The use of paging to achieve virtual memory was first reported for the Atlas com-
puter [KILB62] and soon came into widespread commercial use.

In the discussion of simple paging, we indicated that each process has its
own page table, and when all of its pages are loaded into main memory, the page

346 CHAPTER 8 / VIRTUAL MEMORY

table for a process is created and loaded into main memory. Each page table entry
(PTE) contains the frame number of the corresponding page in main memory. A
page table is also needed for a virtual memory scheme based on paging. Again, it
is typical to associate a unique page table with each process. In this case, however,
the page table entries become more complex (Figure 8.2a). Because only some of
the pages of a process may be in main memory, a bit is needed in each page table
entry to indicate whether the corresponding page is present (P) in main memory or
not. If the bit indicates that the page is in memory, then the entry also includes the
frame number of that page.

The page table entry includes a modify (M) bit, indicating whether the con-
tents of the corresponding page have been altered since the page was last loaded
into main memory. If there has been no change, then it is not necessary to write the
page out when it comes time to replace the page in the frame that it currently occu-
pies. Other control bits may also be present. For example, if protection or sharing is
managed at the page level, then bits for that purpose will be required.

Virtual address

| Page number Offset |

Page table entry

|P |M| Other control bits Frame number |
(a) Paging only

Virtual address

| Segment number | Offset |

Segment table entry

|P |M| Other control bits | Length | Segment base

(b) Segmentation only

Virtual address

| Segment number | Page number Offset |

Segment table entry

| Control bits | Length | Segment base |

Page table entry

|P |M| Other control bits

Frame number | P = present bit
M = modified bit

(c) Combined segmentation and paging

Figure 8.2 Typical Memory Management Formats

8.1 / HARDWARE AND CONTROL STRUCTURES 347

PAGE TABLE STRUCTURE The basic mechanism for reading a word from memory
involves the translation of a virtual, or logical, address, consisting of page number
and offset, into a physical address, consisting of frame number and offset, using a
page table. Because the page table is of variable length, depending on the size of the
process, we cannot expect to hold it in registers. Instead, it must be in main memory
to be accessed. Figure 8.3 suggests a hardware implementation. When a particular
process is running, a register holds the starting address of the page table for that
process. The page number of a virtual address is used to index that table and look
up the corresponding frame number. This is combined with the offset portion of the
virtual address to produce the desired real address. Typically, the page number field
is longer than the frame number field (n > m).

In most systems, there is one page table per process. But each process can occupy
huge amounts of virtual memory. For example, in the VAX architecture, each process
can have up to 23! = 2 Gbytes of virtual memory. Using 2° = 512-byte pages means
that as many as 2% page table entries are required per process. Clearly, the amount
of memory devoted to page tables alone could be unacceptably high. To overcome
this problem, most virtual memory schemes store page tables in virtual memory rather
than real memory. This means that page tables are subject to paging just as other pages
are. When a process is running, at least a part of its page table must be in main mem-
ory, including the page table entry of the currently executing page. Some processors
make use of a two-level scheme to organize large page tables. In this scheme, there is
a page directory, in which each entry points to a page table. Thus, if the length of the
page directory is X, and if the maximum length of a page table is Y, then a process can

Virtual address

Physical address

Frame #| Offset

1
1
1
1
1
1
1
1
! 1
1
: 1 \/\
. 1
: Register 1
1 1
n bits : Page table ptr :
1 1
1 1
1 1
: Page table m bits :
1 1 Off: li
! 1 5 Page
\ 1 frame
1 1
L 1
1 1
1 1
: [Frame # — :
1 1
1 1
1 1
1 1
1 1 \/\
1 1
1 1
1 1
1 . . 1 .
Program] Paging mechanism] Main memory
1 1
1 1

Figure 8.3 Address Translation in a Paging System

348 CHAPTER 8 / VIRTUAL MEMORY

4-Kb
page i’;&?m “IIIII

4-Mbyte user
page table

\
e e T T T T T T Teeel T]

Figure 8.4 A Two-Level Hierarchical Page Table

consist of up to X x Y pages. Typically, the maximum length of a page table is restricted
to be equal to one page. For example, the Pentium processor uses this approach.
Figure 8.4 shows an example of a two-level scheme typical for use with a
32-bit address. If we assume byte-level addressing and 4-Kbyte (2!%) pages, then the
4-Gbyte (2*2) virtual address space is composed of 22 pages. If each of these pages
is mapped by a 4-byte page table entry, we can create a user page table composed of
220 PTEs requiring 4 Mbytes (2%%). This huge user page table, occupying 2! pages,
can be kept in virtual memory and mapped by a root page table with 2!° PTEs occu-
pying 4 Kbytes (2'?) of main memory. Figure 8.5 shows the steps involved in address

\/\

Virtual address
| 10bits | 10 bits | 12 bits |

Root page
table ptr

¥ I@—» —
4-Kbyte page

Root page table table (contains
(contains 1024 PTEs) 1024 PTEs)

Page
frame

Y

Program Paging mechanism Main memory

Figure 8.5 Address Translation in a Two-Level Paging System

8.1 / HARDWARE AND CONTROL STRUCTURES 349

translation for this scheme. The root page always remains in main memory. The
first 10 bits of a virtual address are used to index into the root page to find a PTE
for a page of the user page table. If that page is not in main memory, a page fault
occurs. If that page is in main memory, then the next 10 bits of the virtual address
index into the user PTE page to find the PTE for the page that is referenced by the
virtual address.

