

This page intentionally left blank

OPERATING SYSTEMS
INTERNALS AND DESIGN

PRINCIPLES

SEVENTH EDITION

William Stallings

 Prentice Hall
 Boston Columbus Indianapolis New York San Francisco Upper Saddle River

 Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
 Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

 Editorial Director: Marcia Horton
 Editor in Chief: Michael Hirsch
 Executive Editor: Tracy Dunkelberger
 Assistant Editor: Melinda Haggerty
 Editorial Assistant: Allison Michael
 Director of Marketing: Patrice Jones
 Marketing Manager: Yezan Alayan
 SenioMarketing Coordinator: Kathryn Ferranti
 Production Manager: Pat Brown

 Art Director: Jayne Conte
 Cover Designer: Bruce Kenselaar
 Media Director: Daniel Sandin
 Media Project Manager: Wanda Rockwell
 Full-Service Project Management/Composition:
 Shiny Rajesh/Integra Software Service Pvt. Ltd.
 Interior Printer/Bindery: Edwards Brothers
 Cover Printer: Lehigh-Phoenix Color

 Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on
appropriate page within text.

 Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. Screen
shots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored or endorsed by or
affi liated with the Microsoft Corporation.

 Copyright © 2012, 2009, 2005, 2001, 1998 Pearson Education, Inc., publishing as Prentice Hall, 1 Lake Street,
Upper Saddle River, New Jersey, 07458. All rights reserved. Manufactured in the United States of America. This publication
is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction,
 storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, 1 Lake Street, Upper Saddle River, New Jersey, 07458.

 Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

 Library of Congress Cataloging-in-Publication Data

Stallings, William.
Operating systems : internals and design principles / William Stallings. — 7th ed.
 p. cm.
 Includes bibliographical references and index.
 ISBN-13: 978-0-13-230998-1 (alk. paper)
 ISBN-10: 0-13-230998-X (alk. paper)
 1. Operating systems (Computers) I. Title.
QA76.76.O63S733 2011
005.4'3 dc22
 2010048597

 10 9 8 7 6 5 4 3 2 1—EB—15 14 13 12 11

 ISBN 10: 0-13-230998-X
 ISBN 13: 978-0-13-230998-1

www.pearsonhighered.com

To my brilliant and brave wife,
Antigone Tricia, who has survived

the worst horrors imaginable.

iv

 2.6 OS Design Considerations for
Multiprocessor and Multicore 77

 2.7 Microsoft Windows Overview 80
 2.8 Traditional UNIX Systems 90
 2.9 Modern UNIX Systems 92
 2.10 Linux 94
 2.11 Linux VServer Virtual Machine

Architecture 100
 2.12 Recommended Reading and Web

Sites 101
 2.13 Key Terms, Review Questions, and

Problems 103

PART 2 PROCESSES 106

Chapter 3 Process Description and
Control 106

 3.1 What Is a Process? 108
 3.2 Process States 110
 3.3 Process Description 126
 3.4 Process Control 134
 3.5 Execution of the Operating

System 140
 3.6 Security Issues 143
 3.7 UNIX SVR4 Process

Management 147
 3.8 Summary 152
 3.9 Recommended Reading 152
 3.10 Key Terms, Review Questions, and

Problems 153

Chapter 4 Threads 157

 4.1 Processes and Threads 158
 4.2 Types of Threads 164
 4.3 Multicore and Multithreading 171
 4.4 Windows 7 Thread and SMP

Management 176
 4.5 Solaris Thread and SMP

Management 182
 4.6 Linux Process and Thread

Management 186
 4.7 Mac OS X Grand Central

Dispatch 189

Online Resources x

Preface xi

About the Author xix

Chapter 0 Reader’s and Instructor’s
Guide 1

 0.1 Outline of this Book 2
 0.2 Example Systems 2
 0.3 A Roadmap for Readers and

Instructors 3
 0.4 Internet and Web Resources 4

PART 1 BACKGROUND 7

Chapter 1 Computer System
Overview 7

 1.1 Basic Elements 8
 1.2 Evolution of the

Microprocessor 10
 1.3 Instruction Execution 11
 1.4 Interrupts 14
 1.5 The Memory Hierarchy 24
 1.6 Cache Memory 27
 1.7 Direct Memory Access 31
 1.8 Multiprocessor and Multicore

Organization 33
 1.9 Recommended Reading and

Web Sites 36
 1.10 Key Terms, Review Questions,

and Problems 37
 1A Performance Characteristics of

Two-Level Memories 39

Chapter 2 Operating System
Overview 46

 2.1 Operating System Objectives and
Functions 48

 2.2 The Evolution of Operating
Systems 52

 2.3 Major Achievements 62
 2.4 Developments Leading to Modern

Operating Systems 71
 2.5 Virtual Machines 74

CONTENTS

CONTENTS v

 7.3 Paging 321
 7.4 Segmentation 325
 7.5 Security Issues 326
 7.6 Summary 330
 7.7 Recommended Reading 330
 7.8 Key Terms, Review Questions, and

Problems 331
 7A Loading and Linking 334

Chapter 8 Virtual Memory 340

 8.1 Hardware and Control
Structures 341

 8.2 Operating System Software 360
 8.3 UNIX and Solaris Memory

Management 379
 8.4 Linux Memory Management 384
 8.5 Windows Memory

Management 386
 8.6 Summary 389
 8.7 Recommended Reading and Web

Sites 390
 8.8 Key Terms, Review Questions,

and Problems 391

PART 4 SCHEDULING 395

Chapter 9 Uniprocessor Scheduling 395

 9.1 Types of Processor Scheduling 396
 9.2 Scheduling Algorithms 400
 9.3 Traditional UNIX

Scheduling 422
 9.4 Summary 424
 9.5 Recommended Reading 425
 9.6 Key Terms, Review Questions,

and Problems 426

Chapter 10 Multiprocessor and Real-Time
Scheduling 430

 10.1 Multiprocessor Scheduling 431
 10.2 Real-Time Scheduling 442
 10.3 Linux Scheduling 457
 10.4 UNIX SVR4 Scheduling 461
 10.5 UNIX FreeBSD Scheduling 463
 10.6 Windows Scheduling 466
 10.7 Linux Virtual Machine Process

Scheduling 468
 10.8 Summary 469

 4.8 Summary 192
 4.9 Recommended Reading 192
 4.10 Key Terms, Review Questions, and

Problems 193

Chapter 5 Concurrency: Mutual Exclu-
sion and Synchronization 198

 5.1 Principles of Concurrency 201
 5.2 Mutual Exclusion: Hardware

Support 209
 5.3 Semaphores 213
 5.4 Monitors 226
 5.5 Message Passing 233
 5.6 Readers/Writers Problem 239
 5.7 Summary 243
 5.8 Recommended Reading 244
 5.9 Key Terms, Review Questions,

and Problems 245

Chapter 6 Concurrency: Deadlock and
Starvation 258

 6.1 Principles of Deadlock 259
 6.2 Deadlock Prevention 268
 6.3 Deadlock Avoidance 270
 6.4 Deadlock Detection 276
 6.5 An Integrated Deadlock

Strategy 278
 6.6 Dining Philosophers Problem 279
 6.7 UNIX Concurrency

Mechanisms 281
 6.8 Linux Kernel Concurrency

Mechanisms 285
 6.9 Solaris Thread Synchronization

Primitives 292
 6.10 Windows 7 Concurrency

Mechanisms 294
 6.11 Summary 298
 6.12 Recommended Reading 298
 6.13 Key Terms, Review Questions,

and Problems 299

PART 3 MEMORY 305

Chapter 7 Memory Management 305

 7.1 Memory Management
Requirements 307

 7.2 Memory Partitioning 310

vi CONTENTS

Operating Systems 576
 13.3 eCos 579
 13.4 TinyOS 594
 13.5 Recommended Reading and

Web Sites 603
 13.6 Key Terms, Review Questions,

and Problems 604

PART 7 COMPUTER SECURITY 607

Chapter 14 Computer Security
Threats 607

 14.1 Computer Security
Concepts 608

 14.2 Threats, Attacks, and Assets 610
 14.3 Intruders 616
 14.4 Malicious Software

Overview 619
 14.5 Viruses, Worms, and Bots 623
 14.6 Rootkits 633
 14.7 Recommended Reading and

Web Sites 635
 14.8 Key Terms, Review Questions,

and Problems 636

Chapter 15 Computer Security
Techniques 639

 15.1 Authentication 640
 15.2 Access Control 646
 15.3 Intrusion Detection 653
 15.4 Malware Defense 657
 15.5 Dealing with Buffer Overfl ow

Attacks 663
 15.6 Windows 7 Security 667
 15.7 Recommended Reading and

Web Sites 672
 15.8 Key Terms, Review Questions,

and Problems 674

PART 8 DISTRIBUTED SYSTEMS 677

Chapter 16 Distributed Processing, Client/
Server, and Clusters 677

 16.1 Client/Server Computing 678
 16.2 Service-Oriented

Architecture 689
 16.3 Distributed Message Passing 691
 16.4 Remote Procedure Calls 695
 16.5 Clusters 699

 10.9 Recommended Reading 470
 10.10 Key Terms, Review Questions, and

Problems 471

PART 5 INPUT/OUTPUT AND
FILES 474

Chapter 11 I/O Management and Disk
Scheduling 474

 11.1 I/O Devices 475
 11.2 Organization of the I/O

Function 477
 11.3 Operating System Design Issues 480
 11.4 I/O Buffering 483
 11.5 Disk Scheduling 487
 11.6 RAID 494
 11.7 Disk Cache 502
 11.8 UNIX SVR4 I/O 506
 11.9 Linux I/O 509
 11.10 Windows I/O 512
 11.11 Summary 515
 11.12 Recommended Reading 516
 11.13 Key Terms, Review Questions, and

Problems 517

Chapter 12 File Management 520

 12.1 Overview 522
 12.2 File Organization and Access 527
 12.3 B-Trees 532
 12.4 File Directories 535
 12.5 File Sharing 540
 12.6 Record Blocking 541
 12.7 Secondary Storage

Management 543
 12.8 File System Security 551
 12.9 UNIX File Management 553
 12.10 Linux Virtual File System 560
 12.11 Windows File System 564
 12.12 Summary 569
 12.13 Recommended Reading 570
 12.14 Key Terms, Review Questions, and

Problems 571

PART 6 EMBEDDED SYSTEMS 573

Chapter 13 Embedded Operating
Systems 573

 13.1 Embedded Systems 574
 13.2 Characteristics of Embedded

CONTENTS vii

Appendix B Programming and Operating
System Projects B-1

 B.1 OS/161 B-2
 B.2 Simulations B-3
 B.3 Programming Projects B-4
 B.4 Research Projects B-6
 B.5 Reading/Report

Assignments B-6
 B.6 Writing Assignments B-6
 B.7 Discussion Topics B-7
 B.8 BACI B-7

Glossary 713

References 723

Index 743

 16.6 Windows Cluster Server 704
 16.7 Beowulf and Linux Clusters 706
 16.8 Summary 708
 16.9 Recommended Reading and Web

Sites 709
 16.10 Key Terms, Review Questions, and

Problems 710

APPENDICES

Appendix A Topics in Concurrency A-1

 A.1 Mutual Exclusion: Software
Approaches A-2

 A.2 Race Conditions and
Semaphores A-8

 A.3 A Barbershop Problem A-15
 A.4 Problems A-21

viii

 20.3 Queueing Models 20-10
 20.4 Single-Server Queues 20-20
 20.5 Multiserver Queues 20-22
 20.6 Examples 20-24
 20.7 Queues with Priorities 20-30
 20.8 Networks of Queues 20-32
 20.9 Other Queueing Models 20-37
 20.10 Estimating Model

Parameters 20-38
 20.11 Recommended Reading and Web

Sites 20-42
 20.12 Key Terms, Review Questions, and

Problems 20-43

Programming Project One Developing
a Shell

Programming Project Two The HOST
Dispatcher Shell

Appendix C Topics in Computer
Organization C-1

 C.1 Processor Registers C-2
 C.2 Instruction Execution for I/O

Instructions C-6
 C.3 I/O Communication

Techniques C-7
 C.4 Hardware Performance

Issues for Multicore
Organization C-12

Appendix D Object-Oriented
Design D-1

 D.1 Motivation D-2
 D.2 Object-Oriented Concepts D-4
 D.3 Benefi ts of Object-Oriented

Design D-9
 D.4 CORBA D-11
 D.5 Recommended Reading and

Web Site D-17

Appendix E Amdahl’s Law E-1

Appendix F Hash Tables F-1

Chapter 17 Network Protocols 17-1

 17.1 The Need for a Protocol
Architecture 17-3

 17.2 The TCP/IP Protocol
Architecture 17-6

 17.3 Sockets 17-15
 17.4 Linux Networking 17-21
 17.5 Summary 17-22
 17.6 Recommended Reading and Web

Sites 17-23
 17.7 Key Terms, Review Questions, and

Problems 17-24
 17A The Trivial File Transfer

Protocol 17-28

Chapter 18 Distributed Process
Management 18-1

 18.1 Process Migration 18-2
 18.2 Distributed Global States 18-10
 18.3 Distributed Mutual

Exclusion 18-16
 18.4 Distributed Deadlock 18-30
 18.5 Summary 18-44
 18.6 Recommended Reading 18-45
 18.7 Key Terms, Review Questions, and

Problems 18-46

Chapter 19 Overview of Probability
and Stochastic Processes 19-1

 19.1 Probability 19-2
 19.2 Random Variables 19-8
 19.3 Elementary Concepts of Stochas-

tic Processes 19-14
 19.4 Recommended Reading and Web

Sites 19-26
 19.5 Key Terms, Review Questions, and

Problems 19-27

Chapter 20 Queueing Analysis 20-1

 20.1 How Queues Behave—A Simple
Example 20-3

 20.2 Why Queueing Analysis? 20-8

ONLINE CHAPTERS AND APPENDICES1

1 Online chapters, appendices, and other documents are Premium Content, available via the access card
at the front of this book.

ONLINE CHAPTERS AND APPENDICES ix

 M.2 The Client/Server Model of
Communication M-6

 M.3 Sockets Elements M-8
 M.4 Stream and Datagram

Sockets M-28
 M.5 Run-Time Program

Control M-33
 M.6 Remote Execution of a Windows

Console Application M-38

Appendix N The International Reference
Alphabet N-1

Appendix O BACI: The Ben-Ari
Concurrent Programming
System O-1

 O.1 Introduction O-2
 O.2 BACI O-3
 O.3 Examples of BACI Programs O-7
 O.4 BACI Projects O-11
 O.5 Enhancements to the BACI

System O-16

Appendix P Procedure Control P-1

P.1 Stack Implementation P-2
P.2 Procedure Calls and Returns P-3
P.3 Reentrant Procedures P-4

Appendix G Response Time G-1

Appendix H Queueing System
Concepts H-1

 H.1 The Single-Server Queue H-2
 H.2 The Multiserver Queue H-4
 H.3 Poisson Arrival Rate H-7

Appendix I The Complexity of
Algorithms I-1

Appendix J Disk Storage Devices J-1

 J.1 Magnetic Disk J-2
 J.2 Optical Memory J-8

Appendix K Cryptographic
Algorithms K-1

 K.1 Symmetric Encryption K-2
 K.2 Public-Key Cryptography K-6
 K.3 Secure Hash Functions K-10

Appendix L Standards Organizations L-1

 L.1 The Importance of Standards L-2
 L.2 Standards and Regulation L-3
 L.3 Standards-Setting Organizations L-4

Appendix M Sockets: A Programmer’s
Introduction M-1

 M.1 Sockets, Socket Descriptors, Ports,
and Connections M-4

x

ONLINE RESOURCES

 Site Location Description

Companion Web Site williamstallings.com/OS/
OS7e.html

www.pearsonhighered.com/
stallings/

Student Resources button:
Useful links and documents
for students

Instructor Resources button:
Useful links and documents
for instructors

Premium Web Content www.pearsonhighered.com/
stallings/, click on Premium
Web Content button and
enter the student access code
found on the card in the front
of the book.

 Online chapters, appendices,
and other documents that
 supplement the book

Instructor Resource Center
(IRC)

 Pearsonhighered.com/
Stallings/, click on Instructor
Resource button.

 Solutions manual, projects
manual, slides, and other
 useful documents

Computer Science Student
Resource Site

 computersciencestudent.com Useful links and documents
for computer science students

www.pearsonhighered.com/stallings/Student
www.pearsonhighered.com/stallings/Student
www.pearsonhighered.com/stallings/
www.pearsonhighered.com/stallings/

xi

PREFACE

 This book does not pretend to be a comprehensive record; but it aims
at helping to disentangle from an immense mass of material the crucial
issues and cardinal decisions. Throughout I have set myself to explain
faithfully and to the best of my ability.

 — THE WORLD CRISIS , Winston Churchill

OBJECTIVES

 This book is about the concepts, structure, and mechanisms of operating systems.
Its purpose is to present, as clearly and completely as possible, the nature and char-
acteristics of modern-day operating systems.

 This task is challenging for several reasons. First, there is a tremendous range
and variety of computer systems for which operating systems are designed. These
include embedded systems, smart phones, single-user workstations and personal
computers, medium-sized shared systems, large mainframe and supercomputers,
and specialized machines such as real-time systems. The variety is not just in the
capacity and speed of machines, but in applications and system support require-
ments as well. Second, the rapid pace of change that has always characterized com-
puter systems continues with no letup. A number of key areas in operating system
design are of recent origin, and research into these and other new areas continues.

 In spite of this variety and pace of change, certain fundamental concepts apply
consistently throughout. To be sure, the application of these concepts depends on
the current state of technology and the particular application requirements. The
intent of this book is to provide a thorough discussion of the fundamentals of oper-
ating system design and to relate these to contemporary design issues and to current
directions in the development of operating systems.

EXAMPLE SYSTEMS

 This text is intended to acquaint the reader with the design principles and implemen-
tation issues of contemporary operating systems. Accordingly, a purely conceptual
or theoretical treatment would be inadequate. To illustrate the concepts and to tie
them to real-world design choices that must be made, three operating systems have
been chosen as running examples:

 • Windows 7: A multitasking operating system for personal computers, work-
stations, and servers. This operating system incorporates many of the latest
developments in operating system technology. In addition, Windows is
one of the first important commercial operating systems to rely heavily on

xii PREFACE

 object-oriented design principles. This book covers the technology used in
the most recent version of Windows, known as Windows 7.

 • UNIX: A multiuser operating system, originally intended for minicomput-
ers, but implemented on a wide range of machines from powerful microcom-
puters to supercomputers. Several flavors of UNIX are included as examples.
FreeBSD is a widely used system that incorporates many state-of-the-art fea-
tures. Solaris is a widely used commercial version of UNIX.

 • Linux: An open-source version of UNIX that is now widely used.

 These systems were chosen because of their relevance and representativeness.
The discussion of the example systems is distributed throughout the text rather than
assembled as a single chapter or appendix. Thus, during the discussion of concur-
rency, the concurrency mechanisms of each example system are described, and the
motivation for the individual design choices is discussed. With this approach, the
design concepts discussed in a given chapter are immediately reinforced with real-
world examples.

INTENDED AUDIENCE

 The book is intended for both an academic and a professional audience. As a text-
book, it is intended as a one-semester undergraduate course in operating systems
for computer science, computer engineering, and electrical engineering majors.
It covers all of the core topics and most of the elective topics recommended in
Computer Science Curriculum 2008 , from the Joint Task Force on Computing
Curricula of the IEEE Computer Society and the ACM, for the Undergraduate
Program in Computer Science. The book also covers the operating systems top-
ics recommended in the Guidelines for Associate-Degree Curricula in Computer
Science 2002 , also from the Joint Task Force on Computing Curricula of the IEEE
Computer Society and the ACM. The book also serves as a basic reference volume
and is suitable for self-study.

PLAN OF THE TEXT

 The book is divided into eight parts (see Chapter 0 for an overview):

 • Background

 • Processes

 • Memory

 • Scheduling

 • Input/output and files

 • Embedded systems

 • Security

 • Distributed systems

PREFACE xiii

 The book includes a number of pedagogic features, including the use of ani-
mations and numerous figures and tables to clarify the discussion. Each chapter
includes a list of key words, review questions, homework problems, suggestions for
further reading, and recommended Web sites. The book also includes an extensive
glossary, a list of frequently used acronyms, and a bibliography. In addition, a test
bank is available to instructors.

WHAT’S NEW IN THE SEVENTH EDITION

 In the 3 years since the sixth edition of this book was published, the field has seen
continued innovations and improvements. In this new edition, I try to capture these
changes while maintaining a broad and comprehensive coverage of the entire field.
To begin the process of revision, the sixth edition of this book was extensively
reviewed by a number of professors who teach the subject and by professionals
working in the field. The result is that, in many places, the narrative has been clari-
fied and tightened, and illustrations have been improved. Also, a number of new
“field-tested” homework problems have been added.

 Beyond these refinements to improve pedagogy and user friendliness, the
technical content of the book has been updated throughout, to reflect the ongo-
ing changes in this exciting field, and the instructor and student support has been
expanded. The most noteworthy changes are as follows:

 • Windows 7: Windows 7 is Microsoft’s latest OS offering for PCs, worksta-
tions, and servers. The seventh edition provides details on Windows 7
 internals in all of the key technology areas covered in this book, including
process/thread management, scheduling, memory management, security,
file systems, and I/O.

 • Multicore operating system issues: The seventh edition now includes cover-
age of what has become the most prevalent new development in computer
systems: the use of multiple processors on a single chip. At appropriate points
in the book, operating system issues related to the use of a multicore organiza-
tion are explored.

 • Virtual machines: Chapter 2 now includes a section on virtual machines, which
outlines the various approaches that have been implemented commercially.

 • New scheduling examples: Chapter 10 now includes a discussion of the
FreeBSD scheduling algorithm, designed for use with multiprocessor and
multicore systems, and Linux VServer scheduling for a virtual machine
environment.

 • Service-oriented architecture (SOA): SOA is a form of client/server archi-
tecture that now enjoys widespread use in enterprise systems. SOA is now
covered in Chapter 16 .

 • Probability, statistics, and queueing analysis: Two new chapters review key
topics in these areas to provide background for OS performance analysis.

 • B-trees: This is a technique for organizing indexes into files and databases
that is commonly used in OS file systems, including those supported by

xiv PREFACE

Mac OS X, Windows, and several Linux file systems. B-trees are now cov-
ered in Chapter 12 .

 • Student study aids: Each chapter now begins with a list of learning objec-
tives. In addition, a chapter-by-chapter set of review outlines highlights key
concepts that the student should concentrate on in each chapter.

 • OS/161: OS/161 is an educational operating system that is becoming increas-
ingly recognized as the teaching platform of choice. This new edition provides
support for using OS/161 as an active learning component. See later in this
Preface for details.

 • Sample syllabus: The text contains more material than can be conveniently covered
in one semester. Accordingly, instructors are provided with several sample syllabi
that guide the use of the text within limited time (e.g., 16 weeks or 12 weeks). These
samples are based on real-world experience by professors with the sixth edition.

 With each new edition, it is a struggle to maintain a reasonable page count while
adding new material. In part, this objective is realized by eliminating obsolete material
and tightening the narrative. For this edition, chapters and appendices that are of less
general interest have been moved online, as individual PDF files. This has allowed an
expansion of material without the corresponding increase in size and price.

STUDENT RESOURCES

 For this new edition, a tremendous amount of original supporting material has been
made available online, in the following categories
The Companion Web site and student resource material can be reached through
the Publisher’s Web site www.pearsonhighered.com/stallings or by clicking on
the button labeled “Book Info and More Instructor Resources” at the book’s
Companion Web site WilliamStallings.com/OS/OS7e.html. For this new edition, a
tremendous amount of original supporting material has been made available online,
in the following categories:

 • Homework problems and solutions: To aid the student in understanding the
material, a separate set of homework problems with solutions are available.
These enable the students to test their understanding of the text.

 • Programming projects: Two major programming projects, one to build a
shell (or command line interpreter) and one to build a process dispatcher, are
described.

 • Key papers: Several dozen papers from the professional literature, many hard
to find, are provided for further reading.

 • Supporting documents: A variety of other useful documents are referenced in
the text and provided online.

Premium Web Content
 Purchasing this textbook new grants the reader 6 months of access to this online
material. See the access card in the front of this book for details.

www.pearsonhighered.com/stallings

PREFACE xv

 • Online chapters: To limit the size and cost of the book, four chapters of the
book are provided in PDF format. The chapters are listed in this book’s table
of contents.

 • Online appendices: There are numerous interesting topics that support mate-
rial found in the text but whose inclusion is not warranted in the printed text.
A total of 13 appendices cover these topics for the interested student. The
 appendices are listed in this book’s table of contents.

INSTRUCTOR SUPPORT MATERIALS

 Support materials are available at the Instructor Resource Center (IRC)
for this textbook, which can be reached through the Publisher’s Web site
www.pearsonhighered.com/stallings or by clicking on the button labeled “Book
Info and More Instructor Resources” at this book’s Companion Web site
WilliamStallings.com/OS/OS7e.html. To gain access to the IRC, please contact
your local Pearson sales representative via pearsonhighered.com/educator/replo-
cator/requestSalesRep.page or call Pearson Faculty Services at 1-800-526-0485.
To support instructors, the following materials are provided:

 • Solutions manual: Solutions to end-of-chapter Review Questions and
Problems.

 • Projects manual: Suggested project assignments for all of the project categories
listed in the next section.

 • PowerPoint slides: A set of slides covering all chapters, suitable for use in
 lecturing.

 • PDF files: Reproductions of all figures and tables from the book.

 • Test bank: A chapter-by-chapter set of questions.

 • Links to Web sites for other courses being taught using this book.

 • An Internet mailing list has been set up so that instructors using this book can
exchange information, suggestions, and questions with each other and with
the author. As soon as typos or other errors are discovered, an errata list for
this book will be available at WilliamStallings.com. Sign-up information for
this Internet mailing list.

 • Computer science student resource list: A list of helpful links for computer
 science students and professionals is provided at ComputerScienceStudent.com,
which provides documents, information, and useful links for computer science
students and professionals.

 • Programming projects: Two major programming projects, one to build a
shell (or command line interpreter) and one to build a process dispatcher,
are described in the online portion of this textbook. The IRC provides fur-
ther information and step-by-step exercises for developing the programs. As
an alternative, the instructor can assign a more extensive series of projects
that cover many of the principles in the book. The student is provided with

www.pearsonhighered.com/stallings

xvi PREFACE

detailed instructions for doing each of the projects. In addition, there is a set of
homework problems, which involve questions related to each project for the
student to answer.

Projects and Other Student Exercises

 For many instructors, an important component of an OS course is a project or set
of projects by which the student gets hands-on experience to reinforce concepts
from the text. This book provides an unparalleled degree of support for including
a projects component in the course. In the online portion of the text, two major
 programming projects are defined. In addition, the instructor support materials
available through Pearson not only include guidance on how to assign and structure
the various projects but also includes a set of user’s manuals for various project
types plus specific assignments, all written especially for this book. Instructors can
assign work in the following areas:

 • OS/161 projects: Described below.

 • Simulation projects: Described below.

 • Programming projects: Described below.

 • Research projects: A series of research assignments that instruct the student
to research a particular topic on the Internet and write a report.

 • Reading/report assignments: A list of papers that can be assigned for reading
and writing a report, plus suggested assignment wording.

 • Writing assignments: A list of writing assignments to facilitate learning the
material.

 • Discussion topics: These topics can be used in a classroom, chat room, or mes-
sage board environment to explore certain areas in greater depth and to foster
student collaboration.

 In addition, information is provided on a software package known as BACI that
serves as a framework for studying concurrency mechanisms.

 This diverse set of projects and other student exercises enables the instructor to
use the book as one component in a rich and varied learning experience and to tailor a
course plan to meet the specific needs of the instructor and students. See Appendix B
in this book for details.

OS/161

 New to this edition is support for an active learning component based on OS/161.
OS/161 is an educational operating system that is becoming increasingly recog-
nized as the preferred teaching platform for OS internals. It aims to strike a bal-
ance between giving students experience in working on a real operating system and
 potentially overwhelming students with the complexity that exists in a fully fledged
operating system, such as Linux. Compared to most deployed operating systems,
OS/161 is quite small (approximately 20,000 lines of code and comments), and there-
fore it is much easier to develop an understanding of the entire code base.

PREFACE xvii

 The IRC includes:

 1. A packaged set of html files that the instructor can upload to a course server
for student access.

 2. A getting-started manual to be handed out to students to help them begin
using OS/161.

 3. A set of exercises using OS/161, to be handed out to students.

 4. Model solutions to each exercise for the instructor’s use.

 5. All of this will be cross-referenced with appropriate sections in the book, so
that the student can read the textbook material and then do the corresponding
OS/161 project.

Simulations for Students and Instructors

 The IRC provides support for assigning projects based on a set of seven simulations
that cover key areas of OS design. The student can use a set of simulation packages
to analyze OS design features. The simulators are all written in Java and can be run
either locally as a Java application or online through a browser. The IRC includes
specific assignments to give to students, telling them specifically what they are to do
and what results are expected.

Animations for Students and Instructors

 This edition also incorporates animations. Animations provide a powerful tool for
understanding the complex mechanisms of a modern OS. A total of 53 animations
are used to illustrate key functions and algorithms in OS design. The animations are
used for Chapters 3 , 5 , 6 , 7 , 8 , 9 , and 11 . For access to the animations, click on the
rotating globe at this book’s Web site at WilliamStallings.com/OS/OS7e.html.

ACKNOWLEDGMENTS

 This new edition has benefited from review by a number of people, who gave gen-
erously of their time and expertise. These include Samir Chettri (The University of
Maryland, Baltimore County), Michael Rogers (Tennessee Technological University),
Glenn Booker (Drexel University), Jeongkyu Lee (University of Bridgeport), Sanjiv
Bhatia (University of Missouri, Baltimore County), Martin Barrett (East Tennessee
State University), Lubomir Ivanov (Iona College), Bina Ramamurthy (University at
Buffalo), Dean Kelley (Minnesota State University), Joel Weinstein (Northeastern
University), all of whom reviewed most or all of the book.

 Thanks also to the people who provided detailed reviews of a one or
more chapters: John South (University of Dallas), Kevin Sanchez-Cherry (IT
Security Specilist), Adri Jovin (PG Scholar,Department of IT, Anna University
of Technology, Coimbatore), Thriveni Venkatesh (Professor Thriveni T K from
GcMAT, Bangalore, India), Fernando Lichtschein (Instituto de Tecnología
ORT Argentina), C. Annamala (Indian Institute of Technology Kharagpur),

xviii PREFACE

Abdul-Rahman Mahmood (Independent IT & security consultant & Creator of
AlphaPeeler crypto tool), and Abhilash V R (VVDN Technologies).

 I would also like to thank Dave Probert, Architect in the Windows Core Kernel
& Architecture team at Microsoft, for the review of the material on Windows Vista
and for providing the comparisons of Linux and Vista; Tigran Aivazian, author of
the Linux Kernel Internals document, which is part of the Linux Documentation
Project, for the review of the material on Linux 2.6; Nick Garnett of eCosCentric,
for the review of the material on eCos; and Philip Levis, one of the developers of
TinyOS, for the review of the material on TinyOS.

 Professor Andrew Peterson, Ioan Stefanovici, and OS instructors at the
University of Toronto prepared the OS/161 supplements for the IRC.

 Adam Critchley (University of Texas at San Antonio) developed the simula-
tion exercises. Matt Sparks (University of Illinois at Urbana-Champaign) adapted a
set of programming problems for use with this textbook.

 Lawrie Brown of the Australian Defence Force Academy produced the mate-
rial on buffer overflow attacks. Ching-Kuang Shene (Michigan Tech University)
provided the examples used in the section on race conditions and reviewed the
section. Tracy Camp and Keith Hellman, both at the Colorado School of Mines,
developed a new set of homework problems. In addition, Fernando Ariel Gont
contributed a number of homework problems; he also provided detailed reviews of
all of the chapters.

 I would also like to thank Bill Bynum (College of William and Mary) and
Tracy Camp (Colorado School of Mines) for contributing Appendix O ; Steve
Taylor (Worcester Polytechnic Institute) for contributing the programming
projects and reading/report assignments in the instructor’s manual; and Professor
Tan N. Nguyen (George Mason University) for contributing the research projects
in the instruction manual. Ian G. Graham (Griffith University) contributed the
two programming projects in the textbook. Oskars Rieksts (Kutztown University)
generously allowed me to make use of his lecture notes, quizzes, and projects.

 Finally, I would like to thank the many people responsible for the publica-
tion of the book, all of whom did their usual excellent job. This includes my editor
Tracy Dunkelberger, her assistants Carole Snyder, Melinda Hagerty, and Allison
Michael, and production manager Pat Brown. I also thank Shiny Rajesh and the
production staff at Integra for another excellent and rapid job. Thanks also to the
marketing and sales staffs at Pearson, without whose efforts this book would not
be in your hands.

 With all this assistance, little remains for which I can take full credit. However,
I am proud to say that, with no help whatsoever, I selected all of the quotations.

xix

ABOUT THE AUTHOR

 William Stallings has made a unique contribution to understanding the broad
sweep of technical developments in computer security, computer networking, and
computer architecture. He has authored 17 titles, and, counting revised editions, a
total of 42 books on various aspects of these subjects. His writings have appeared
in numerous ACM and IEEE publications, including the Proceedings of the IEEE
and ACM Computing Reviews .

 He has 11 times received the award for the best Computer Science textbook of
the year from the Text and Academic Authors Association.

 In over 30 years in the field, he has been a technical contributor, technical
manager, and an executive with several high-technology firms. He has designed
and implemented both TCP/IP-based and OSI-based protocol suites on a variety
of computers and operating systems, ranging from microcomputers to mainframes.
As a consultant, he has advised government agencies, computer and software ven-
dors, and major users on the design, selection, and use of networking software and
products.

 He has created and maintains the Computer Science Student Resource Site
at http://www.computersciencestudent.com/ . This site provides documents and
links on a variety of subjects of general interest to computer science students
(and professionals). He is a member of the editorial board of Cryptologia , a
scholarly journal devoted to all aspects of cryptology.

 Dr. Stallings holds a PhD from M.I.T. in Computer Science and a B.S. from
Notre Dame in electrical engineering.

http://www.computersciencestudent.com/

This page intentionally left blank

11

0.1 Outline of This Book

0.2 Example Systems

0.3 A Roadmap for Readers and Instructors

0.4 Internet and Web Resources
 Web Sites for This Book
 Other Web Sites
 USENET Newsgroups

READER’S AND INSTRUCTOR’S
GUIDE

CHAPTER

1

2 CHAPTER 0 / READER’S AND INSTRUCTOR’S GUIDE

 These delightful records should have been my constant study.
THE IMPORTANCE OF BEING EARNEST , Oscar Wilde

 This book, with its accompanying Web site, covers a lot of material. Here we give
the reader some basic background information.

 0.1 OUTLINE OF THIS BOOK

 The book is organized in eight parts:

Part One. Background: Provides an overview of computer architecture and
organization, with emphasis on topics that relate to operating system (OS)
design, plus an overview of the OS topics in remainder of the book.

Part Two. Processes: Presents a detailed analysis of processes, multithreading,
symmetric multiprocessing (SMP), and microkernels. This part also examines
the key aspects of concurrency on a single system, with emphasis on issues of
mutual exclusion and deadlock.

Part Three. Memory: Provides a comprehensive survey of techniques for mem-
ory management, including virtual memory.

Part Four. Scheduling: Provides a comparative discussion of various approaches
to process scheduling. Thread scheduling, SMP scheduling, and real-time
scheduling are also examined.

Part Five. Input/Output and Files: Examines the issues involved in OS control
of the I/O function. Special attention is devoted to disk I/O, which is the key to
system performance. Also provides an overview of file management.

Part Six. Embedded Systems: Embedded systems far outnumber general-
purpose computing systems and present a number of unique OS challenges.
The chapter includes a discussion of common principles plus coverage of two
example systems: TinyOS and eCos.

Part Seven. Security: Provides a survey of threats and mechanisms for provid-
ing computer and network security.

Part Eight. Distributed Systems: Examines the major trends in the networking
of computer systems, including TCP/IP, client/server computing, and clusters.
Also describes some of the key design areas in the development of distributed
operating systems.

 A number of online chapters and appendices cover additional topics relevant
to the book.

 0.2 EXAMPLE SYSTEMS

 This text is intended to acquaint the reader with the design principles and implemen-
tation issues of contemporary operating systems. Accordingly, a purely conceptual
or theoretical treatment would be inadequate. To illustrate the concepts and to tie

0.3 / A ROADMAP FOR READERS AND INSTRUCTORS 3

them to real-world design choices that must be made, two operating systems have
been chosen as running examples:

 • Windows: A multitasking operating system designed to run on a variety of PCs,
workstations, and servers. It is one of the few recent commercial operating
 systems that have essentially been designed from scratch. As such, it is in a posi-
tion to incorporate in a clean fashion the latest developments in operating
 system technology. The current version, presented in this book, is Windows 7.

 • UNIX: A multitasking operating system originally intended for minicomputers
but implemented on a wide range of machines from powerful microcomputers
to supercomputers. Included under this topic is Linux.

 The discussion of the example systems is distributed throughout the text rather
than assembled as a single chapter or appendix. Thus, during the discussion of con-
currency, the concurrency mechanisms of each example system are described, and
the motivation for the individual design choices is discussed. With this approach,
the design concepts discussed in a given chapter are immediately reinforced with
real-world examples.

 The book also makes use of other example systems where appropriate,
 particularly in the chapter on embedded systems.