INVERTED PAGE TABLE A drawback of the type of page tables that we have been
discussing is that their size is proportional to that of the virtual address space.

An alternative approach to the use of one or multiple-level page tables is the
use of an inverted page table structure. Variations on this approach are used on
the PowerPC, UltraSPARC, and the IA-64 architecture. An implementation of the
Mach operating system on the RT-PC also uses this technique.

In this approach, the page number portion of a virtual address is mapped into a
hash value using a simple hashing function.! The hash value is a pointer to the inverted
page table, which contains the page table entries. There is one entry in the inverted
page table for each real memory page frame rather than one per virtual page. Thus,
a fixed proportion of real memory is required for the tables regardless of the number
of processes or virtual pages supported. Because more than one virtual address may
map into the same hash table entry, a chaining technique is used for managing the
overflow. The hashing technique results in chains that are typically short—between
one and two entries. The page table’s structure is called inverted because it indexes
page table entries by frame number rather than by virtual page number.

Figure 8.6 shows a typical implementation of the inverted page table approach.
For a physical memory size of 2™ frames, the inverted page table contains 2" entries,
so that the ith entry refers to frame i. Each entry in the page table includes the
following:

e Page number: This is the page number portion of the virtual address.

¢ Process identifier: The process that owns this page. The combination of page
number and process identifier identify a page within the virtual address space
of a particular process.

e Control bits: This field includes flags, such as valid, referenced, and modified;
and protection and locking information.

e Chain pointer: This field is null (perhaps indicated by a separate bit) if there
are no chained entries for this entry. Otherwise, the field contains the index
value (number between 0 and 2" — 1) of the next entry in the chain.

In this example, the virtual address includes an n-bit page number, with n > m.
The hash function maps the n-bit page number into an m-bit quantity, which is used
to index into the inverted page table.

TRANSLATION LOOKASIDE BUFFER In principle, every virtual memory reference

can cause two physical memory accesses: one to fetch the appropriate page table
entry and one to fetch the desired data. Thus, a straightforward virtual memory

ISee Appendix F for a discussion of hashing.

350 CHAPTER 8 / VIRTUAL MEMORY

Virtual address

n bits
Page # | Offset
Control
n bits bits
Process
Hash m bits Page # ID Chain
function 0

om Frame #| Offset

Inverted page table m bits
(one entry for each
physical memory frame)

Real address

Figure 8.6 Inverted Page Table Structure

scheme would have the effect of doubling the memory access time. To overcome
this problem, most virtual memory schemes make use of a special high-speed cache
for page table entries, usually called a translation lookaside buffer (TLB). This
cache functions in the same way as a memory cache (see Chapter 1) and contains
those page table entries that have been most recently used. The organization of
the resulting paging hardware is illustrated in Figure 8.7. Given a virtual address,
the processor will first examine the TLB. If the desired page table entry is present
(TLB hit), then the frame number is retrieved and the real address is formed. If
the desired page table entry is not found (7LB miss), then the processor uses the
page number to index the process page table and examine the corresponding page
table entry. If the “present bit” is set, then the page is in main memory, and the
processor can retrieve the frame number from the page table entry to form the real
address. The processor also updates the TLB to include this new page table entry.
Finally, if the present bit is not set, then the desired page is not in main memory
and a memory access fault, called a page fault, is issued. At this point, we leave the
realm of hardware and invoke the OS, which loads the needed page and updates
the page table.

Figure 8.8 is a flowchart that shows the use of the TLB. The flowchart shows
that if the desired page is not in main memory, a page fault interrupt causes the
page fault handling routine to be invoked. To keep the flowchart simple, the fact
that the OS may dispatch another process while disk I/O is underway is not shown.
By the principle of locality, most virtual memory references will be to locations in

8.1 / HARDWARE AND CONTROL STRUCTURES 351

Secondary
memory

Virtual address
Page # | Offset \/\ \/\
I

Main memory

Translation
lookaside buffer

TLB hit

Offset 1

Load
Page table page
\/-\ -
TLB miss
Frame # | Offset |—
Real address \/\
Page fault

Figure 8.7 Use of a Translation Lookaside Buffer

recently used pages. Therefore, most references will involve page table entries in
the cache. Studies of the VAX TLB have shown that this scheme can significantly
improve performance [CLARSS5, SATYS81].

There are a number of additional details concerning the actual organization
of the TLB. Because the TLB contains only some of the entries in a full page table,
we cannot simply index into the TLB based on page number. Instead, each entry
in the TLB must include the page number as well as the complete page table entry.
The processor is equipped with hardware that allows it to interrogate simultane-
ously a number of TLB entries to determine if there is a match on page number.
This technique is referred to as associative mapping and is contrasted with the direct
mapping, or indexing, used for lookup in the page table in Figure 8.9. The design of
the TLB also must consider the way in which entries are organized in the TLB and
which entry to replace when a new entry is brought in. These issues must be consid-
ered in any hardware cache design. This topic is not pursued here; the reader may
consult a treatment of cache design for further details (e.g., [STAL10]).

Finally, the virtual memory mechanism must interact with the cache system
(not the TLB cache, but the main memory cache). This is illustrated in Figure 8.10.
A virtual address will generally be in the form of a page number, offset. First, the
memory system consults the TLB to see if the matching page table entry is present.
If it is, the real (physical) address is generated by combining the frame number with
the offset. If not, the entry is accessed from a page table. Once the real address is

352 CHAPTER 8 / VIRTUAL MEMORY

Return to

faulted instruction
CPU checks the TLB

Page table
entry in
TLB?

Access page table

Page fault
handling routine

OS instructs CPU No i Page~
to read the page in main
from disk memory?

!

CPU activates
1/O hardware Update TLB

{ I

Page transferred ‘
from disk to
main memory

CPU generates
physical address

No Perform page
replacement
Page tables
updated

Figure 8.8 Operation of Paging and Translation Lookaside Buffer (TLB)

generated, which is in the form of a tag? and a remainder, the cache is consulted to
see if the block containing that word is present. If so, it is returned to the CPU. If
not, the word is retrieved from main memory.

The reader should be able to appreciate the complexity of the CPU hardware
involved in a single memory reference. The virtual address is translated into a real
address. This involves reference to a page table entry, which may be in the TLB, in
main memory, or on disk. The referenced word may be in cache, main memory, or
on disk. If the referenced word is only on disk, the page containing the word must

%See Figure 1.17. Typically, a tag is just the leftmost bits of the real address. Again, for a more detailed
discussion of caches, see [STAL10].

8.1 / HARDWARE AND CONTROL STRUCTURES 353

Virtual address Virtual address
Page # Offset Page # Offset
5 502 5 502

Page # PT entries

19
511
37
27
14
[37 1
211
5 [37
90

L]
37 502 37 502

Frame # Offset Translation lookaside buffer Frame # Offset
Real address Real address

Page table
(a) Direct mapping (b) Associative mapping

Figure 8.9 Direct versus Associative Lookup for Page Table Entries

TLB operation

Virtual address

| Y
Page # | Offset
TLB

TLB miss |

TLB
hit H Cache operation
B S I N B |
1
1
: Real address 1
J : ¥ i
© +> Tag Hit ! Value
1 Cache f—4t——
S
1
1
1
1

\/\ Main

memory

Page table

Value

Figure 8.10 Translation Lookaside Buffer and Cache Operation

354 CHAPTER 8 / VIRTUAL MEMORY

Page fault rate

be loaded into main memory and its block loaded into the cache. In addition, the
page table entry for that page must be updated.

PAGE SizE An important hardware design decision is the size of page to be used.
There are several factors to consider. One is internal fragmentation. Clearly, the
smaller the page size, the lesser is the amount of internal fragmentation. To optimize
the use of main memory, we would like to reduce internal fragmentation. On the
other hand, the smaller the page, the greater is the number of pages required per
process. More pages per process means larger page tables. For large programs in
a heavily multiprogrammed environment, this may mean that some portion of the
page tables of active processes must be in virtual memory, not in main memory.
Thus, there may be a double page fault for a single reference to memory: first to
bring in the needed portion of the page table and second to bring in the process page.
Another factor is that the physical characteristics of most secondary-memory devices,
which are rotational, favor a larger page size for more efficient block transfer of data.

Complicating these matters is the effect of page size on the rate at which page
faults occur. This behavior, in general terms, is depicted in Figure 8.11a and is based
on the principle of locality. If the page size is very small, then ordinarily a relatively
large number of pages will be available in main memory for a process. After a time,
the pages in memory will all contain portions of the process near recent references.
Thus, the page fault rate should be low. As the size of the page is increased, each
individual page will contain locations further and further from any particular recent
reference. Thus the effect of the principle of locality is weakened and the page fault
rate begins to rise. Eventually, however, the page fault rate will begin to fall as the
size of a page approaches the size of the entire process (point P in the diagram).
When a single page encompasses the entire process, there will be no page faults.