 0.3 A ROADMAP FOR READERS AND INSTRUCTORS

 It would be natural for the reader to question the particular ordering of topics pre-
sented in this book. For example, the topic of scheduling (Chapters 9 and 10) is
closely related to those of concurrency (Chapters 5 and 6) and the general topic of
processes (Chapter 3) and might reasonably be covered immediately after those
topics.

 The difficulty is that the various topics are highly interrelated. For example, in
discussing virtual memory, it is useful to refer to the scheduling issues related to a
page fault. Of course, it is also useful to refer to some memory management issues
when discussing scheduling decisions. This type of example can be repeated end-
lessly: A discussion of scheduling requires some understanding of I/O management
and vice versa.

 Figure 0.1 suggests some of the important interrelationships between topics.
The solid lines indicate very strong relationships, from the point of view of design
and implementation decisions. Based on this diagram, it makes sense to begin with
a basic discussion of processes, which we do in Chapter 3 . After that, the order is
somewhat arbitrary. Many treatments of operating systems bunch all of the mate-
rial on processes at the beginning and then deal with other topics. This is certainly
valid. However, the central significance of memory management, which I believe
is of equal importance to process management, has led to a decision to present this
material prior to an in-depth look at scheduling.

 The ideal solution is for the student, after completing Chapters 1 through
 3 in series, to read and absorb the following chapters in parallel: 4 followed by
(optional) 5; 6 followed by 7; 8 followed by (optional) 9; 10. The remaining parts can

4 CHAPTER 0 / READER’S AND INSTRUCTOR’S GUIDE

be done in any order. However, although the human brain may engage in parallel
processing, the human student finds it impossible (and expensive) to work success-
fully with four copies of the same book simultaneously open to four different chap-
ters. Given the necessity for a linear ordering, I think that the ordering used in this
book is the most effective.

 A final word. Chapter 2 , especially Section 2.3 , provides a top-level view of
all of the key concepts covered in later chapters. Thus, after reading Chapter 2 ,
there is considerable flexibility in choosing the order in which to read the remaining
chapters.

 0.4 INTERNET AND WEB RESOURCES

 There are a number of resources available on the Internet and the Web to support
this book and for keeping up with developments in this field.

Web Sites for This Book

 Three Web sites provide additional resources for students and instructors. A special
Web page for this book is maintained at WilliamStallings.com/OS/OS7e.html . For
students, this Web site includes a list of relevant links, organized by chapter, an
errata sheet for the book, and links to the animations used throughout the book.
For access to the animations, click on the rotating globe. There are also documents
that introduce the C programming language for students who are not familiar with

Distributed
systems

Process
description
and control

Scheduling
Memory

management

Security

Embedded
systems

Concurrency

I/O and file
management

Figure 0.1 OS Topics

0.4 / INTERNET AND WEB RESOURCES 5

or need a refresher on this language For instructors, this Web site links to course
pages by professors teaching from this book and provides a number of other useful
documents and links.

 There is also an access-controlled Web site, referred to as Premium Content ,
that provides a wealth of supporting material, including additional online chapters,
additional online appendices, a set of homework problems with solutions, copies of
a number of key papers in this field, and a number of other supporting documents.
See the card at the front of this book for access information. Of particular note are
the following online documents:

 • Pseudocode: For those readers not comfortable with C, all of the algorithms
are also reproduced in a Pascal-like pseudocode. This pseudocode language is
intuitive and particularly easy to follow.

 • Windows 7, UNIX, and Linux descriptions: As was mentioned, Windows and
various flavors of UNIX are used as running case studies, with the discussion
distributed throughout the text rather than assembled as a single chapter or
appendix. Some readers would like to have all of this material in one place as
a reference. Accordingly, all of the Windows, UNIX, and Linux material from
the book is reproduced in three documents at the Web site.

 Finally, additional material for instructors is available at the Instructor
Resource Center (IRC) for this book. See Preface for details and access information.

 As soon as any typos or other errors are discovered, an errata list for this book
will be available at the Web site. Please report any errors that you spot. Errata
sheets for my other books are at WilliamStallings.com .

 I also maintain the Computer Science Student Resource Site, at
ComputerScienceStudent.com . The purpose of this site is to provide documents,
information, and links for computer science students and professionals. Links and
documents are organized into six categories:

 • Math: Includes a basic math refresher, a queueing analysis primer, a number
system primer, and links to numerous math sites.

 • How-to: Advice and guidance for solving homework problems, writing techni-
cal reports, and preparing technical presentations.

 • Research resources: Links to important collections of papers, technical
reports, and bibliographies.

 • Miscellaneous: A variety of useful documents and links.

 • Computer science careers: Useful links and documents for those considering a
career in computer science.

 • Humor and other diversions: You have to take your mind off your work once
in a while.

Other Web Sites

 There are numerous Web sites that provide information related to the topics of
this book. In subsequent chapters, pointers to specific Web sites can be found

6 CHAPTER 0 / READER’S AND INSTRUCTOR’S GUIDE

in the Recommended Reading and Web Sites section. Because the URL for a
 particular Web site may change, I have not included URLs in the book. For all of
the Web sites listed in the book, the appropriate link can be found at this book’s
Web site. Other links not mentioned in this book will be added to the Web site
over time.

USENET Newsgroups

 A number of USENET newsgroups are devoted to some aspect of operating sys-
tems or to a particular operating system. As with virtually all USENET groups,
there is a high noise-to-signal ratio, but it is worth experimenting to see if any meet
your needs. The most relevant are as follows:

 • comp.os.research: The best group to follow. This is a moderated newsgroup
that deals with research topics.

 • comp.os.misc: A general discussion of OS topics.

 • comp.os.linux.development.system: Linux discussion for developers.

CHAPTER

COMPUTER SYSTEM OVERVIEW
 1.1 Basic Elements

 1.2 Evolution of the Microprocessor

 1.3 Instruction Execution

 1.4 Interrupts
 Interrupts and the Instruction Cycle
 Interrupt Processing
 Multiple Interrupts

 1.5 The Memory Hierarchy

 1.6 Cache Memory
 Motivation
 Cache Principles
 Cache Design

 1.7 Direct Memory Access

 1.8 Multiprocessor and Multicore Organization
 Symmetric Multiprocessors
 Multicore Computers

 1.9 Recommended Reading and Web Sites

 1.10 Key Terms, Review Questions, and Problems

APPENDIX 1A Performance Characteristics of Two-Level Memories
 Locality
 Operation of Two-Level Memory
 Performance

7

Background PART 1

8 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

 No artifact designed by man is so convenient for this kind of functional
description as a digital computer. Almost the only ones of its properties
that are detectable in its behavior are the organizational properties.
Almost no interesting statement that one can make about on operating
computer bears any particular relation to the specific nature of the hard-
ware. A computer is an organization of elementary functional components
in which, to a high approximation, only the function performed by those
components is relevant to the behavior of the whole system.

THE SCIENCES OF THE ARTIFICIAL , Herbert Simon

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

• Describe the basic elements of a computer system and their interrelationship.
• Explain the steps taken by a processor to execute an instruction.
• Understand the concept of interrupts and how and why a processor uses

interrupts.
• List and describe the levels of a typical computer memory hierarchy.
• Explain the basic characteristics of multiprocessor and multicore organizations.
• Discuss the concept of locality and analyze the performance of a multilevel

memory hierarchy.
• Understand the operation of a stack and its use to support procedure call and

return.

 An operating system (OS) exploits the hardware resources of one or more proces-
sors to provide a set of services to system users. The OS also manages secondary
memory and I/O (input/output) devices on behalf of its users. Accordingly, it is
important to have some understanding of the underlying computer system hardware
before we begin our examination of operating systems.

 This chapter provides an overview of computer system hardware. In most
areas, the survey is brief, as it is assumed that the reader is familiar with this subject.
However, several areas are covered in some detail because of their importance to
topics covered later in the book. Further topics are covered in Appendix C .

1.1 BASIC ELEMENTS

 At a top level, a computer consists of processor, memory, and I/O components, with
one or more modules of each type. These components are interconnected in some
fashion to achieve the main function of the computer, which is to execute programs.
Thus, there are four main structural elements:

 • Processor: Controls the operation of the computer and performs its data pro-
cessing functions. When there is only one processor, it is often referred to as
the central processing unit (CPU).

1.1 / BASIC ELEMENTS 9

 • Main memory: Stores data and programs. This memory is typically volatile; that
is, when the computer is shut down, the contents of the memory are lost. In
contrast, the contents of disk memory are retained even when the computer
system is shut down. Main memory is also referred to as real memory or primary
memory.

 • I/O modules: Move data between the computer and its external environment.
The external environment consists of a variety of devices, including secondary
memory devices (e.g., disks), communications equipment, and terminals.

 • System bus: Provides for communication among processors, main memory,
and I/O modules.

 Figure 1.1 depicts these top-level components. One of the processor’s func-
tions is to exchange data with memory. For this purpose, it typically makes use of
two internal (to the processor) registers: a memory address register (MAR), which
specifies the address in memory for the next read or write; and a memory buffer reg-
ister (MBR), which contains the data to be written into memory or which receives

CPU Main memory

System
bus

I/O module

Buffers

Instruction

n�2
n�1

Data

Data

Data

Data

Instruction

Instruction

PC � Program counter
IR � Instruction register
MAR � Memory address register
MBR � Memory buffer register
I/O AR � Input/output address register
I/O BR � Input/output buffer register

0
1
2

PC MAR

IR MBR

I/O AR

I/O BR
Execution

unit

Figure 1.1 Computer Components: Top-Level View

10 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

the data read from memory. Similarly, an I/O address register (I/OAR) specifies a
particular I/O device. An I/O buffer register (I/OBR) is used for the exchange of
data between an I/O module and the processor.

 A memory module consists of a set of locations, defined by sequentially num-
bered addresses. Each location contains a bit pattern that can be interpreted as
either an instruction or data. An I/O module transfers data from external devices to
processor and memory, and vice versa. It contains internal buffers for temporarily
holding data until they can be sent on.

1.2 EVOLUTION OF THE MICROPROCESSOR

 The hardware revolution that brought about desktop and handheld computing was
the invention of the microprocessor, which contained a processor on a single chip.
Though originally much slower than multichip processors, microprocessors have
continually evolved to the point that they are now much faster for most computa-
tions due to the physics involved in moving information around in sub-nanosecond
timeframes.

 Not only have microprocessors become the fastest general purpose processors
available, they are now multiprocessors; each chip (called a socket) contains multi-
ple processors (called cores), each with multiple levels of large memory caches, and
multiple logical processors sharing the execution units of each core. As of 2010, it is
not unusual for even a laptop to have 2 or 4 cores, each with 2 hardware threads, for
a total of 4 or 8 logical processors.

 Although processors provide very good performance for most forms of
computing, there is increasing demand for numerical computation. Graphical
Processing Units (GPUs) provide efficient computation on arrays of data using
Single-Instruction Multiple Data (SIMD) techniques pioneered in supercomput-
ers. GPUs are no longer used just for rendering advanced graphics, but they are
also used for general numerical processing, such as physics simulations for games
or computations on large spreadsheets. Simultaneously, the CPUs themselves are
gaining the capability of operating on arrays of data—with increasingly power-
ful vector units integrated into the processor architecture of the x86 and AMD64
families.

 Processors and GPUs are not the end of the computational story for the
 modern PC. Digital Signal Processors (DSPs) are also present, for dealing with
streaming signals—such as audio or video. DSPs used to be embedded in I/O
devices, like modems, but they are now becoming first-class computational devices,
especially in handhelds. Other specialized computational devices (fixed function
units) co-exist with the CPU to support other standard computations, such as
encoding/decoding speech and video (codecs), or providing support for encryption
and security.

 To satisfy the requirements of handheld devices, the classic microprocessor
is giving way to the System on a Chip (SoC), where not just the CPUs and caches
are on the same chip, but also many of the other components of the system, such as
DSPs, GPUs, I/O devices (such as radios and codecs), and main memory.

1.3 / INSTRUCTION EXECUTION 11

1.3 INSTRUCTION EXECUTION

 A program to be executed by a processor consists of a set of instructions stored
in memory. In its simplest form, instruction processing consists of two steps: The
processor reads (fetches) instructions from memory one at a time and executes each
instruction. Program execution consists of repeating the process of instruction fetch
and instruction execution. Instruction execution may involve several operations and
depends on the nature of the instruction.

 The processing required for a single instruction is called an instruction cycle.
Using a simplified two-step description, the instruction cycle is depicted in Figure 1.2 .
The two steps are referred to as the fetch stage and the execute stage. Program execu-
tion halts only if the processor is turned off, some sort of unrecoverable error occurs,
or a program instruction that halts the processor is encountered.

 At the beginning of each instruction cycle, the processor fetches an instruc-
tion from memory. Typically, the program counter (PC) holds the address of the
next instruction to be fetched. Unless instructed otherwise, the processor always
increments the PC after each instruction fetch so that it will fetch the next instruc-
tion in sequence (i.e., the instruction located at the next higher memory address).
For example, consider a simplified computer in which each instruction occupies one
16-bit word of memory. Assume that the program counter is set to location 300.
The processor will next fetch the instruction at location 300. On succeeding instruc-
tion cycles, it will fetch instructions from locations 301, 302, 303, and so on. This
sequence may be altered, as explained subsequently.

 The fetched instruction is loaded into the instruction register (IR). The
instruction contains bits that specify the action the processor is to take. The proces-
sor interprets the instruction and performs the required action. In general, these
actions fall into four categories:

 • Processor-memory: Data may be transferred from processor to memory or
from memory to processor.

 • Processor-I/O: Data may be transferred to or from a peripheral device by
transferring between the processor and an I/O module.

 • Data processing: The processor may perform some arithmetic or logic opera-
tion on data.

 • Control: An instruction may specify that the sequence of execution be altered.
For example, the processor may fetch an instruction from location 149, which

START HALTFetch next
instruction

Fetch stage Execute stage

Execute
instruction

Figure 1.2 Basic Instruction Cycle

12 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

specifies that the next instruction will be from location 182. The processor sets
the program counter to 182. Thus, on the next fetch stage, the instruction will
be fetched from location 182 rather than 150.

 An instruction’s execution may involve a combination of these actions.
 Consider a simple example using a hypothetical processor that includes

the characteristics listed in Figure 1.3 . The processor contains a single data reg-
ister, called the accumulator (AC). Both instructions and data are 16 bits long,
and memory is organized as a sequence of 16-bit words. The instruction format
 provides 4 bits for the opcode, allowing as many as 24 � 16 different opcodes (rep-
resented by a single hexadecimal 1 digit). The opcode defines the operation the
processor is to perform. With the remaining 12 bits of the instruction format, up to
 212 � 4,096 (4K) words of memory (denoted by three hexadecimal digits) can be
directly addressed.

 Figure 1.4 illustrates a partial program execution, showing the relevant
 portions of memory and processor registers. The program fragment shown adds the
contents of the memory word at address 940 to the contents of the memory word at
address 941 and stores the result in the latter location. Three instructions, which can
be described as three fetch and three execute stages, are required:

 1. The PC contains 300, the address of the first instruction. This instruction (the
value 1940 in hexadecimal) is loaded into the IR and the PC is incremented.
Note that this process involves the use of a memory address register (MAR)

0 3 4 15

15

Opcode Address

0 1
S Magnitude

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(a) Instruction format

(b) Integer format

(c) Internal CPU registers

0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

(d) Partial list of opcodes

Figure 1.3 Characteristics of a Hypothetical Machine

1 A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the Computer
 Science Student Resource Site at ComputerScienceStudent.com.

1.3 / INSTRUCTION EXECUTION 13

and a memory buffer register (MBR). For simplicity, these intermediate regis-
ters are not shown.

 2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be
loaded from memory. The remaining 12 bits (three hexadecimal digits) specify
the address, which is 940.

 3. The next instruction (5941) is fetched from location 301 and the PC is
 incremented.

 4. The old contents of the AC and the contents of location 941 are added and the
result is stored in the AC.

 5. The next instruction (2941) is fetched from location 302 and the PC is
 incremented.

 6. The contents of the AC are stored in location 941.

 In this example, three instruction cycles, each consisting of a fetch stage and
an execute stage, are needed to add the contents of location 940 to the contents
of 941. With a more complex set of instructions, fewer instruction cycles would be
needed. Most modern processors include instructions that contain more than one
address. Thus the execution stage for a particular instruction may involve more than
one reference to memory. Also, instead of memory references, an instruction may
specify an I/O operation.

2

PC300
CPU registersMemory

Fetch stage Execute stage

3 0 01 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR1 9 4 0

Step 1

PC300
CPU registersMemory

3 0 11 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR1 9 4 0

0 0 0 3

Step 2

PC300
CPU registersMemory

3 0 1
0 0 0 5

0 0 0 5

0 0 0 3

0 0 0 5

1 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR5 9 4 1

Step 3

PC300
CPU registersMemory

3 0 21 9 4 0
301 5 9 4 1
302 2 9 4 1

1

940 0 0 0 3
941 0 0 0 2

AC
IR5 9 4 1

Step 4

PC300
CPU registersMemory

3 01 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR2 9 4 1

Step 5

PC300
CPU registersMemory

3 0 31 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 5

AC
IR2 9 4 1

Step 6

3 + 2 = 5

Figure 1.4 Example of Program Execution (contents
of memory and registers in hexadecimal)

14 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

1.4 INTERRUPTS

 Virtually all computers provide a mechanism by which other modules (I/O, mem-
ory) may interrupt the normal sequencing of the processor. Table 1.1 lists the most
 common classes of interrupts.

 Interrupts are provided primarily as a way to improve processor utilization.
For example, most I/O devices are much slower than the processor. Suppose that
the processor is transferring data to a printer using the instruction cycle scheme of
 Figure 1.2 . After each write operation, the processor must pause and remain idle
until the printer catches up. The length of this pause may be on the order of many
thousands or even millions of instruction cycles. Clearly, this is a very wasteful use
of the processor.

 To give a specific example, consider a PC that operates at 1 GHz, which would
allow roughly 10 9 instructions per second. 2 A typical hard disk has a rotational
speed of 7200 revolutions per minute for a half-track rotation time of 4 ms, which is
4 million times slower than the processor.

 Figure 1.5a illustrates this state of affairs. The user program performs a series of
WRITE calls interleaved with processing. The solid vertical lines represent segments
of code in a program. Code segments 1, 2, and 3 refer to sequences of instructions that
do not involve I/O. The WRITE calls are to an I/O routine that is a system utility and
that will perform the actual I/O operation. The I/O program consists of three sections:

 • A sequence of instructions, labeled 4 in the figure, to prepare for the actual
I/O operation. This may include copying the data to be output into a special
buffer and preparing the parameters for a device command.

 • The actual I/O command. Without the use of interrupts, once this command
is issued, the program must wait for the I/O device to perform the requested
function (or periodically check the status, or poll, the I/O device). The program
might wait by simply repeatedly performing a test operation to determine if
the I/O operation is done.

 • A sequence of instructions, labeled 5 in the figure, to complete the operation.
This may include setting a flag indicating the success or failure of the operation.

Table 1.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction execution, such as
arithmetic overflow, division by zero, attempt to execute an illegal machine instruction,
and reference outside a user’s allowed memory space.

Timer Generated by a timer within the processor. This allows the operating system to perform
certain functions on a regular basis.

I/O Generated by an I/O controller, to signal normal completion of an operation or to signal
a variety of error conditions.

Hardware failure Generated by a failure, such as power failure or memory parity error.

2 A discussion of the uses of numerical prefixes, such as giga and tera, is contained in a supporting docu-
ment at the Computer Science Student Resource Site at ComputerScienceStudent.com.

1.4 / INTERRUPTS 15

 The dashed line represents the path of execution followed by the processor;
that is, this line shows the sequence in which instructions are executed. Thus, after
the first WRITE instruction is encountered, the user program is interrupted and
execution continues with the I/O program. After the I/O program execution is com-
plete, execution resumes in the user program immediately following the WRITE
instruction.

 Because the I/O operation may take a relatively long time to complete, the I/O
program is hung up waiting for the operation to complete; hence, the user program
is stopped at the point of the WRITE call for some considerable period of time.

Interrupts and the Instruction Cycle

 With interrupts, the processor can be engaged in executing other instructions while
an I/O operation is in progress. Consider the flow of control in Figure 1.5b . As
before, the user program reaches a point at which it makes a system call in the form
of a WRITE call. The I/O program that is invoked in this case consists only of the
preparation code and the actual I/O command. After these few instructions have
been executed, control returns to the user program. Meanwhile, the external device
is busy accepting data from computer memory and printing it. This I/O operation is
conducted concurrently with the execution of instructions in the user program.

 When the external device becomes ready to be serviced, that is, when it is
ready to accept more data from the processor, the I/O module for that external
device sends an interrupt request signal to the processor. The processor responds by
suspending operation of the current program; branching off to a routine to service

User
program

WRITE

WRITE

WRITE

I/O
program

I/O
Command

END

1

2

3

2

3

4

5

(a) No interrupts

User
program

WRITE

WRITE

WRITE

I/O
program

I/O
Command

Interrupt
handler

END

1

2a

2b

3a

3b

4

5

(b) Interrupts; short I/O wait

User
program

WRITE

WRITE

WRITE

I/O
program

I/O
Command

Interrupt
handler

END

1 4

5

(c) Interrupts; long I/O wait

Figure 1.5 Program Flow of Control without and with Interrupts

16 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

that particular I/O device, known as an interrupt handler; and resuming the original
execution after the device is serviced. The points at which such interrupts occur are
indicated by in Figure 1.5b . Note that an interrupt can occur at any point in the
main program, not just at one specific instruction.

 For the user program, an interrupt suspends the normal sequence of execu-
tion. When the interrupt processing is completed, execution resumes (Figure 1.6).
Thus, the user program does not have to contain any special code to accommodate
interrupts; the processor and the OS are responsible for suspending the user pro-
gram and then resuming it at the same point.

 To accommodate interrupts, an interrupt stage is added to the instruction cycle,
as shown in Figure 1.7 (compare Figure 1.2). In the interrupt stage, the processor
checks to see if any interrupts have occurred, indicated by the presence of an inter-
rupt signal. If no interrupts are pending, the processor proceeds to the fetch stage
and fetches the next instruction of the current program. If an interrupt is pending,

1

2

i

i � 1

M

Interrupt
occurs here

User program Interrupt handler

Figure 1.6 Transfer of Control via Interrupts

Fetch stage Execute stage Interrupt stage

START

HALT

Interrupts
disabled

Interrupts
enabled

Fetch next
instruction

Execute
instruction

Check for
interrupt;

initiate interrupt
handler

Figure 1.7 Instruction Cycle with Interrupts

1.4 / INTERRUPTS 17

the processor suspends execution of the current program and executes an interrupt-
handler routine. The interrupt-handler routine is generally part of the OS. Typically,
this routine determines the nature of the interrupt and performs whatever actions
are needed. In the example we have been using, the handler determines which I/O
module generated the interrupt and may branch to a program that will write more
data out to that I/O module. When the interrupt-handler routine is completed, the
processor can resume execution of the user program at the point of interruption.

 It is clear that there is some overhead involved in this process. Extra instruc-
tions must be executed (in the interrupt handler) to determine the nature of the
interrupt and to decide on the appropriate action. Nevertheless, because of the
relatively large amount of time that would be wasted by simply waiting on an I/O
operation, the processor can be employed much more efficiently with the use of
interrupts.

 To appreciate the gain in efficiency, consider Figure 1.8 , which is a timing dia-
gram based on the flow of control in Figures 1.5a and 1.5b . Figures 1.5b and 1.8

4

Processor
wait

Processor
wait

1

5 5

2

5

3

4

Time

I/O
operation

I/O
operation

I/O
operation

I/O
operation

4

2a

1

2b

4

3a

5

3b

(a) Without interrupts
(circled numbers refer

to numbers in Figure 1.5a)

(b) With interrupts
(circled numbers refer

to numbers in Figure 1.5b)

Figure 1.8 Program Timing: Short I/O Wait

18 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

assume that the time required for the I/O operation is relatively short: less than the
time to complete the execution of instructions between write operations in the user
program. The more typical case, especially for a slow device such as a printer, is
that the I/O operation will take much more time than executing a sequence of user
instructions. Figure 1.5c indicates this state of affairs. In this case, the user program
reaches the second WRITE call before the I/O operation spawned by the first call is
complete. The result is that the user program is hung up at that point. When the pre-
ceding I/O operation is completed, this new WRITE call may be processed, and a
new I/O operation may be started. Figure 1.9 shows the timing for this situation with
and without the use of interrupts. We can see that there is still a gain in efficiency
because part of the time during which the I/O operation is underway overlaps with
the execution of user instructions.

Processor
wait

Processor
wait

Processor
wait

(a) Without interrupts
(circled numbers refer

to numbers in Figure 1.5a)

(b) With interrupts
(circled numbers refer

to numbers in Figure 1.5c)

Processor
wait

4

1

5

2

5

3

4

4

2

1

5

4

3

5

I/O
operation

I/O
operation

I/O
operation

I/O
operation

Time

Figure 1.9 Program Timing: Long I/O Wait

1.4 / INTERRUPTS 19

Interrupt Processing

 An interrupt triggers a number of events, both in the processor hardware and in
software. Figure 1.10 shows a typical sequence. When an I/O device completes an
I/O operation, the following sequence of hardware events occurs:

 1. The device issues an interrupt signal to the processor.

 2. The processor finishes execution of the current instruction before responding
to the interrupt, as indicated in Figure 1.7 .

 3. The processor tests for a pending interrupt request, determines that there is
one, and sends an acknowledgment signal to the device that issued the inter-
rupt. The acknowledgment allows the device to remove its interrupt signal.

 4. The processor next needs to prepare to transfer control to the interrupt rou-
tine. To begin, it saves information needed to resume the current program at
the point of interrupt. The minimum information required is the program sta-
tus word 3 (PSW) and the location of the next instruction to be executed, which

Device controller or
other system hardware
issues an interrupt

Processor finishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Save remainder of
process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

Hardware Software

Figure 1.10 Simple Interrupt Processing

3 The PSW contains status information about the currently running process, including memory usage
 information, condition codes, and other status information, such as an interrupt enable/disable bit and a
kernel/user mode bit. See Appendix C for further discussion.

20 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

is contained in the program counter (PC). These can be pushed onto a control
stack (see Appendix P).

 5. The processor then loads the program counter with the entry location of the
interrupt-handling routine that will respond to this interrupt. Depending on
the computer architecture and OS design, there may be a single program,
one for each type of interrupt, or one for each device and each type of inter-
rupt. If there is more than one interrupt-handling routine, the processor must
 determine which one to invoke. This information may have been included in
the original interrupt signal, or the processor may have to issue a request to
the device that issued the interrupt to get a response that contains the needed
information.

 Once the program counter has been loaded, the processor proceeds to the next
instruction cycle, which begins with an instruction fetch. Because the instruction
fetch is determined by the contents of the program counter, control is transferred to
the interrupt-handler program. The execution of this program results in the follow-
ing operations:

 6. At this point, the program counter and PSW relating to the interrupted
 program have been saved on the control stack. However, there is other in-
formation that is considered part of the state of the executing program. In
 particular, the contents of the processor registers need to be saved, because
these registers may be used by the interrupt handler. So all of these values,
plus any other state information, need to be saved. Typically, the interrupt
handler will begin by saving the contents of all registers on the stack. Other
state information that must be saved is discussed in Chapter 3 . Figure 1.11a
shows a simple example. In this case, a user program is interrupted after the
instruction at location N. The contents of all of the registers plus the address
of the next instruction (N � 1) , a total of M words, are pushed onto the control
stack. The stack pointer is updated to point to the new top of stack, and the
program counter is updated to point to the beginning of the interrupt service
routine.

 7. The interrupt handler may now proceed to process the interrupt. This includes
an examination of status information relating to the I/O operation or other
event that caused an interrupt. It may also involve sending additional com-
mands or acknowledgments to the I/O device.

 8. When interrupt processing is complete, the saved register values are retrieved
from the stack and restored to the registers (e.g., see Figure 1.11b).

 9. The final act is to restore the PSW and program counter values from the stack.
As a result, the next instruction to be executed will be from the previously
interrupted program.

 It is important to save all of the state information about the interrupted pro-
gram for later resumption. This is because the interrupt is not a routine called from
the program. Rather, the interrupt can occur at any time and therefore at any point
in the execution of a user program. Its occurrence is unpredictable.

1.4 / INTERRUPTS 21

Multiple Interrupts

 So far, we have discussed the occurrence of a single interrupt. Suppose, however,
that one or more interrupts can occur while an interrupt is being processed. For
example, a program may be receiving data from a communications line and print-
ing results at the same time. The printer will generate an interrupt every time that
it completes a print operation. The communication line controller will generate an
interrupt every time a unit of data arrives. The unit could either be a single character
or a block, depending on the nature of the communications discipline. In any case, it
is possible for a communications interrupt to occur while a printer interrupt is being
processed.

Start

N � 1

Y � L

N

Y

Y

T

Return

User’s
program

Main
memory

Processor

General
registers

Program
counter

Stack
pointer

N + 1

T � M

T � M

T

Control
stack

Interrupt
service
routine

User’s
program

Interrupt
service
routine

(a) Interrupt occurs after instruction
at location N

(b) Return from interrupt

Start

N � 1

Y � L

N

Y

T

Return

Main
memory

Processor

General
registers

Program
counter

Stack
pointer

Y � L � 1

T � M

T � M

T

Control
stack

N � 1

Figure 1.11 Changes in Memory and Registers for an Interrupt

22 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

 Two approaches can be taken to dealing with multiple interrupts. The first
is to disable interrupts while an interrupt is being processed. A disabled interrupt
 simply means that the processor ignores any new interrupt request signal. If an
interrupt occurs during this time, it generally remains pending and will be checked
by the processor after the processor has reenabled interrupts. Thus, if an interrupt
occurs when a user program is executing, then interrupts are disabled immediately.
After the interrupt-handler routine completes, interrupts are reenabled before
resuming the user program, and the processor checks to see if additional interrupts
have occurred. This approach is simple, as interrupts are handled in strict sequential
order (Figure 1.12a).

User program

Interrupt
handler X

Interrupt
handler Y

(a) Sequential interrupt processing

(b) Nested interrupt processing

User program

Interrupt
handler X

Interrupt
handler Y

Figure 1.12 Transfer of Control with Multiple Interrupts

1.4 / INTERRUPTS 23

 The drawback to the preceding approach is that it does not take into account
relative priority or time-critical needs. For example, when input arrives from the
communications line, it may need to be absorbed rapidly to make room for more
input. If the first batch of input has not been processed before the second batch
arrives, data may be lost because the buffer on the I/O device may fill and overflow.

 A second approach is to define priorities for interrupts and to allow an inter-
rupt of higher priority to cause a lower-priority interrupt handler to be interrupted
(Figure 1.12b). As an example of this second approach, consider a system with three
I/O devices: a printer, a disk, and a communications line, with increasing priorities of
2, 4, and 5, respectively. Figure 1.13 , based on an example in [TANE06], illustrates
a possible sequence. A user program begins at t � 0 . At t � 10 , a printer interrupt
occurs; user information is placed on the control stack and execution continues at
the printer interrupt service routine (ISR). While this routine is still executing, at
t � 15 a communications interrupt occurs. Because the communications line has
higher priority than the printer, the interrupt request is honored. The printer ISR is
interrupted, its state is pushed onto the stack, and execution continues at the com-
munications ISR. While this routine is executing, a disk interrupt occurs (t � 20) .
Because this interrupt is of lower priority, it is simply held, and the communications
ISR runs to completion.

 When the communications ISR is complete (t � 25) , the previous processor
state is restored, which is the execution of the printer ISR. However, before even a
single instruction in that routine can be executed, the processor honors the higher-
priority disk interrupt and transfers control to the disk ISR. Only when that routine
is complete (t � 35) is the printer ISR resumed. When that routine completes
 (t � 40) , control finally returns to the user program.

User program
Printer

interrupt service routine
Communication

interrupt service routine

Disk
interrupt service routine

t �
 10

t � 40

t � 15

t � 25

t � 25

t � 35

t � 0

Figure 1.13 Example Time Sequence of Multiple Interrupts

24 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

1.5 THE MEMORY HIERARCHY

 The design constraints on a computer’s memory can be summed up by three ques-
tions: How much? How fast? How expensive?

 The question of how much is somewhat open ended. If the capacity is there,
applications will likely be developed to use it. The question of how fast is, in a sense,
easier to answer. To achieve greatest performance, the memory must be able to
keep up with the processor. That is, as the processor is executing instructions, we
would not want it to have to pause waiting for instructions or operands. The final
question must also be considered. For a practical system, the cost of memory must
be reasonable in relationship to other components.

 As might be expected, there is a trade-off among the three key characteristics
of memory: namely, capacity, access time, and cost. A variety of technologies are
used to implement memory systems, and across this spectrum of technologies, the
following relationships hold:

 • Faster access time, greater cost per bit

 • Greater capacity, smaller cost per bit

 • Greater capacity, slower access speed

 The dilemma facing the designer is clear. The designer would like to use
 memory technologies that provide for large-capacity memory, both because the
capacity is needed and because the cost per bit is low. However, to meet perform-
ance requirements, the designer needs to use expensive, relatively lower-capacity
memories with fast access times.

 The way out of this dilemma is to not rely on a single memory component or
technology, but to employ a memory hierarchy . A typical hierarchy is illustrated in
 Figure 1.14 . As one goes down the hierarchy, the following occur:

 a. Decreasing cost per bit

 b. Increasing capacity

 c. Increasing access time

 d. Decreasing frequency of access to the memory by the processor

 Thus, smaller, more expensive, faster memories are supplemented by larger,
cheaper, slower memories. The key to the success of this organization is the decreas-
ing frequency of access at lower levels. We will examine this concept in greater
detail later in this chapter, when we discuss the cache, and when we discuss virtual
memory later in this book. A brief explanation is provided at this point.

 Suppose that the processor has access to two levels of memory. Level 1 con-
tains 1,000 bytes and has an access time of 0.1 μs; level 2 contains 100,000 bytes and
has an access time of 1 μs. Assume that if a byte to be accessed is in level 1, then
the processor accesses it directly. If it is in level 2, then the byte is first transferred
to level 1 and then accessed by the processor. For simplicity, we ignore the time
required for the processor to determine whether the byte is in level 1 or level 2.

1.5 / THE MEMORY HIERARCHY 25

 Figure 1.15 shows the general shape of the curve that models this situation. The
figure shows the average access time to a two-level memory as a function of the hit
ratio H , where H is defined as the fraction of all memory accesses that are found
in the faster memory (e.g., the cache), T1 is the access time to level 1, and T2 is the
access time to level 2. 4 As can be seen, for high percentages of level 1 access, the
average total access time is much closer to that of level 1 than that of level 2.

 In our example, suppose 95% of the memory accesses are found in the cache
 (H � 0.95) . Then the average time to access a byte can be expressed as

 (0.95) (0.1 �s) � (0.05) (0.1 �s � 1 �s) � 0.095 � 0.055 � 0.15 �s

 The result is close to the access time of the faster memory. So the strategy
of using two memory levels works in principle, but only if conditions (a) through
(d) in the preceding list apply. By employing a variety of technologies, a spectrum of

Inboardmemory

Outboardstorage

Off-linestorage

Main

memory

Magnetic disk

CD-ROM

CD-RW

DVD-RW

DVD-RAM

Blu-Ray

Magnetic tape

Cache

Reg-

iste
rs

Figure 1.14 The Memory Hierarchy

4 If the accessed word is found in the faster memory, that is defined as a hit . A miss occurs if the accessed
word is not found in the faster memory.

26 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

memory systems exists that satisfies conditions (a) through (c). Fortunately, condi-
tion (d) is also generally valid.

 The basis for the validity of condition (d) is a principle known as locality of
 reference [DENN68]. During the course of execution of a program, memory refer-
ences by the processor, for both instructions and data, tend to cluster. Programs
 typically contain a number of iterative loops and subroutines. Once a loop or subrou-
tine is entered, there are repeated references to a small set of instructions. Similarly,
operations on tables and arrays involve access to a clustered set of data bytes. Over
a long period of time, the clusters in use change, but over a short period of time, the
processor is primarily working with fixed clusters of memory references.

 Accordingly, it is possible to organize data across the hierarchy such that the
percentage of accesses to each successively lower level is substantially less than that of
the level above. Consider the two-level example already presented. Let level 2 mem-
ory contain all program instructions and data. The current clusters can be temporarily
placed in level 1. From time to time, one of the clusters in level 1 will have to be
swapped back to level 2 to make room for a new cluster coming in to level 1. On aver-
age, however, most references will be to instructions and data contained in level 1.

 This principle can be applied across more than two levels of memory. The
fastest, smallest, and most expensive type of memory consists of the registers inter-
nal to the processor. Typically, a processor will contain a few dozen such registers,
although some processors contain hundreds of registers. Skipping down two levels,
main memory is the principal internal memory system of the computer. Each loca-
tion in main memory has a unique address, and most machine instructions refer
to one or more main memory addresses. Main memory is usually extended with a
higher-speed, smaller cache. The cache is not usually visible to the programmer or,
indeed, to the processor. It is a device for staging the movement of data between
main memory and processor registers to improve performance.

0

T1

T2

T1 � T2

1

Fraction of accesses involving only level 1 (Hit ratio)

A
ve

ra
ge

 a
cc

es
s

tim
e

Figure 1.15 Performance of a Simple Two-Level
Memory

1.6 / CACHE MEMORY 27

 The three forms of memory just described are, typically, volatile and employ
semiconductor technology. The use of three levels exploits the fact that semicon-
ductor memory comes in a variety of types, which differ in speed and cost. Data are
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable disk, tape, and optical
storage. External, nonvolatile memory is also referred to as secondary memory or
auxiliary memory . These are used to store program and data files, and are usually
visible to the programmer only in terms of files and records, as opposed to individ-
ual bytes or words. A hard disk is also used to provide an extension to main memory
known as virtual memory, which is discussed in Chapter 8 .