A further complication is that the page fault rate is also determined by the
number of frames allocated to a process. Figure 8.11b shows that, for a fixed page

2
5
=
&
(]
&
A
)
|
: |
P w N
(a) Page size (b) Number of page frames allocated

P = size of entire process
W = working set size
N = total number of pages in process

Figure 8.11 Typical Paging Behavior of a Program

8.1 / HARDWARE AND CONTROL STRUCTURES 355

Table 8.3 Example Page Sizes

Computer

Page Size

Atlas

512 48-bit words

Honeywell-Multics

1,024 36-bit words

IBM 370/XA and 370/ESA 4 Kbytes

VAX family 512 bytes

IBM AS/400 512 bytes

DEC Alpha 8 Kbytes

MIPS 4 Kbytes to 16 Mbytes
UltraSPARC 8 Kbytes to 4 Mbytes
Pentium 4 Kbytes or 4 Mbytes
Intel Itanium 4 Kbytes to 256 Mbytes

Intel core i7

4 Kbytes to 1 Gbyte

size, the fault rate drops as the number of pages maintained in main memory grows.>

Thus, a software policy (the amount of memory to allocate to each process) inter-
acts with a hardware design decision (page size).

Table 8.3 lists the page sizes used on some machines.

Finally, the design issue of page size is related to the size of physical main memory
and program size. At the same time that main memory is getting larger, the address
space used by applications is also growing. The trend is most obvious on personal
computers and workstations, where applications are becoming increasingly complex.
Furthermore, contemporary programming techniques used in large programs tend to
decrease the locality of references within a process [HUCK93]. For example,

* Object-oriented techniques encourage the use of many small program and
data modules with references scattered over a relatively large number of ob-
jects over a relatively short period of time.

e Multithreaded applications may result in abrupt changes in the instruction
stream and in scattered memory references.

For a given size of TLB, as the memory size of processes grows and as locality
decreases, the hit ratio on TLB accesses declines. Under these circumstances, the
TLB can become a performance bottleneck (e.g., see [CHENO92]).

One way to improve TLB performance is to use a larger TLB with more
entries. However, TLB size interacts with other aspects of the hardware design,
such as the main memory cache and the number of memory accesses per instruction
cycle [TALL92]. The upshot is that TLB size is unlikely to grow as rapidly as main
memory size. An alternative is to use larger page sizes so that each page table entry
in the TLB refers to a larger block of memory. But we have just seen that the use of
large page sizes can lead to performance degradation.

3The parameter W represents working set size, a concept discussed in Section 8.2.

356 CHAPTER 8 / VIRTUAL MEMORY

Accordingly, a number of designers have investigated the use of multiple
page sizes [TALL92, KHAL93], and several microprocessor architectures support
multiple pages sizes, including MIPS R4000, Alpha, UltraSPARC, Pentium, and
IA-64. Multiple page sizes provide the flexibility needed to use a TLB effectively.
For example, large contiguous regions in the address space of a process, such as pro-
gram instructions, may be mapped using a small number of large pages rather than
a large number of small pages, while thread stacks may be mapped using the small
page size. However, most commercial operating systems still support only one page
size, regardless of the capability of the underlying hardware. The reason for this is
that page size affects many aspects of the OS; thus, a change to multiple page sizes
is a complex undertaking (see [GANA9S] for a discussion).

Segmentation

VIRTUAL MEMORY IMPLICATIONS Segmentation allows the programmer to view
memory as consisting of multiple address spaces or segments. Segments may be of
unequal, indeed dynamic, size. Memory references consist of a (segment number,
offset) form of address.

This organization has a number of advantages to the programmer over a non-
segmented address space:

1. It simplifies the handling of growing data structures. If the programmer does
not know ahead of time how large a particular data structure will become, it is
necessary to guess unless dynamic segment sizes are allowed. With segmented
virtual memory, the data structure can be assigned its own segment, and the
OS will expand or shrink the segment as needed. If a segment that needs to be
expanded is in main memory and there is insufficient room, the OS may move
the segment to a larger area of main memory, if available, or swap it out. In
the latter case, the enlarged segment would be swapped back in at the next
opportunity.

2. It allows programs to be altered and recompiled independently, without
requiring the entire set of programs to be relinked and reloaded. Again, this is
accomplished using multiple segments.

3. It lends itself to sharing among processes. A programmer can place a utility
program or a useful table of data in a segment that can be referenced by other
processes.

4. Itlends itself to protection. Because a segment can be constructed to contain a
well-defined set of programs or data, the programmer or system administrator
can assign access privileges in a convenient fashion.

ORGANIZATION In the discussion of simple segmentation, we indicated that each
process has its own segment table, and when all of its segments are loaded into main
memory, the segment table for a process is created and loaded into main memory.
Each segment table entry contains the starting address of the corresponding segment
in main memory, as well as the length of the segment. The same device, a segment
table, is needed when we consider a virtual memory scheme based on segmentation.
Again, it is typical to associate a unique segment table with each process. In this

8.1 / HARDWARE AND CONTROL STRUCTURES 357

case, however, the segment table entries become more complex (Figure 8.2b).
Because only some of the segments of a process may be in main memory, a bit is
needed in each segment table entry to indicate whether the corresponding segment
is present in main memory or not. If the bit indicates that the segment is in memory,
then the entry also includes the starting address and length of that segment.