 Additional levels can be effectively added to the hierarchy in software. For
example, a portion of main memory can be used as a buffer to temporarily hold data
that are to be read out to disk. Such a technique, sometimes referred to as a disk
cache (examined in detail in Chapter 11), improves performance in two ways:

 • Disk writes are clustered. Instead of many small transfers of data, we have a
few large transfers of data. This improves disk performance and minimizes
processor involvement.

 • Some data destined for write-out may be referenced by a program before the
next dump to disk. In that case, the data are retrieved rapidly from the soft-
ware cache rather than slowly from the disk.

 Appendix 1A examines the performance implications of multilevel memory
structures.

1.6 CACHE MEMORY

 Although cache memory is invisible to the OS, it interacts with other memory man-
agement hardware. Furthermore, many of the principles used in virtual memory
schemes (discussed in Chapter 8) are also applied in cache memory.

Motivation

 On all instruction cycles, the processor accesses memory at least once, to fetch
the instruction, and often one or more additional times, to fetch operands and/
or store results. The rate at which the processor can execute instructions is clearly
limited by the memory cycle time (the time it takes to read one word from or write
one word to memory). This limitation has been a significant problem because of
the persistent mismatch between processor and main memory speeds: Over the
years, processor speed has consistently increased more rapidly than memory access
speed. We are faced with a trade-off among speed, cost, and size. Ideally, main
memory should be built with the same technology as that of the processor registers,
giving memory cycle times comparable to processor cycle times. This has always
been too expensive a strategy. The solution is to exploit the principle of locality by
providing a small, fast memory between the processor and main memory, namely
the cache.

28 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Cache Principles

 Cache memory is intended to provide memory access time approaching that of the
fastest memories available and at the same time support a large memory size that has
the price of less expensive types of semiconductor memories. The concept is illus-
trated in Figure 1.16a . There is a relatively large and slow main memory together
with a smaller, faster cache memory. The cache contains a copy of a portion of main
memory. When the processor attempts to read a byte or word of memory, a check
is made to determine if the byte or word is in the cache. If so, the byte or word is
delivered to the processor. If not, a block of main memory, consisting of some fixed
number of bytes, is read into the cache and then the byte or word is delivered to
the processor. Because of the phenomenon of locality of reference, when a block of
data is fetched into the cache to satisfy a single memory reference, it is likely that
many of the near-future memory references will be to other bytes in the block.

 Figure 1.16b depicts the use of multiple levels of cache. The L2 cache is slower
and typically larger than the L1 cache, and the L3 cache is slower and typically
larger than the L2 cache.

 Figure 1.17 depicts the structure of a cache/main memory system. Main mem-
ory consists of up to 2 n addressable words, with each word having a unique n -bit
address. For mapping purposes, this memory is considered to consist of a number of
fixed-length blocks of K words each. That is, there are M � 2n/K blocks. Cache con-
sists of C slots (also referred to as lines) of K words each, and the number of slots is
considerably less than the number of main memory blocks (C��M) . 5 Some subset
of the blocks of main memory resides in the slots of the cache. If a word in a block

(b) Three-level cache organization

Fast Slow

CPU Cache Main memory

Fastest Fast Less
fast

Slow

CPU
Level 1

(L1) cache
Level 2

(L2) cache
Level 3

(L3) cache
Main

memory

Block transfer
Word transfer

(a) Single cache

Figure 1.16 Cache and Main Memory

5 The symbol �� means much less than. Similarly, the symbol �� means much greater than.

1.6 / CACHE MEMORY 29

of memory that is not in the cache is read, that block is transferred to one of the
slots of the cache. Because there are more blocks than slots, an individual slot can-
not be uniquely and permanently dedicated to a particular block. Therefore, each
slot includes a tag that identifies which particular block is currently being stored.
The tag is usually some number of higher-order bits of the address and refers to all
addresses that begin with that sequence of bits.

 As a simple example, suppose that we have a 6-bit address and a 2-bit tag. The
tag 01 refers to the block of locations with the following addresses: 010000, 010001,
010010, 010011, 010100, 010101, 010110, 010111, 011000, 011001, 011010, 011011,
011100, 011101, 011110, 011111.

 Figure 1.18 illustrates the read operation. The processor generates the address,
RA, of a word to be read. If the word is contained in the cache, it is delivered to the
processor. Otherwise, the block containing that word is loaded into the cache and
the word is delivered to the processor.

Cache Design

 A detailed discussion of cache design is beyond the scope of this book. Key
 elements are briefly summarized here. We will see that similar design issues must be

Memory
address

0
1
2

0
1
2

C � 1

3

2n � 1

Word
length

Block length
(K words)

Block
(K words)

Block

Line
number Tag Block

(b) Main memory

(a) Cache

Figure 1.17 Cache/Main-Memory Structure

30 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

addressed in dealing with virtual memory and disk cache design. They fall into the
following categories:

 • Cache size

 • Block size

 • Mapping function

 • Replacement algorithm

 • Write policy

 • Number of cache levels

 We have already dealt with the issue of cache size . It turns out that reason-
ably small caches can have a significant impact on performance. Another size issue
is that of block size : the unit of data exchanged between cache and main memory.
As the block size increases from very small to larger sizes, the hit ratio will at first
increase because of the principle of locality: the high probability that data in the
vicinity of a referenced word are likely to be referenced in the near future. As the

Receive address
RA from CPU

Is block
containing RA
in cache?

Fetch RA word
and deliver
to CPU

DONE

Access main
memory for block
containing RA

Allocate cache
slot for main
memory block

Deliver RA word
to CPU

Load main
memory block
into cache slot

START

No

RA—read address

Yes

Figure 1.18 Cache Read Operation

1.7 / DIRECT MEMORY ACCESS 31

block size increases, more useful data are brought into the cache. The hit ratio will
begin to decrease, however, as the block becomes even bigger and the probability of
using the newly fetched data becomes less than the probability of reusing the data
that have to be moved out of the cache to make room for the new block.

 When a new block of data is read into the cache, the mapping function deter-
mines which cache location the block will occupy. Two constraints affect the design
of the mapping function. First, when one block is read in, another may have to be
replaced. We would like to do this in such a way as to minimize the probability that
we will replace a block that will be needed in the near future. The more flexible the
mapping function, the more scope we have to design a replacement algorithm to
maximize the hit ratio. Second, the more flexible the mapping function, the more
complex is the circuitry required to search the cache to determine if a given block
is in the cache.

 The replacement algorithm chooses, within the constraints of the mapping
function, which block to replace when a new block is to be loaded into the cache and
the cache already has all slots filled with other blocks. We would like to replace the
block that is least likely to be needed again in the near future. Although it is impos-
sible to identify such a block, a reasonably effective strategy is to replace the block
that has been in the cache longest with no reference to it. This policy is referred to
as the least-recently-used (LRU) algorithm. Hardware mechanisms are needed to
identify the least-recently-used block.

 If the contents of a block in the cache are altered, then it is necessary to write it
back to main memory before replacing it. The write policy dictates when the mem-
ory write operation takes place. At one extreme, the writing can occur every time
that the block is updated. At the other extreme, the writing occurs only when the
block is replaced. The latter policy minimizes memory write operations but leaves
main memory in an obsolete state. This can interfere with multiple-processor opera-
tion and with direct memory access by I/O hardware modules.

 Finally, it is now commonplace to have multiple levels of cache, labeled L1
(cache closest to the processor), L2, and in many cases a third level L3. A discus-
sion of the performance benefits of multiple cache levels is beyond our scope; see
[STAL10] for a discussion.

1.7 DIRECT MEMORY ACCESS

 Three techniques are possible for I/O operations: programmed I/O, interrupt-driven
I/O, and direct memory access (DMA). Before discussing DMA, we briefly define
the other two techniques; see Appendix C for more detail.

 When the processor is executing a program and encounters an instruction
relating to I/O, it executes that instruction by issuing a command to the appro-
priate I/O module. In the case of programmed I/O , the I/O module performs the
requested action and then sets the appropriate bits in the I/O status register but
takes no further action to alert the processor. In particular, it does not interrupt the
processor. Thus, after the I/O instruction is invoked, the processor must take some
active role in determining when the I/O instruction is completed. For this purpose,

32 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

the processor periodically checks the status of the I/O module until it finds that the
operation is complete.

 With programmed I/O, the processor has to wait a long time for the I/O mod-
ule of concern to be ready for either reception or transmission of more data. The
processor, while waiting, must repeatedly interrogate the status of the I/O module.
As a result, the performance level of the entire system is severely degraded.

 An alternative, known as interrupt-driven I/O , is for the processor to issue
an I/O command to a module and then go on to do some other useful work. The
I/O module will then interrupt the processor to request service when it is ready to
exchange data with the processor. The processor then executes the data transfer, as
before, and then resumes its former processing.

 Interrupt-driven I/O, though more efficient than simple programmed I/O, still
requires the active intervention of the processor to transfer data between memory
and an I/O module, and any data transfer must traverse a path through the proces-
sor. Thus, both of these forms of I/O suffer from two inherent drawbacks:

 1. The I/O transfer rate is limited by the speed with which the processor can test
and service a device.

 2. The processor is tied up in managing an I/O transfer; a number of instructions
must be executed for each I/O transfer.

 When large volumes of data are to be moved, a more efficient technique is
required: direct memory access (DMA). The DMA function can be performed by
a separate module on the system bus or it can be incorporated into an I/O module.
In either case, the technique works as follows. When the processor wishes to read
or write a block of data, it issues a command to the DMA module, by sending to the
DMA module the following information:

 • Whether a read or write is requested

 • The address of the I/O device involved

 • The starting location in memory to read data from or write data to

 • The number of words to be read or written

 The processor then continues with other work. It has delegated this I/O opera-
tion to the DMA module, and that module will take care of it. The DMA module
transfers the entire block of data, one word at a time, directly to or from memory
without going through the processor. When the transfer is complete, the DMA
module sends an interrupt signal to the processor. Thus, the processor is involved
only at the beginning and end of the transfer.

 The DMA module needs to take control of the bus to transfer data to and from
memory. Because of this competition for bus usage, there may be times when the
processor needs the bus and must wait for the DMA module. Note that this is not
an interrupt; the processor does not save a context and do something else. Rather,
the processor pauses for one bus cycle (the time it takes to transfer one word across
the bus). The overall effect is to cause the processor to execute more slowly during
a DMA transfer when processor access to the bus is required. Nevertheless, for a
multiple-word I/O transfer, DMA is far more efficient than interrupt-driven or
 programmed I/O.

1.8 / MULTIPROCESSOR AND MULTICORE ORGANIZATION 33

1.8 MULTIPROCESSOR AND MULTICORE ORGANIZATION

 Traditionally, the computer has been viewed as a sequential machine. Most com-
puter programming languages require the programmer to specify algorithms as
sequences of instructions. A processor executes programs by executing machine
instructions in sequence and one at a time. Each instruction is executed in a sequence
of operations (fetch instruction, fetch operands, perform operation, store results).

 This view of the computer has never been entirely true. At the micro-operation
level, multiple control signals are generated at the same time. Instruction pipelining,
at least to the extent of overlapping fetch and execute operations, has been around
for a long time. Both of these are examples of performing functions in parallel.

 As computer technology has evolved and as the cost of computer hardware
has dropped, computer designers have sought more and more opportunities for par-
allelism, usually to improve performance and, in some cases, to improve reliability.
In this book, we examine the three most popular approaches to providing parallel-
ism by replicating processors: symmetric multiprocessors (SMPs), multicore com-
puters, and clusters. SMPs and multicore computers are discussed in this section;
clusters are examined in Chapter 16 .

Symmetric Multiprocessors

DEFINITION An SMP can be defined as a stand-alone computer system with the
following characteristics:

 1. There are two or more similar processors of comparable capability.

 2. These processors share the same main memory and I/O facilities and are inter-
connected by a bus or other internal connection scheme, such that memory
access time is approximately the same for each processor.

 3. All processors share access to I/O devices, either through the same channels
or through different channels that provide paths to the same device.

 4. All processors can perform the same functions (hence the term symmetric).

 5. The system is controlled by an integrated operating system that provides
 interaction between processors and their programs at the job, task, file, and
data element levels.

 Points 1 to 4 should be self-explanatory. Point 5 illustrates one of the contrasts
with a loosely coupled multiprocessing system, such as a cluster. In the latter, the
physical unit of interaction is usually a message or complete file. In an SMP, indi-
vidual data elements can constitute the level of interaction, and there can be a high
degree of cooperation between processes.

 An SMP organization has a number of potential advantages over a uniproces-
sor organization, including the following:

 • Performance: If the work to be done by a computer can be organized so that
some portions of the work can be done in parallel, then a system with multiple
processors will yield greater performance than one with a single processor of
the same type.

34 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

 • Availability: In a symmetric multiprocessor, because all processors can per-
form the same functions, the failure of a single processor does not halt the
machine. Instead, the system can continue to function at reduced performance.

 • Incremental growth: A user can enhance the performance of a system by
 adding an additional processor.

 • Scaling: Vendors can offer a range of products with different price and
 performance characteristics based on the number of processors configured in
the system.

 It is important to note that these are potential, rather than guaranteed, benefits.
The operating system must provide tools and functions to exploit the parallelism in
an SMP system.

 An attractive feature of an SMP is that the existence of multiple processors is
transparent to the user. The operating system takes care of scheduling of tasks on
individual processors and of synchronization among processors.

ORGANIZATION Figure 1.19 illustrates the general organization of an SMP. There
are multiple processors, each of which contains its own control unit, arithmetic-
logic unit, and registers. Each processor has access to a shared main memory and
the I/O devices through some form of interconnection mechanism; a shared bus
is a common facility. The processors can communicate with each other through
memory (messages and status information left in shared address spaces). It may

I/O
subsystem

System bus

Main
memory

I/O
adapter

I/O
adapter

I/O
adapter

L1 cache

Processor

L2 cache

L1 cache

Processor

L2 cache

L1 cache

Processor

L2 cache

Figure 1.19 Symmetric Multiprocessor Organization

1.8 / MULTIPROCESSOR AND MULTICORE ORGANIZATION 35

also be possible for processors to exchange signals directly. The memory is often
organized so that multiple simultaneous accesses to separate blocks of memory are
possible.

 In modern computers, processors generally have at least one level of cache
memory that is private to the processor. This use of cache introduces some new
design considerations. Because each local cache contains an image of a portion of
main memory, if a word is altered in one cache, it could conceivably invalidate a
word in another cache. To prevent this, the other processors must be alerted that an
update has taken place. This problem is known as the cache coherence problem and
is typically addressed in hardware rather than by the OS. 6

Multicore Computers

 A multicore computer, also known as a chip multiprocessor , combines two or more
processors (called cores) on a single piece of silicon (called a die). Typically, each
core consists of all of the components of an independent processor, such as registers,
ALU, pipeline hardware, and control unit, plus L1 instruction and data caches. In
addition to the multiple cores, contemporary multicore chips also include L2 cache
and, in some cases, L3 cache.

 The motivation for the development of multicore computers can be summed
up as follows. For decades, microprocessor systems have experienced a steady, usu-
ally exponential, increase in performance. This is partly due to hardware trends,
such as an increase in clock frequency and the ability to put cache memory closer
to the processor because of the increasing miniaturization of microcomputer
 components. Performance has also been improved by the increased complexity of
processor design to exploit parallelism in instruction execution and memory access.
In brief, designers have come up against practical limits in the ability to achieve
greater performance by means of more complex processors. Designers have found
that the best way to improve performance to take advantage of advances in hard-
ware is to put multiple processors and a substantial amount of cache memory on a
single chip. A detailed discussion of the rationale for this trend is beyond our scope,
but is summarized in Appendix C .

 An example of a multicore system is the Intel Core i7, which includes four x86
processors, each with a dedicated L2 cache, and with a shared L3 cache (Figure 1.20).
One mechanism Intel uses to make its caches more effective is prefetching, in which
the hardware examines memory access patterns and attempts to fill the caches spec-
ulatively with data that’s likely to be requested soon.

 The Core i7 chip supports two forms of external communications to other
chips. The DDR3 memory controller brings the memory controller for the DDR
(double data rate) main memory onto the chip. The interface supports three chan-
nels that are 8 bytes wide for a total bus width of 192 bits, for an aggregate data
rate of up to 32 GB/s. With the memory controller on the chip, the Front Side Bus
is eliminated. The QuickPath Interconnect (QPI) is a point-to-point link electri-
cal interconnect specification. It enables high-speed communications among con-
nected processor chips. The QPI link operates at 6.4 GT/s (transfers per second).

6 A description of hardware-based cache coherency schemes is provided in [STAL10].

36 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

At 16 bits per transfer, that adds up to 12.8 GB/s; and since QPI links involve dedi-
cated bidirectional pairs, the total bandwidth is 25.6 GB/s.

1.9 RECOMMENDED READING AND WEB SITES

 [STAL10] covers the topics of this chapter in detail. In addition, there are many other
texts on computer organization and architecture. Among the more worthwhile texts
are the following. [PATT09] is a comprehensive survey; [HENN07], by the same
authors, is a more advanced text that emphasizes quantitative aspects of design.

 [DENN05] looks at the history of the development and application of the
locality principle, making for fascinating reading.

Core 0

32 kB I&D
L1 caches

256 kB
L2 cache

Core 1

32 kB I&D
L1 caches

256 kB
L2 cache

Core 2

3 × 8B @ 1.33 GT/s

32 kB I&D
L1 caches

256 kB
L2 cache

Core 3

32 kB I&D
L1 caches

256 kB
L2 cache

8 MB
L3 cache

DDR3 memory
controllers

Quickpath
interconnect

4 × 20b @ 6.4 GT/s

Figure 1.20 Intel Core i7 Block Diagram

 Recommended Web sites:

• WWW Computer Architecture Home Page: A comprehensive index to information
relevant to computer architecture researchers, including architecture groups and proj-
ects, technical organizations, literature, employment, and commercial information

• CPU Info Center: Information on specific processors, including technical papers, prod-
uct information, and latest announcements

DENN05 Denning, P. “The Locality Principle.” Communications of the ACM , July 2005.
HENN07 Hennessy, J., and Patterson, D. Computer Architecture: A Quantitative

Approach. San Mateo, CA: Morgan Kaufmann, 2007.
PATT09 Patterson, D., and Hennessy, J. Computer Organization and Design: The

Hardware/Software Interface. San Mateo, CA: Morgan Kaufmann, 2009.
STAL10 Stallings, W. Computer Organization and Architecture, 8th ed. Upper Saddle

River, NJ: Prentice Hall, 2010.

1.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 37

1.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 address register
 cache memory
 cache slot
 central processing unit
 data register
 direct memory access
 hit ratio
 input/output
 instruction
 instruction cycle

 instruction register
 interrupt
 interrupt-driven I/O
 I/O module
 locality
 main memory
 multicore
 multiprocessor
 processor

 program counter
 programmed I/O
 reentrant procedure
 register
 secondary memory
 spatial locality
 stack
 system bus
 temporal locality

Review Questions

 1.1. List and briefly define the four main elements of a computer.
 1.2. Define the two main categories of processor registers.
 1.3. In general terms, what are the four distinct actions that a machine instruction can

specify?
 1.4. What is an interrupt?
 1.5. How are multiple interrupts dealt with?
 1.6. What characteristics distinguish the various elements of a memory hierarchy?
 1.7. What is cache memory?
 1.8. What is the difference between a multiprocessor and a multicore system?
 1.9. What is the distinction between spatial locality and temporal locality?
 1.10. In general, what are the strategies for exploiting spatial locality and temporal locality?

Problems

 1.1. Suppose the hypothetical processor of Figure 1.3 also has two I/O instructions:
 0011 � Load AC from I/O
 0111 � Store AC to I/O

 In these cases, the 12-bit address identifies a particular external device. Show the pro-
gram execution (using format of Figure 1.4) for the following program:

1. Load AC from device 5.
2. Add contents of memory location 940.
3. Store AC to device 6.

 Assume that the next value retrieved from device 5 is 3 and that location 940 contains
a value of 2.

 1.2. The program execution of Figure 1.4 is described in the text using six steps. Expand
this description to show the use of the MAR and MBR.

 1.3. Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of
two fields. The first byte contains the opcode and the remainder an immediate oper-
and or an operand address.

38 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

a. What is the maximum directly addressable memory capacity (in bytes)?
b. Discuss the impact on the system speed if the microprocessor bus has

1. a 32-bit local address bus and a 16-bit local data bus, or
2. a 16-bit local address bus and a 16-bit local data bus.

c. How many bits are needed for the program counter and the instruction register?
 1.4. Consider a hypothetical microprocessor generating a 16-bit address (e.g., assume that

the program counter and the address registers are 16 bits wide) and having a 16-bit
data bus.
a. What is the maximum memory address space that the processor can access directly

if it is connected to a “16-bit memory”?
b. What is the maximum memory address space that the processor can access directly

if it is connected to an “8-bit memory”?
c. What architectural features will allow this microprocessor to access a separate

“I/O space”?
d. If an input and an output instruction can specify an 8-bit I/O port number, how

many 8-bit I/O ports can the microprocessor support? How many 16-bit I/O ports?
Explain.

 1.5. Consider a 32-bit microprocessor, with a 16-bit external data bus, driven by an 8-MHz
input clock. Assume that this microprocessor has a bus cycle whose minimum dura-
tion equals four input clock cycles. What is the maximum data transfer rate across
the bus that this microprocessor can sustain in bytes/s? To increase its performance,
would it be better to make its external data bus 32 bits or to double the external clock
 frequency supplied to the microprocessor? State any other assumptions you make and
explain. Hint: Determine the number of bytes that can be transferred per bus cycle.

 1.6. Consider a computer system that contains an I/O module controlling a simple
 keyboard/printer Teletype. The following registers are contained in the CPU and con-
nected directly to the system bus:

 INPR: Input Register, 8 bits
 OUTR: Output Register, 8 bits
 FGI: Input Flag, 1 bit
 FGO: Output Flag, 1 bit
 IEN: Interrupt Enable, 1 bit

 Keystroke input from the Teletype and output to the printer are controlled by the I/O
module. The Teletype is able to encode an alphanumeric symbol to an 8-bit word and
decode an 8-bit word into an alphanumeric symbol. The Input flag is set when an 8-bit
word enters the input register from the Teletype. The Output flag is set when a word
is printed.
a. Describe how the CPU, using the first four registers listed in this problem, can

achieve I/O with the Teletype.
b. Describe how the function can be performed more efficiently by also employing

IEN.
 1.7. In virtually all systems that include DMA modules, DMA access to main memory is

given higher priority than processor access to main memory. Why?
 1.8. A DMA module is transferring characters to main memory from an external device

transmitting at 9600 bits per second (bps). The processor can fetch instructions at the
rate of 1 million instructions per second. By how much will the processor be slowed
down due to the DMA activity?

 1.9. A computer consists of a CPU and an I/O device D connected to main memory M via
a shared bus with a data bus width of one word. The CPU can execute a maximum
of 106 instructions per second. An average instruction requires five processor cycles,
three of which use the memory bus. A memory read or write operation uses one
processor cycle. Suppose that the CPU is continuously executing “background” pro-
grams that require 95% of its instruction execution rate but not any I/O instructions.

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 39

Assume that one processor cycle equals one bus cycle. Now suppose that very large
blocks of data are to be transferred between M and D.
a. If programmed I/O is used and each one-word I/O transfer requires the CPU to

execute two instructions, estimate the maximum I/O data transfer rate, in words
per second, possible through D.

b. Estimate the same rate if DMA transfer is used.
 1.10. Consider the following code:

for (i � 0; i � 20; i++)
for (j � 0; j � 10; j++)

 a[i] � a[i] * j
a. Give one example of the spatial locality in the code.
b. Give one example of the temporal locality in the code.

 1.11. Generalize Equations (1.1) and (1.2) in Appendix 1A to n -level memory hierarchies.
 1.12. Consider a memory system with the following parameters:

Tc � 100 ns Cc � 0.01 cents/bit
 Tm � 1,200 ns Cm � 0.001 cents/bit

a. What is the cost of 1 MByte of main memory?
b. What is the cost of 1 MByte of main memory using cache memory technology?
c. If the effective access time is 10% greater than the cache access time, what is the

hit ratio H ?
 1.13. A computer has a cache, main memory, and a disk used for virtual memory. If a refer-

enced word is in the cache, 20 ns are required to access it. If it is in main memory but
not in the cache, 60 ns are needed to load it into the cache (this includes the time to
originally check the cache), and then the reference is started again. If the word is not
in main memory, 12 ms are required to fetch the word from disk, followed by 60 ns to
copy it to the cache, and then the reference is started again. The cache hit ratio is 0.9
and the main-memory hit ratio is 0.6. What is the average time in ns required to access
a referenced word on this system?

 1.14. Suppose a stack is to be used by the processor to manage procedure calls and returns.
Can the program counter be eliminated by using the top of the stack as a program
counter?

APPENDIX 1A PERFORMANCE CHARACTERISTICS
OF TWO-LEVEL MEMORIES

 In this chapter, reference is made to a cache that acts as a buffer between main
memory and processor, creating a two-level internal memory. This two-level archi-
tecture exploits a property known as locality to provide improved performance over
a comparable one-level memory.

 The main memory cache mechanism is part of the computer architecture,
implemented in hardware and typically invisible to the OS. Accordingly, this
 mechanism is not pursued in this book. However, there are two other instances
of a two-level memory approach that also exploit the property of locality and that
are, at least partially, implemented in the OS: virtual memory and the disk cache
(Table 1.2). These two topics are explored in Chapters 8 and 11 , respectively. In this
appendix, we look at some of the performance characteristics of two-level memo-
ries that are common to all three approaches.

40 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Table 1.2 Characteristics of Two-Level Memories

 Main Memory
Cache

 Virtual Memory
(Paging) Disk Cache

Typical access time ratios 5 : 1 10 6 : 1 10 6 : 1

Memory management
system

 Implemented by
special hardware

 Combination of hardware
and system software

 System software

Typical block size 4 to 128 bytes 64 to 4096 bytes 64 to 4096 bytes

Access of processor to
second level

 Direct access Indirect access Indirect access

Locality

 The basis for the performance advantage of a two-level memory is the principle of
locality, referred to in Section 1.5 . This principle states that memory references tend
to cluster. Over a long period of time, the clusters in use change; but over a short
period of time, the processor is primarily working with fixed clusters of memory
references.

 Intuitively, the principle of locality makes sense. Consider the following line
of reasoning:

 1. Except for branch and call instructions, which constitute only a small fraction
of all program instructions, program execution is sequential. Hence, in most
cases, the next instruction to be fetched immediately follows the last instruc-
tion fetched.

 2. It is rare to have a long uninterrupted sequence of procedure calls followed
by the corresponding sequence of returns. Rather, a program remains con-
fined to a rather narrow window of procedure-invocation depth. Thus, over
a short period of time references to instructions tend to be localized to a few
procedures.

 3. Most iterative constructs consist of a relatively small number of instructions
repeated many times. For the duration of the iteration, computation is there-
fore confined to a small contiguous portion of a program.

 4. In many programs, much of the computation involves processing data struc-
tures, such as arrays or sequences of records. In many cases, successive
 references to these data structures will be to closely located data items.

 This line of reasoning has been confirmed in many studies. With reference to
point (1), a variety of studies have analyzed the behavior of high-level language
programs. Table 1.3 includes key results, measuring the appearance of various
statement types during execution, from the following studies. The earliest study of
programming language behavior, performed by Knuth [KNUT71], examined a col-
lection of FORTRAN programs used as student exercises. Tanenbaum [TANE78]
published measurements collected from over 300 procedures used in OS programs
and written in a language that supports structured programming (SAL). Patterson
and Sequin [PATT82] analyzed a set of measurements taken from compilers
and programs for typesetting, computer-aided design (CAD), sorting, and file

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 41

 comparison. The programming languages C and Pascal were studied. Huck
[HUCK83] analyzed four programs intended to represent a mix of general-purpose
scientific computing, including fast Fourier transform and the integration of systems
of differential equations. There is good agreement in the results of this mixture of
languages and applications that branching and call instructions represent only a
fraction of statements executed during the lifetime of a program. Thus, these
 studies confirm assertion (1), from the preceding list.

 With respect to assertion (2), studies reported in [PATT85] provide confirma-
tion. This is illustrated in Figure 1.21 , which shows call-return behavior. Each call is
represented by the line moving down and to the right, and each return by the line
moving up and to the right. In the figure, a window with depth equal to 5 is defined.
Only a sequence of calls and returns with a net movement of 6 in either direction
causes the window to move. As can be seen, the executing program can remain
within a stationary window for long periods of time. A study by the same analysts of
C and Pascal programs showed that a window of depth 8 would only need to shift on
less than 1% of the calls or returns [TAMI83].

Table 1.3 Relative Dynamic Frequency of High-Level Language Operations

 Study [HUCK83] [KNUT71] [PATT82] [TANE78]
 Language Pascal FORTRAN Pascal C SAL
 Workload Scientific Student System System System

 Assign 74 67 45 38 42

 Loop 4 3 5 3 4

 Call 1 3 15 12 12

 IF 20 11 29 43 36

 GOTO 2 9 — 3 —

 Other — 7 6 1 6

w � 5

t � 33

Time
(in units of calls/returns)

Nesting
depth

Return

Call

Figure 1.21 Example Call-Return Behavior of a Program

42 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

 A distinction is made in the literature between spatial locality and temporal
locality. Spatial locality refers to the tendency of execution to involve a number of
memory locations that are clustered. This reflects the tendency of a processor to
access instructions sequentially. Spatial location also reflects the tendency of a pro-
gram to access data locations sequentially, such as when processing a table of data.
Temporal locality refers to the tendency for a processor to access memory locations
that have been used recently. For example, when an iteration loop is executed, the
processor executes the same set of instructions repeatedly.

 Traditionally, temporal locality is exploited by keeping recently used
instruction and data values in cache memory and by exploiting a cache hierarchy.
Spatial locality is generally exploited by using larger cache blocks and by incor-
porating prefetching mechanisms (fetching items whose use is expected) into the
cache control logic. Recently, there has been considerable research on refining
these techniques to achieve greater performance, but the basic strategies remain
the same.

Operation of Two-Level Memory

 The locality property can be exploited in the formation of a two-level memory. The
upper-level memory (M1) is smaller, faster, and more expensive (per bit) than the
lower-level memory (M2). M1 is used as a temporary store for part of the contents
of the larger M2. When a memory reference is made, an attempt is made to access
the item in M1. If this succeeds, then a quick access is made. If not, then a block of
memory locations is copied from M2 to M1 and the access then takes place via M1.
Because of locality, once a block is brought into M1, there should be a number of
accesses to locations in that block, resulting in fast overall service.

 To express the average time to access an item, we must consider not only the
speeds of the two levels of memory but also the probability that a given reference
can be found in M1. We have

Ts � H � T1 � (1 � H) � (T1 � T2)

T1 � (1 � H) � T2 (1.1)

 where

Ts � average (system) access time
T1 � access time of M1 (e.g., cache, disk cache)
T2 � access time of M2 (e.g., main memory, disk)
H � hit ratio (fraction of time reference is found in M1)

 Figure 1.15 shows average access time as a function of hit ratio. As can be
seen, for a high percentage of hits, the average total access time is much closer to
that of M1 than M2.

Performance

 Let us look at some of the parameters relevant to an assessment of a two-level
memory mechanism. First consider cost. We have

Cs =
C1S1 + C2S2

S1 + S2
(1.2)

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 43

 where

Cs � average cost per bit for the combined two-level memory
C1 � average cost per bit of upper-level memory M1
C2 � average cost per bit of lower-level memory M2
S1 � size of M1
S2 � size of M2

 We would like Cs � C2 . Given that C1 �� C2 , this requires S1 �� S2 . Figure 1.22
shows the relationship. 7

 Next, consider access time. For a two-level memory to provide a significant
performance improvement, we need to have Ts approximately equal to T1 Ts � T1 .
Given that T1 is much less than T2 Ts �� T1 , a hit ratio of close to 1 is needed.

 So we would like M1 to be small to hold down cost, and large to improve the
hit ratio and therefore the performance. Is there a size of M1 that satisfies both
requirements to a reasonable extent? We can answer this question with a series of
subquestions:

 • What value of hit ratio is needed to satisfy the performance requirement?

 • What size of M1 will assure the needed hit ratio?

 • Does this size satisfy the cost requirement?

Relative size of two levels (S2/S1)

R
el

at
iv

e
co

m
bi

ne
d

co
st

 (
C

S
/C

2)

(C1/C2) � 1000

(C1/C2) � 10

(C1/C2) � 100

2

3

4
5
6
7
8

1000

2 3 4 5 6 7 8 10002 3 4 5 6 7 8 10095 6 7 8 109

2

3

4
5
6
7
8

100

2

3

4
5
6
7
8

10

1

Figure 1.22 Relationship of Average Memory Cost to Relative Memory Size for a Two-Level
Memory

7 Note that both axes use a log scale. A basic review of log scales is in the math refresher document at the
Computer Science Student Resource Site at ComputerScienceStudent.com.

44 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

 To get at this, consider the quantity T1 / Ts , which is referred to as the access effi-
ciency. It is a measure of how close average access time (Ts) is to M1 access time
(T1). From Equation (1.1),

T1

Ts
=

1

1 + (1 - H)
T2

T1

(1.3)

 In Figure 1.23 , we plot T1 / Ts as a function of the hit ratio H , with the quantity T2 / T1
as a parameter. A hit ratio in the range of 0.8 to 0.9 would seem to be needed to
satisfy the performance requirement.

 We can now phrase the question about relative memory size more exactly. Is
a hit ratio of 0.8 or higher reasonable for S1 �� S2 ? This will depend on a number
of factors, including the nature of the software being executed and the details of the
design of the two-level memory. The main determinant is, of course, the degree of
locality. Figure 1.24 suggests the effect of locality on the hit ratio. Clearly, if M1 is
the same size as M2, then the hit ratio will be 1.0: All of the items in M2 are always
stored also in M1. Now suppose that there is no locality; that is, references are com-
pletely random. In that case the hit ratio should be a strictly linear function of the
relative memory size. For example, if M1 is half the size of M2, then at any time half
of the items from M2 are also in M1 and the hit ratio will be 0.5. In practice, how-
ever, there is some degree of locality in the references. The effects of moderate and
strong locality are indicated in the figure.

 So, if there is strong locality, it is possible to achieve high values of hit ratio
even with relatively small upper-level memory size. For example, numerous studies

Hit ratio � H

r � 1

r � 10

r � 100

r � 1000

0.0 0.2 0.4 0.6 0.8 1.0

1

0.1

0.01

0.001

A
cc

es
s

ef
fi

ci
en

cy
 �

T
1/

T
s

Figure 1.23 Access Effi ciency as a Function of Hit Ratio (r � T2/T1)

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 45

have shown that rather small cache sizes will yield a hit ratio above 0.75 regardless
of the size of main memory (e.g., [AGAR89], [PRZY88], [STRE83], and [SMIT82]).
A cache in the range of 1K to 128K words is generally adequate, whereas main
memory is now typically in the gigabyte range. When we consider virtual mem-
ory and disk cache, we will cite other studies that confirm the same phenomenon,
namely that a relatively small M1 yields a high value of hit ratio because of locality.

 This brings us to the last question listed earlier: Does the relative size of the
two memories satisfy the cost requirement? The answer is clearly yes. If we need
only a relatively small upper-level memory to achieve good performance, then the
average cost per bit of the two levels of memory will approach that of the cheaper
lower-level memory.

No locality

Moderate
locality

Strong
locality

H
it

 r
at

io

Relative memory size (S1/S2)
0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Figure 1.24 Hit Ratio as a Function of Relative Memory Size

 2.1 Operating System Objectives and Functions
 The Operating System as a User/Computer Interface
 The Operating System as Resource Manager
 Ease of Evolution of an Operating System

 2.2 The Evolution of Operating Systems
 Serial Processing
 Simple Batch Systems
 Multiprogrammed Batch Systems
 Time-Sharing Systems

 2.3 Major Achievements
 The Process
 Memory Management
 Information Protection and Security
 Scheduling and Resource Management

 2.4 Developments Leading to Modern Operating Systems
 2.5 Virtual Machines

 Virtual Machines and Virtualizing
 Virtual Machine Architecture

 2.6 OS Design Considerations for Multiprocessor and Multicore
 Symmetric Multiprocessor OS Considerations
 Multicore OS Considerations

 2.7 Microsoft Windows Overview
 History
 The Modern OS
 Architecture
 Client/Server Model
 Threads and SMP
 Windows Objects
 What Is New in Windows 7

 2.8 Traditional Unix Systems
 History
 Description

 2.9 Modern Unix Systems
 System V Release 4 (SVR4)
 BSD
 Solaris 10

 2.10 Linux
 History
 Modular Structure
 Kernel Components

 2.11 Linux Vserver Virtual Machine Architecture
 2.12 Recommended Reading and Web Sites
 2.13 Key Terms, Review Questions, and Problems

OPERATING SYSTEM OVERVIEW

CHAPTER

46

CHAPTER 2 / OPERATING SYSTEM OVERVIEW 47

 Operating systems are those programs that interface the machine with
the applications programs. The main function of these systems is to
dynamically allocate the shared system resources to the executing
programs. As such, research in this area is clearly concerned with
the management and scheduling of memory, processes, and other
devices. But the interface with adjacent levels continues to shift with
time. Functions that were originally part of the operating system have
migrated to the hardware. On the other side, programmed functions
extraneous to the problems being solved by the application programs
are included in the operating system.