Another control bit in the segmentation table entry is a modify bit, indicating
whether the contents of the corresponding segment have been altered since the seg-
ment was last loaded into main memory. If there has been no change, then it is not
necessary to write the segment out when it comes time to replace the segment in the
frame that it currently occupies. Other control bits may also be present. For example,
if protection or sharing is managed at the segment level, then bits for that purpose
will be required.

The basic mechanism for reading a word from memory involves the translation
of a virtual, or logical, address, consisting of segment number and offset, into a physi-
cal address, using a segment table. Because the segment table is of variable length,
depending on the size of the process, we cannot expect to hold it in registers. Instead,
it must be in main memory to be accessed. Figure 8.12 suggests a hardware imple-
mentation of this scheme (note similarity to Figure 8.3). When a particular process
is running, a register holds the starting address of the segment table for that process.
The segment number of a virtual address is used to index that table and look up the
corresponding main memory address for the start of the segment. This is added to
the offset portion of the virtual address to produce the desired real address.

Combined Paging and Segmentation

Both paging and segmentation have their strengths. Paging, which is transparent
to the programmer, eliminates external fragmentation and thus provides efficient
use of main memory. In addition, because the pieces that are moved in and out of

jav}
=
<
S
=N
o
[=9
o
=
9]
@
@

Program Segmentation mechanism Main memory

Virtual address
Bl o)l —O—LEma

I

1 O
1 1
1 Register 1
| |
1 1
[} [}
1 Segment table 1 -
1 1 d 5
1 1 £
1 1 1
)) @
1 > 1
1 1
: [Length [Base j— :
I I
1 1
[} [}
1 1 \/\
1 1
1 1
} }
I I
! !

Figure 8.12 Address Translation in a Segmentation System

358 CHAPTER 8 / VIRTUAL MEMORY

main memory are of fixed, equal size, it is possible to develop sophisticated mem-
ory management algorithms that exploit the behavior of programs, as we shall see.
Segmentation, which is visible to the programmer, has the strengths listed earlier,
including the ability to handle growing data structures, modularity, and support
for sharing and protection. To combine the advantages of both, some systems are
equipped with processor hardware and OS software to provide both.

In a combined paging/segmentation system, a user’s address space is broken
up into a number of segments, at the discretion of the programmer. Each segment
is, in turn, broken up into a number of fixed-size pages, which are equal in length to
a main memory frame. If a segment has length less than that of a page, the segment
occupies just one page. From the programmer’s point of view, a logical address still
consists of a segment number and a segment offset. From the system’s point of view,
the segment offset is viewed as a page number and page offset for a page within the
specified segment.

Figure 8.13 suggests a structure to support combined paging/segmentation
(note similarity to Figure 8.5). Associated with each process is a segment table and
a number of page tables, one per process segment. When a particular process is
running, a register holds the starting address of the segment table for that process.
Presented with a virtual address, the processor uses the segment number portion to
index into the process segment table to find the page table for that segment. Then
the page number portion of the virtual address is used to index the page table and
look up the corresponding frame number. This is combined with the offset portion
of the virtual address to produce the desired real address.

Figure 8.2c suggests the segment table entry and page table entry formats. As
before, the segment table entry contains the length of the segment. It also contains

Virtual address

Offset

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

| Seg # |Page#| Offset | : : :
1 1 1
t t 1
1 1 1)
T T 1
1 1 1
: Seg table ptr : :
1 1 1
1 Segment 1 Page 1
: table : table :
1 1 " 1
1 1 1 |Offset
1 1 E“.jn H i } Page
1 1 £ 1 frame
1 —
T 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1 Y
1 1 1

Program | Segmentation | Paging | Main memory

: mechanism : mechanism :
1 1 1

Figure 8.13 Address Translation in a Segmentation/Paging System

8.1 / HARDWARE AND CONTROL STRUCTURES 359

a base field, which now refers to a page table. The present and modified bits are not
needed because these matters are handled at the page level. Other control bits may
be used, for purposes of sharing and protection. The page table entry is essentially
the same as is used in a pure paging system. Each page number is mapped into a cor-
responding frame number if the page is present in main memory. The modified bit
indicates whether this page needs to be written back out when the frame is allocated
to another page. There may be other control bits dealing with protection or other
aspects of memory management.

Protection and Sharing

Segmentation lends itself to the implementation of protection and sharing policies.
Because each segment table entry includes a length as well as a base address, a pro-
gram cannot inadvertently access a main memory location beyond the limits of a
segment. To achieve sharing, it is possible for a segment to be referenced in the seg-
ment tables of more than one process. The same mechanisms are, of course, avail-
able in a paging system. However, in this case the page structure of programs and
data is not visible to the programmer, making the specification of protection and
sharing requirements more awkward. Figure 8.14 illustrates the types of protection
relationships that can be enforced in such a system.

Address .
Main memory
0
20K
Dispatcher X
35K No access
allowed
50K
Process A
80K
90K Branch instruction
(not allowed)
Process B %
________________ Reference to
data (allowed)
140K
Process C
““““““““ Reference to
data (not allowed) w
190K

Figure 8.14 Protection Relationships between Segments

360 CHAPTER 8 / VIRTUAL MEMORY

More sophisticated mechanisms can also be provided. A common scheme
is to use a ring-protection structure, of the type we referred to in Chapter 3
(Figure 3.18). In this scheme, lower-numbered, or inner, rings enjoy greater
privilege than higher-numbered, or outer, rings. Typically, ring 0 is reserved
for kernel functions of the OS, with applications at a higher level. Some utili-
ties or OS services may occupy an intermediate ring. Basic principles of the ring
system are as follows:

1. A program may access only data that reside on the same ring or a less privi-
leged ring.
2. A program may call services residing on the same or a more privileged ring.

8.2 OPERATING SYSTEM SOFTWARE

The design of the memory management portion of an OS depends on three funda-
mental areas of choice:

e Whether or not to use virtual memory techniques
¢ The use of paging or segmentation or both
e The algorithms employed for various aspects of memory management

The choices made in the first two areas depend on the hardware platform available.
Thus, earlier UNIX implementations did not provide virtual memory because the
processors on which the system ran did not support paging or segmentation. Neither
of these techniques is practical without hardware support for address translation
and other basic functions.

Two additional comments about the first two items in the preceding list: First,
with the exception of operating systems for some of the older personal computers,
such as MS-DOS, and specialized systems, all important operating systems provide
virtual memory. Second, pure segmentation systems are becoming increasingly
rare. When segmentation is combined with paging, most of the memory manage-
ment issues confronting the OS designer are in the area of paging.* Thus, we can
concentrate in this section on the issues associated with paging.

The choices related to the third item are the domain of operating system
software and are the subject of this section. Table 8.4 lists the key design elements
that we examine. In each case, the key issue is one of performance: We would like to
minimize the rate at which page faults occur, because page faults cause considerable
software overhead. At a minimum, the overhead includes deciding which resident
page or pages to replace, and the I/O of exchanging pages. Also, the OS must schedule
another process to run during the page 1/0, causing a process switch. Accordingly,
we would like to arrange matters so that, during the time that a process is execut-
ing, the probability of referencing a word on a missing page is minimized. In all of
the areas referred to in Table 8.4, there is no definitive policy that works best.

4Protection and sharing are usually dealt with at the segment level in a combined segmentation/paging
system. We will deal with these issues in later chapters.

8.2 / OPERATING SYSTEM SOFTWARE 361

Table 8.4 Operating System Policies for Virtual Memory

Fetch Policy Resident Set Management
Demand paging Resident set size
Prepaging Fixed

Variable

Placement Policy Replacement Scope

Global
Replacement Policy Local
Basic Algorithms
Optimal Cleaning Policy
Least recently used (LRU) Demand
First-in-first-out (FIFO) Precleaning
Clock
Page Buffering Load Control
Degree of multiprogramming

As we shall see, the task of memory management in a paging environment is fiend-
ishly complex. Furthermore, the performance of any particular set of policies depends
on main memory size, the relative speed of main and secondary memory, the size and
number of processes competing for resources, and the execution behavior of indi-
vidual programs. This latter characteristic depends on the nature of the application,
the programming language and compiler employed, the style of the programmer who
wrote it, and, for an interactive program, the dynamic behavior of the user. Thus, the
reader must expect no final answers here or anywhere. For smaller systems, the OS
designer should attempt to choose a set of policies that seems “good” over a wide
range of conditions, based on the current state of knowledge. For larger systems, par-
ticularly mainframes, the operating system should be equipped with monitoring and
control tools that allow the site manager to tune the operating system to get “good”
results based on site conditions.

Fetch Policy

The fetch policy determines when a page should be brought into main memory. The
two common alternatives are demand paging and prepaging. With demand paging,
a page is brought into main memory only when a reference is made to a location
on that page. If the other elements of memory management policy are good, the
following should happen. When a process is first started, there will be a flurry of
page faults. As more and more pages are brought in, the principle of locality suggests
that most future references will be to pages that have recently been brought in.
Thus, after a time, matters should settle down and the number of page faults should
drop to a very low level.

With prepaging, pages other than the one demanded by a page fault are
brought in. Prepaging exploits the characteristics of most secondary memory
devices, such as disks, which have seek times and rotational latency. If the pages of
a process are stored contiguously in secondary memory, then it is more efficient to
bring in a number of contiguous pages at one time rather than bringing them in one
at a time over an extended period. Of course, this policy is ineffective if most of the
extra pages that are brought in are not referenced.

362 CHAPTER 8 / VIRTUAL MEMORY

The prepaging policy could be employed either when a process first starts up,
in which case the programmer would somehow have to designate desired pages, or
every time a page fault occurs. This latter course would seem preferable because
it is invisible to the programmer. However, the utility of prepaging has not been
established [MAEKS87].