 —WHAT CAN BE AUTOMATED?: THE COMPUTER SCIENCE AND

ENGINEERING RESEARCH STUDY, MIT Press, 1980

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

• Summarize, at a top level, the key functions of an operating system (OS).
• Discuss the evolution of operating systems for early simple batch systems to

modern complex systems.
• Give a brief explanation of each of the major achievements in OS research,

as defined in Section 2.3 .
• Discuss the key design areas that have been instrumental in the development

of modern operating systems.
• Define and discuss virtual machines and virtualization
• Understand the OS design issues raised by the introduction of multiprocessor

and multicore organization.
• Understand the basic structure of Windows 7.
• Describe the essential elements of a traditional UNIX system.
• Explain the new features found in modern UNIX systems.
• Discuss Linux and its relationship to UNIX.

 We begin our study of operating systems (OSs) with a brief history. This history is
itself interesting and also serves the purpose of providing an overview of OS prin-
ciples. The first section examines the objectives and functions of operating systems.
Then we look at how operating systems have evolved from primitive batch systems
to sophisticated multitasking, multiuser systems. The remainder of the chapter looks
at the history and general characteristics of the two operating systems that serve as
examples throughout this book. All of the material in this chapter is covered in
greater depth later in the book.

48 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

2.1 OPERATING SYSTEM OBJECTIVES AND FUNCTIONS

 An OS is a program that controls the execution of application programs and acts as
an interface between applications and the computer hardware. It can be thought of
as having three objectives:

 • Convenience: An OS makes a computer more convenient to use.

 • Efficiency: An OS allows the computer system resources to be used in an effi-
cient manner.

 • Ability to evolve: An OS should be constructed in such a way as to permit the
effective development, testing, and introduction of new system functions with-
out interfering with service.

 Let us examine these three aspects of an OS in turn.

The Operating System as a User/Computer Interface

 The hardware and software used in providing applications to a user can be viewed
in a layered or hierarchical fashion, as depicted in Figure 2.1 . The user of those
applications, the end user, generally is not concerned with the details of computer
hardware. Thus, the end user views a computer system in terms of a set of applica-
tions. An application can be expressed in a programming language and is developed
by an application programmer. If one were to develop an application program as a
set of machine instructions that is completely responsible for controlling the com-
puter hardware, one would be faced with an overwhelmingly complex undertaking.
To ease this chore, a set of system programs is provided. Some of these programs
are referred to as utilities, or library programs. These implement frequently used
functions that assist in program creation, the management of files, and the control of

I/O devices
and

networking

System interconnect
(bus)

Software

Application
programming interface

Instruction set
architecture

Hardware

Main
memory

Memory
translation

Execution hardware

Application programs

Application
binary interface

Operating system

Libraries/utilities

Figure 2.1 Computer Hardware and Software Structure

2.1 / OPERATING SYSTEM OBJECTIVES AND FUNCTIONS 49

I/O devices. A programmer will make use of these facilities in developing an appli-
cation, and the application, while it is running, will invoke the utilities to perform
certain functions. The most important collection of system programs comprises the
OS. The OS masks the details of the hardware from the programmer and provides
the programmer with a convenient interface for using the system. It acts as media-
tor, making it easier for the programmer and for application programs to access and
use those facilities and services.

 Briefly, the OS typically provides services in the following areas:

 • Program development: The OS provides a variety of facilities and services,
such as editors and debuggers, to assist the programmer in creating programs.
Typically, these services are in the form of utility programs that, while not
strictly part of the core of the OS, are supplied with the OS and are referred to
as application program development tools.

 • Program execution: A number of steps need to be performed to execute a
program. Instructions and data must be loaded into main memory, I/O devices
and files must be initialized, and other resources must be prepared. The OS
handles these scheduling duties for the user.

 • Access to I/O devices: Each I/O device requires its own peculiar set of instruc-
tions or control signals for operation. The OS provides a uniform interface
that hides these details so that programmers can access such devices using sim-
ple reads and writes.

 • Controlled access to files: For file access, the OS must reflect a detailed under-
standing of not only the nature of the I/O device (disk drive, tape drive) but
also the structure of the data contained in the files on the storage medium.
In the case of a system with multiple users, the OS may provide protection
mechanisms to control access to the files.

 • System access: For shared or public systems, the OS controls access to the
system as a whole and to specific system resources. The access function must
provide protection of resources and data from unauthorized users and must
resolve conflicts for resource contention.

 • Error detection and response: A variety of errors can occur while a computer
system is running. These include internal and external hardware errors, such
as a memory error, or a device failure or malfunction; and various software
errors, such as division by zero, attempt to access forbidden memory location,
and inability of the OS to grant the request of an application. In each case,
the OS must provide a response that clears the error condition with the least
impact on running applications. The response may range from ending the pro-
gram that caused the error, to retrying the operation, to simply reporting the
error to the application.

 • Accounting: A good OS will collect usage statistics for various resources and
monitor performance parameters such as response time. On any system, this
information is useful in anticipating the need for future enhancements and in
tuning the system to improve performance. On a multiuser system, the infor-
mation can be used for billing purposes.

50 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 Figure 2.1 also indicates three key interfaces in a typical computer system:

 • Instruction set architecture (ISA) : The ISA defines the repertoire of machine
language instructions that a computer can follow. This interface is the bound-
ary between hardware and software. Note that both application programs
and utilities may access the ISA directly. For these programs, a subset of the
 instruction repertoire is available (user ISA). The OS has access to additional
machine language instructions that deal with managing system resources
 (system ISA).

 • Application binary interface (ABI) : The ABI defines a standard for binary
portability across programs. The ABI defines the system call interface to
the operating system and the hardware resources and services available in a
 system through the user ISA.

 • Application programming interface (API) : The API gives a program access
to the hardware resources and services available in a system through the user
ISA supplemented with high-level language (HLL) library calls. Any system
calls are usually performed through libraries. Using an API enables applica-
tion software to be ported easily, through recompilation, to other systems that
support the same API.

The Operating System as Resource Manager

 A computer is a set of resources for the movement, storage, and processing of data
and for the control of these functions. The OS is responsible for managing these
resources.

 Can we say that it is the OS that controls the movement, storage, and process-
ing of data? From one point of view, the answer is yes: By managing the computer’s
resources, the OS is in control of the computer’s basic functions. But this control is
exercised in a curious way. Normally, we think of a control mechanism as something
external to that which is controlled, or at least as something that is a distinct and
separate part of that which is controlled. (For example, a residential heating sys-
tem is controlled by a thermostat, which is separate from the heat-generation and
 heat-distribution apparatus.) This is not the case with the OS, which as a control
mechanism is unusual in two respects:

 • The OS functions in the same way as ordinary computer software; that is, it is
a program or suite of programs executed by the processor.

 • The OS frequently relinquishes control and must depend on the processor to
allow it to regain control.

 Like other computer programs, the OS provides instructions for the proces-
sor. The key difference is in the intent of the program. The OS directs the processor
in the use of the other system resources and in the timing of its execution of other
programs. But in order for the processor to do any of these things, it must cease
executing the OS program and execute other programs. Thus, the OS relinquishes
control for the processor to do some “useful” work and then resumes control long
enough to prepare the processor to do the next piece of work. The mechanisms
involved in all this should become clear as the chapter proceeds.

2.1 / OPERATING SYSTEM OBJECTIVES AND FUNCTIONS 51

 Figure 2.2 suggests the main resources that are managed by the OS. A portion
of the OS is in main memory. This includes the kernel , or nucleus , which contains
the most frequently used functions in the OS and, at a given time, other portions
of the OS currently in use. The remainder of main memory contains user programs
and data. The memory management hardware in the processor and the OS jointly
control the allocation of main memory, as we shall see. The OS decides when an I/O
device can be used by a program in execution and controls access to and use of files.
The processor itself is a resource, and the OS must determine how much processor
time is to be devoted to the execution of a particular user program. In the case of a
multiple-processor system, this decision must span all of the processors.

Ease of Evolution of an Operating System

 A major OS will evolve over time for a number of reasons:

 • Hardware upgrades plus new types of hardware: For example, early versions
of UNIX and the Macintosh OS did not employ a paging mechanism because
they were run on processors without paging hardware. 1 Subsequent versions
of these operating systems were modified to exploit paging capabilities. Also,

Memory

Computer system

I/O devices

Operating
system

software

Programs
and data

ProcessorProcessor

OS
Programs

Data

Storage

I/O controller

I/O controller

I/O controller Printers,
keyboards,
digital camera,
etc.

Figure 2.2 The Operating System as Resource Manager

1 Paging is introduced briefly later in this chapter and is discussed in detail in Chapter 7 .

52 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

the use of graphics terminals and page-mode terminals instead of line-at-a-
time scroll mode terminals affects OS design. For example, a graphics terminal
typically allows the user to view several applications at the same time through
“windows” on the screen. This requires more sophisticated support in the OS.

 • New services: In response to user demand or in response to the needs of sys-
tem managers, the OS expands to offer new services. For example, if it is found
to be difficult to maintain good performance for users with existing tools, new
measurement and control tools may be added to the OS.

 • Fixes: Any OS has faults. These are discovered over the course of time and
fixes are made. Of course, the fix may introduce new faults.

 The need to change an OS regularly places certain requirements on its design.
An obvious statement is that the system should be modular in construction, with
clearly defined interfaces between the modules, and that it should be well docu-
mented. For large programs, such as the typical contemporary OS, what might be
referred to as straightforward modularization is inadequate [DENN80a]. That is,
much more must be done than simply partitioning a program into modules. We
return to this topic later in this chapter.

2.2 THE EVOLUTION OF OPERATING SYSTEMS

 In attempting to understand the key requirements for an OS and the significance
of the major features of a contemporary OS, it is useful to consider how operating
systems have evolved over the years.

Serial Processing

 With the earliest computers, from the late 1940s to the mid-1950s, the programmer
interacted directly with the computer hardware; there was no OS. These computers
were run from a console consisting of display lights, toggle switches, some form of
input device, and a printer. Programs in machine code were loaded via the input
device (e.g., a card reader). If an error halted the program, the error condition was
indicated by the lights. If the program proceeded to a normal completion, the out-
put appeared on the printer.

 These early systems presented two main problems:

 • Scheduling: Most installations used a hardcopy sign-up sheet to reserve com-
puter time. Typically, a user could sign up for a block of time in multiples of a
half hour or so. A user might sign up for an hour and finish in 45 minutes; this
would result in wasted computer processing time. On the other hand, the user
might run into problems, not finish in the allotted time, and be forced to stop
before resolving the problem.

 • Setup time: A single program, called a job , could involve loading the com-
piler plus the high-level language program (source program) into memory,
saving the compiled program (object program) and then loading and linking
together the object program and common functions. Each of these steps could

2.2 / THE EVOLUTION OF OPERATING SYSTEMS 53

involve mounting or dismounting tapes or setting up card decks. If an error
 occurred, the hapless user typically had to go back to the beginning of the
setup sequence. Thus, a considerable amount of time was spent just in setting
up the program to run.

 This mode of operation could be termed serial processing , reflecting the fact
that users have access to the computer in series. Over time, various system software
tools were developed to attempt to make serial processing more efficient. These
include libraries of common functions, linkers, loaders, debuggers, and I/O driver
routines that were available as common software for all users.

Simple Batch Systems

 Early computers were very expensive, and therefore it was important to maxi-
mize processor utilization. The wasted time due to scheduling and setup time was
unacceptable.

 To improve utilization, the concept of a batch OS was developed. It appears
that the first batch OS (and the first OS of any kind) was developed in the mid-1950s
by General Motors for use on an IBM 701 [WEIZ81]. The concept was subsequently
refined and implemented on the IBM 704 by a number of IBM customers. By the
early 1960s, a number of vendors had developed batch operating systems for their
computer systems. IBSYS, the IBM OS for the 7090/7094 computers, is particularly
notable because of its widespread influence on other systems.

 The central idea behind the simple batch-processing scheme is the use of a
piece of software known as the monitor . With this type of OS, the user no longer has
direct access to the processor. Instead, the user submits the job on cards or tape to a
computer operator, who batches the jobs together sequentially and places the entire
batch on an input device, for use by the monitor. Each program is constructed to
branch back to the monitor when it completes processing, at which point the moni-
tor automatically begins loading the next program.

 To understand how this scheme works, let us look at it from two points of
view: that of the monitor and that of the processor.

 • Monitor point of view: The monitor controls the sequence of events. For this
to be so, much of the monitor must always be in main memory and available
for execution (Figure 2.3). That portion is referred to as the resident monitor .
The rest of the monitor consists of utilities and common functions that are
loaded as subroutines to the user program at the beginning of any job that
requires them. The monitor reads in jobs one at a time from the input device
(typically a card reader or magnetic tape drive). As it is read in, the current job
is placed in the user program area, and control is passed to this job. When the
job is completed, it returns control to the monitor, which immediately reads
in the next job. The results of each job are sent to an output device, such as a
printer, for delivery to the user.

 • Processor point of view: At a certain point, the processor is executing instruc-
tions from the portion of main memory containing the monitor. These
 instructions cause the next job to be read into another portion of main

54 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 memory. Once a job has been read in, the processor will encounter a branch
instruction in the monitor that instructs the processor to continue execution
at the start of the user program. The processor will then execute the instruc-
tions in the user program until it encounters an ending or error condition.
Either event causes the processor to fetch its next instruction from the moni-
tor program. Thus the phrase “control is passed to a job” simply means that
the processor is now fetching and executing instructions in a user program,
and “control is returned to the monitor” means that the processor is now
fetching and executing instructions from the monitor program.

 The monitor performs a scheduling function: A batch of jobs is queued up,
and jobs are executed as rapidly as possible, with no intervening idle time. The mon-
itor improves job setup time as well. With each job, instructions are included in a
primitive form of job control language (JCL) . This is a special type of programming
language used to provide instructions to the monitor. A simple example is that of a
user submitting a program written in the programming language FORTRAN plus
some data to be used by the program. All FORTRAN instructions and data are on a
separate punched card or a separate record on tape. In addition to FORTRAN and
data lines, the job includes job control instructions, which are denoted by the begin-
ning $. The overall format of the job looks like this:

$JOB

$FTN

 •

 • ¶ FORTRAN instructions

 •

Interrupt
processing

Device
drivers

Job
sequencing

Control language
interpreter

User
program

area

Monitor

Boundary

Figure 2.3 Memory Layout for a
Resident Monitor

2.2 / THE EVOLUTION OF OPERATING SYSTEMS 55

$LOAD

$RUN

 •

 • ¶ Data

 •

$END

 To execute this job, the monitor reads the $FTN line and loads the appropri-
ate language compiler from its mass storage (usually tape). The compiler translates
the user’s program into object code, which is stored in memory or mass storage.
If it is stored in memory, the operation is referred to as “compile, load, and go.”
If it is stored on tape, then the $LOAD instruction is required. This instruction is
read by the monitor, which regains control after the compile operation. The moni-
tor invokes the loader, which loads the object program into memory (in place of
the compiler) and transfers control to it. In this manner, a large segment of main
memory can be shared among different subsystems, although only one such subsys-
tem could be executing at a time.

 During the execution of the user program, any input instruction causes one
line of data to be read. The input instruction in the user program causes an input
routine that is part of the OS to be invoked. The input routine checks to make
sure that the program does not accidentally read in a JCL line. If this happens, an
error occurs and control transfers to the monitor. At the completion of the user
job, the monitor will scan the input lines until it encounters the next JCL instruc-
tion. Thus, the system is protected against a program with too many or too few
data lines.

 The monitor, or batch OS, is simply a computer program. It relies on the abil-
ity of the processor to fetch instructions from various portions of main memory to
alternately seize and relinquish control. Certain other hardware features are also
desirable:

 • Memory protection: While the user program is executing, it must not alter the
memory area containing the monitor. If such an attempt is made, the proces-
sor hardware should detect an error and transfer control to the monitor. The
monitor would then abort the job, print out an error message, and load in the
next job.

 • Timer: A timer is used to prevent a single job from monopolizing the system.
The timer is set at the beginning of each job. If the timer expires, the user pro-
gram is stopped, and control returns to the monitor.

 • Privileged instructions: Certain machine level instructions are designated priv-
ileged and can be executed only by the monitor. If the processor encounters
such an instruction while executing a user program, an error occurs causing
control to be transferred to the monitor. Among the privileged instructions
are I/O instructions, so that the monitor retains control of all I/O devices. This
prevents, for example, a user program from accidentally reading job control
instructions from the next job. If a user program wishes to perform I/O, it must
request that the monitor perform the operation for it.

56 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 • Interrupts: Early computer models did not have this capability. This feature
gives the OS more flexibility in relinquishing control to and regaining control
from user programs.

 Considerations of memory protection and privileged instructions lead to the
concept of modes of operation. A user program executes in a user mode , in which
certain areas of memory are protected from the user’s use and in which certain
instructions may not be executed. The monitor executes in a system mode, or what
has come to be called kernel mode , in which privileged instructions may be executed
and in which protected areas of memory may be accessed.

 Of course, an OS can be built without these features. But computer vendors
quickly learned that the results were chaos, and so even relatively primitive batch
operating systems were provided with these hardware features.

 With a batch OS, processor time alternates between execution of user pro-
grams and execution of the monitor. There have been two sacrifices: Some main
memory is now given over to the monitor and some processor time is consumed by
the monitor. Both of these are forms of overhead. Despite this overhead, the simple
batch system improves utilization of the computer.

Multiprogrammed Batch Systems

 Even with the automatic job sequencing provided by a simple batch OS, the proces-
sor is often idle. The problem is that I/O devices are slow compared to the processor.
 Figure 2.4 details a representative calculation. The calculation concerns a program
that processes a file of records and performs, on average, 100 machine instructions
per record. In this example, the computer spends over 96% of its time waiting for
I/O devices to finish transferring data to and from the file. Figure 2.5a illustrates this
situation, where we have a single program, referred to as uniprogramming. The pro-
cessor spends a certain amount of time executing, until it reaches an I/O instruction.
It must then wait until that I/O instruction concludes before proceeding.

 This inefficiency is not necessary. We know that there must be enough
memory to hold the OS (resident monitor) and one user program. Suppose that
there is room for the OS and two user programs. When one job needs to wait for
I/O, the processor can switch to the other job, which is likely not waiting for I/O
(Figure 2.5b). Furthermore, we might expand memory to hold three, four, or more
 programs and switch among all of them (Figure 2.5c). The approach is known as
multiprogramming , or multitasking . It is the central theme of modern operating
systems.

Figure 2.4 System Utilization Example

 Read one record from file 15 ms
 Execute 100 instructions 1 ms
 Write one record to file 15 ms
 Total 31 ms

 Percent CPU Utilization =
1
31

= 0.032 = 3.2%

2.2 / THE EVOLUTION OF OPERATING SYSTEMS 57

 To illustrate the benefit of multiprogramming, we give a simple example.
Consider a computer with 250 Mbytes of available memory (not used by the OS),
a disk, a terminal, and a printer. Three programs, JOB1, JOB2, and JOB3, are
 submitted for execution at the same time, with the attributes listed in Table 2.1 .
We assume minimal processor requirements for JOB2 and JOB3 and continuous
disk and printer use by JOB3. For a simple batch environment, these jobs will be
executed in sequence. Thus, JOB1 completes in 5 minutes. JOB2 must wait until

Run Wait WaitRun

Time

Run Wait WaitRun

Run
A

Run
A

Run WaitWait WaitRun

Run
B Wait Wait

Run
B

Run
A

Run
A

Run
B

Run
B

Run
C

Run
C

(a) Uniprogramming

Time

(b) Multiprogramming with two programs

Time

(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 2.5 Multiprogramming Example

Table 2.1 Sample Program Execution Attributes

 JOB1 JOB2 JOB3

Type of job Heavy compute Heavy I/O Heavy I/O

Duration 5 min 15 min 10 min

Memory required 50 M 100 M 75 M

Need disk? No No Yes

Need terminal? No Yes No

Need printer? No No Yes

58 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

the 5 minutes are over and then completes 15 minutes after that. JOB3 begins after
20 minutes and completes at 30 minutes from the time it was initially submitted.
The average resource utilization, throughput, and response times are shown in the
uniprogramming column of Table 2.2 . Device-by-device utilization is illustrated in
 Figure 2.6a . It is evident that there is gross underutilization for all resources when
averaged over the required 30-minute time period.

 Now suppose that the jobs are run concurrently under a multiprogramming
OS. Because there is little resource contention between the jobs, all three can run
in nearly minimum time while coexisting with the others in the computer (assum-
ing that JOB2 and JOB3 are allotted enough processor time to keep their input
and output operations active). JOB1 will still require 5 minutes to complete, but at
the end of that time, JOB2 will be one-third finished and JOB3 half finished. All
three jobs will have finished within 15 minutes. The improvement is evident when
examining the multiprogramming column of Table 2.2 , obtained from the histogram
shown in Figure 2.6b .

 As with a simple batch system, a multiprogramming batch system must rely
on certain computer hardware features. The most notable additional feature that
is useful for multiprogramming is the hardware that supports I/O interrupts and
DMA (direct memory access). With interrupt-driven I/O or DMA, the processor
can issue an I/O command for one job and proceed with the execution of another
job while the I/O is carried out by the device controller. When the I/O operation is
complete, the processor is interrupted and control is passed to an interrupt-handling
program in the OS. The OS will then pass control to another job.

 Multiprogramming operating systems are fairly sophisticated compared to
single-program, or uniprogramming , systems. To have several jobs ready to run,
they must be kept in main memory, requiring some form of memory management .
In addition, if several jobs are ready to run, the processor must decide which one
to run, this decision requires an algorithm for scheduling. These concepts are dis-
cussed later in this chapter.

Time-Sharing Systems

 With the use of multiprogramming, batch processing can be quite efficient.
However, for many jobs, it is desirable to provide a mode in which the user interacts
directly with the computer. Indeed, for some jobs, such as transaction processing, an
interactive mode is essential.

Table 2.2 Effects of Multiprogramming on Resource Utilization

 Uniprogramming Multiprogramming

Processor use 20% 40%

Memory use 33% 67%

Disk use 33% 67%

Printer use 33% 67%

Elapsed time 30 min 15 min

Throughput 6 jobs/hr 12 jobs/hr

Mean response time 18 min 10 min

59

0%

0 5 10 15 20 25 30
minutes

time

(a) Uniprogramming

JOB1 JOB2 JOB3Job history

Printer

Terminal

Disk

Memory

CPU

100%
0%

100%
0%

100%
0%

100%
0%

100%

0%

0 5 10 15
minutes

(b) Multiprogramming

JOB1

JOB2

JOB3

Job history

Printer

Terminal

Disk

Memory

CPU

100%
0%

100%
0%

100%
0%

100%
0%

100%

time

Figure 2.6 Utilization Histograms

60 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 Today, the requirement for an interactive computing facility can be, and often
is, met by the use of a dedicated personal computer or workstation. That option was
not available in the 1960s, when most computers were big and costly. Instead, time
sharing was developed.

 Just as multiprogramming allows the processor to handle multiple batch jobs
at a time, multiprogramming can also be used to handle multiple interactive jobs. In
this latter case, the technique is referred to as time sharing , because processor time is
shared among multiple users. In a time-sharing system, multiple users simultaneously
access the system through terminals, with the OS interleaving the execution of each
user program in a short burst or quantum of computation. Thus, if there are n users
actively requesting service at one time, each user will only see on the average 1/ n
of the effective computer capacity, not counting OS overhead. However, given the
relatively slow human reaction time, the response time on a properly designed system
should be similar to that on a dedicated computer.

 Both batch processing and time sharing use multiprogramming. The key
 differences are listed in Table 2.3 .

 One of the first time-sharing operating systems to be developed was the
Compatible Time-Sharing System (CTSS) [CORB62], developed at MIT by a
group known as Project MAC (Machine-Aided Cognition, or Multiple-Access
Computers). The system was first developed for the IBM 709 in 1961 and later
transferred to an IBM 7094.

 Compared to later systems, CTSS is primitive. The system ran on a computer
with 32,000 36-bit words of main memory, with the resident monitor consuming 5000
of that. When control was to be assigned to an interactive user, the user’s program
and data were loaded into the remaining 27,000 words of main memory. A pro-
gram was always loaded to start at the location of the 5000th word; this simplified
both the monitor and memory management. A system clock generated interrupts
at a rate of approximately one every 0.2 seconds. At each clock interrupt, the OS
regained control and could assign the processor to another user. This technique is
known as time slicing . Thus, at regular time intervals, the current user would be
preempted and another user loaded in. To preserve the old user program status for
later resumption, the old user programs and data were written out to disk before the
new user programs and data were read in. Subsequently, the old user program code
and data were restored in main memory when that program was next given a turn.

 To minimize disk traffic, user memory was only written out when the incoming
program would overwrite it. This principle is illustrated in Figure 2.7 . Assume that
there are four interactive users with the following memory requirements, in words:

 • JOB1: 15,000

 • JOB2: 20,000

Table 2.3 Batch Multiprogramming versus Time Sharing

 Batch Multiprogramming Time Sharing

 Principal objective Maximize processor use Minimize response time

 Source of directives to
operating system

 Job control language commands
provided with the job

 Commands entered at the
terminal

2.2 / THE EVOLUTION OF OPERATING SYSTEMS 61

 • JOB3: 5000

 • JOB4: 10,000

 Initially, the monitor loads JOB1 and transfers control to it (a). Later, the
monitor decides to transfer control to JOB2. Because JOB2 requires more mem-
ory than JOB1, JOB1 must be written out first, and then JOB2 can be loaded (b).
Next, JOB3 is loaded in to be run. However, because JOB3 is smaller than JOB2,
a portion of JOB2 can remain in memory, reducing disk write time (c). Later, the
monitor decides to transfer control back to JOB1. An additional portion of JOB2
must be written out when JOB1 is loaded back into memory (d). When JOB4 is
loaded, part of JOB1 and the portion of JOB2 remaining in memory are retained
(e). At this point, if either JOB1 or JOB2 is activated, only a partial load will be
required. In this example, it is JOB2 that runs next. This requires that JOB4 and the
remaining resident portion of JOB1 be written out and that the missing portion of
JOB2 be read in (f).

 The CTSS approach is primitive compared to present-day time sharing, but
it was effective. It was extremely simple, which minimized the size of the monitor.
Because a job was always loaded into the same locations in memory, there was no
need for relocation techniques at load time (discussed subsequently). The technique
of only writing out what was necessary minimized disk activity. Running on the
7094, CTSS supported a maximum of 32 users.

 Time sharing and multiprogramming raise a host of new problems for the OS.
If multiple jobs are in memory, then they must be protected from interfering with
each other by, for example, modifying each other’s data. With multiple interactive
users, the file system must be protected so that only authorized users have access

Monitor

Free
Free Free

JOB 1

0

32000

5000

20000

20000

(a)

Monitor

JOB 2

0

32000

5000

25000 25000

(b)

Free

Monitor

JOB 2

0

32000

5000

25000

(f)

Monitor

JOB 3

(JOB 2)

0

32000

5000

10000

(c)

Free
25000

Monitor

JOB 1

(JOB 2)

0

32000

5000

(d)

20000

15000

Free
25000

Monitor

JOB 4

(JOB 2)

(JOB 1)

0

32000

5000

(e)

Figure 2.7 CTSS Operation

62 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

to a particular file. The contention for resources, such as printers and mass storage
devices, must be handled. These and other problems, with possible solutions, will be
encountered throughout this text.

2.3 MAJOR ACHIEVEMENTS

 Operating systems are among the most complex pieces of software ever devel-
oped. This reflects the challenge of trying to meet the difficult and in some cases
competing objectives of convenience, efficiency, and ability to evolve. [DENN80a]
 proposes that there have been four major theoretical advances in the development
of operating systems:

 • Processes

 • Memory management

 • Information protection and security

 • Scheduling and resource management

 Each advance is characterized by principles, or abstractions, developed to
meet difficult practical problems. Taken together, these five areas span many of
the key design and implementation issues of modern operating systems. The brief
review of these five areas in this section serves as an overview of much of the rest
of the text.

The Process

 Central to the design of operating systems is the concept of process. This term was
first used by the designers of Multics in the 1960s [DALE68]. It is a somewhat
more general term than job. Many definitions have been given for the term process ,
including

 • A program in execution

 • An instance of a program running on a computer

 • The entity that can be assigned to and executed on a processor

 • A unit of activity characterized by a single sequential thread of execution, a
current state, and an associated set of system resources

 This concept should become clearer as we proceed.
 Three major lines of computer system development created problems in timing

and synchronization that contributed to the development of the concept of the
process: multiprogramming batch operation, time sharing, and real-time transaction
 systems. As we have seen, multiprogramming was designed to keep the processor
and I/O devices, including storage devices, simultaneously busy to achieve maxi-
mum efficiency. The key mechanism is this: In response to signals indicating the
completion of I/O transactions, the processor is switched among the various pro-
grams residing in main memory.

2.3 / MAJOR ACHIEVEMENTS 63

 A second line of development was general-purpose time sharing. Here, the
key design objective is to be responsive to the needs of the individual user and yet,
for cost reasons, be able to support many users simultaneously. These goals are
compatible because of the relatively slow reaction time of the user. For example,
if a typical user needs an average of 2 seconds of processing time per minute, then
close to 30 such users should be able to share the same system without noticeable
interference. Of course, OS overhead must be factored into such calculations.

 A third important line of development has been real-time transaction process-
ing systems. In this case, a number of users are entering queries or updates against a
database. An example is an airline reservation system. The key difference between
the transaction processing system and the time-sharing system is that the former
is limited to one or a few applications, whereas users of a time-sharing system can
engage in program development, job execution, and the use of various applications.
In both cases, system response time is paramount.

 The principal tool available to system programmers in developing the early
multiprogramming and multiuser interactive systems was the interrupt. The activity
of any job could be suspended by the occurrence of a defined event, such as an I/O
completion. The processor would save some sort of context (e.g., program coun-
ter and other registers) and branch to an interrupt-handling routine, which would
determine the nature of the interrupt, process the interrupt, and then resume user
processing with the interrupted job or some other job.

 The design of the system software to coordinate these various activities turned
out to be remarkably difficult. With many jobs in progress at any one time, each of
which involved numerous steps to be performed in sequence, it became impossible
to analyze all of the possible combinations of sequences of events. In the absence of
some systematic means of coordination and cooperation among activities, program-
mers resorted to ad hoc methods based on their understanding of the environment
that the OS had to control. These efforts were vulnerable to subtle programming
errors whose effects could be observed only when certain relatively rare sequences
of actions occurred. These errors were difficult to diagnose because they needed to
be distinguished from application software errors and hardware errors. Even when
the error was detected, it was difficult to determine the cause, because the precise
conditions under which the errors appeared were very hard to reproduce. In general
terms, there are four main causes of such errors [DENN80a]:

 • Improper synchronization: It is often the case that a routine must be sus-
pended awaiting an event elsewhere in the system. For example, a program
that initiates an I/O read must wait until the data are available in a buffer
before proceeding. In such cases, a signal from some other routine is required.
Improper design of the signaling mechanism can result in signals being lost or
duplicate signals being received.

 • Failed mutual exclusion: It is often the case that more than one user or pro-
gram will attempt to make use of a shared resource at the same time. For
example, two users may attempt to edit the same file at the same time. If
these accesses are not controlled, an error can occur. There must be some
sort of mutual exclusion mechanism that permits only one routine at a time
to perform an update against the file. The implementation of such mutual

64 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

exclusion is difficult to verify as being correct under all possible sequences
of events.

 • Nondeterminate program operation: The results of a particular program
 normally should depend only on the input to that program and not on
the activities of other programs in a shared system. But when programs share
memory, and their execution is interleaved by the processor, they may inter-
fere with each other by overwriting common memory areas in unpredictable
ways. Thus, the order in which various programs are scheduled may affect the
outcome of any particular program.

 • Deadlocks: It is possible for two or more programs to be hung up waiting for
each other. For example, two programs may each require two I/O devices to
perform some operation (e.g., disk to tape copy). One of the programs has
seized control of one of the devices and the other program has control of
the other device. Each is waiting for the other program to release the desired
resource. Such a deadlock may depend on the chance timing of resource
 allocation and release.

 What is needed to tackle these problems is a systematic way to monitor
and control the various programs executing on the processor. The concept of the
process provides the foundation. We can think of a process as consisting of three
 components:

 • An executable program

 • The associated data needed by the program (variables, work space, buffers, etc.)

 • The execution context of the program

 This last element is essential. The execution context , or process state , is the
internal data by which the OS is able to supervise and control the process. This
internal information is separated from the process, because the OS has information
not permitted to the process. The context includes all of the information that the OS
needs to manage the process and that the processor needs to execute the process
properly. The context includes the contents of the various processor registers, such
as the program counter and data registers. It also includes information of use to the
OS, such as the priority of the process and whether the process is waiting for the
completion of a particular I/O event.

 Figure 2.8 indicates a way in which processes may be managed. Two proc-
esses, A and B, exist in portions of main memory. That is, a block of memory is
allocated to each process that contains the program, data, and context information.
Each process is recorded in a process list built and maintained by the OS. The
process list contains one entry for each process, which includes a pointer to the
location of the block of memory that contains the process. The entry may also
include part or all of the execution context of the process. The remainder of the
execution context is stored elsewhere, perhaps with the process itself (as indicated
in Figure 2.8) or frequently in a separate region of memory. The process index
register contains the index into the process list of the process currently controlling
the processor. The program counter points to the next instruction in that process
to be executed. The base and limit registers define the region in memory occupied

2.3 / MAJOR ACHIEVEMENTS 65

by the process: The base register is the starting address of the region of memory
and the limit is the size of the region (in bytes or words). The program counter and
all data references are interpreted relative to the base register and must not exceed
the value in the limit register. This prevents interprocess interference.

 In Figure 2.8 , the process index register indicates that process B is execut-
ing. Process A was previously executing but has been temporarily interrupted. The
contents of all the registers at the moment of A’s interruption were recorded in its
execution context. Later, the OS can perform a process switch and resume execution
of process A. The process switch consists of storing the context of B and restoring
the context of A. When the program counter is loaded with a value pointing into A’s
program area, process A will automatically resume execution.

 Thus, the process is realized as a data structure. A process can either be
 executing or awaiting execution. The entire state of the process at any instant is con-
tained in its context. This structure allows the development of powerful techniques
for ensuring coordination and cooperation among processes. New features can be
designed and incorporated into the OS (e.g., priority) by expanding the context to

Context

Data

Program
(code)

Context

Data

i

Process index

PC

Base
limit

Other
registers

i

b
h

j

b

h
Process

B

Process
A

Main
memory

Processor
registers

Process
list

Program
(code)

Figure 2.8 Typical Process Implementation

66 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

include any new information needed to support the feature. Throughout this book,
we will see a number of examples where this process structure is employed to solve
the problems raised by multiprogramming and resource sharing.

 A final point, which we introduce briefly here, is the concept of thread . In
essence, a single process, which is assigned certain resources, can be broken up into
multiple, concurrent threads that execute cooperatively to perform the work of the
process. This introduces a new level of parallel activity to be managed by the hard-
ware and software.

Memory Management

 The needs of users can be met best by a computing environment that supports
 modular programming and the flexible use of data. System managers need efficient
and orderly control of storage allocation. The OS, to satisfy these requirements, has
five principal storage management responsibilities:

 • Process isolation: The OS must prevent independent processes from interfer-
ing with each other’s memory, both data and instructions.

 • Automatic allocation and management: Programs should be dynamically
 allocated across the memory hierarchy as required. Allocation should be
transparent to the programmer. Thus, the programmer is relieved of concerns
relating to memory limitations, and the OS can achieve efficiency by assigning
memory to jobs only as needed.

 • Support of modular programming: Programmers should be able to define pro-
gram modules, and to create, destroy, and alter the size of modules dynamically.

 • Protection and access control: Sharing of memory, at any level of the memory
hierarchy, creates the potential for one program to address the memory space
of another. This is desirable when sharing is needed by particular applications.
At other times, it threatens the integrity of programs and even of the OS itself.
The OS must allow portions of memory to be accessible in various ways by
various users.

 • Long-term storage: Many application programs require means for storing
 information for extended periods of time, after the computer has been
 powered down.

 Typically, operating systems meet these requirements with virtual memory
and file system facilities. The file system implements a long-term store, with infor-
mation stored in named objects, called files. The file is a convenient concept for the
programmer and is a useful unit of access control and protection for the OS.

 Virtual memory is a facility that allows programs to address memory from
a logical point of view, without regard to the amount of main memory physically
available. Virtual memory was conceived to meet the requirement of having multi-
ple user jobs reside in main memory concurrently, so that there would not be a hia-
tus between the execution of successive processes while one process was written out
to secondary store and the successor process was read in. Because processes vary
in size, if the processor switches among a number of processes it is difficult to pack
them compactly into main memory. Paging systems were introduced, which allow

2.3 / MAJOR ACHIEVEMENTS 67

processes to be comprised of a number of fixed-size blocks, called pages. A pro-
gram references a word by means of a virtual address consisting of a page number
and an offset within the page. Each page of a process may be located anywhere
in main memory. The paging system provides for a dynamic mapping between the
virtual address used in the program and a real address , or physical address, in main
memory.

 With dynamic mapping hardware available, the next logical step was to
 eliminate the requirement that all pages of a process reside in main memory simul-
taneously. All the pages of a process are maintained on disk. When a process is
executing, some of its pages are in main memory. If reference is made to a page
that is not in main memory, the memory management hardware detects this and
arranges for the missing page to be loaded. Such a scheme is referred to as virtual
memory and is depicted in Figure 2.9 .

Main memory Disk

User
program

A

0
A.0

B.0 B.1

B.5 B.6

B.2 B.3

A.1

A.2

A.7

A.8

A.5

A.9

1

2

3

4

5

6

7

8

9

10

User
program

B

0

1

2

3

4

5

6

Main memory consists of a
number of fixed-length frames,
each equal to the size of a page.
For a program to execute, some
or all of its pages must be in
main memory.