Prepaging should not be confused with swapping. When a process is swapped
out of memory and put in a suspended state, all of its resident pages are moved out.
When the process is resumed, all of the pages that were previously in main memory
are returned to main memory.

Placement Policy

The placement policy determines where in real memory a process piece is to reside.
In a pure segmentation system, the placement policy is an important design issue;
policies such as best-fit, first-fit, and so on, which were discussed in Chapter 7, are
possible alternatives. However, for a system that uses either pure paging or paging
combined with segmentation, placement is usually irrelevant because the address
translation hardware and the main memory access hardware can perform their
functions for any page-frame combination with equal efficiency.

There is one area in which placement does become a concern, and this is a
subject of research and development. On a so-called nonuniform memory access
(NUMA) multiprocessor, the distributed, shared memory of the machine can be
referenced by any processor on the machine, but the time for accessing a particular
physical location varies with the distance between the processor and the memory
module. Thus, performance depends heavily on the extent to which data reside
close to the processors that use them [LARO92, BOLO89, COX89]. For NUMA
systems, an automatic placement strategy is desirable to assign pages to the memory
module that provides the best performance.

Replacement Policy

In most operating system texts, the treatment of memory management includes a
section entitled “replacement policy,” which deals with the selection of a page in
main memory to be replaced when a new page must be brought in. This topic is
sometimes difficult to explain because several interrelated concepts are involved:

e How many page frames are to be allocated to each active process

* Whether the set of pages to be considered for replacement should be limited
to those of the process that caused the page fault or encompass all the page
frames in main memory

e Among the set of pages considered, which particular page should be selected
for replacement

We shall refer to the first two concepts as resident set management, which is dealt
with in the next subsection, and reserve the term replacement policy for the third
concept, which is discussed in this subsection.

The area of replacement policy is probably the most studied of any area of
memory management. When all of the frames in main memory are occupied and
it is necessary to bring in a new page to satisfy a page fault, the replacement policy

8.2 / OPERATING SYSTEM SOFTWARE 363

determines which page currently in memory is to be replaced. All of the policies
have as their objective that the page that is removed should be the page least likely
to be referenced in the near future. Because of the principle of locality, there is
often a high correlation between recent referencing history and near-future refer-
encing patterns. Thus, most policies try to predict future behavior on the basis of
past behavior. One trade-off that must be considered is that the more elaborate and
sophisticated the replacement policy, the greater will be the hardware and software
overhead to implement it.

FRAME LOCKING One restriction on replacement policy needs to be mentioned
before looking at various algorithms: Some of the frames in main memory may be
locked. When a frame is locked, the page currently stored in that frame may not be
replaced. Much of the kernel of the OS, as well as key control structures, are held in
locked frames. In addition, I/O buffers and other time-critical areas may be locked
into main memory frames. Locking is achieved by associating a lock bit with each
frame. This bit may be kept in a frame table as well as being included in the current
page table.

Basic ALgoritHMs Regardless of the resident set management strategy (discussed
in the next subsection), there are certain basic algorithms that are used for the
selection of a page to replace. Replacement algorithms that have been discussed in
the literature include

e Optimal

e Least recently used (LRU)
e First-in-first-out (FIFO)

e Clock

The optimal policy selects for replacement that page for which the time to the
next reference is the longest. It can be shown that this policy results in the fewest
number of page faults [BELA66]. Clearly, this policy is impossible to implement,
because it would require the OS to have perfect knowledge of future events. However,
it does serve as a standard against which to judge real-world algorithms.

Figure 8.15 gives an example of the optimal policy. The example assumes a
fixed frame allocation (fixed resident set size) for this process of three frames. The
execution of the process requires reference to five distinct pages. The page address
stream formed by executing the program is

232152 453252

which means that the first page referenced is 2, the second page referenced is 3, and
so on. The optimal policy produces three page faults after the frame allocation has
been filled.

The least recently used (LRU) policy replaces the page in memory that has
not been referenced for the longest time. By the principle of locality, this should
be the page least likely to be referenced in the near future. And, in fact, the LRU
policy does nearly as well as the optimal policy. The problem with this approach is
the difficulty in implementation. One approach would be to tag each page with the

364 CHAPTER 8 / VIRTUAL MEMORY

Page address

stream 2 3 2 1 5 2 4 5 3 2 5 2
[2) 20 (21 [2] [2] 20 4 4] 2] 2] 2 2
opT [| [37] [0 [31 [3] [[31] 3] 3] [3] [3 3
I [A N ([T I [N S I [O 5

F F F
2] 2] 2] 2] B2 B2 B2 B2 B B BB 3
LRU [| [3] 3] 5] 5] 5] 5 (5] 5] [h)
ey g pry 4y f4y f4g 2] [2 2

F F F F

FIFO [| 3 2 2
I i I O 1 [4]

F F

F = page fault occurring after the frame allocation is initially filled

Figure 8.15 Behavior of Four Page Replacement Algorithms

time of its last reference; this would have to be done at each memory reference,
both instruction and data. Even if the hardware would support such a scheme, the
overhead would be tremendous. Alternatively, one could maintain a stack of page
references, again an expensive prospect.