Secondary memory (disk) can
hold many fixed-length pages. A
user program consists of some
number of pages. Pages for all
programs plus the operating system
are on disk, as are files.

Figure 2.9 Virtual Memory Concepts

68 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 The processor hardware, together with the OS, provides the user with a
 “virtual processor” that has access to a virtual memory. This memory may be a
linear address space or a collection of segments, which are variable-length blocks
of contiguous addresses. In either case, programming language instructions can
 reference program and data locations in the virtual memory area. Process isolation
can be achieved by giving each process a unique, nonoverlapping virtual memory.
Memory sharing can be achieved by overlapping portions of two virtual memory
spaces. Files are maintained in a long-term store. Files and portions of files may be
copied into the virtual memory for manipulation by programs.

 Figure 2.10 highlights the addressing concerns in a virtual memory scheme.
Storage consists of directly addressable (by machine instructions) main memory
and lower-speed auxiliary memory that is accessed indirectly by loading blocks
into main memory. Address translation hardware (memory management unit) is
interposed between the processor and memory. Programs reference locations using
 virtual addresses, which are mapped into real main memory addresses. If a refer-
ence is made to a virtual address not in real memory, then a portion of the contents
of real memory is swapped out to auxiliary memory and the desired block of data
is swapped in. During this activity, the process that generated the address reference
must be suspended. The OS designer needs to develop an address translation mech-
anism that generates little overhead and a storage allocation policy that minimizes
the traffic between memory levels.

Information Protection and Security

 The growth in the use of time-sharing systems and, more recently, computer net-
works has brought with it a growth in concern for the protection of information.
The nature of the threat that concerns an organization will vary greatly depending
on the circumstances. However, there are some general-purpose tools that can be

Processor
Virtual
address

Real
address

Disk
address

Memory-
management

unit

Main
memory

Secondary
memory

Figure 2.10 Virtual Memory Addressing

2.3 / MAJOR ACHIEVEMENTS 69

built into computers and operating systems that support a variety of protection and
security mechanisms. In general, we are concerned with the problem of controlling
access to computer systems and the information stored in them.

 Much of the work in security and protection as it relates to operating systems
can be roughly grouped into four categories:

 • Availability: Concerned with protecting the system against interruption.

 • Confidentiality: Assures that users cannot read data for which access is
unauthorized.

 • Data integrity: Protection of data from unauthorized modification.

 • Authenticity: Concerned with the proper verification of the identity of users
and the validity of messages or data.

Scheduling and Resource Management

 A key responsibility of the OS is to manage the various resources available to it
(main memory space, I/O devices, processors) and to schedule their use by the vari-
ous active processes. Any resource allocation and scheduling policy must consider
three factors:

 • Fairness: Typically, we would like all processes that are competing for the use
of a particular resource to be given approximately equal and fair access to that
resource. This is especially so for jobs of the same class, that is, jobs of similar
demands.

 • Differential responsiveness: On the other hand, the OS may need to discrimi-
nate among different classes of jobs with different service requirements. The
OS should attempt to make allocation and scheduling decisions to meet the
total set of requirements. The OS should also make these decisions dynami-
cally. For example, if a process is waiting for the use of an I/O device, the OS
may wish to schedule that process for execution as soon as possible to free up
the device for later demands from other processes.

 • Efficiency: The OS should attempt to maximize throughput, minimize
 response time, and, in the case of time sharing, accommodate as many users
as possible. These criteria conflict; finding the right balance for a particular
 situation is an ongoing problem for OS research.

 Scheduling and resource management are essentially operations-research
problems and the mathematical results of that discipline can be applied. In addition,
measurement of system activity is important to be able to monitor performance and
make adjustments.

 Figure 2.11 suggests the major elements of the OS involved in the scheduling
of processes and the allocation of resources in a multiprogramming environment.
The OS maintains a number of queues, each of which is simply a list of processes
waiting for some resource. The short-term queue consists of processes that are in
main memory (or at least an essential minimum portion of each is in main memory)
and are ready to run as soon as the processor is made available. Any one of these
processes could use the processor next. It is up to the short-term scheduler, or

70 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 dispatcher, to pick one. A common strategy is to give each process in the queue
some time in turn; this is referred to as a round-robin technique. In effect, the
round-robin technique employs a circular queue. Another strategy is to assign
 priority levels to the various processes, with the scheduler selecting processes in
priority order.

 The long-term queue is a list of new jobs waiting to use the processor. The
OS adds jobs to the system by transferring a process from the long-term queue to
the short-term queue. At that time, a portion of main memory must be allocated
to the incoming process. Thus, the OS must be sure that it does not overcommit
memory or processing time by admitting too many processes to the system. There
is an I/O queue for each I/O device. More than one process may request the use of
the same I/O device. All processes waiting to use each device are lined up in that
device’s queue. Again, the OS must determine which process to assign to an avail-
able I/O device.

 The OS receives control of the processor at the interrupt handler if an inter-
rupt occurs. A process may specifically invoke some OS service, such as an I/O
device handler by means of a service call. In this case, a service call handler is the
entry point into the OS. In any case, once the interrupt or service call is handled, the
short-term scheduler is invoked to pick a process for execution.

 The foregoing is a functional description; details and modular design of this
portion of the OS will differ in various systems. Much of the research and develop-
ment effort in operating systems has been directed at picking algorithms and data
structures for this function that provide fairness, differential responsiveness, and
efficiency.

Service
call

handler (code)

Pass control
to process

Interrupt
handler (code)

Short-term
scheduler

(code)

Long-
term

queue

Short-
term

queue

I/O
queues

Operating system

Service call
from process

Interrupt
from process

Interrupt
from I/O

Figure 2.11 Key Elements of an Operating System for Multiprogramming

2.4 / DEVELOPMENTS LEADING TO MODERN OPERATING SYSTEMS 71

2.4 DEVELOPMENTS LEADING TO MODERN OPERATING
SYSTEMS

 Over the years, there has been a gradual evolution of OS structure and capabilities.
However, in recent years a number of new design elements have been introduced
into both new operating systems and new releases of existing operating systems that
create a major change in the nature of operating systems. These modern operating
systems respond to new developments in hardware, new applications, and new secu-
rity threats. Among the key hardware drivers are multiprocessor systems, greatly
increased processor speed, high-speed network attachments, and increasing size
and variety of memory storage devices. In the application arena, multimedia appli-
cations, Internet and Web access, and client/server computing have influenced OS
design. With respect to security, Internet access to computers has greatly increased
the potential threat and increasingly sophisticated attacks, such as viruses, worms,
and hacking techniques, have had a profound impact on OS design.

 The rate of change in the demands on operating systems requires not just
modifications and enhancements to existing architectures but new ways of organ-
izing the OS. A wide range of different approaches and design elements has been
tried in both experimental and commercial operating systems, but much of the work
fits into the following categories:

 • Microkernel architecture

 • Multithreading

 • Symmetric multiprocessing

 • Distributed operating systems

 • Object-oriented design

 Most operating systems, until recently, featured a large monolithic kernel .
Most of what is thought of as OS functionality is provided in these large kernels,
including scheduling, file system, networking, device drivers, memory management,
and more. Typically, a monolithic kernel is implemented as a single process, with
all elements sharing the same address space. A microkernel architecture assigns
only a few essential functions to the kernel, including address spaces, interproc-
ess communication (IPC), and basic scheduling. Other OS services are provided by
processes, sometimes called servers, that run in user mode and are treated like any
other application by the microkernel. This approach decouples kernel and server
development. Servers may be customized to specific application or environment
requirements. The microkernel approach simplifies implementation, provides flex-
ibility, and is well suited to a distributed environment. In essence, a microkernel
interacts with local and remote server processes in the same way, facilitating con-
struction of distributed systems.

Multithreading is a technique in which a process, executing an application, is
divided into threads that can run concurrently. We can make the following distinction:

 • Thread: A dispatchable unit of work. It includes a processor context (which
includes the program counter and stack pointer) and its own data area for a

72 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

stack (to enable subroutine branching). A thread executes sequentially and is
interruptable so that the processor can turn to another thread.

 • Process: A collection of one or more threads and associated system resources
(such as memory containing both code and data, open files, and devices). This
corresponds closely to the concept of a program in execution. By breaking
a single application into multiple threads, the programmer has great control
over the modularity of the application and the timing of application-related
events.

 Multithreading is useful for applications that perform a number of essentially
independent tasks that do not need to be serialized. An example is a database server
that listens for and processes numerous client requests. With multiple threads run-
ning within the same process, switching back and forth among threads involves
less processor overhead than a major process switch between different processes.
Threads are also useful for structuring processes that are part of the OS kernel as
described in subsequent chapters.

Symmetric multiprocessing (SMP) is a term that refers to a computer hard-
ware architecture (described in Chapter 1) and also to the OS behavior that exploits
that architecture. The OS of an SMP schedules processes or threads across all of the
processors. SMP has a number of potential advantages over uniprocessor architec-
ture, including the following:

 • Performance: If the work to be done by a computer can be organized so that
some portions of the work can be done in parallel, then a system with multiple
processors will yield greater performance than one with a single processor of
the same type. This is illustrated in Figure 2.12 . With multiprogramming, only
one process can execute at a time; meanwhile all other processes are waiting
for the processor. With multiprocessing, more than one process can be run-
ning simultaneously, each on a different processor.

 • Availability: In a symmetric multiprocessor, because all processors can per-
form the same functions, the failure of a single processor does not halt the
system. Instead, the system can continue to function at reduced performance.

 • Incremental growth: A user can enhance the performance of a system by add-
ing an additional processor.

 • Scaling: Vendors can offer a range of products with different price and per-
formance characteristics based on the number of processors configured in the
system.

 It is important to note that these are potential, rather than guaranteed, benefits. The
OS must provide tools and functions to exploit the parallelism in an SMP system.

 Multithreading and SMP are often discussed together, but the two are
 independent facilities. Even on a uniprocessor system, multithreading is useful for
structuring applications and kernel processes. An SMP system is useful even for
nonthreaded processes, because several processes can run in parallel. However, the
two facilities complement each other and can be used effectively together.

 An attractive feature of an SMP is that the existence of multiple processors is
transparent to the user. The OS takes care of scheduling of threads or processes on

2.4 / DEVELOPMENTS LEADING TO MODERN OPERATING SYSTEMS 73

individual processors and of synchronization among processors. This book discusses
the scheduling and synchronization mechanisms used to provide the single-system
appearance to the user. A different problem is to provide the appearance of a sin-
gle system for a cluster of separate computers—a multicomputer system. In this
case, we are dealing with a collection of entities (computers), each with its own
main memory, secondary memory, and other I/O modules. A distributed operating
system provides the illusion of a single main memory space and a single secondary
memory space, plus other unified access facilities, such as a distributed file system.
Although clusters are becoming increasingly popular, and there are many cluster
products on the market, the state of the art for distributed operating systems lags
that of uniprocessor and SMP operating systems. We examine such systems in
Part Eight.

 Another innovation in OS design is the use of object-oriented technologies.
Object-oriented design lends discipline to the process of adding modular extensions
to a small kernel. At the OS level, an object-based structure enables programmers
to customize an OS without disrupting system integrity. Object orientation also
eases the development of distributed tools and full-blown distributed operating
 systems.

(a) Interleaving (multiprogramming; one processor)

Process 1

Process 2

Process 3

Process 1

Process 2

Process 3

(b) Interleaving and overlapping (multiprocessing; two processors)

Blocked Running

Time

Figure 2.12 Multiprogramming and Multiprocessing

74 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

2.5 VIRTUAL MACHINES

Virtual Machines and Virtualizing

 Traditionally, applications have run directly on an OS on a PC or a server. Each PC
or server would run only one OS at a time. Thus, the vendor had to rewrite parts
of its applications for each OS/platform they would run on. An effective strategy
for dealing with this problem is known as virtualization . Virtualization technology
enables a single PC or server to simultaneously run multiple operating systems or
multiple sessions of a single OS. A machine with virtualization can host numerous
applications, including those that run on different operating systems, on a single
platform. In essence, the host operating system can support a number of virtual
machines (VM) , each of which has the characteristics of a particular OS and, in some
versions of virtualization, the characteristics of a particular hardware platform.

 The VM approach is becoming a common way for businesses and individuals
to deal with legacy applications and to optimize their hardware usage by maximizing
the number of kinds of applications that a single computer can handle [GEER09].
Commercial VM offerings by companies such as VMware and Microsoft are widely
used, with millions of copies having been sold. In addition to their use in server
environments, these VM technologies also are used in desktop environments to run
multiple operating systems, typically Windows and Linux.

 The specific architecture of the VM approach varies among vendors.
 Figure 2.13 shows a typical arrangement. The virtual machine monitor (VMM) , or
hypervisor , runs on top of (or is incorporated into) the host OS. The VMM sup-
ports VMs, which are emulated hardware devices. Each VM runs a separate OS.
The VMM handles each operating system’s communications with the processor,
the storage medium, and the network. To execute programs, the VMM hands off
the processor control to a virtual OS on a VM. Most VMs use virtualized network

Shared hardware

Host operating system

Virtual machine monitor

Virtual
machine 1

Virtual
machine 2

Virtual
machine n

Applications
and

processes

Applications
and

processes

Applications
and

processes

Figure 2.13 Virtual Memory Concept

2.5 / VIRTUAL MACHINES 75

 connections to communicate with one another, when such communication is needed.
Key to the success of this approach is that the VMM provides a layer between soft-
ware environments and the underlying hardware and host OS that is programma-
ble, transparent to the software above it, and makes efficient use of the hardware
below it.

Virtual Machine Architecture 2

 Recall from Section 2.1 (see Figure 2.1) the discussion of the application program-
ming interface, the application binary interface, and the instruction set archi-
tecture. Let us use these interface concepts to clarify the meaning of machine in
the term virtual machine. Consider a process executing a compiled application
 program. From the perspective of the process , the machine on which it executes
consists of the virtual memory space assigned to the process, the processor reg-
isters it may use, the user-level machine instructions it may execute, and the OS
system calls it may invoke for I/O. Thus the ABI defines the machine as seen by
a process.

 From the perspective of an application , the machine characteristics are speci-
fied by high-level language capabilities, and OS and system library calls. Thus, the
API defines the machine for an application.

 For the operating system , the machine hardware defines the system that
 supports the operation of the OS and the numerous processes that execute con-
currently. These processes share a file system and other I/O resources. The system
 allocates real memory and I/O resources to the processes and allows the processes
to interact with their resources. From the OS perspective, therefore, it is the ISA
that provides the interface between the system and machine.

 With these considerations in mind, we can consider two architectural
approaches to implementing virtual machines: process VMs and system VMs.

PROCESS VIRTUAL MACHINE In essence, a process VM presents an ABI to an
application process, translates a set of OS and user-level instructions composing one
platform to those of another (Figure 2.14a). A process VM is a virtual platform for
executing a single process. As such, the process VM is created when the process is
created and terminated when the process is terminated.

 In order to provide cross-platform portability, a common implementation of
the process VM architecture is as part of an overall HLL application environment.
The resulting ABI does not correspond to any specific machine. Instead, the ABI
specification is designed to easily support a given HLL or set of HLLs and to be eas-
ily portable to a variety of ISAs. The HLL VM includes a front-end compiler that
generates a virtual binary code for execution or interpretation. This code can then
be executed on any machine that has the process VM implemented.

 Two widely used examples of this approach are the Java VM architecture and
the Microsoft Common Language Infrastructure, which is the foundation of the
.NET framework.

2 Much of the discussion that follows is based on [SMIT05].

76 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

SYSTEM VIRTUAL MACHINE In a system VM, virtualizing software translates the
ISA used by one hardware platform to that of another. Note in Figure 2.14a that
the virtualizing software in the process VM approach makes use of the services of
the host OS, while in the system VM approach there is logically no separate host
OS, rather the host system OS incorporates the VM capability. In the system VM
case, the virtualizing software is host to a number of guest operating systems, with
each VM including its own OS. The VMM emulates the hardware ISA so that the
guest software can potentially execute a different ISA from the one implemented
on the host.

 With the system VM approach, a single hardware platform can support mul-
tiple, isolated guest OS environments simultaneously. This approach provides a
number of benefits, including application portability, support of legacy systems
without the need to maintain legacy hardware, and security by means of isolation of
each guest OS environment from the other guest environments.

 A variant on the architecture shown in Figure 2.14b is referred to as a hosted
VM. In this case, the VMM is built on top of an existing host OS. The VMM relies
on the host OS to provide device drivers and other lower-level services. An example
of a hosted VM is the VMware GSX server.

(a) Process VM

(b) System VM

Hardware

Virtualizing
architecture

Application
process

Virtualizing
software

OS

Guest

VM
software

Host

ABI

ABI

Application
process

Process
virtual

machine

Application
view

Hardware

Applications

Virtualizing
software

OS

Applications

System
virtual

machine

OS

VMM

Host

Guest

ISA

API

Figure 2.14 Process and System Virtual Machines

2.6 / OS DESIGN CONSIDERATIONS FOR MULTIPROCESSOR AND MULTICORE 77

2.6 OS DESIGN CONSIDERATIONS FOR MULTIPROCESSOR
AND MULTICORE

Symmetric Multiprocessor OS Considerations

 In an SMP system, the kernel can execute on any processor, and typically each
processor does self-scheduling from the pool of available processes or threads.
The kernel can be constructed as multiple processes or multiple threads, allowing
 portions of the kernel to execute in parallel. The SMP approach complicates the OS.
The OS designer must deal with the complexity due to sharing resources (like data
structures) and coordinating actions (like accessing devices) from multiple parts of
the OS executing at the same time. Techniques must be employed to resolve and
synchronize claims to resources.

 An SMP operating system manages processor and other computer resources
so that the user may view the system in the same fashion as a multiprogramming
uniprocessor system. A user may construct applications that use multiple processes
or multiple threads within processes without regard to whether a single processor
or multiple processors will be available. Thus, a multiprocessor OS must provide all
the functionality of a multiprogramming system plus additional features to accom-
modate multiple processors. The key design issues include the following:

 • Simultaneous concurrent processes or threads: Kernel routines need to be
 reentrant to allow several processors to execute the same kernel code simulta-
neously. With multiple processors executing the same or different parts of the
kernel, kernel tables and management structures must be managed properly
to avoid data corruption or invalid operations.

 • Scheduling: Any processor may perform scheduling, which complicates the
task of enforcing a scheduling policy and assuring that corruption of the sched-
uler data structures is avoided. If kernel-level multithreading is used, then the
opportunity exists to schedule multiple threads from the same process simul-
taneously on multiple processors. Multiprocessor scheduling is examined in
 Chapter 10 .

 • Synchronization: With multiple active processes having potential access to
shared address spaces or shared I/O resources, care must be taken to provide
effective synchronization. Synchronization is a facility that enforces mutual
exclusion and event ordering. A common synchronization mechanism used in
multiprocessor operating systems is locks, described in Chapter 5 .

 • Memory management: Memory management on a multiprocessor must deal
with all of the issues found on uniprocessor computers and is discussed in Part
Three. In addition, the OS needs to exploit the available hardware parallelism
to achieve the best performance. The paging mechanisms on different proc-
essors must be coordinated to enforce consistency when several processors
share a page or segment and to decide on page replacement. The reuse of
physical pages is the biggest problem of concern; that is, it must be guaranteed
that a physical page can no longer be accessed with its old contents before the
page is put to a new use.

78 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 • Reliability and fault tolerance: The OS should provide graceful degradation
in the face of processor failure. The scheduler and other portions of the OS
must recognize the loss of a processor and restructure management tables
 accordingly.

 Because multiprocessor OS design issues generally involve extensions to
 solutions to multiprogramming uniprocessor design problems, we do not treat
 multiprocessor operating systems separately. Rather, specific multiprocessor issues
are addressed in the proper context throughout this book.

Multicore OS Considerations

 The considerations for multicore systems include all the design issues discussed so
far in this section for SMP systems. But additional concerns arise. The issue is one
of the scale of the potential parallelism. Current multicore vendors offer systems
with up to eight cores on a single chip. With each succeeding processor technology
generation, the number of cores and the amount of shared and dedicated cache
memory increases, so that we are now entering the era of “many-core” systems.

 The design challenge for a many-core multicore system is to efficiently
 harness the multicore processing power and intelligently manage the substantial
on-chip resources efficiently. A central concern is how to match the inherent paral-
lelism of a many-core system with the performance requirements of applications.
The potential for parallelism in fact exists at three levels in contemporary multicore
system. First, there is hardware parallelism within each core processor, known as
instruction level parallelism, which may or may not be exploited by application pro-
grammers and compilers. Second, there is the potential for multiprogramming and
multithreaded execution within each processor. Finally, there is the potential for
a single application to execute in concurrent processes or threads across multiple
cores. Without strong and effective OS support for the last two types of parallelism
just mentioned, hardware resources will not be efficiently used.

 In essence, then, since the advent of multicore technology, OS designers have
been struggling with the problem of how best to extract parallelism from computing
workloads. A variety of approaches are being explored for next-generation operat-
ing systems. We introduce two general strategies in this section and consider some
details in later chapters.

PARALLELISM WITHIN APPLICATIONS Most applications can, in principle, be
subdivided into multiple tasks that can execute in parallel, with these tasks then
being implemented as multiple processes, perhaps each with multiple threads. The
difficulty is that the developer must decide how to split up the application work into
independently executable tasks. That is, the developer must decide what pieces can
or should be executed asynchronously or in parallel. It is primarily the compiler and
the programming language features that support the parallel programming design
process. But, the OS can support this design process, at minimum, by efficiently
allocating resources among parallel tasks as defined by the developer.

 Perhaps the most effective initiative to support developers is implemented in
the latest release of the UNIX-based Mac OS X operating system. Mac OS X 10.6
includes a multicore support capability known as Grand Central Dispatch (GCD).

2.6 / OS DESIGN CONSIDERATIONS FOR MULTIPROCESSOR AND MULTICORE 79

GCD does not help the developer decide how to break up a task or application into
separate concurrent parts. But once a developer has identified something that can
be split off into a separate task, GCD makes it as easy and noninvasive as possible
to actually do so.

 In essence, GCD is a thread pool mechanism, in which the OS maps tasks onto
threads representing an available degree of concurrency (plus threads for block-
ing on I/O). Windows also has a thread pool mechanism (since 2000), and thread
pools have been heavily used in server applications for years. What is new in GCD
is the extension to programming languages to allow anonymous functions (called
blocks) as a way of specifying tasks. GCD is hence not a major evolutionary step.
Nevertheless, it is a new and valuable tool for exploiting the available parallelism of
a multicore system.

 One of Apple’s slogans for GCD is “islands of serialization in a sea of concurrency.”
That captures the practical reality of adding more concurrency to run-of-the-mill
desktop applications. Those islands are what isolate developers from the thorny
problems of simultaneous data access, deadlock, and other pitfalls of multithreading.
Developers are encouraged to identify functions of their applications that would be
better executed off the main thread, even if they are made up of several sequential or
otherwise partially interdependent tasks. GCD makes it easy to break off the entire
unit of work while maintaining the existing order and dependencies between subtasks.
In later chapters, we look at some of the details of GCD.

VIRTUAL MACHINE APPROACH An alternative approach is to recognize that
with the ever-increasing number of cores on a chip, the attempt to multiprogram
individual cores to support multiple applications may be a misplaced use of
resources [JACK10]. If instead, we allow one or more cores to be dedicated to a
particular process and then leave the processor alone to devote its efforts to that
process, we avoid much of the overhead of task switching and scheduling decisions.
The multicore OS could then act as a hypervisor that makes a high-level decision
to allocate cores to applications but does little in the way of resource allocation
beyond that.

 The reasoning behind this approach is as follows. In the early days of com-
puting, one program was run on a single processor. With multiprogramming,
each application is given the illusion that it is running on a dedicated processor.
Multiprogramming is based on the concept of a process, which is an abstraction of
an execution environment. To manage processes, the OS requires protected space,
free from user and program interference. For this purpose, the distinction between
kernel mode and user mode was developed. In effect, kernel mode and user mode
abstracted the processor into two processors. With all these virtual processors, how-
ever, come struggles over who gets the attention of the real processor. The overhead
of switching between all these processors starts to grow to the point where respon-
siveness suffers, especially when multiple cores are introduced. But with many-core
systems, we can consider dropping the distinction between kernel and user mode.
In this approach, the OS acts more like a hypervisor. The programs themselves take
on many of the duties of resource management. The OS assigns an application a
processor and some memory, and the program itself, using metadata generated by
the compiler, would best know how to use these resources.

80 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

2.7 MICROSOFT WINDOWS OVERVIEW

History

 The story of Windows begins with a very different OS, developed by Microsoft for
the first IBM personal computer and referred to as MS-DOS. The initial version,
MS-DOS 1.0, was released in August 1981. It consisted of 4000 lines of assem-
bly language source code and ran in 8 Kbytes of memory using the Intel 8086
 microprocessor.

 The IBM PC was an important stage in a continuing revolution in computing
that has expanded computing from the data center of the 1960s, to the departmental
minicomputer of the 1970s, and to the desktop in the 1980s. The revolution has con-
tinued with computing moving into the briefcase in the 1990s, and into our pockets
during the most recent decade.

 Microsoft’s initial OS ran a single application at a time, using a command line
interface to control the system. It took a long time for Microsoft to develop a true
GUI interface for the PC; on their third try they succeeded. The 16-bit Windows
3.0 shipped in 1990 and instantly became successful, selling a million copies in six
months. Windows 3.0 was implemented as a layer on top of MS-DOS and suffered
from the limitations of that primitive system. Five years later, Microsoft shipped a
32-bit version, Windows 95, which was also very successful and led to the develop-
ment of additional versions: Windows 98 and Windows Me.

 Meanwhile, it had become clear to Microsoft that the MS-DOS platform could
not sustain a truly modern OS. In 1989 Microsoft hired Dave Cutler, who had devel-
oped the very successful RSX-11M and VAX/VMS operating systems at Digital
Equipment Corporation. Cutler’s charter was to develop a modern OS, which was
portable to architectures other than the Intel x86 family, and yet compatible with
the OS/2 system that Microsoft was jointly developing with IBM, as well as the port-
able UNIX standard, POSIX. This system was christened NT (New Technology).

 The first version of Windows NT (3.1) was released in 1993, with the same GUI
as Windows 3.1, the follow-on to Windows 3.0. However, NT 3.1 was a new 32-bit
OS with the ability to support older DOS and Windows applications as well as pro-
vide OS/2 support. Several versions of NT 3.x followed with support for additional
hardware platforms. In 1996, Microsoft released NT 4.0 with the same user interface
as Windows 95. In 2000, Microsoft introduced the next major upgrade of the NT OS:
Windows 2000. The underlying Executive and Kernel architecture is fundamentally
the same as in NT 3.1, but new features have been added. The emphasis in Windows
2000 was the addition of services and functions to support distributed processing.
The central element of Windows 2000’s new features was Active Directory, which
is a distributed directory service able to map names of arbitrary objects to any kind
of information about those objects. Windows 2000 also added the plug-and-play
and power-management facilities that were already in Windows 98, the successor to
Windows 95. These features are particularly important for laptop computers.

 In 2001, a new desktop version of NT was released, known as Windows XP.
The goal of Windows XP was to finally replace the versions of Windows based on
MS-DOS with an OS based on NT. In 2007, Microsoft shipped Windows Vista for
the desktop and a short time later, Windows Server 2008. In 2009, they shipped

2.7 / MICROSOFT WINDOWS OVERVIEW 81

Windows 7 and Windows Server 2008 R2. Despite the difference in naming, the
client and server versions of these systems use many of the same files, but with addi-
tional features and capabilities enabled for servers.

 Over the years, NT has attempted to support multiple processor architectures;
the Intel i860 was the original target for NT as well as the x86. Subsequently, NT
added support for the Digital Alpha architecture, the PowerPC, and the MIPS.
Later came the Intel IA64 (Itanium) and the 64-bit version of the x86, based on
the AMD64 processor architecture. Windows 7 supports only x86 and AMD64.
Windows Server 2008 R2 supports only AMD64 and IA64—but Microsoft has
announced that it will end support for IA64 in future releases. All the other proces-
sor architectures have failed in the market, and today only the x86, AMD64, and
ARM architectures are viable. Microsoft’s support for ARM is limited to their
Windows CE OS, which runs on phones and handheld devices. Windows CE has
little relationship to the NT-based Windows that runs on slates, netbooks/laptops,
desktops, and servers.

 Microsoft has announced that it is developing a version of NT that targets
cloud computing: Windows Azure. Azure includes a number of features that are
specific to the requirements of public and private clouds. Though it is closely related
to Windows Server, it does not share files in the same way that the Windows client
and server versions do.

The Modern OS

 Modern operating systems, such as today’s Windows and UNIX (with all its flavors
like Solaris, Linux, and MacOS X), must exploit the capabilities of all the billions
of transistors on each silicon chip. They must work with multiple 32-bit and 64-bit
CPUs, with adjunct GPUs, DSPs, and fixed function units. They must provide sup-
port for sophisticated input/output (multiple touch-sensitive displays, cameras,
microphones, biometric and other sensors) and handle a variety of data challenges
(streaming media, photos, scientific number crunching, search queries)—all while
giving a human being a responsive, real-time experience with the computing system.

 To handle these requirements, the computer cannot be doing only one thing
at a time. Unlike the early days of the PC, when the OS ran a single application at
a time, hundreds of activities are taking place to provide the modern computing
experience. The OS can no longer just switch to the application and step away until
it is needed; it must aggressively manage the system and coordinate between all the
competing computations that are taking place often simultaneously on the multiple
CPUs, GPUs, and DSPs that may be present in a modern computing environment.
Thus all modern operating systems have multitasking capability, even though they
may be acting on behalf of only a single human being (called the user).

 Windows is a sophisticated multitasking OS, designed to manage the com-
plexity of the modern computing environment, provide a rich platform for appli-
cation developers, and support a rich set of experiences for users. Like Solaris,
Windows is designed to have the features that enterprises need, while at the same
time Windows, like MacOS, provides the simplicity and ease-of-use that consumers
require. In the following sections we will present an overview of the fundamental
structure and capabilities of Windows.

82 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Architecture

 Figure 2.15 illustrates the overall structure of Windows 7; all releases of Windows
based on NT have essentially the same structure at this level of detail.

 As with virtually all operating systems, Windows separates application-oriented
software from the core OS software. The latter, which includes the Executive, the
Kernel, device drivers, and the hardware abstraction layer, runs in kernel mode.
Kernel mode software has access to system data and to the hardware. The remaining
software, running in user mode, has limited access to system data.

OPERATING SYSTEM ORGANIZATION Windows has a highly modular architecture.
Each system function is managed by just one component of the OS. The rest of the
OS and all applications access that function through the responsible component using
standard interfaces. Key system data can only be accessed through the appropriate

User mode

Kernel mode

Session
manager

System
threads

System service dispatcher

Winlogon

Lsass

Lsass = local security authentication server
POSIX = portable operating system interface
GDI = graphics device interface
DLL = dynamic link libraries

Colored area indicates Executive

System support
processes

Service processes Applications

Environment
subsystems

Service control
manager

Spooler

Winmgmt.exe

SVChost.exe

User
application

Subsytem DLLs Win32

Ntdll.dll

Windows
explorer

Task manager

(Kernel-mode callable interfaces)
Win32 USER,

GDI

Graphics
drivers

Hardware abstraction layer (HAL)

File system
 cache

O
bject m

anager

Plug-and-play
m

anager

Pow
er m

anager

Security reference
m

onitor

V
irtual m

em
ory

Processes and
threads

C
onfiguration

m
anager (registry)

L
ocal procedure

call

POSIX

Device
and file
system
drivers

I/O manager

Kernel

Services.exe

Figure 2.15 Windows and Windows Vista Architecture [RUSS11]

2.7 / MICROSOFT WINDOWS OVERVIEW 83

function. In principle, any module can be removed, upgraded, or replaced without
rewriting the entire system or its standard application program interfaces (APIs).

 The kernel-mode components of Windows are the following:

 • Executive: Contains the core OS services, such as memory management, pro-
cess and thread management, security, I/O, and interprocess communication.

 • Kernel: Controls execution of the processors. The Kernel manages thread
scheduling, process switching, exception and interrupt handling, and multi-
processor synchronization. Unlike the rest of the Executive and the user level,
the Kernel’s own code does not run in threads.

 • Hardware abstraction layer (HAL): Maps between generic hardware com-
mands and responses and those unique to a specific platform. It isolates
the OS from platform-specific hardware differences. The HAL makes each
 computer’s system bus, direct memory access (DMA) controller, inter-
rupt controller, system timers, and memory controller look the same to the
Executive and Kernel components. It also delivers the support needed for
SMP, explained subsequently.

 • Device drivers: Dynamic libraries that extend the functionality of the
Executive. These include hardware device drivers that translate user I/O func-
tion calls into specific hardware device I/O requests and software components
for implementing file systems, network protocols, and any other system exten-
sions that need to run in kernel mode.

 • Windowing and graphics system: Implements the GUI functions, such as deal-
ing with windows, user interface controls, and drawing.

 The Windows Executive includes components for specific system functions
and provides an API for user-mode software. Following is a brief description of
each of the Executive modules:

 • I/O manager: Provides a framework through which I/O devices are accessible
to applications, and is responsible for dispatching to the appropriate device
drivers for further processing. The I/O manager implements all the Windows
I/O APIs and enforces security and naming for devices, network protocols,
and file systems (using the object manager). Windows I/O is discussed in
 Chapter 11 .

 • Cache manager: Improves the performance of file-based I/O by causing
recently referenced file data to reside in main memory for quick access, and
deferring disk writes by holding the updates in memory for a short time before
sending them to the disk in more efficient batches.

 • Object manager: Creates, manages, and deletes Windows Executive objects
that are used to represent resources such as processes, threads, and synchroni-
zation objects. It enforces uniform rules for retaining, naming, and setting the
security of objects. The object manager also creates the entries in each proc-
esses’ handle table, which consist of access control information and a pointer
to the object. Windows objects are discussed later in this section.

 • Plug-and-play manager: Determines which drivers are required to support a
particular device and loads those drivers.

84 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 • Power manager: Coordinates power management among various devices
and can be configured to reduce power consumption by shutting down idle
devices, putting the processor to sleep, and even writing all of memory to disk
and shutting off power to the entire system.

 • Security reference monitor: Enforces access-validation and audit-generation
rules. The Windows object-oriented model allows for a consistent and uni-
form view of security, right down to the fundamental entities that make up the
Executive. Thus, Windows uses the same routines for access validation and
for audit checks for all protected objects, including files, processes, address
spaces, and I/O devices. Windows security is discussed in Chapter 15 .

 • Virtual memory manager: Manages virtual addresses, physical memory, and
the paging files on disk. Controls the memory management hardware and data
structures which map virtual addresses in the process’s address space to physi-
cal pages in the computer’s memory. Windows virtual memory management is
described in Chapter 8 .

 • Process/thread manager: Creates, manages, and deletes process and thread
objects. Windows process and thread management are described in Chapter 4 .

 • Configuration manager: Responsible for implementing and managing the
 system registry, which is the repository for both system-wide and per-user
 settings of various parameters.

 • Advanced local procedure call (ALPC) facility: Implements an efficient cross-
process procedure call mechanism for communication between local processes
implementing services and subsystems. Similar to the remote procedure call
(RPC) facility used for distributed processing.

USER-MODE PROCESSES Four basic types of user-mode processes are supported
by Windows:

 • Special system processes: User-mode services needed to manage the system,
such as the session manager, the authentication subsystem, the service man-
ager, and the logon process.

 • Service processes: The printer spooler, the event logger, user-mode compo-
nents that cooperate with device drivers, various network services, and many,
many others. Services are used by both Microsoft and external software devel-
opers to extend system functionality as they are the only way to run background
user-mode activity on a Windows system.

 • Environment subsystems: Provide different OS personalities (environments).
The supported subsystems are Win32 and POSIX. Each environment sub-
system includes a subsystem process shared among all applications using the
subsystem and dynamic link libraries (DLLs) that convert the user application
calls to ALPC calls on the subsystem process, and/or native Windows calls.

 • User applications: Executables (EXEs) and DLLs that provide the functional-
ity users run to make use of the system. EXEs and DLLs are generally targeted
at a specific environment subsystem; although some of the programs that are
provided as part of the OS use the native system interfaces (NT API). There is
also support for running 32-bit programs on 64-bit systems.

2.7 / MICROSOFT WINDOWS OVERVIEW 85

 Windows is structured to support applications written for multiple OS personali-
ties. Windows provides this support using a common set of kernel mode components
that underlie the OS environment subsystems. The implementation of each environ-
ment subsystem includes a separate process, which contains the shared data structures,
privileges, and Executive object handles needed to implement a particular personal-
ity. The process is started by the Windows Session Manager when the first application
of that type is started. The subsystem process runs as a system user, so the Executive
will protect its address space from processes run by ordinary users.

 An environment subsystem provides a graphical or command-line user inter-
face that defines the look and feel of the OS for a user. In addition, each subsys-
tem provides the API for that particular environment. This means that applications
created for a particular operating environment need only be recompiled to run on
Windows. Because the OS interface that they see is the same as that for which they
were written, the source code does not need to be modified.

Client/Server Model

 The Windows OS services, the environment subsystems, and the applications are
structured using the client/server computing model, which is a common model for
distributed computing and which is discussed in Part Six. This same architecture can
be adopted for use internally to a single system, as is the case with Windows.