Figure 8.15 shows an example of the behavior of LRU, using the same page
address stream as for the optimal policy example. In this example, there are four
page faults.

The first-in-first-out (FIFO) policy treats the page frames allocated to a proc-
ess as a circular buffer, and pages are removed in round-robin style. All that is
required is a pointer that circles through the page frames of the process. This is
therefore one of the simplest page replacement policies to implement. The logic
behind this choice, other than its simplicity, is that one is replacing the page that
has been in memory the longest: A page fetched into memory a long time ago may
have now fallen out of use. This reasoning will often be wrong, because there will
often be regions of program or data that are heavily used throughout the life of a
program. Those pages will be repeatedly paged in and out by the FIFO algorithm.

Continuing our example in Figure 8.15, the FIFO policy results in six page
faults. Note that LRU recognizes that pages 2 and 5 are referenced more frequently
than other pages, whereas FIFO does not.

Although the LRU policy does nearly as well as an optimal policy, it is dif-
ficult to implement and imposes significant overhead. On the other hand, the FIFO

8.2 / OPERATING SYSTEM SOFTWARE 365

policy is very simple to implement but performs relatively poorly. Over the years,
OS designers have tried a number of other algorithms to approximate the perform-
ance of LRU while imposing little overhead. Many of these algorithms are variants
of a scheme referred to as the clock policy.

The simplest form of clock policy requires the association of an additional
bit with each frame, referred to as the use bit. When a page is first loaded into
a frame in memory, the use bit for that frame is set to 1. Whenever the page is
subsequently referenced (after the reference that generated the page fault), its
use bit is set to 1. For the page replacement algorithm, the set of frames that are
candidates for replacement (this process: local scope; all of main memory: global
scope) is considered to be a circular buffer, with which a pointer is associated.
When a page is replaced, the pointer is set to indicate the next frame in the buffer
after the one just updated. When it comes time to replace a page, the OS scans
the buffer to find a frame with a use bit set to 0. Each time it encounters a frame
with a use bit of 1, it resets that bit to 0 and continues on. If any of the frames in
the buffer have a use bit of 0 at the beginning of this process, the first such frame
encountered is chosen for replacement. If all of the frames have a use bit of 1,
then the pointer will make one complete cycle through the buffer, setting all the
use bits to 0, and stop at its original position, replacing the page in that frame.
We can see that this policy is similar to FIFO, except that, in the clock policy, any
frame with a use bit of 1 is passed over by the algorithm. The policy is referred
to as a clock policy because we can visualize the page frames as laid out in a circle.
A number of operating systems have employed some variation of this simple clock
policy (e.g., Multics [CORB68]).

Figure 8.16 provides an example of the simple clock policy mechanism. A cir-
cular buffer of » main memory frames is available for page replacement. Just prior
to the replacement of a page from the buffer with incoming page 727, the next frame
pointer points at frame 2, which contains page 45. The clock policy is now executed.
Because the use bit for page 45 in frame 2 is equal to 1, this page is not replaced.
Instead, the use bit is set to 0 and the pointer advances. Similarly, page 191 in frame
3 is not replaced; its use bit is set to 0 and the pointer advances. In the next frame,
frame 4, the use bit is set to 0. Therefore, page 556 is replaced with page 727. The
use bit is set to 1 for this frame and the pointer advances to frame 5, completing the
page replacement procedure.

The behavior of the clock policy is illustrated in Figure 8.15. The presence
of an asterisk indicates that the corresponding use bit is equal to 1, and the arrow
indicates the current position of the pointer. Note that the clock policy is adept at
protecting frames 2 and 5 from replacement.

Figure 8.17 shows the results of an experiment reported in [BAERS80], which
compares the four algorithms that we have been discussing; it is assumed that the
number of page frames assigned to a process is fixed. The results are based on the
execution of 0.25 x 10 references in a FORTRAN program, using a page size of 256
words. Baer ran the experiment with frame allocations of 6, 8, 10, 12, and 14 frames.
The differences among the four policies are most striking at small allocations, with

>The concept of scope is discussed in the subsection “Replacement Scope,” subsequently.

366 CHAPTER 8 / VIRTUAL MEMORY

First frame in
circular buffer of
n—1 0 frames that are
candidates for replacement

Next frame
pointer

Page 222

Page 45
Use =0

Page 222 Page 191

(b) State of buffer just after the next page replacement

Figure 8.16 Example of Clock Policy Operation

FIFO being over a factor of 2 worse than optimal. All four curves have the same shape
as the idealized behavior shown in Figure 8.11b. In order to run efficiently, we would
like to be to the right of the knee of the curve (with a small page fault rate) while
keeping a small frame allocation (to the left of the knee of the curve). These two con-
str