 The native NT API is a set of kernel-based services which provide the core
abstractions used by the system, such as processes, threads, virtual memory, I/O,
and communication. Windows provides a far richer set of services by using the
client/server model to implement functionality in user-mode processes. Both the
environment subsystems and the Windows user-mode services are implemented as
processes that communicate with clients via RPC. Each server process waits for a
request from a client for one of its services (e.g., memory services, process creation
services, or networking services). A client, which can be an application program
or another server program, requests a service by sending a message. The message
is routed through the Executive to the appropriate server. The server performs
the requested operation and returns the results or status information by means of
another message, which is routed through the Executive back to the client.

 Advantages of a client/server architecture include the following:

 • It simplifies the Executive. It is possible to construct a variety of APIs im-
plemented in user-mode servers without any conflicts or duplications in the
Executive. New APIs can be added easily.

 • It improves reliability. Each new server runs outside of the kernel, with its
own partition of memory, protected from other servers. A single server can
fail without crashing or corrupting the rest of the OS.

 • It provides a uniform means for applications to communicate with services via
RPCs without restricting flexibility. The message-passing process is hidden
from the client applications by function stubs, which are small pieces of code
which wrap the RPC call. When an application makes an API call to an envi-
ronment subsystem or a service, the stub in the client application packages the
parameters for the call and sends them as a message to the server process that
implements the call.

86 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 • It provides a suitable base for distributed computing. Typically, distributed
computing makes use of a client/server model, with remote procedure calls
implemented using distributed client and server modules and the exchange of
messages between clients and servers. With Windows, a local server can pass
a message on to a remote server for processing on behalf of local client appli-
cations. Clients need not know whether a request is being serviced locally or
remotely. Indeed, whether a request is serviced locally or remotely can change
dynamically based on current load conditions and on dynamic configuration
changes.

Threads and SMP

 Two important characteristics of Windows are its support for threads and for
symmetric multiprocessing (SMP), both of which were introduced in Section 2.4 .
[RUSS11] lists the following features of Windows that support threads and SMP:

 • OS routines can run on any available processor, and different routines can
execute simultaneously on different processors.

 • Windows supports the use of multiple threads of execution within a single
process. Multiple threads within the same process may execute on different
processors simultaneously.

 • Server processes may use multiple threads to process requests from more than
one client simultaneously.

 • Windows provides mechanisms for sharing data and resources between proc-
esses and flexible interprocess communication capabilities.

Windows Objects

 Though the core of Windows is written in C, the design principles followed draw
heavily on the concepts of object-oriented design. This approach facilitates the shar-
ing of resources and data among processes and the protection of resources from
unauthorized access. Among the key object-oriented concepts used by Windows are
the following:

 • Encapsulation: An object consists of one or more items of data, called
 attributes, and one or more procedures that may be performed on those data,
called services. The only way to access the data in an object is by invoking one
of the object’s services. Thus, the data in the object can easily be protected
from unauthorized use and from incorrect use (e.g., trying to execute a non-
executable piece of data).

 • Object class and instance: An object class is a template that lists the attributes
and services of an object and defines certain object characteristics. The OS can
create specific instances of an object class as needed. For example, there is a
single process object class and one process object for every currently active
process. This approach simplifies object creation and management.

 • Inheritance: Although the implementation is hand coded, the Executive uses
inheritance to extend object classes by adding new features. Every Executive

2.7 / MICROSOFT WINDOWS OVERVIEW 87

class is based on a base class which specifies virtual methods that support
 creating, naming, securing, and deleting objects. Dispatcher objects are
Executive objects that inherit the properties of an event object, so they can
use common synchronization methods. Other specific object types, such as the
device class, allow classes for specific devices to inherit from the base class,
and add additional data and methods.

 • Polymorphism: Internally, Windows uses a common set of API functions to
manipulate objects of any type; this is a feature of polymorphism, as defined
in Appendix D . However, Windows is not completely polymorphic because
there are many APIs that are specific to a single object type.

 The reader unfamiliar with object-oriented concepts should review Appendix D .
 Not all entities in Windows are objects. Objects are used in cases where data

are intended for user mode access or when data access is shared or restricted.
Among the entities represented by objects are files, processes, threads, semaphores,
timers, and graphical windows. Windows creates and manages all types of objects in
a uniform way, via the object manager. The object manager is responsible for creat-
ing and destroying objects on behalf of applications and for granting access to an
object’s services and data.

 Each object within the Executive, sometimes referred to as a kernel object
(to distinguish from user-level objects not of concern to the Executive), exists as
a memory block allocated by the kernel and is directly accessible only by kernel
mode components. Some elements of the data structure (e.g., object name, security
parameters, usage count) are common to all object types, while other elements are
specific to a particular object type (e.g., a thread object’s priority). Because these
object data structures are in the part of each process’s address space accessible only
by the kernel, it is impossible for an application to reference these data structures
and read or write them directly. Instead, applications manipulate objects indirectly
through the set of object manipulation functions supported by the Executive. When
an object is created, the application that requested the creation receives back a
 handle for the object. In essence, a handle is an index into a per-process Executive
table containing a pointer to the referenced object. This handle can then be used
by any thread within the same process to invoke Win32 functions that work with
objects, or can be duplicated into other processes.

 Objects may have security information associated with them, in the form
of a Security Descriptor (SD). This security information can be used to restrict
access to the object based on contents of a token object which describes a par-
ticular user. For example, a process may create a named semaphore object with
the intent that only certain users should be able to open and use that semaphore.
The SD for the semaphore object can list those users that are allowed (or denied)
access to the semaphore object along with the sort of access permitted (read,
write, change, etc.).

 In Windows, objects may be either named or unnamed. When a process
 creates an unnamed object, the object manager returns a handle to that object, and
the handle is the only way to refer to it. Handles can be inherited by child processes,
or duplicated between processes. Named objects are also given a name that other
unrelated processes can use to obtain a handle to the object. For example, if proc-

88 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

ess A wishes to synchronize with process B, it could create a named event object
and pass the name of the event to B. Process B could then open and use that event
object. However, if A simply wished to use the event to synchronize two threads
within itself, it would create an unnamed event object, because there is no need for
other processes to be able to use that event.

 There are two categories of objects used by Windows for synchronizing the
use of the processor:

 • Dispatcher objects: The subset of Executive objects which threads can wait on
to control the dispatching and synchronization of thread-based system opera-
tions. These are described in Chapter 6 .

 • Control objects: Used by the Kernel component to manage the operation of
the processor in areas not managed by normal thread scheduling. Table 2.4
lists the Kernel control objects.

 Windows is not a full-blown object-oriented OS. It is not implemented in
an object-oriented language. Data structures that reside completely within one
Executive component are not represented as objects. Nevertheless, Windows illus-
trates the power of object-oriented technology and represents the increasing trend
toward the use of this technology in OS design.

What Is New in Windows 7

 The core architecture of Windows has been very stable; however, at each release
there are new features and improvements made even at the lower levels of the sys-
tem. Many of the changes in Windows are not visible in the features themselves,
but in the performance and stability of the system. These are due to changes in
the engineering behind Windows. Other improvements are due to new features, or
improvements to existing features:

Table 2.4 Windows Kernel Control Objects

 Asynchronous Procedure Call Used to break into the execution of a specified thread and to cause a
 procedure to be called in a specified processor mode.

 Deferred Procedure Call Used to postpone interrupt processing to avoid delaying hardware inter-
rupts. Also used to implement timers and interprocessor communication.

 Interrupt Used to connect an interrupt source to an interrupt service routine by
means of an entry in an Interrupt Dispatch Table (IDT). Each processor
has an IDT that is used to dispatch interrupts that occur on that processor.

 Process Represents the virtual address space and control information necessary
for the execution of a set of thread objects. A process contains a pointer to
an address map, a list of ready threads containing thread objects, a list of
threads belonging to the process, the total accumulated time for all threads
executing within the process, and a base priority.

 Thread Represents thread objects, including scheduling priority and quantum, and
which processors the thread may run on.

 Profile Used to measure the distribution of run time within a block of code. Both
user and system code can be profiled.

2.7 / MICROSOFT WINDOWS OVERVIEW 89

 • Engineering improvements: The performance of hundreds of key scenarios,
such as opening a file from the GUI, are tracked and continuously character-
ized to identify and fix problems. The system is now built in layers which can
be separately tested, improving modularity and reducing complexity.

 • Performance improvements: The amount of memory required has been
reduced, both for clients and servers. The VMM is more aggressive about
limiting the memory use of runaway processes (see Section 8.5). Background
processes can arrange to start upon an event trigger, such as a plugging in a
camera, rather than running continuously.

 • Reliability improvements: The user-mode heap is more tolerant of memory
allocation errors by C/C++ programmers, such as continuing to use memory
after it is freed. Programs that make such errors are detected and the heap
allocation policies are modified for that program to defer freeing memory and
avoid corruption of the program’s data.

 • Energy efficiency: Many improvements have been made to the energy effi-
ciency of Windows. On servers, unused processors can be “parked,” reducing
their energy use. All Windows systems are more efficient in how the timers
work; avoiding timer interrupts and the associated background activity allows
the processors to remain idle longer, which allows modern processors to con-
sume less energy. Windows accomplishes this by coalescing timer interrupts
into batches.

 • Security: Windows 7 builds on the security features in Windows Vista, which
added integrity levels to the security model, provided BitLocker volume
encryption (see Section 15.6), and limited privileged actions by ordinary users.
BitLocker is now easier to set up and use, and privileged actions result in
many fewer annoying GUI pop-ups.

 • Thread improvements: The most interesting Windows 7 changes were in the
Kernel. The number of logical CPUs available on each system is growing
 dramatically. Previous versions of Windows limited the number of CPUs to
64, because of the bitmasks used to represent values like processor affinity
(see Section 4.4). Windows 7 can support hundreds of CPUs. To ensure that
the performance of the system scaled with the number of CPUs, major
 improvements were made to the Kernel-scheduling code to break apart locks
and reduce contention. As the number of available CPUs increase, new
 programming environments are being developed to support the finer-grain
parallelism than is available with threads. Windows 7 supports a form of User-
Mode Scheduling which separates the user-mode and kernel-mode portions
of threads, allowing the user-mode portions to yield the CPU without enter-
ing the Kernel scheduler. Finally, Windows Server 2008 R2 introduced
Dynamic Fair Share Scheduling (DFSS) to allow multiuser servers to limit
how much one user can interfere with another. DFSS keeps a user with
20 running threads from getting twice as much processor time as a user with
only 10 running threads.

90 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

2.8 TRADITIONAL UNIX SYSTEMS

History

 The history of UNIX is an oft-told tale and will not be repeated in great detail here.
Instead, we provide a brief summary.

 UNIX was initially developed at Bell Labs and became operational on a
PDP-7 in 1970. Some of the people involved at Bell Labs had also participated in
the time-sharing work being done at MIT’s Project MAC. That project led to the
development of first CTSS and then Multics. Although it is common to say that
the original UNIX was a scaled-down version of Multics, the developers of UNIX
actually claimed to be more influenced by CTSS [RITC78]. Nevertheless, UNIX
incorporated many ideas from Multics.

 Work on UNIX at Bell Labs, and later elsewhere, produced a series of versions
of UNIX. The first notable milestone was porting the UNIX system from the PDP-7 to
the PDP-11. This was the first hint that UNIX would be an OS for all computers. The
next important milestone was the rewriting of UNIX in the programming language
C. This was an unheard-of strategy at the time. It was generally felt that something as
complex as an OS, which must deal with time-critical events, had to be written exclu-
sively in assembly language. Reasons for this attitude include the following:

 • Memory (both RAM and secondary store) was small and expensive by today’s
standards, so effective use was important. This included various techniques for
overlaying memory with different code and data segments, and self-modifying
code.

 • Even though compilers had been available since the 1950s, the computer
industry was generally skeptical of the quality of automatically generated
code. With resource capacity small, efficient code, both in terms of time and
space, was essential.

 • Processor and bus speeds were relatively slow, so saving clock cycles could
make a substantial difference in execution time.

 The C implementation demonstrated the advantages of using a high-level
 language for most if not all of the system code. Today, virtually all UNIX imple-
mentations are written in C.

 These early versions of UNIX were popular within Bell Labs. In 1974, the
UNIX system was described in a technical journal for the first time [RITC74]. This
spurred great interest in the system. Licenses for UNIX were provided to commer-
cial institutions as well as universities. The first widely available version outside Bell
Labs was Version 6, in 1976. The follow-on Version 7, released in 1978, is the ances-
tor of most modern UNIX systems. The most important of the non-AT&T systems
to be developed was done at the University of California at Berkeley, called UNIX
BSD (Berkeley Software Distribution), running first on PDP and then VAX com-
puters. AT&T continued to develop and refine the system. By 1982, Bell Labs had
combined several AT&T variants of UNIX into a single system, marketed com-
mercially as UNIX System III. A number of features was later added to the OS to
produce UNIX System V.

2.8 / TRADITIONAL UNIX SYSTEMS 91

Description

 Figure 2.16 provides a general description of the classic UNIX architecture. The
underlying hardware is surrounded by the OS software. The OS is often called the
system kernel, or simply the kernel, to emphasize its isolation from the user and appli-
cations. It is the UNIX kernel that we will be concerned with in our use of UNIX as
an example in this book. UNIX also comes equipped with a number of user services
and interfaces that are considered part of the system. These can be grouped into
the shell, other interface software, and the components of the C compiler (compiler,
assembler, loader). The layer outside of this consists of user applications and the user
interface to the C compiler.

 A closer look at the kernel is provided in Figure 2.17 . User programs can
invoke OS services either directly or through library programs. The system call
interface is the boundary with the user and allows higher-level software to gain
access to specific kernel functions. At the other end, the OS contains primitive rou-
tines that interact directly with the hardware. Between these two interfaces, the
system is divided into two main parts, one concerned with process control and the
other concerned with file management and I/O. The process control subsystem is
responsible for memory management, the scheduling and dispatching of processes,
and the synchronization and interprocess communication of processes. The file sys-
tem exchanges data between memory and external devices either as a stream of
characters or in blocks. To achieve this, a variety of device drivers are used. For
block-oriented transfers, a disk cache approach is used: A system buffer in main
memory is interposed between the user address space and the external device.

 The description in this subsection has dealt with what might be termed
traditional UNIX systems ; [VAHA96] uses this term to refer to System V Release
3 (SVR3), 4.3BSD, and earlier versions. The following general statements may be

Hardware

Kernel

System call
interface

UNIX commands
and libraries

User-written
applications

Figure 2.16 General UNIX Architecture

92 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

made about a traditional UNIX system. It is designed to run on a single processor
and lacks the ability to protect its data structures from concurrent access by multiple
processors. Its kernel is not very versatile, supporting a single type of file system,
process scheduling policy, and executable file format. The traditional UNIX kernel
is not designed to be extensible and has few facilities for code reuse. The result is
that, as new features were added to the various UNIX versions, much new code had
to be added, yielding a bloated and unmodular kernel.

2.9 MODERN UNIX SYSTEMS

 As UNIX evolved, the number of different implementations proliferated, each pro-
viding some useful features. There was a need to produce a new implementation that
unified many of the important innovations, added other modern OS design features,
and produced a more modular architecture. Typical of the modern UNIX kernel is
the architecture depicted in Figure 2.18 . There is a small core of facilities, written in

Hardware

Hardware level

Kernel level

Kernel level

User level

User programs

Trap

Hardware control

System call interface

Libraries

Device drivers

File subsystem
Process
control

subsystem

Character Block

Buffer cache

Interprocess
communication

Scheduler

Memory
management

Figure 2.17 Traditional UNIX Kernel

2.9 / MODERN UNIX SYSTEMS 93

a modular fashion, that provide functions and services needed by a number of OS
processes. Each of the outer circles represents functions and an interface that may
be implemented in a variety of ways.

 We now turn to some examples of modern UNIX systems.

System V Release 4 (SVR4)

 SVR4, developed jointly by AT&T and Sun Microsystems, combines features from
SVR3, 4.3BSD, Microsoft Xenix System V, and SunOS. It was almost a total rewrite
of the System V kernel and produced a clean, if complex, implementation. New fea-
tures in the release include real-time processing support, process scheduling classes,
dynamically allocated data structures, virtual memory management, virtual file sys-
tem, and a preemptive kernel.

 SVR4 draws on the efforts of both commercial and academic designers and
was developed to provide a uniform platform for commercial UNIX deployment. It
has succeeded in this objective and is perhaps the most important UNIX variant. It
incorporates most of the important features ever developed on any UNIX system

Common
facilities

Virtual
memory

framework

Block
device
switch

exec
switch

a.out

File mappings

Disk driver

Tape driver

Network
driver

tty
driver

System
processes

Time-sharing
processes

RFS

s5fs

FFS

NFS

Anonymous
mappings

coff

elf

Streams

vnode/vfs
interface

Scheduler
framework

Device
mappings

Figure 2.18 Modern UNIX Kernel

94 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

and does so in an integrated, commercially viable fashion. SVR4 runs on processors
ranging from 32-bit microprocessors up to supercomputers.

BSD

 The Berkeley Software Distribution (BSD) series of UNIX releases have played
a key role in the development of OS design theory. 4.xBSD is widely used in aca-
demic installations and has served as the basis of a number of commercial UNIX
products. It is probably safe to say that BSD is responsible for much of the popular-
ity of UNIX and that most enhancements to UNIX first appeared in BSD versions.

 4.4BSD was the final version of BSD to be released by Berkeley, with the
design and implementation organization subsequently dissolved. It is a major
upgrade to 4.3BSD and includes a new virtual memory system, changes in the ker-
nel structure, and a long list of other feature enhancements.

 One of the most widely used and best documented versions of BSD is
FreeBSD. FreeBSD is popular for Internet-based servers and firewalls and is used
in a number of embedded systems.

 The latest version of the Macintosh OS, Mac OS X, is based on FreeBSD 5.0
and the Mach 3.0 microkernel.

Solaris 10

 Solaris is Sun’s SVR4-based UNIX release, with the latest version being 10. Solaris
provides all of the features of SVR4 plus a number of more advanced features, such
as a fully preemptable, multithreaded kernel, full support for SMP, and an object-
oriented interface to file systems. Solaris is the most widely used and most successful
commercial UNIX implementation.

2.10 LINUX

History

 Linux started out as a UNIX variant for the IBM PC (Intel 80386) architecture.
Linus Torvalds, a Finnish student of computer science, wrote the initial version.
Torvalds posted an early version of Linux on the Internet in 1991. Since then, a
number of people, collaborating over the Internet, have contributed to the devel-
opment of Linux, all under the control of Torvalds. Because Linux is free and the
source code is available, it became an early alternative to other UNIX workstations,
such as those offered by Sun Microsystems and IBM. Today, Linux is a full-featured
UNIX system that runs on all of these platforms and more, including Intel Pentium
and Itanium, and the Motorola/IBM PowerPC.

 Key to the success of Linux has been the availability of free software packages
under the auspices of the Free Software Foundation (FSF). FSF’s goal is stable,
platform-independent software that is free, high quality, and embraced by the user
community. FSF’s GNU project 3 provides tools for software developers, and the

3 GNU is a recursive acronym for GNU’s Not Unix. The GNU project is a free software set of packages
and tools for developing a UNIX-like operating system; it is often used with the Linux kernel.

2.10 / LINUX 95

GNU Public License (GPL) is the FSF seal of approval. Torvalds used GNU tools
in developing his kernel, which he then released under the GPL. Thus, the Linux
distributions that you see today are the product of FSF’s GNU project, Torvald’s
individual effort, and the efforts of many collaborators all over the world.

 In addition to its use by many individual programmers, Linux has now made
significant penetration into the corporate world. This is not only because of the
free software, but also because of the quality of the Linux kernel. Many talented
 programmers have contributed to the current version, resulting in a technically
impressive product. Moreover, Linux is highly modular and easily configured. This
makes it easy to squeeze optimal performance from a variety of hardware platforms.
Plus, with the source code available, vendors can tweak applications and utilities to
meet specific requirements. Throughout this book, we will provide details of Linux
kernel internals based on the most recent version, Linux 2.6.

Modular Structure

 Most UNIX kernels are monolithic. Recall from earlier in this chapter that a mono-
lithic kernel is one that includes virtually all of the OS functionality in one large
block of code that runs as a single process with a single address space. All the func-
tional components of the kernel have access to all of its internal data structures
and routines. If changes are made to any portion of a typical monolithic OS, all the
 modules and routines must be relinked and reinstalled and the system rebooted
before the changes can take effect. As a result, any modification, such as adding
a new device driver or file system function, is difficult. This problem is especially
acute for Linux, for which development is global and done by a loosely associated
group of independent programmers.

 Although Linux does not use a microkernel approach, it achieves many of
the potential advantages of this approach by means of its particular modular archi-
tecture. Linux is structured as a collection of modules, a number of which can be
 automatically loaded and unloaded on demand. These relatively independent blocks
are referred to as loadable modules [GOYE99]. In essence, a module is an object
file whose code can be linked to and unlinked from the kernel at runtime. Typically,
a module implements some specific function, such as a file system, a device driver,
or some other feature of the kernel’s upper layer. A module does not execute as its
own process or thread, although it can create kernel threads for various purposes
as necessary. Rather, a module is executed in kernel mode on behalf of the current
process.

 Thus, although Linux may be considered monolithic, its modular structure
overcomes some of the difficulties in developing and evolving the kernel.

 The Linux loadable modules have two important characteristics:

 • Dynamic linking: A kernel module can be loaded and linked into the kernel
while the kernel is already in memory and executing. A module can also be
unlinked and removed from memory at any time.

 • Stackable modules: The modules are arranged in a hierarchy. Individual
modules serve as libraries when they are referenced by client modules higher
up in the hierarchy, and as clients when they reference modules further down.

96 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 Dynamic linking [FRAN97] facilitates configuration and saves kernel memory.
In Linux, a user program or user can explicitly load and unload kernel modules
using the insmod and rmmod commands. The kernel itself monitors the need for
particular functions and can load and unload modules as needed. With stackable
modules, dependencies between modules can be defined. This has two benefits:

 1. Code common to a set of similar modules (e.g., drivers for similar hardware)
can be moved into a single module, reducing replication.

 2. The kernel can make sure that needed modules are present, refraining from
unloading a module on which other running modules depend, and loading any
additional required modules when a new module is loaded.

 Figure 2.19 is an example that illustrates the structures used by Linux to
 manage modules. The figure shows the list of kernel modules after only two modules
have been loaded: FAT and VFAT. Each module is defined by two tables, the mod-
ule table and the symbol table. The module table includes the following elements:

 • * next: Pointer to the following module. All modules are organized into a
linked list. The list begins with a pseudomodule (not shown in Figure 2.19).

 • * name: Pointer to module name

 • size: Module size in memory pages

 • usecount: Module usage counter. The counter is incremented when an opera-
tion involving the module’s functions is started and decremented when the
operation terminates.

FAT
*syms

*deps

*refs

ndeps

nysms

flags

usecount

size

*name

*next

value

*name

value

Symbol_table

*name

value

*name

value

*name

value

*name

value

*name

VFAT

Module

Symbol_table

*syms

*deps

*refs

ndeps

nysms

flags

usecount

size

*name

*next

Module

Figure 2.19 Example List of Linux Kernel Modules

2.10 / LINUX 97

 • flags: Module flags

 • nsyms: Number of exported symbols

 • ndeps: Number of referenced modules

 • * syms: Pointer to this module’s symbol table.

 • * deps: Pointer to list of modules that are referenced by this module.

 • * refs: Pointer to list of modules that use this module.

 The symbol table defines those symbols controlled by this module that are
used elsewhere.

 Figure 2.19 shows that the VFAT module was loaded after the FAT module
and that the VFAT module is dependent on the FAT module.

Kernel Components

 Figure 2.20 , taken from [MOSB02], shows the main components of the Linux kernel
as implemented on an IA-64 architecture (e.g., Intel Itanium). The figure shows
several processes running on top of the kernel. Each box indicates a separate pro-
cess, while each squiggly line with an arrowhead represents a thread of execution. 4

The kernel itself consists of an interacting collection of components, with arrows

Signals System calls

Processes
& scheduler

Virtual
memory

Physical
memory

System
memory

Processes

H
ar

dw
ar

e
U

se
r

le
ve

l
K

er
ne

l

CPU Terminal Disk

Traps &
faults

Char device
drivers

Block device
drivers

Network
device drivers

File
systems

Network
protocols

Interrupts

Network interface
controller

Figure 2.20 Linux Kernel Components

4 In Linux, there is no distinction between the concepts of processes and threads. However, multiple
threads in Linux can be grouped together in such a way that, effectively, you can have a single process
comprising multiple threads. These matters are discussed in Chapter 4 .

98 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

indicating the main interactions. The underlying hardware is also depicted as a
set of components with arrows indicating which kernel components use or control
which hardware components. All of the kernel components, of course, execute on
the processor but, for simplicity, these relationships are not shown.

 Briefly, the principal kernel components are the following:

 • Signals: The kernel uses signals to call into a process. For example, signals are
used to notify a process of certain faults, such as division by zero. Table 2.5
gives a few examples of signals.

 • System calls: The system call is the means by which a process requests a specific
kernel service. There are several hundred system calls, which can be roughly
grouped into six categories: file system, process, scheduling, interprocess com-
munication, socket (networking), and miscellaneous. Table 2.6 defines a few
examples in each category.

 • Processes and scheduler: Creates, manages, and schedules processes.

 • Virtual memory: Allocates and manages virtual memory for processes.

Table 2.6 Some Linux System Calls

File system Related

 close Close a file descriptor.

link Make a new name for a file.

open Open and possibly create a file or device.

read Read from file descriptor.

write Write to file descriptor.

Process Related

execve Execute program.

exit Terminate the calling process.

getpid Get process identification.

setuid Set user identity of the current process.

prtrace Provides a means by which a parent process may observe and control the execu-
tion of another process, and examine and change its core image and registers.

Table 2.5 Some Linux Signals

 SIGHUP

 SIGQUIT

 SIGTRAP

 SIGBUS

 SIGKILL

 SIGSEGV

 SIGPIPT

 SIGTERM

 SIGCHLD

 Terminal hangup

 Keyboard quit

 Trace trap

 Bus error

 Kill signal

 Segmentation violation

 Broken pipe

 Termination

 Child status unchanged

 SIGCONT

 SIGTSTP

 SIGTTOU

 SIGXCPU

 SIGVTALRM

 SIGWINCH

 SIGPWR

 SIGRTMIN

 SIGRTMAX

 Continue

 Keyboard stop

 Terminal write

 CPU limit exceeded

 Virtual alarm clock

 Window size unchanged

 Power failure

 First real-time signal

 Last real-time signal

2.10 / LINUX 99

Scheduling Related

sched_getparam Set the scheduling parameters associated with the scheduling policy for the
 process identified by pid.

sched_get_priority_max Return the maximum priority value that can be used with the scheduling
 algorithm identified by policy.

sched_setscheduler Set both the scheduling policy (e.g., FIFO) and the associated parameters for
the process pid.

sched_rr_get_interval Write into the timespec structure pointed to by the parameter tp the round-
robin time quantum for the process pid.

sched_yield A process can relinquish the processor voluntarily without blocking via this
system call. The process will then be moved to the end of the queue for its static
priority and a new process gets to run.

Interprocess Communication (IPC) Related

msgrcv A message buffer structure is allocated to receive a message. The system
call then reads a message from the message queue specified by msqid into
the newly created message buffer.

semctl Perform the control operation specified by cmd on the semaphore set
semid.

semop Perform operations on selected members of the semaphore set semid.

shmat Attach the shared memory segment identified by semid to the data segment
of the calling process.

shmctl Allow the user to receive information on a shared memory segment; set the
owner, group, and permissions of a shared memory segment; or destroy a
 segment.

Socket (networking) Related

bind Assigns the local IP address and port for a socket. Returns 0 for success and �1
for error.

connect Establish a connection between the given socket and the remote socket
 associated with sockaddr.

gethostname Return local host name.

send Send the bytes contained in buffer pointed to by * msg over the given
socket.

setsockopt Set the options on a socket

Miscellaneous

create_module Attempt to create a loadable module entry and reserve the kernel memory that
will be needed to hold the module.

fsync Copy all in-core parts of a file to disk, and waits until the device reports that all
parts are on stable storage.

query_module Request information related to loadable modules from the kernel.

time Return the time in seconds since January 1, 1970.

vhangup Simulate a hangup on the current terminal. This call arranges for other users to
have a “clean” tty at login time.

 Table 2.6 (continued)

100 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 • File systems: Provides a global, hierarchical namespace for files, directories,
and other file related objects and provides file system functions.

 • Network protocols: Supports the Sockets interface to users for the TCP/IP
protocol suite.

 • Character device drivers: Manages devices that require the kernel to send or
receive data one byte at a time, such as terminals, modems, and printers.

 • Block device drivers: Manages devices that read and write data in blocks, such
as various forms of secondary memory (magnetic disks, CD-ROMs, etc.).

 • Network device drivers: Manages network interface cards and communica-
tions ports that connect to network devices, such as bridges and routers.

 • Traps and faults: Handles traps and faults generated by the processor, such as
a memory fault.

 • Physical memory: Manages the pool of page frames in real memory and allo-
cates pages for virtual memory.

 • Interrupts: Handles interrupts from peripheral devices.

2.11 LINUX VSERVER VIRTUAL MACHINE ARCHITECTURE

 Linux VServer is an open-source, fast, lightweight approach to implement-
ing virtual machines on a Linux server [SOLT07, LIGN05]. Only a single copy
of the Linux kernel is involved. VServer consists of a relatively modest modifi-
cation to the kernel plus a small set of OS userland 5 tools. The VServer Linux
kernel supports a number of separate virtual servers. The kernel manages all sys-
tem resources and tasks, including process scheduling, memory, disk space, and
processor time. This is closer in concept to the process VM rather than the system
VM of Figure 2.14 .

 Each virtual server is isolated from the others using Linux kernel capabilities.
This provides security and makes it easy to set up multiple virtual machines on a
single platform. The isolation involves four elements: chroot, chcontext, chbind, and
capabilities.

 The chroot command is a UNIX or Linux command to make the root directory
(/) become something other than its default for the lifetime of the current process.
It can only be run by privileged users and is used to give a process (commonly a net-
work server such as FTP or HTTP) access to a restricted portion of the file system.
This command provides file system isolation . All commands executed by the virtual
server can only affect files that start with the defined root for that server.

 The chcontext Linux utility allocates a new security context and executes
 commands in that context. The usual or hosted security context is the context 0.
This context has the same privileges as the root user (UID 0): This context can
see and kill other tasks in the other contexts. Context number 1 is used to view

5 The term userland refers to all application software that runs in user space rather than kernel space. OS
userland usually refers to the various programs and libraries that the operating system uses to interact
with the kernel: software that performs input/output, manipulates file system objects, etc.

2.12 / RECOMMENDED READING AND WEB SITES 101

other contexts but cannot affect them. All other contexts provide complete isola-
tion: Processes from one context can neither see nor interact with processes from
another context. This provides the ability to run similar contexts on the same com-
puter without any interaction possible at the application level. Thus, each virtual
server has its own execution context that provides process isolation .

 The chbind utility executes a command, and locks the resulting process and
its children into using a specific IP address. Once called, all packets sent out by this
virtual server through the system’s network interface are assigned the sending IP
address derived from the argument given to chbind. This system call provides net-
work isolation : Each virtual server uses a separate and distinct IP address. Incoming
traffic intended for one virtual server cannot be accessed by other virtual servers.

 Finally, each virtual server is assigned a set of capabilities . The concept of
capabilities, as used in Linux, refers to a partitioning of the privileges available to
a root user, such as the ability to read files or to trace processes owned by another
user. Thus, each virtual server can be assigned a limited subset of the root user’s
privileges. This provides root isolation . VServer can also set resource limits, such as
limits to the amount of virtual memory a process may use.

 Figure 2.21 , based on [SOLT07], shows the general architecture of Linux
VServer. VServer provides a shared, virtualized OS image, consisting of a root file
system, and a shared set of system libraries and kernel services. Each VM can be
booted, shut down, and rebooted independently. Figure 2.21 shows three group-
ings of software running on the computer system. The hosting platform includes the
shared OS image and a privileged host VM, whose function is to monitor and man-
age the other VMs. The virtual platform creates virtual machines and is the view of
the system seen by the applications running on the individual VMs.

2.12 RECOMMENDED READING AND WEB SITES

 [BRIN01] is an excellent collection of papers covering major advances in OS design
over the years. [SWAI07] is a provocative and interesting short article on the future
of operating systems.

VM admin.
Remote admin.
Core services

Server
applications

Standard OS image

H
osting platform

V
irtual platform

Server
applications

/proc

/hom
e

/usr

/dev

/proc

/hom
e

/usr

/dev

/proc

/hom
e

/usr

/dev

VMhost VM1 VMn

Figure 2.21 Linux VServer Architecture

102 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 [MUKH96] provides a good discussion of OS design issues for SMPs.
[CHAP97] contains five articles on recent design directions for multiprocessor
operating systems. Worthwhile discussions of the principles of microkernel design
are contained in [LIED95] and [LIED96]; the latter focuses on performance
issues.

 [LI10] and [SMIT05] provide good treatments of virtual machines.
 An excellent treatment of UNIX internals, which provides a comparative

analysis of a number of variants, is [VAHA96]. For UNIX SVR4, [GOOD94]
 provides a definitive treatment, with ample technical detail. For the popular open-
source FreeBSD, [MCKU05] is highly recommended. [MCDO07] provides a good
treatment of Solaris internals. Good treatments of Linux internals are [LOVE10]
and [MAUE08].

 Although there are countless books on various versions of Windows, there
is remarkably little material available on Windows internals. The book to read is
[RUSS11].

BRIN01 Brinch Hansen, P. Classic Operating Systems: From Batch Processing to
Distributed Systems. New York: Springer-Verlag, 2001.

CHAP97 Chapin, S., and Maccabe, A., eds. “Multiprocessor Operating Systems:
Harnessing the Power.” special issue of IEEE Concurrency , April–June 1997.

GOOD94 Goodheart, B., and Cox, J. The Magic Garden Explained: The Internals of
UNIX System V Release 4. Englewood Cliffs, NJ: Prentice Hall, 1994.

LOVE10 Love, R. Linux Kernel Development. Upper Saddle River, NJ: Addison-
Wesley, 2010.

LI10 Li, Y.; Li, W.; and Jiang, C. “A Survey of Virtual Machine Systems: Current
Technology and Future Trends.” Proceedings, Third International Symposium on
Electronic Commerce and Security , 2010.

LIED95 Liedtke, J. “On μ-Kernel Construction.” Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles , December 1995.

LIED96 Liedtke, J. “Toward Real Microkernels.” Communications of the ACM ,
September 1996.

MAUE08 Mauerer, W. Professional Linux Kernel Architecture. New York: Wiley, 2008.
MCDO07 McDougall, R., and Mauro, J. Solaris Internals: Solaris 10 and OpenSolaris

Kernel Architecture. Palo Alto, CA: Sun Microsystems Press, 2007.
MCKU05 McKusick, M., and Neville-Neil, J. The Design and Implementation of the

FreeBSD Operating System. Reading, MA: Addison-Wesley, 2005.
MUKH96 Mukherjee, B., and Karsten, S. “Operating Systems for Parallel Machines.”

In Parallel Computers: Theory and Practice. Edited by T. Casavant, P. Tvrkik, and
F. Plasil. Los Alamitos, CA: IEEE Computer Society Press, 1996.

RUSS11 Russinovich, M.; Solomon, D.; and Ionescu, A. Windows Internals: Covering
Windows 7 and Windows Server 2008 R2. Redmond, WA: Microsoft Press, 2011.

SMIT05 Smith, J., and Nair, R. “The Architecture of Virtual Machines.” Computer ,
May 2005.

SWAI07 Swaine, M. “Wither Operating Systems?” Dr. Dobb’s Journal , March 2007.
VAHA96 Vahalia, U. UNIX Internals: The New Frontiers. Upper Saddle River, NJ:

Prentice Hall, 1996.

2.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 103

Recommended Web sites:

 • The Operating System Resource Center: A useful collection of documents and papers
on a wide range of OS topics.

 • Operating System Technical Comparison: Includes a substantial amount of information
on a variety of operating systems.

 • ACM Special Interest Group on Operating Systems: Information on SIGOPS publica-
tions and conferences.

 • IEEE Technical Committee on Operating Systems and Application Environments:
 Includes an online newsletter and links to other sites.

 • The comp.os.research FAQ: Lengthy and worthwhile FAQ covering OS design issues.

 • UNIX Guru Universe: Excellent source of UNIX information.

 • Linux Documentation Project: The name describes the site.

 • IBM’s Linux Website: Provides a wide range of technical and user information on
Linux. Much of it is devoted to IBM products but there is a lot of useful general techni-
cal information.

 • Windows Development: Good source of information on Windows internals.

2.13 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 batch processing
 batch system
 execution context
 interrupt
 job
 job control language
 kernel
 memory management
 microkernel
 monitor
 monolithic kernel
 multiprogrammed batch

system

 multiprogramming
 multitasking
 multithreading
 nucleus
 operating system
 physical address
 privileged instruction
 process
 process state
 real address
 resident monitor

 round robin
 scheduling
 serial processing
 symmetric multiprocessing
 task
 thread
 time sharing
 time-sharing system
 uniprogramming
 virtual address
 virtual machine

Review Questions

 2.1 What are three objectives of an OS design?
 2.2 What is the kernel of an OS?
 2.3 What is multiprogramming?
 2.4 What is a process?
 2.5 How is the execution context of a process used by the OS?

104 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 2.6 List and briefly explain five storage management responsibilities of a typical OS.
 2.7 Explain the distinction between a real address and a virtual address.
 2.8 Describe the round-robin scheduling technique.
 2.9 Explain the difference between a monolithic kernel and a microkernel.
 2.10 What is multithreading?
 2.11 List the key design issues for an SMP operating system.

Problems

 2.1 Suppose that we have a multiprogrammed computer in which each job has identical
characteristics. In one computation period, T , for a job, half the time is spent in I/O
and the other half in processor activity. Each job runs for a total of N periods. Assume
that a simple round-robin scheduling is used, and that I/O operations can overlap with
processor operation. Define the following quantities:
• Turnaround time = actual time to complete a job
• Throughput = average number of jobs completed per time period T
• Processor utilization = percentage of time that the processor is active (not waiting)
 Compute these quantities for one, two, and four simultaneous jobs, assuming that the
period T is distributed in each of the following ways:
a. I/O first half, processor second half
b. I/O first and fourth quarters, processor second and third quarter

 2.2 An I/O-bound program is one that, if run alone, would spend more time waiting for
I/O than using the processor. A processor-bound program is the opposite. Suppose a
short-term scheduling algorithm favors those programs that have used little processor
time in the recent past. Explain why this algorithm favors I/O-bound programs and
yet does not permanently deny processor time to processor-bound programs.

 2.3 Contrast the scheduling policies you might use when trying to optimize a time-sharing
system with those you would use to optimize a multiprogrammed batch system.

 2.4 What is the purpose of system calls, and how do system calls relate to the OS and to
the concept of dual-mode (kernel-mode and user-mode) operation?

 2.5 In IBM’s mainframe OS, OS/390, one of the major modules in the kernel is the System
Resource Manager. This module is responsible for the allocation of resources among
address spaces (processes). The SRM gives OS/390 a degree of sophistication unique
among operating systems. No other mainframe OS, and certainly no other type of OS,
can match the functions performed by SRM. The concept of resource includes proces-
sor, real memory, and I/O channels. SRM accumulates statistics pertaining to utilization
of processor, channel, and various key data structures. Its purpose is to provide optimum
performance based on performance monitoring and analysis. The installation sets
forth various performance objectives, and these serve as guidance to the SRM, which
dynamically modifies installation and job performance characteristics based on system
utilization. In turn, the SRM provides reports that enable the trained operator to refine
the configuration and parameter settings to improve user service.

 This problem concerns one example of SRM activity. Real memory is divided
into equal-sized blocks called frames, of which there may be many thousands. Each
frame can hold a block of virtual memory referred to as a page. SRM receives control
 approximately 20 times per second and inspects each and every page frame. If the
page has not been referenced or changed, a counter is incremented by 1. Over time,
SRM averages these numbers to determine the average number of seconds that a
page frame in the system goes untouched. What might be the purpose of this and what
action might SRM take?

 2.6 A multiprocessor with eight processors has 20 attached tape drives. There is a large
number of jobs submitted to the system that each require a maximum of four tape

2.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 105

drives to complete execution. Assume that each job starts running with only three
tape drives for a long period before requiring the fourth tape drive for a short period
toward the end of its operation. Also assume an endless supply of such jobs.
a. Assume the scheduler in the OS will not start a job unless there are four tape

drives available. When a job is started, four drives are assigned immediately and
are not released until the job finishes. What is the maximum number of jobs that
can be in progress at once? What are the maximum and minimum number of tape
drives that may be left idle as a result of this policy?

b. Suggest an alternative policy to improve tape drive utilization and at the same
time avoid system deadlock. What is the maximum number of jobs that can be in
progress at once? What are the bounds on the number of idling tape drives?

 3.1 What Is a Process?
 Background
 Processes and Process Control Blocks

 3.2 Process States
 A Two-State Process Model
 The Creation and Termination of Processes
 A Five-State Model
 Suspended Processes

 3.3 Process Description
 Operating System Control Structures
 Process Control Structures

 3.4 Process Control
 Modes of Execution
 Process Creation
 Process Switching

 3.5 Execution of the Operating System
 Nonprocess Kernel
 Execution within User Processes
 Process-Based Operating System

 3.6 Security Issues
 System Access Threats
 Countermeasures

 3.7 UNIX SVR4 Process Management
 Process States
 Process Description
 Process Control

 3.8 Summary

 3.9 Recommended Reading

 3.10 Key Terms, Review Questions, and Problems

PROCESS DESCRIPTION
AND CONTROL

Processes PART 2

CHAPTER

106

CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL 107

 The concept of process is fundamental to the structure of modern
computer operating systems. Its evolution in analyzing problems of
synchronization, deadlock, and scheduling in operating systems has
been a major intellectual contribution of computer science.

WHAT CAN BE AUTOMATED?: THE COMPUTER SCIENCE AND ENGINEERING

 RESEARCH STUDY , MIT Press, 1980

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

• Define the term process and explain the relationship between processes and
process control blocks.

• Explain the concept of a process state and discuss the state transitions the
processes undergo.

• List and describe the purpose of the data structures and data structure
 elements used by an OS to manage processes.

• Assess the requirements for process control by the OS.
• Understand the issues involved in the execution of OS code.
• Assess the key security issues that relate to operating systems.
• Describe the process management scheme for UNIX SVR4.

 All multiprogramming operating systems, from single-user systems such as Windows
for end users to mainframe systems such as IBM’s mainframe operating system,
z/OS, which can support thousands of users, are built around the concept of the
process. Most requirements that the OS must meet can be expressed with reference
to processes:

 • The OS must interleave the execution of multiple processes, to maximize pro-
cessor utilization while providing reasonable response time.

 • The OS must allocate resources to processes in conformance with a specific
policy (e.g., certain functions or applications are of higher priority) while at
the same time avoiding deadlock. 1

 • The OS may be required to support interprocess communication and user cre-
ation of processes, both of which may aid in the structuring of applications.

 We begin with an examination of the way in which the OS represents and
controls processes. Then, the chapter discusses process states, which characterize
the behavior of processes. Then we look at the data structures that the OS uses to
manage processes. These include data structures to represent the state of each

1 Deadlock is examined in Chapter 6 . As a simple example, deadlock occurs if two processes need the
same two resources to continue and each has ownership of one. Unless some action is taken, each process
will wait indefinitely for the missing resource.

108 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

process and data structures that record other characteristics of processes that the
OS needs to achieve its objectives. Next, we look at the ways in which the OS uses
these data structures to control process execution. Finally, we discuss process
 management in UNIX SVR4. Chapter 4 provides more modern examples of
 process management.

 This chapter occasionally refers to virtual memory. Much of the time, we can
ignore this concept in dealing with processes, but at certain points in the discus-
sion, virtual memory considerations are pertinent. Virtual memory is previewed in
Chapter 2 and discussed in detail in Chapter 8 . A set of animations that illustrate
concepts in this chapter is available online. Click on the rotating globe at this book’s
Web site at WilliamStallings.com/OS/OS7e.html for access.

3.1 WHAT IS A PROCESS?

Background

 Before defining the term process , it is useful to summarize some of the concepts
introduced in Chapters 1 and 2 :

 1. A computer platform consists of a collection of hardware resources, such as
the processor, main memory, I/O modules, timers, disk drives, and so on.

 2. Computer applications are developed to perform some task. Typically, they
accept input from the outside world, perform some processing, and generate
output.

 3. It is inefficient for applications to be written directly for a given hardware
platform. The principal reasons for this are as follows:

a. Numerous applications can be developed for the same platform. Thus, it
makes sense to develop common routines for accessing the computer’s
resources.

b. The processor itself provides only limited support for multiprogramming.
Software is needed to manage the sharing of the processor and other
resources by multiple applications at the same time.

c. When multiple applications are active at the same time, it is necessary to
protect the data, I/O use, and other resource use of each application from
the others.

 4. The OS was developed to provide a convenient, feature-rich, secure, and con-
sistent interface for applications to use. The OS is a layer of software between
the applications and the computer hardware (Figure 2.1) that supports appli-
cations and utilities.

 5. We can think of the OS as providing a uniform, abstract representation of
resources that can be requested and accessed by applications. Resources
include main memory, network interfaces, file systems, and so on. Once the
OS has created these resource abstractions for applications to use, it must
also manage their use. For example, an OS may permit resource sharing and
resource protection.

3.1 / WHAT IS A PROCESS? 109

 Now that we have the concepts of applications, system software, and resources,
we are in a position to discuss how the OS can, in an orderly fashion, manage the
execution of applications so that

 • Resources are made available to multiple applications.

 • The physical processor is switched among multiple applications so all will
appear to be progressing.

 • The processor and I/O devices can be used efficiently.

 The approach taken by all modern operating systems is to rely on a model in
which the execution of an application corresponds to the existence of one or more
processes.

Processes and Process Control Blocks

 Recall from Chapter 2 that we suggested several definitions of the term process ,
including

 • A program in execution

 • An instance of a program running on a computer

 • The entity that can be assigned to and executed on a processor

 • A unit of activity characterized by the execution of a sequence of instructions,
a current state, and an associated set of system resources

 We can also think of a process as an entity that consists of a number of elements.
Two essential elements of a process are program code (which may be shared with
other processes that are executing the same program) and a set of data associated
with that code. Let us suppose that the processor begins to execute this program
code, and we refer to this executing entity as a process. At any given point in time,
while the program is executing , this process can be uniquely characterized by a
 number of elements, including the following:

 • Identifier: A unique identifier associated with this process, to distinguish it
from all other processes.

 • State: If the process is currently executing, it is in the running state.

 • Priority: Priority level relative to other processes.

 • Program counter: The address of the next instruction in the program to be
executed.

 • Memory pointers: Includes pointers to the program code and data associated
with this process, plus any memory blocks shared with other processes.

 • Context data: These are data that are present in registers in the processor
while the process is executing.

 • I/O status information: Includes outstanding I/O requests, I/O devices (e.g.,
disk drives) assigned to this process, a list of files in use by the process, and
so on.

 • Accounting information: May include the amount of processor time and clock
time used, time limits, account numbers, and so on.

110 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

 The information in the preceding list is stored in a data structure, typically
called a process control block (Figure 3.1), that is created and managed by the OS.
The significant point about the process control block is that it contains sufficient
information so that it is possible to interrupt a running process and later resume
execution as if the interruption had not occurred. The process control block is
the key tool that enables the OS to support multiple processes and to provide for
 multiprocessing. When a process is interrupted, the current values of the program
counter and the processor registers (context data) are saved in the appropriate fields
of the corresponding process control block, and the state of the process is changed
to some other value, such as blocked or ready (described subsequently). The OS is
now free to put some other process in the running state. The program counter and
context data for this process are loaded into the processor registers and this process
now begins to execute.

 Thus, we can say that a process consists of program code and associated data
plus a process control block. For a single-processor computer, at any given time, at
most one process is executing and that process is in the running state.

3.2 PROCESS STATES

 As just discussed, for a program to be executed, a process, or task, is created for
that program. From the processor’s point of view, it executes instructions from its
repertoire in some sequence dictated by the changing values in the program counter

Identifier

State

Priority

Program counter

Memory pointers

Context data

I/O status
information

Accounting
information

Figure 3.1 Simplifi ed Process Control Block

3.2 / PROCESS STATES 111

 register. Over time, the program counter may refer to code in different programs
that are part of different processes. From the point of view of an individual pro-
gram, its execution involves a sequence of instructions within that program.

 We can characterize the behavior of an individual process by listing the
sequence of instructions that execute for that process. Such a listing is referred to
as a trace of the process. We can characterize behavior of the processor by showing
how the traces of the various processes are interleaved.

 Let us consider a very simple example. Figure 3.2 shows a memory layout
of three processes. To simplify the discussion, we assume no use of virtual mem-
ory; thus all three processes are represented by programs that are fully loaded
in main memory. In addition, there is a small dispatcher program that switches
the processor from one process to another. Figure 3.3 shows the traces of each
of the processes during the early part of their execution. The first 12 instructions
executed in processes A and C are shown. Process B executes four instructions,
and we assume that the fourth instruction invokes an I/O operation for which the
process must wait.

 Now let us view these traces from the processor’s point of view. Figure 3.4
shows the interleaved traces resulting from the first 52 instruction cycles (for con-
venience, the instruction cycles are numbered). In this figure, the shaded areas
represent code executed by the dispatcher. The same sequence of instructions is
executed by the dispatcher in each instance because the same functionality of the
dispatcher is being executed. We assume that the OS only allows a process to con-
tinue execution for a maximum of six instruction cycles, after which it is interrupted;

Main memoryAddress

Dispatcher

Process A

Process B

Process C

Program counter
0

100

5000

8000

8000

12000

Figure 3.2 Snapshot of Example Execution (Figure 3.4)
at Instruction Cycle 13

112 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

this prevents any single process from monopolizing processor time. As Figure 3.4
shows, the first six instructions of process A are executed, followed by a time-out
and the execution of some code in the dispatcher, which executes six instructions
before turning control to process B. 2 After four instructions are executed, proc-
ess B requests an I/O action for which it must wait. Therefore, the processor stops
executing process B and moves on, via the dispatcher, to process C. After a time-
out, the processor moves back to process A. When this process times out, process
B is still waiting for the I/O operation to complete, so the dispatcher moves on to
process C again.

A Two-State Process Model

 The operating system’s principal responsibility is controlling the execution of
 processes; this includes determining the interleaving pattern for execution and allo-
cating resources to processes. The first step in designing an OS to control processes
is to describe the behavior that we would like the processes to exhibit.

 We can construct the simplest possible model by observing that, at any time, a
process is either being executed by a processor or not. In this model, a process may
be in one of two states: Running or Not Running, as shown in Figure 3.5a . When
the OS creates a new process, it creates a process control block for the process and
enters that process into the system in the Not Running state. The process exists,
is known to the OS, and is waiting for an opportunity to execute. From time to
time, the currently running process will be interrupted and the dispatcher portion
of the OS will select some other process to run. The former process moves from the

2 The small number of instructions executed for the processes and the dispatcher are unrealistically low;
they are used in this simplified example to clarify the discussion.

Figure 3.3 Traces of Processes of Figure 3.2

 5000 8000 12000
 5001 8001 12001
 5002 8002 12002
 5003 8003 12003
 5004 12004
 5005 12005
 5006 12006
 5007 12007
 5008 12008
 5009 12009
 5010 12010
 5011 12011

 (a) Trace of process A (b) Trace of process B (c) Trace of process C

 5000 � Starting address of program of process A
 8000 � Starting address of program of process B
 12000 � Starting address of program of process C

3.2 / PROCESS STATES 113

Running state to the Not Running state, and one of the other processes moves to
the Running state.

 From this simple model, we can already begin to appreciate some of the design
elements of the OS. Each process must be represented in some way so that the OS
can keep track of it. That is, there must be some information relating to each proc-
ess, including current state and location in memory; this is the process control block.
Processes that are not running must be kept in some sort of queue, waiting their turn
to execute. Figure 3.5b suggests a structure. There is a single queue in which each
entry is a pointer to the process control block of a particular process. Alternatively,

 1 5000
 2 5001
 3 5002
 4 5003
 5 5004
 6 5005
 ----------------------Time-out
 7 100
 8 101
 9 102
 10 103
 11 104
 12 105
 13 8000
 14 8001
 15 8002
 16 8003
 ----------------------I/O request
 17 100
 18 101
 19 102
 20 103
 21 104
 22 105
 23 12000
 24 12001
 25 12002
 26 12003

 27 12004
 28 12005
 ----------------------Time-out
 29 100
 30 101
 31 102
 32 103
 33 104
 34 105
 35 5006
 36 5007
 37 5008
 38 5009
 39 5010
 40 5011
 ----------------------Time-out
 41 100
 42 101
 43 102
 44 103
 45 104
 46 105
 47 12006
 48 12007
 49 12008
 50 12009
 51 12010
 52 12011
 ----------------------Time-out

Figure 3.4 Combined Trace of Processes of Figure 3.2

 100 � Starting address of dispatcher program

 Shaded areas indicate execution of dispatcher process;
 first and third columns count instruction cycles;
 second and fourth columns show address of instruction being executed

114 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

the queue may consist of a linked list of data blocks, in which each block represents
one process; we will explore this latter implementation subsequently.

 We can describe the behavior of the dispatcher in terms of this queueing
 diagram. A process that is interrupted is transferred to the queue of waiting proc-
esses. Alternatively, if the process has completed or aborted, it is discarded (exits
the system). In either case, the dispatcher takes another process from the queue to
execute.

The Creation and Termination of Processes

 Before refining our simple two-state model, it will be useful to discuss the cre-
ation and termination of processes; ultimately, and regardless of the model of
process behavior that is used, the life of a process is bounded by its creation and
termination.

PROCESS CREATION When a new process is to be added to those currently being
managed, the OS builds the data structures that are used to manage the process
and allocates address space in main memory to the process. We describe these data
structures in Section 3.3 . These actions constitute the creation of a new process.

 Four common events lead to the creation of a process, as indicated in Table 3.1 .
In a batch environment, a process is created in response to the submission of a job.
In an interactive environment, a process is created when a new user attempts to
log on. In both cases, the OS is responsible for the creation of the new process.
An OS may also create a process on behalf of an application. For example, if a
user requests that a file be printed, the OS can create a process that will manage
the printing. The requesting process can thus proceed independently of the time
required to complete the printing task.

Not
running Running

Dispatch
Queue

Enter Exit

Enter Exit

Dispatch

Pause

Pause

(a) State transition diagram

(b) Queueing diagram

Processor

Figure 3.5 Two-State Process Model

3.2 / PROCESS STATES 115

 Traditionally, the OS created all processes in a way that was transparent to the
user or application program, and this is still commonly found with many contem-
porary operating systems. However, it can be useful to allow one process to cause
the creation of another. For example, an application process may generate another
process to receive data that the application is generating and to organize those data
into a form suitable for later analysis. The new process runs in parallel to the origi-
nal process and is activated from time to time when new data are available. This
arrangement can be very useful in structuring the application. As another example,
a server process (e.g., print server, file server) may generate a new process for each
request that it handles. When the OS creates a process at the explicit request of
another process, the action is referred to as process spawning .

 When one process spawns another, the former is referred to as the parent
process, and the spawned process is referred to as the child process. Typically, the
“related” processes need to communicate and cooperate with each other. Achieving
this cooperation is a difficult task for the programmer; this topic is discussed in
 Chapter 5 .

PROCESS TERMINATION Table 3.2 summarizes typical reasons for process
termination. Any computer system must provide a means for a process to indicate its
completion. A batch job should include a Halt instruction or an explicit OS service
call for termination. In the former case, the Halt instruction will generate an interrupt
to alert the OS that a process has completed. For an interactive application, the action
of the user will indicate when the process is completed. For example, in a time-sharing
system, the process for a particular user is to be terminated when the user logs off or
turns off his or her terminal. On a personal computer or workstation, a user may quit
an application (e.g., word processing or spreadsheet). All of these actions ultimately
result in a service request to the OS to terminate the requesting process.

 Additionally, a number of error and fault conditions can lead to the termina-
tion of a process. Table 3.2 lists some of the more commonly recognized conditions. 3

 Finally, in some operating systems, a process may be terminated by the proc-
ess that created it or when the parent process is itself terminated.

Table 3.1 Reasons for Process Creation

 New batch job The OS is provided with a batch job control stream, usually on tape
or disk. When the OS is prepared to take on new work, it will read the
next sequence of job control commands.

 Interactive log-on A user at a terminal logs on to the system.

 Created by OS to provide a service The OS can create a process to perform a function on behalf of a user
program, without the user having to wait (e.g., a process to control
printing).

 Spawned by existing process For purposes of modularity or to exploit parallelism, a user program
can dictate the creation of a number of processes.

3 A forgiving operating system might, in some cases, allow the user to recover from a fault without termi-
nating the process. For example, if a user requests access to a file and that access is denied, the operating
system might simply inform the user that access is denied and allow the process to proceed.

116 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

A Five-State Model

 If all processes were always ready to execute, then the queueing discipline suggested
by Figure 3.5b would be effective. The queue is a first-in-first-out list and the pro-
cessor operates in round-robin fashion on the available processes (each process in
the queue is given a certain amount of time, in turn, to execute and then returned to
the queue, unless blocked). However, even with the simple example that we have
described, this implementation is inadequate: Some processes in the Not Running
state are ready to execute, while others are blocked, waiting for an I/O operation
to complete. Thus, using a single queue, the dispatcher could not just select the
process at the oldest end of the queue. Rather, the dispatcher would have to scan
the list looking for the process that is not blocked and that has been in the queue
the longest.

 A more natural way to handle this situation is to split the Not Running state
into two states: Ready and Blocked. This is shown in Figure 3.6 . For good measure,

Table 3.2 Reasons for Process Termination

 Normal completion The process executes an OS service call to indicate that it has completed
running.

 Time limit exceeded The process has run longer than the specified total time limit. There are a
number of possibilities for the type of time that is measured. These include
total elapsed time (“wall clock time”), amount of time spent executing, and,
in the case of an interactive process, the amount of time since the user last
provided any input.

 Memory unavailable The process requires more memory than the system can provide.

 Bounds violation The process tries to access a memory location that it is not allowed to access.

 Protection error The process attempts to use a resource such as a file that it is not allowed
to use, or it tries to use it in an improper fashion, such as writing to a read-
only file.

 Arithmetic error The process tries a prohibited computation, such as division by zero, or tries
to store numbers larger than the hardware can accommodate.

 Time overrun The process has waited longer than a specified maximum for a certain event
to occur.

 I/O failure An error occurs during input or output, such as inability to find a file, failure
to read or write after a specified maximum number of tries (when, for exam-
ple, a defective area is encountered on a tape), or invalid operation (such as
reading from the line printer).

 Invalid instruction The process attempts to execute a nonexistent instruction (often a result of
branching into a data area and attempting to execute the data).

 Privileged instruction The process attempts to use an instruction reserved for the operating system.

 Data misuse A piece of data is of the wrong type or is not initialized.

 Operator or OS intervention For some reason, the operator or the operating system has terminated the
process (e.g., if a deadlock exists).

 Parent termination When a parent terminates, the operating system may automatically termi-
nate all of the offspring of that parent.

 Parent request A parent process typically has the authority to terminate any of its offspring.

3.2 / PROCESS STATES 117

we have added two additional states that will prove useful. The five states in this
new diagram are:

 • Running: The process that is currently being executed. For this chapter, we
will assume a computer with a single processor, so at most one process at a
time can be in this state.

 • Ready: A process that is prepared to execute when given the opportunity.

 • Blocked/Waiting:4 A process that cannot execute until some event occurs,
such as the completion of an I/O operation.

 • New: A process that has just been created but has not yet been admitted to the
pool of executable processes by the OS. Typically, a new process has not yet
been loaded into main memory, although its process control block has been
created.

 • Exit: A process that has been released from the pool of executable processes
by the OS, either because it halted or because it aborted for some reason.

 The New and Exit states are useful constructs for process management. The
New state corresponds to a process that has just been defined. For example, if a new
user attempts to log on to a time-sharing system or a new batch job is submitted for
execution, the OS can define a new process in two stages. First, the OS performs the
necessary housekeeping chores. An identifier is associated with the process. Any
tables that will be needed to manage the process are allocated and built. At this
point, the process is in the New state. This means that the OS has performed the
necessary actions to create the process but has not committed itself to the execution
of the process. For example, the OS may limit the number of processes that may
be in the system for reasons of performance or main memory limitation. While a
process is in the new state, information concerning the process that is needed by the
OS is maintained in control tables in main memory. However, the process itself is

Dispatch

Time-out

New Ready

Blocked

Running Exit
Admit Release

Event
wait

Event
occurs

Figure 3.6 Five-State Process Model

4Waiting is a frequently used alternative term for Blocked as a process state. Generally, we will use
Blocked , but the terms are interchangeable.

118 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

not in main memory. That is, the code of the program to be executed is not in main
memory, and no space has been allocated for the data associated with that program.
While the process is in the New state, the program remains in secondary storage,
typically disk storage. 5

 Similarly, a process exits a system in two stages. First, a process is terminated
when it reaches a natural completion point, when it aborts due to an unrecoverable
error, or when another process with the appropriate authority causes the process to
abort. Termination moves the process to the exit state. At this point, the process is
no longer eligible for execution. The tables and other information associated with
the job are temporarily preserved by the OS, which provides time for auxiliary or
support programs to extract any needed information. For example, an accounting
program may need to record the processor time and other resources utilized by
the process for billing purposes. A utility program may need to extract information
about the history of the process for purposes related to performance or utilization
analysis. Once these programs have extracted the needed information, the OS no
longer needs to maintain any data relating to the process and the process is deleted
from the system.

 Figure 3.6 indicates the types of events that lead to each state transition for a
process; the possible transitions are as follows:

 • Null: New: A new process is created to execute a program. This event occurs
for any of the reasons listed in Table 3.1 .

 • New: Ready: The OS will move a process from the New state to the Ready
state when it is prepared to take on an additional process. Most systems set
some limit based on the number of existing processes or the amount of virtual
memory committed to existing processes. This limit assures that there are not
so many active processes as to degrade performance.

 • Ready: Running: When it is time to select a process to run, the OS chooses
one of the processes in the Ready state. This is the job of the scheduler or
 dispatcher. Scheduling is explored in Part Four.

 • Running: Exit: The currently running process is terminated by the OS if the
process indicates that it has completed, or if it aborts. See Table 3.2 .

 • Running : Ready: The most common reason for this transition is that the
running process has reached the maximum allowable time for uninterrupted
execution; virtually all multiprogramming operating systems impose this type
of time discipline. There are several other alternative causes for this transi-
tion, which are not implemented in all operating systems. Of particular impor-
tance is the case in which the OS assigns different levels of priority to different
processes. Suppose, for example, that process A is running at a given priority
level, and process B, at a higher priority level, is blocked. If the OS learns
that the event upon which process B has been waiting has occurred, moving
B to a ready state, then it can interrupt process A and dispatch process B. We

5 In the discussion in this paragraph, we ignore the concept of virtual memory. In systems that support
virtual memory, when a process moves from New to Ready, its program code and data are loaded
into virtual memory. Virtual memory was briefly discussed in Chapter 2 and is examined in detail in
 Chapter 8 .

3.2 / PROCESS STATES 119

say that the OS has preempted process A. 6 Finally, a process may voluntarily
release control of the processor. An example is a background process that
performs some accounting or maintenance function periodically.

 • Running: Blocked: A process is put in the Blocked state if it requests some-
thing for which it must wait. A request to the OS is usually in the form of a
 system service call; that is, a call from the running program to a procedure
that is part of the operating system code. For example, a process may request
a service from the OS that the OS is not prepared to perform immediately. It
can request a resource, such as a file or a shared section of virtual memory,
that is not immediately available. Or the process may initiate an action, such
as an I/O operation, that must be completed before the process can continue.
When processes communicate with each other, a process may be blocked
when it is waiting for another process to provide data or waiting for a message
from another process.

 • Blocked: Ready: A process in the Blocked state is moved to the Ready state
when the event for which it has been waiting occurs.

 • Ready: Exit: For clarity, this transition is not shown on the state diagram. In
some systems, a parent may terminate a child’ process at any time. Also, if a par-
ent terminates, all child processes associated with that parent may be terminated.

 • Blocked: Exit: The comments under the preceding item apply.

 Returning to our simple example, Figure 3.7 shows the transition of each proc-
ess among the states. Figure 3.8a suggests the way in which a queueing discipline
might be implemented with two queues: a Ready queue and a Blocked queue. As
each process is admitted to the system, it is placed in the Ready queue. When it is
time for the OS to choose another process to run, it selects one from the Ready

Dispatcher

� Running � Ready � Blocked

0 5 10 15 20 25 30 35 40 45 50

Process C

Process B

Process A

Figure 3.7 Process States for the Trace of Figure 3.4

6 In general, the term preemption is defined to be the reclaiming of a resource from a process before the
process has finished using it. In this case, the resource is the processor itself. The process is executing and
could continue to execute, but is preempted so that another process can be executed.

120 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

queue. In the absence of any priority scheme, this can be a simple first-in-first-out
queue. When a running process is removed from execution, it is either terminated
or placed in the Ready or Blocked queue, depending on the circumstances. Finally,
when an event occurs, any process in the Blocked queue that has been waiting on
that event only is moved to the Ready queue.

 This latter arrangement means that, when an event occurs, the OS must scan
the entire blocked queue, searching for those processes waiting on that event. In a
large OS, there could be hundreds or even thousands of processes in that queue.
Therefore, it would be more efficient to have a number of queues, one for each
event. Then, when the event occurs, the entire list of processes in the appropriate
queue can be moved to the Ready state (Figure 3.8b).

 One final refinement: If the dispatching of processes is dictated by a priority
scheme, then it would be convenient to have a number of Ready queues, one for
each priority level. The OS could then readily determine which is the highest-prior-
ity ready process that has been waiting the longest.

Dispatch

Time-out

Event wait

Event 1 wait

Event 2 wait

Event n wait

Event
occurs

Ready queue

Blocked queue

Admit
Release

Processor

Dispatch
ReleaseReady queue

Admit
Processor

Time-out

Event 1 queue
Event 1
occurs

Event 2
occurs

Event n
occurs

Event 2 queue

Event n queue

(a) Single blocked queue

(b) Multiple blocked queues

Figure 3.8 Queueing Model for Figure 3.6

3.2 / PROCESS STATES 121

Suspended Processes

THE NEED FOR SWAPPING The three principal states just described (Ready,
Running, Blocked) provide a systematic way of modeling the behavior of processes
and guide the implementation of the OS. Some operating systems are constructed
using just these three states.

 However, there is good justification for adding other states to the model. To
see the benefit of these new states, consider a system that does not employ virtual
memory. Each process to be executed must be loaded fully into main memory.
Thus, in Figure 3.8b , all of the processes in all of the queues must be resident in
main memory.

 Recall that the reason for all of this elaborate machinery is that I/O activities
are much slower than computation and therefore the processor in a uniprogramming
system is idle most of the time. But the arrangement of Figure 3.8b does not entirely
solve the problem. It is true that, in this case, memory holds multiple processes and
that the processor can move to another process when one process is blocked. But the
processor is so much faster than I/O that it will be common for all of the processes in
memory to be waiting for I/O. Thus, even with multiprogramming, a processor could
be idle most of the time.

 What to do? Main memory could be expanded to accommodate more proc-
esses. But there are two flaws in this approach. First, there is a cost associated with
main memory, which, though small on a per-byte basis, begins to add up as we get
into the gigabytes of storage. Second, the appetite of programs for memory has
grown as fast as the cost of memory has dropped. So larger memory results in larger
processes, not more processes.

 Another solution is swapping, which involves moving part or all of a process
from main memory to disk. When none of the processes in main memory is in the
Ready state, the OS swaps one of the blocked processes out on to disk into a sus-
pend queue. This is a queue of existing processes that have been temporarily kicked
out of main memory, or suspended. The OS then brings in another process from the
suspend queue, or it honors a new-process request. Execution then continues with
the newly arrived process.

 Swapping, however, is an I/O operation, and therefore there is the potential
for making the problem worse, not better. But because disk I/O is generally the
fastest I/O on a system (e.g., compared to tape or printer I/O), swapping will usually
enhance performance.

 With the use of swapping as just described, one other state must be added to
our process behavior model (Figure 3.9a): the Suspend state. When all of the proc-
esses in main memory are in the Blocked state, the OS can suspend one process by
putting it in the Suspend state and transferring it to disk. The space that is freed in
main memory can then be used to bring in another process.

 When the OS has performed a swapping-out operation, it has two choices for
selecting a process to bring into main memory: It can admit a newly created process
or it can bring in a previously suspended process. It would appear that the prefer-
ence should be to bring in a previously suspended process, to provide it with service
rather than increasing the total load on the system.

122 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

 But this line of reasoning presents a difficulty. All of the processes that have
been suspended were in the Blocked state at the time of suspension. It clearly would
not do any good to bring a blocked process back into main memory, because it is
still not ready for execution. Recognize, however, that each process in the Suspend
state was originally blocked on a particular event. When that event occurs, the proc-
ess is not blocked and is potentially available for execution.

 Therefore, we need to rethink this aspect of the design. There are two inde-
pendent concepts here: whether a process is waiting on an event (blocked or not)
and whether a process has been swapped out of main memory (suspended or not).
To accommodate this 2 * 2 combination, we need four states:

 • Ready: The process is in main memory and available for execution

 • Blocked: The process is in main memory and awaiting an event.

E
ve

nt
oc

cu
rs

New

Suspend

Ready

Blocked

Running Exit
Admit

(a) With one suspend state

Suspend

Eve
nt

wait

E
ve

nt
oc

cu
rs

Acti
va

te

Dispatch

Time-out

Release

Ready/
suspend

New

Ready

Blocked

Running Exit

A
dm

itA
dm

it

(b) With two suspend states

Eve
nt

wait

E
ve

nt
oc

cu
rs

Dispatch

Time-out

Activate

Suspend

Suspend

Activate

Suspend

Release

Blocked/
suspend

Figure 3.9 Process State Transition Diagram with Suspend States

3.2 / PROCESS STATES 123

 • Blocked/Suspend: The process is in secondary memory and awaiting an event.

 • Ready/Suspend: The process is in secondary memory but is available for
 execution as soon as it is loaded into main memory.

 Before looking at a state transition diagram that encompasses the two new
suspend states, one other point should be mentioned. The discussion so far has
assumed that virtual memory is not in use and that a process is either all in main
memory or all out of main memory. With a virtual memory scheme, it is possible
to execute a process that is only partially in main memory. If reference is made to
a process address that is not in main memory, then the appropriate portion of the
process can be brought in. The use of virtual memory would appear to eliminate the
need for explicit swapping, because any desired address in any desired process can
be moved in or out of main memory by the memory management hardware of the
processor. However, as we shall see in Chapter 8 , the performance of a virtual mem-
ory system can collapse if there is a sufficiently large number of active processes, all
of which are partially in main memory. Therefore, even in a virtual memory system,
the OS will need to swap out processes explicitly and completely from time to time
in the interests of performance.

 Let us look now, in Figure 3.9b , at the state transition model that we have
developed. (The dashed lines in the figure indicate possible but not necessary tran-
sitions.) Important new transitions are the following:

 • Blocked : Blocked/Suspend: If there are no ready processes, then at least
one blocked process is swapped out to make room for another process that
is not blocked. This transition can be made even if there are ready processes
available, if the OS determines that the currently running process or a ready
 process that it would like to dispatch requires more main memory to maintain
adequate performance.

 • Blocked/Suspend: Ready/Suspend: A process in the Blocked/Suspend state
is moved to the Ready/Suspend state when the event for which it has been
waiting occurs. Note that this requires that the state information concerning
suspended processes must be accessible to the OS.

 • Ready/Suspend: Ready: When there are no ready processes in main mem-
ory, the OS will need to bring one in to continue execution. In addition, it
might be the case that a process in the Ready/Suspend state has higher priority
than any of the processes in the Ready state. In that case, the OS designer may
dictate that it is more important to get at the higher-priority process than to
minimize swapping.

 • Ready : Ready/Suspend: Normally, the OS would prefer to suspend a
blocked process rather than a ready one, because the ready process can now
be executed, whereas the blocked process is taking up main memory space
and cannot be executed. However, it may be necessary to suspend a ready
process if that is the only way to free up a sufficiently large block of main
memory. Also, the OS may choose to suspend a lower–priority ready process
rather than a higher–priority blocked process if it believes that the blocked
process will be ready soon.

124 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

 Several other transitions that are worth considering are the following:

 • New: Ready/Suspend and New : Ready: When a new process is created, it
can either be added to the Ready queue or the Ready/Suspend queue. In either
case, the OS must create a process control block and allocate an address space
to the process. It might be preferable for the OS to perform these housekeep-
ing duties at an early time, so that it can maintain a large pool of processes that
are not blocked. With this strategy, there would often be insufficient room in
main memory for a new process; hence the use of the (New : Ready/Suspend)
transition. On the other hand, we could argue that a just-in-time philosophy of
creating processes as late as possible reduces OS overhead and allows that OS
to perform the process-creation duties at a time when the system is clogged
with blocked processes anyway.

 • Blocked/Suspend: Blocked: Inclusion of this transition may seem to be poor
design. After all, if a process is not ready to execute and is not already in
main memory, what is the point of bringing it in? But consider the follow-
ing scenario: A process terminates, freeing up some main memory. There is a
process in the (Blocked/Suspend) queue with a higher priority than any of the
processes in the (Ready/Suspend) queue and the OS has reason to believe that
the blocking event for that process will occur soon. Under these circumstances,
it would seem reasonable to bring a blocked process into main memory in
preference to a ready process.

 • Running : Ready/Suspend: Normally, a running process is moved to the
Ready state when its time allocation expires. If, however, the OS is preempt-
ing the process because a higher-priority process on the Blocked/Suspend
queue has just become unblocked, the OS could move the running process
directly to the (Ready/Suspend) queue and free some main memory.

 • Any State : Exit: Typically, a process terminates while it is running, either
 because it has completed or because of some fatal fault condition. However, in
some operating systems, a process may be terminated by the process that cre-
ated it or when the parent process is itself terminated. If this is allowed, then a
process in any state can be moved to the Exit state.

OTHER USES OF SUSPENSION So far, we have equated the concept of a suspended
process with that of a process that is not in main memory. A process that is not
in main memory is not immediately available for execution, whether or not it is
awaiting an event.

 We can generalize the concept of a suspended process. Let us define a
 suspended process as having the following characteristics:

 1. The process is not immediately available for execution.

 2. The process may or may not be waiting on an event. If it is, this blocked condi-
tion is independent of the suspend condition, and occurrence of the blocking
event does not enable the process to be executed immediately.

3.2 / PROCESS STATES 125

 3. The process was placed in a suspended state by an agent: either itself, a parent
process, or the OS, for the purpose of preventing its execution.

 4. The process may not be removed from this state until the agent explicitly
orders the removal.

 Table 3.3 lists some reasons for the suspension of a process. One reason that
we have discussed is to provide memory space either to bring in a Ready/Suspended
process or to increase the memory allocated to other Ready processes. The OS may
have other motivations for suspending a process. For example, an auditing or trac-
ing process may be employed to monitor activity on the system; the process may
be used to record the level of utilization of various resources (processor, memory,
channels) and the rate of progress of the user processes in the system. The OS,
under operator control, may turn this process on and off from time to time. If the
OS detects or suspects a problem, it may suspend a process. One example of this
is deadlock, which is discussed in Chapter 6 . As another example, a problem is
detected on a communications line, and the operator has the OS suspend the proc-
ess that is using the line while some tests are run.

 Another set of reasons concerns the actions of an interactive user. For example, if
a user suspects a bug in the program, he or she may debug the program by suspending
its execution, examining and modifying the program or data, and resuming execution.
Or there may be a background process that is collecting trace or accounting statistics,
which the user may wish to be able to turn on and off.

 Timing considerations may also lead to a swapping decision. For example, if a
process is to be activated periodically but is idle most of the time, then it should be
swapped out between uses. A program that monitors utilization or user activity is
an example.

 Finally, a parent process may wish to suspend a descendent process. For exam-
ple, process A may spawn process B to perform a file read. Subsequently, process B
encounters an error in the file read procedure and reports this to process A. Process
A suspends process B to investigate the cause.

 In all of these cases, the activation of a suspended process is requested by the
agent that initially requested the suspension.

Table 3.3 Reasons for Process Suspension

 Swapping The OS needs to release sufficient main memory to bring in a process that is ready
to execute.

 Other OS reason The OS may suspend a background or utility process or a process that is suspected
of causing a problem.

 Interactive user request A user may wish to suspend execution of a program for purposes of debugging or
in connection with the use of a resource.

 Timing A process may be executed periodically (e.g., an accounting or system monitoring
process) and may be suspended while waiting for the next time interval.

 Parent process request A parent process may wish to suspend execution of a descendent to examine or
modify the suspended process, or to coordinate the activity of various descendants.

126 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

3.3 PROCESS DESCRIPTION

 The OS controls events within the computer system. It schedules and dispatches
processes for execution by the processor, allocates resources to processes, and
responds to requests by user processes for basic services. Fundamentally, we can
think of the OS as that entity that manages the use of system resources by processes.

 This concept is illustrated in Figure 3.10 . In a multiprogramming environment,
there are a number of processes (P 1 ,…, P n) that have been created and exist in
virtual memory. Each process, during the course of its execution, needs access to
certain system resources, including the processor, I/O devices, and main memory. In
the figure, process P 1 is running; at least part of the process is in main memory, and
it has control of two I/O devices. Process P 2 is also in main memory but is blocked
waiting for an I/O device allocated to P 1 . Process P n has been swapped out and is
therefore suspended.

 We explore the details of the management of these resources by the OS
on behalf of the processes in later chapters. Here we are concerned with a more
 fundamental question: What information does the OS need to control processes and
manage resources for them?

Operating System Control Structures

 If the OS is to manage processes and resources, it must have information about
the current status of each process and resource. The universal approach to provid-
ing this information is straightforward: The OS constructs and maintains tables of
information about each entity that it is managing. A general idea of the scope of this
effort is indicated in Figure 3.11 , which shows four different types of tables main-
tained by the OS: memory, I/O, file, and process. Although the details will differ
from one OS to another, fundamentally, all operating systems maintain information
in these four categories.

Memory tables are used to keep track of both main (real) and second-
ary (virtual) memory. Some of main memory is reserved for use by the OS; the
remainder is available for use by processes. Processes are maintained on secondary
 memory using some sort of virtual memory or simple swapping mechanism. The
memory tables must include the following information:

 • The allocation of main memory to processes

 • The allocation of secondary memory to processes

Processor I/O I/O I/O
Main

memory

Computer
resources

Virtual
memory

P2 PnP1

Figure 3.10 Processes and Resources (resource allocation at one snapshot in time)

3.3 / PROCESS DESCRIPTION 127

 • Any protection attributes of blocks of main or virtual memory, such as which
processes may access certain shared memory regions

 • Any information needed to manage virtual memory

 We examine the information structures for memory management in detail in Part
Three.

I/O tables are used by the OS to manage the I/O devices and channels of the
computer system. At any given time, an I/O device may be available or assigned to a
particular process. If an I/O operation is in progress, the OS needs to know the status
of the I/O operation and the location in main memory being used as the source or
destination of the I/O transfer. I/O management is examined in Chapter 11 .

 The OS may also maintain file tables . These tables provide information about
the existence of files, their location on secondary memory, their current status, and
other attributes. Much, if not all, of this information may be maintained and used by
a file management system, in which case the OS has little or no knowledge of files.
In other operating systems, much of the detail of file management is managed by
the OS itself. This topic is explored in Chapter 12 .

 Finally, the OS must maintain process tables to manage processes. The
remainder of this section is devoted to an examination of the required process
tables. Before proceeding to this discussion, two additional points should be made.
First, although Figure 3.11 shows four distinct sets of tables, it should be clear that
these tables must be linked or cross-referenced in some fashion. Memory, I/O, and

Memory

Devices

Files

Processes

Process 1

Memory tables

Process
image

Process
1

Process
image

Process
n

I/O tables

File tables

Primary process table

Process 2

Process 3

Process n

Figure 3.11 General Structure of Operating System Control Tables

128 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

files are managed on behalf of processes, so there must be some reference to these
resources, directly or indirectly, in the process tables. The files referred to in the file
tables are accessible via an I/O device and will, at some times, be in main or virtual
memory. The tables themselves must be accessible by the OS and therefore are sub-
ject to memory management.

 Second, how does the OS know to create the tables in the first place? Clearly,
the OS must have some knowledge of the basic environment, such as how much main
memory exists, what are the I/O devices and what are their identifiers, and so on. This
is an issue of configuration. That is, when the OS is initialized, it must have access to
some configuration data that define the basic environment, and these data must be
created outside the OS, with human assistance or by some autoconfiguration software.

Process Control Structures

 Consider what the OS must know if it is to manage and control a process. First, it
must know where the process is located; second, it must know the attributes of the
process that are necessary for its management (e.g., process ID and process state).

PROCESS LOCATION Before we can deal with the questions of where a process is
located or what its attributes are, we need to address an even more fundamental
question: What is the physical manifestation of a process? At a minimum, a process
must include a program or set of programs to be executed. Associated with these
programs is a set of data locations for local and global variables and any defined
constants. Thus, a process will consist of at least sufficient memory to hold the
programs and data of that process. In addition, the execution of a program typically
involves a stack (see Appendix P) that is used to keep track of procedure calls and
parameter passing between procedures. Finally, each process has associated with it
a number of attributes that are used by the OS for process control. Typically, the
collection of attributes is referred to as a process control block.7 We can refer to this
collection of program, data, stack, and attributes as the process image (Table 3.4).

 The location of a process image will depend on the memory management
scheme being used. In the simplest case, the process image is maintained as a

Table 3.4 Typical Elements of a Process Image

User Data
 The modifiable part of the user space. May include program data, a user stack area, and programs that may be
modified.

User Program
 The program to be executed.

Stack
 Each process has one or more last-in-first-out (LIFO) stacks associated with it. A stack is used to store param-
eters and calling addresses for procedure and system calls.

Process Control Block
 Data needed by the OS to control the process (see Table 3.5).

7 Other commonly used names for this data structure are task control block , process descriptor , and task
descriptor.

3.3 / PROCESS DESCRIPTION 129

 contiguous, or continuous, block of memory. This block is maintained in secondary
memory, usually disk. So that the OS can manage the process, at least a small portion
of its image must be maintained in main memory. To execute the process, the entire
process image must be loaded into main memory or at least virtual memory. Thus,
the OS needs to know the location of each process on disk and, for each such proc-
ess that is in main memory, the location of that process in main memory. We saw
a slightly more complex variation on this scheme with the CTSS OS, in Chapter 2 .
With CTSS, when a process is swapped out, part of the process image may remain in
main memory. Thus, the OS must keep track of which portions of the image of each
process are still in main memory.

 Modern operating systems presume paging hardware that allows noncontigu-
ous physical memory to support partially resident processes. 8 At any given time, a
portion of a process image may be in main memory, with the remainder in secondary
memory.9 Therefore, process tables maintained by the OS must show the location
of each page of each process image.

 Figure 3.11 depicts the structure of the location information in the follow-
ing way. There is a primary process table with one entry for each process. Each
entry contains, at least, a pointer to a process image. If the process image con-
tains multiple blocks, this information is contained directly in the primary process
table or is available by cross-reference to entries in memory tables. Of course,
this depiction is generic; a particular OS will have its own way of organizing the
 location information.

PROCESS ATTRIBUTES A sophisticated multiprogramming system requires a great
deal of information about each process. As was explained, this information can be
considered to reside in a process control block. Different systems will organize this
information in different ways, and several examples of this appear at the end of this
chapter and the next. For now, let us simply explore the type of information that
might be of use to an OS without considering in any detail how that information is
organized.

 Table 3.5 lists the typical categories of information required by the OS for each
process. You may be somewhat surprised at the quantity of information required.
As you gain a greater appreciation of the responsibilities of the OS, this list should
appear more reasonable.

 We can group the process control block information into three general
 categories:

 • Process identification

 • Processor state information

 • Process control information

9 This brief discussion slides over some details. In particular, in a system that uses virtual memory, all of
the process image for an active process is always in secondary memory. When a portion of the image is
loaded into main memory, it is copied rather than moved. Thus, the secondary memory retains a copy of
all segments and/or pages. However, if the main memory portion of the image is modified, the secondary
copy will be out of date until the main memory portion is copied back onto disk.

8 A brief overview of the concepts of pages, segments, and virtual memory is provided in the subsection
on memory management in Section 2.3 .

130 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Table 3.5 Typical Elements of a Process Control Block

Process Identification

Identifiers
 Numeric identifiers that may be stored with the process control block include

 • Identifier of this process
 • Identifier of the process that created this process (parent process)
 • User identifier

Processor State Information

User-Visible Registers
 A user-visible register is one that may be referenced by means of the machine language that the processor
executes while in user mode. Typically, there are from 8 to 32 of these registers, although some RISC
implementations have over 100.

Control and Status Registers
 These are a variety of processor registers that are employed to control the operation of the processor. These
include

 • Program counter: Contains the address of the next instruction to be fetched
 • Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign, zero, carry, equal, overflow)
 • Status information: Includes interrupt enabled/disabled flags, execution mode

Stack Pointers
 Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A stack is used to store
parameters and calling addresses for procedure and system calls. The stack pointer points to the top of the stack.

Process Control Information

Scheduling and State Information
 This is information that is needed by the operating system to perform its scheduling function. Typical items of
information:

 • Process state: Defines the readiness of the process to be scheduled for execution (e.g., running, ready, wait-
ing, halted).

 • Priority: One or more fields may be used to describe the scheduling priority of the process. In some systems,
several values are required (e.g., default, current, highest-allowable).

 • Scheduling-related information: This will depend on the scheduling algorithm used. Examples are the
amount of time that the process has been waiting and the amount of time that the process executed the last
time it was running.

 • Event: Identity of event the process is awaiting before it can be resumed.

Data Structuring
 A process may be linked to other process in a queue, ring, or some other structure. For example, all processes
in a waiting state for a particular priority level may be linked in a queue. A process may exhibit a parent–child
(creator–created) relationship with another process. The process control block may contain pointers to other
processes to support these structures.

Interprocess Communication
 Various flags, signals, and messages may be associated with communication between two independent
 processes. Some or all of this information may be maintained in the process control block.

Process Privileges
 Processes are granted privileges in terms of the memory that may be accessed and the types of instructions
that may be executed. In addition, privileges may apply to the use of system utilities and services.

Memory Management
 This section may include pointers to segment and/or page tables that describe the virtual memory assigned to
this process.

Resource Ownership and Utilization
 Resources controlled by the process may be indicated, such as opened files. A history of utilization of the
 processor or other resources may also be included; this information may be needed by the scheduler.

3.3 / PROCESS DESCRIPTION 131

 With respect to process identification , in virtually all operating systems, each
process is assigned a unique numeric identifier, which may simply be an index into
the primary process table (Figure 3.11); otherwise there must be a mapping that
allows the OS to locate the appropriate tables based on the process identifier. This
identifier is useful in several ways. Many of the other tables controlled by the OS
may use process identifiers to cross-reference process tables. For example, the
memory tables may be organized so as to provide a map of main memory with an
indication of which process is assigned to each region. Similar references will appear
in I/O and file tables. When processes communicate with one another, the process
identifier informs the OS of the destination of a particular communication. When
processes are allowed to create other processes, identifiers indicate the parent and
descendents of each process.

 In addition to these process identifiers, a process may be assigned a user iden-
tifier that indicates the user responsible for the job.

Processor state information consists of the contents of processor registers.
While a process is running, of course, the information is in the registers. When a
process is interrupted, all of this register information must be saved so that it can
be restored when the process resumes execution. The nature and number of regis-
ters involved depend on the design of the processor. Typically, the register set will
include user-visible registers, control and status registers, and stack pointers. These
are described in Chapter 1 .

 Of particular note, all processor designs include a register or set of registers,
often known as the program status word (PSW), that contains status information.
The PSW typically contain condition codes plus other status information. A good
example of a processor status word is that on Intel x86 processors, referred to as the
EFLAGS register (shown in Figure 3.12 and Table 3.6). This structure is used by
any OS (including UNIX and Windows) running on an x86 processor.

 The third major category of information in the process control block can be
called, for want of a better name, process control information . This is the addi-
tional information needed by the OS to control and coordinate the various active
 processes. The last part of Table 3.5 indicates the scope of this information. As

V
I
P

V
I
F

I
D

A
C

V
M

R
F

N
T

IO
PL

O
F

D
F

I
F

T
F

S
F

Z
F

A
F

P
F

C
F

31 21 1516 0

ID � Identification flag
VIP � Virtual interrupt pending
VIF � Virtual interrupt flag
AC � Alignment check
VM � Virtual 8086 mode
RF � Resume flag
NT � Nested task flag
IOPL � I/O privilege level
OF � Overflow flag

DF � Direction flag
IF � Interrupt enable flag
TF � Trap flag
SF � Sign flag
ZF � Zero flag
AF � Auxiliary carry flag
PF � Parity flag
CF � Carry flag

Figure 3.12 x86 EFLAGS Register

132 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Table 3.6 Pentium EFLAGS Register Bits

Control Bits

AC (Alignment check)
 Set if a word or doubleword is addressed on a nonword or non-doubleword boundary.

ID (Identification flag)
 If this bit can be set and cleared, this processor supports the CPUID instruction. This instruction provides
information about the vendor, family, and model.

RF (Resume flag)
 Allows the programmer to disable debug exceptions so that the instruction can be restarted after a debug
exception without immediately causing another debug exception.

IOPL (I/O privilege level)
 When set, causes the processor to generate an exception on all accesses to I/O devices during protected mode
operation.

DF (Direction flag)
 Determines whether string processing instructions increment or decrement the 16-bit half-registers SI and DI
(for 16-bit operations) or the 32-bit registers ESI and EDI (for 32-bit operations).

IF (Interrupt enable flag)
 When set, the processor will recognize external interrupts.

TF (Trap flag)
 When set, causes an interrupt after the execution of each instruction. This is used for debugging.

Operating Mode Bits

NT (Nested task flag)
 Indicates that the current task is nested within another task in protected mode operation.

VM (Virtual 8086 mode)
 Allows the programmer to enable or disable virtual 8086 mode, which determines whether the processor runs
as an 8086 machine.

VIP (Virtual interrupt pending)
 Used in virtual 8086 mode to indicate that one or more interrupts are awaiting service.

VIF (Virtual interrupt flag)
 Used in virtual 8086 mode instead of IF.

Condition Codes

AF (Auxiliary carry flag)
 Represents carrying or borrowing between half-bytes of an 8-bit arithmetic or logic operation using the AL
register.

CF (Carry flag)
 Indicates carrying out or borrowing into the leftmost bit position following an arithmetic operation. Also
modified by some of the shift and rotate operations.

OF (Overflow flag)
 Indicates an arithmetic overflow after an addition or subtraction.

PF (Parity flag)
 Parity of the result of an arithmetic or logic operation. 1 indicates even parity; 0 indicates odd parity.

SF (Sign flag)
 Indicates the sign of the result of an arithmetic or logic operation.

ZF (Zero flag)
 Indicates that the result of an arithmetic or logic operation is 0.

3.3 / PROCESS DESCRIPTION 133

we examine the details of operating system functionality in succeeding chapters,
the need for the various items on this list should become clear.

 Figure 3.13 suggests the structure of process images in virtual memory. Each
process image consists of a process control block, a user stack, the private address
space of the process, and any other address space that the process shares with
other processes. In the figure, each process image appears as a contiguous range
of addresses. In an actual implementation, this may not be the case; it will depend
on the memory management scheme and the way in which control structures are
organized by the OS.

 As indicated in Table 3.5 , the process control block may contain structuring
information, including pointers that allow the linking of process control blocks.
Thus, the queues that were described in the preceding section could be imple-
mented as linked lists of process control blocks. For example, the queueing structure
of Figure 3.8a could be implemented as suggested in Figure 3.14 .

THE ROLE OF THE PROCESS CONTROL BLOCK The process control block is the
most important data structure in an OS. Each process control block contains all
of the information about a process that is needed by the OS. The blocks are read
and/or modified by virtually every module in the OS, including those involved with
scheduling, resource allocation, interrupt processing, and performance monitoring
and analysis. One can say that the set of process control blocks defines the state of
the OS.

 This brings up an important design issue. A number of routines within the OS
will need access to information in process control blocks. The provision of direct

Process
identification

Process
control
block

Processor state
information

Process control
information

User stack

Private user
address space

(programs, data)

Shared address
space

Process
identification

Process 1 Process 2 Process n

Processor state
information

Process control
information

User stack

Private user
address space

(programs, data)

Shared address
space

Process
identification

Processor state
information

Process control
information

User stack

Private user
address space

(programs, data)

Shared address
space

Figure 3.13 User Processes in Virtual Memory

134 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

access to these tables is not difficult. Each process is equipped with a unique ID, and
this can be used as an index into a table of pointers to the process control blocks.
The difficulty is not access but rather protection. Two problems present themselves:

 • A bug in a single routine, such as an interrupt handler, could damage process
control blocks, which could destroy the system’s ability to manage the affected
processes.

 • A design change in the structure or semantics of the process control block
could affect a number of modules in the OS.

 These problems can be addressed by requiring all routines in the OS to go
through a handler routine, the only job of which is to protect process control blocks,
and which is the sole arbiter for reading and writing these blocks. The trade-off in
the use of such a routine involves performance issues and the degree to which the
remainder of the system software can be trusted to be correct.

3.4 PROCESS CONTROL

Modes of Execution

 Before continuing with our discussion of the way in which the OS manages pro-
cesses, we need to distinguish between the mode of processor execution normally
associated with the OS and that normally associated with user programs. Most

Running

Ready

Blocked

Process
control block

Figure 3.14 Process List Structures

3.4 / PROCESS CONTROL 135

processors support at least two modes of execution. Certain instructions can only
be executed in the more-privileged mode. These would include reading or alter-
ing a control register, such as the program status word; primitive I/O instructions;
and instructions that relate to memory management. In addition, certain regions of
memory can only be accessed in the more-privileged mode.

 The less-privileged mode is often referred to as the user mode, because user
programs typically would execute in this mode. The more-privileged mode is referred
to as the system mode, control mode, or kernel mode. This last term refers to the
kernel of the OS, which is that portion of the OS that encompasses the important
system functions. Table 3.7 lists the functions typically found in the kernel of an OS.

 The reason for using two modes should be clear. It is necessary to protect the
OS and key operating system tables, such as process control blocks, from interfer-
ence by user programs. In the kernel mode, the software has complete control of the
processor and all its instructions, registers, and memory. This level of control is not
necessary and for safety is not desirable for user programs.

 Two questions arise: How does the processor know in which mode it is to be
executing and how is the mode changed? Regarding the first question, typically there
is a bit in the program status word (PSW) that indicates the mode of execution. This
bit is changed in response to certain events. Typically, when a user makes a call to
an operating system service or when an interrupt triggers execution of an operating
system routine, the mode is set to the kernel mode and, upon return from the service
to the user process, the mode is set to user mode. As an example, consider the Intel
Itanium processor, which implements the 64-bit IA-64 architecture. The processor
has a processor status register (psr) that includes a 2-bit cpl (current privilege level)
field. Level 0 is the most privileged level, while level 3 is the least privileged level.
Most operating systems, such as Linux, use level 0 for the kernel and one other level

Table 3.7 Typical Functions of an Operating System Kernel

Process Management

 • Process creation and termination
 • Process scheduling and dispatching
 • Process switching
 • Process synchronization and support for interprocess communication
 • Management of process control blocks

Memory Management

 • Allocation of address space to processes
 • Swapping
 • Page and segment management

I/O Management

 • Buffer management
 • Allocation of I/O channels and devices to processes

Support Functions

 • Interrupt handling
 • Accounting
 • Monitoring

136 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

for user mode. When an interrupt occurs, the processor clears most of the bits in the
psr, including the cpl field. This automatically sets the cpl to level 0. At the end of
the interrupt-handling routine, the final instruction that is executed is irt (interrupt
return). This instruction causes the processor to restore the psr of the interrupted pro-
gram, which restores the privilege level of that program. A similar sequence occurs
when an application places a system call. For the Itanium, an application places a
system call by placing the system call identifier and the system call arguments in a
predefined area and then executing a special instruction that has the effect of inter-
rupting execution at the user level and transferring control to the kernel.

Process Creation

 In Section 3.2 , we discussed the events that lead to the creation of a new process.
Having discussed the data structures associated with a process, we are now in a
 position to describe briefly the steps involved in actually creating the process.

 Once the OS decides, for whatever reason (Table 3.1), to create a new process,
it can proceed as follows:

 1. Assign a unique process identifier to the new process. At this time, a new entry
is added to the primary process table, which contains one entry per process.

 2. Allocate space for the process. This includes all elements of the process image.
Thus, the OS must know how much space is needed for the private user address
space (programs and data) and the user stack. These values can be assigned by
default based on the type of process, or they can be set based on user request
at job creation time. If a process is spawned by another process, the parent
process can pass the needed values to the OS as part of the process-creation
request. If any existing address space is to be shared by this new process, the
appropriate linkages must be set up. Finally, space for a process control block
must be allocated.

 3. Initialize the process control block. The process identification portion contains
the ID of this process plus other appropriate IDs, such as that of the parent
process. The processor state information portion will typically be initialized
with most entries zero, except for the program counter (set to the program
entry point) and system stack pointers (set to define the process stack bound-
aries). The process control information portion is initialized based on standard
default values plus attributes that have been requested for this process. For
example, the process state would typically be initialized to Ready or Ready/
Suspend. The priority may be set by default to the lowest priority unless an
explicit request is made for a higher priority. Initially, the process may own
no resources (I/O devices, files) unless there is an explicit request for these or
unless they are inherited from the parent.

 4. Set the appropriate linkages. For example, if the OS maintains each schedul-
ing queue as a linked list, then the new process must be put in the Ready or
Ready/Suspend list.

 5. Create or expand other data structures. For example, the OS may maintain
an accounting file on each process to be used subsequently for billing and/or
performance assessment purposes.

3.4 / PROCESS CONTROL 137

Process Switching

 On the face of it, the function of process switching would seem to be straightforward.
At some time, a running process is interrupted and the OS assigns another process
to the Running state and turns control over to that process. However, several design
issues are raised. First, what events trigger a process switch? Another issue is that
we must recognize the distinction between mode switching and process switching.
Finally, what must the OS do to the various data structures under its control to
achieve a process switch?

WHEN TO SWITCH PROCESSES A process switch may occur any time that the OS has
gained control from the currently running process. Table 3.8 suggests the possible
events that may give control to the OS.

 First, let us consider system interrupts. Actually, we can distinguish, as many
systems do, two kinds of system interrupts, one of which is simply referred to as an
interrupt, and the other as a trap. The former is due to some sort of event that is
external to and independent of the currently running process, such as the completion
of an I/O operation. The latter relates to an error or exception condition generated
within the currently running process, such as an illegal file access attempt. With an
ordinary interrupt, control is first transferred to an interrupt handler, which does
some basic housekeeping and then branches to an OS routine that is concerned with
the particular type of interrupt that has occurred. Examples include the following:

 • Clock interrupt: The OS determines whether the currently running process
has been executing for the maximum allowable unit of time, referred to as a
time slice . That is, a time slice is the maximum amount of time that a process
can execute before being interrupted. If so, this process must be switched to a
Ready state and another process dispatched.

 • I/O interrupt: The OS determines what I/O action has occurred. If the I/O
action constitutes an event for which one or more processes are waiting,
then the OS moves all of the corresponding blocked processes to the Ready
state (and Blocked/Suspend processes to the Ready/Suspend state). The OS
must then decide whether to resume execution of the process currently in
the Running state or to preempt that process for a higher-priority Ready
 process.

 • Memory fault: The processor encounters a virtual memory address refer-
ence for a word that is not in main memory. The OS must bring in the block

Table 3.8 Mechanisms for Interrupting the Execution of a Process

 Mechanism Cause Use

 Interrupt External to the execution of the
current instruction

 Reaction to an asynchronous external
event

 Trap Associated with the execution of
the current instruction

 Handling of an error or an exception
condition

 Supervisor call Explicit request Call to an operating system function

138 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

(page or segment) of memory containing the reference from secondary mem-
ory to main memory. After the I/O request is issued to bring in the block of
 memory, the process with the memory fault is placed in a blocked state; the
OS then performs a process switch to resume execution of another process.
After the desired block is brought into memory, that process is placed in the
Ready state.

 With a trap, the OS determines if the error or exception condition is fatal.
If so, then the currently running process is moved to the Exit state and a proc-
ess switch occurs. If not, then the action of the OS will depend on the nature of
the error and the design of the OS. It may attempt some recovery procedure or
simply notify the user. It may do a process switch or resume the currently running
 process.

 Finally, the OS may be activated by a supervisor call from the program being
executed. For example, a user process is running and an instruction is executed that
requests an I/O operation, such as a file open. This call results in a transfer to a
 routine that is part of the operating system code. The use of a system call may place
the user process in the Blocked state.

MODE SWITCHING In Chapter 1 , we discussed the inclusion of an interrupt stage as
part of the instruction cycle. Recall that, in the interrupt stage, the processor checks
to see if any interrupts are pending, indicated by the presence of an interrupt signal.
If no interrupts are pending, the processor proceeds to the fetch stage and fetches
the next instruction of the current program in the current process. If an interrupt is
pending, the processor does the following:

 1. It sets the program counter to the starting address of an interrupt handler
program.

 2. It switches from user mode to kernel mode so that the interrupt processing
code may include privileged instructions.

 The processor now proceeds to the fetch stage and fetches the first instruction of
the interrupt handler program, which will service the interrupt. At this point, typi-
cally, the context of the process that has been interrupted is saved into that process
control block of the interrupted program.

 One question that may now occur to you is, What constitutes the context that
is saved? The answer is that it must include any information that may be altered by
the execution of the interrupt handler and that will be needed to resume the pro-
gram that was interrupted. Thus, the portion of the process control block that was
referred to as processor state information must be saved. This includes the program
counter, other processor registers, and stack information.

 Does anything else need to be done? That depends on what happens next. The
interrupt handler is typically a short program that performs a few basic tasks related
to an interrupt. For example, it resets the flag or indicator that signals the presence
of an interrupt. It may send an acknowledgment to the entity that issued the inter-
rupt, such as an I/O module. And it may do some basic housekeeping relating to the
effects of the event that caused the interrupt. For example, if the interrupt relates
to an I/O event, the interrupt handler will check for an error condition. If an error

3.4 / PROCESS CONTROL 139

has occurred, the interrupt handler may send a signal to the process that originally
requested the I/O operation. If the interrupt is by the clock, then the handler will
hand control over to the dispatcher, which will want to pass control to another proc-
ess because the time slice allotted to the currently running process has expired.

 What about the other information in the process control block? If this inter-
rupt is to be followed by a switch to another process, then some work will need to be
done. However, in most operating systems, the occurrence of an interrupt does not
necessarily mean a process switch. It is possible that, after the interrupt handler has
executed, the currently running process will resume execution. In that case, all that
is necessary is to save the processor state information when the interrupt occurs and
restore that information when control is returned to the program that was running.
Typically, the saving and restoring functions are performed in hardware.

CHANGE OF PROCESS STATE It is clear, then, that the mode switch is a concept
distinct from that of the process switch. 10 A mode switch may occur without
changing the state of the process that is currently in the Running state. In that case,
the context saving and subsequent restoral involve little overhead. However, if the
currently running process is to be moved to another state (Ready, Blocked, etc.),
then the OS must make substantial changes in its environment. The steps involved
in a full process switch are as follows:

 1. Save the context of the processor, including program counter and other
 registers.

 2. Update the process control block of the process that is currently in the
Running state. This includes changing the state of the process to one of the
other states (Ready; Blocked; Ready/Suspend; or Exit). Other relevant fields
must also be updated, including the reason for leaving the Running state and
accounting information.

 3. Move the process control block of this process to the appropriate queue
(Ready; Blocked on Event i ; Ready/Suspend).

 4. Select another process for execution; this topic is explored in Part Four.

 5. Update the process control block of the process selected. This includes chang-
ing the state of this process to Running.

 6. Update memory management data structures. This may be required, depend-
ing on how address translation is managed; this topic is explored in Part Three.

 7. Restore the context of the processor to that which existed at the time the
selected process was last switched out of the Running state, by loading in the
previous values of the program counter and other registers.

 Thus, the process switch, which involves a state change, requires more effort than a
mode switch.

10 The term context switch is often found in OS literature and textbooks. Unfortunately, although most of
the literature uses this term to mean what is here called a process switch, other sources use it to mean a
mode switch or even a thread switch (defined in the next chapter). To avoid ambiguity, the term is not
used in this book.

140 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

3.5 EXECUTION OF THE OPERATING SYSTEM

 In Chapter 2 , we pointed out two intriguing facts about operating systems:

 • The OS functions in the same way as ordinary computer software in the sense
that the OS is a set of programs executed by the processor.

 • The OS frequently relinquishes control and depends on the processor to
 restore control to the OS.

 If the OS is just a collection of programs and if it is executed by the processor
just like any other program, is the OS a process? If so, how is it controlled? These
interesting questions have inspired a number of design approaches. Figure 3.15
illustrates a range of approaches that are found in various contemporary operating
systems.

Nonprocess Kernel

 One traditional approach, common on many older operating systems, is to execute
the kernel of the OS outside of any process (Figure 3.15a). With this approach,
when the currently running process is interrupted or issues a supervisor call, the
mode context of this process is saved and control is passed to the kernel. The OS has
its own region of memory to use and its own system stack for controlling procedure
calls and returns. The OS can perform any desired functions and restore the con-
text of the interrupted process, which causes execution to resume in the interrupted

P1 P2 Pn

Kernel

(a) Separate kernel

(c) OS functions execute as separate processes

OS
func-
tions

OS
func-
tions

OS
func-
tions

Process-switching functions

Process-switching functions

(b) OS functions execute within user processes

P1

P1 P2 OS1

P2 Pn

Pn OSk

Figure 3.15 Relationship between Operating System
and User Processes

3.5 / EXECUTION OF THE OPERATING SYSTEM 141

user process. Alternatively, the OS can complete the function of saving the environ-
ment of the process and proceed to schedule and dispatch another process. Whether
this happens depends on the reason for the interruption and the circumstances at
the time.

 In any case, the key point here is that the concept of process is considered to
apply only to user programs. The operating system code is executed as a separate
entity that operates in privileged mode.

Execution within User Processes

 An alternative that is common with operating systems on smaller computers (PCs,
workstations) is to execute virtually all OS software in the context of a user process.
The view is that the OS is primarily a collection of routines that the user calls to
perform various functions, executed within the environment of the user’s process.
This is illustrated in Figure 3.15b . At any given point, the OS is managing n process
images. Each image includes not only the regions illustrated in Figure 3.13 , but also
program, data, and stack areas for kernel programs.

 Figure 3.16 suggests a typical process image structure for this strategy. A sepa-
rate kernel stack is used to manage calls/returns while the process is in kernel mode.

Process
identification

Processor state
information

Process control
information

User stack

Private user
address space

(programs, data)

Kernel stack

Shared address
space

Process control
block

Figure 3.16 Process Image: Operating
System Executes within
User Space

142 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Operating system code and data are in the shared address space and are shared by
all user processes.

 When an interrupt, trap, or supervisor call occurs, the processor is placed in
kernel mode and control is passed to the OS. To pass control from a user program
to the OS, the mode context is saved and a mode switch takes place to an operating
system routine. However, execution continues within the current user process. Thus,
a process switch is not performed, just a mode switch within the same process.

 If the OS, upon completion of its work, determines that the current process
should continue to run, then a mode switch resumes the interrupted program within
the current process. This is one of the key advantages of this approach: A user
program has been interrupted to employ some operating system routine, and then
resumed, and all of this has occurred without incurring the penalty of two process
switches. If, however, it is determined that a process switch is to occur rather than
returning to the previously executing program, then control is passed to a proc-
ess-switching routine. This routine may or may not execute in the current process,
depending on system design. At some point, however, the current process has to be
placed in a nonrunning state and another process designated as the running process.
During this phase, it is logically most convenient to view execution as taking place
outside of all processes.

 In a way, this view of the OS is remarkable. Simply put, at certain points in
time, a process will save its state information, choose another process to run from
among those that are ready, and relinquish control to that process. The reason this
is not an arbitrary and indeed chaotic situation is that during the critical time, the
code that is executed in the user process is shared operating system code and not
user code. Because of the concept of user mode and kernel mode, the user cannot
tamper with or interfere with the operating system routines, even though they are
executing in the user’s process environment. This further reminds us that there is
a distinction between the concepts of process and program and that the relation-
ship between the two is not one to one. Within a process, both a user program and
operating system programs may execute, and the operating system programs that
execute in the various user processes are identical.

Process-Based Operating System

 Another alternative, illustrated in Figure 3.15c , is to implement the OS as a collec-
tion of system processes. As in the other options, the software that is part of the
kernel executes in a kernel mode. In this case, however, major kernel functions are
organized as separate processes. Again, there may be a small amount of process-
switching code that is executed outside of any process.

 This approach has several advantages. It imposes a program design discipline
that encourages the use of a modular OS with minimal, clean interfaces between the
modules. In addition, some noncritical operating system functions are conveniently
implemented as separate processes. For example, we mentioned earlier a monitor
program that records the level of utilization of various resources (processor, mem-
ory, channels) and the rate of progress of the user processes in the system. Because
this program does not provide a particular service to any active process, it can only
be invoked by the OS. As a process, the function can run at an assigned priority

3.6 / SECURITY ISSUES 143

level and be interleaved with other processes under dispatcher control. Finally,
implementing the OS as a set of processes is useful in a multiprocessor or multicom-
puter environment, in which some of the operating system services can be shipped
out to dedicated processors, improving performance.

3.6 SECURITY ISSUES

 An OS associates a set of privileges with each process. These privileges dictate what
resources the process may access, including regions of memory, files, privileged sys-
tem instructions, and so on. Typically, a process that executes on behalf of a user
has the privileges that the OS recognizes for that user. A system or utility process
may have privileges assigned at configuration time.

 On a typical system, the highest level of privilege is referred to as administra-
tor, supervisor, or root access. 11 Root access provides access to all the functions and
services of the operating system. With root access, a process has complete control of
the system and can add or change programs and files, monitor other processes, send
and receive network traffic, and alter privileges.

 A key security issue in the design of any OS is to prevent, or at least detect,
attempts by a user or a piece of malicious software (malware) from gaining unau-
thorized privileges on the system and, in particular, from gaining root access. In
this section, we briefly summarize the threats and countermeasures related to this
security issue. Part Seven provides more detail.

System Access Threats

 System access threats fall into two general categories: intruders and malicious
software.

INTRUDERS One of the most common threats to security is the intruder (the other
is viruses), often referred to as a hacker or cracker. In an important early study of
intrusion, Anderson [ANDE80] identified three classes of intruders:

 • Masquerader: An individual who is not authorized to use the computer and
who penetrates a system’s access controls to exploit a legitimate user’s account

 • Misfeasor: A legitimate user who accesses data, programs, or resources for
which such access is not authorized, or who is authorized for such access but
misuses his or her privileges

 • Clandestine user: An individual who seizes supervisory control of the system
and uses this control to evade auditing and access controls or to suppress audit
collection

 The masquerader is likely to be an outsider; the misfeasor generally is an insider;
and the clandestine user can be either an outsider or an insider.

 Intruder attacks range from the benign to the serious. At the benign end of the
scale, there are many people who simply wish to explore internets and see what is

11 On UNIX systems, the administrator, or superuser , account is called root; hence the term root access.

144 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

out there. At the serious end are individuals who are attempting to read privileged
data, perform unauthorized modifications to data, or disrupt the system.

 The objective of the intruder is to gain access to a system or to increase the
range of privileges accessible on a system. Most initial attacks use system or soft-
ware vulnerabilities that allow a user to execute code that opens a back door into
the system. Intruders can get access to a system by exploiting attacks such as buffer
overflows on a program that runs with certain privileges. We introduce buffer over-
flow attacks in Chapter 7 .

 Alternatively, the intruder attempts to acquire information that should have
been protected. In some cases, this information is in the form of a user password.
With knowledge of some other user’s password, an intruder can log in to a system
and exercise all the privileges accorded to the legitimate user.

MALICIOUS SOFTWARE Perhaps the most sophisticated types of threats to computer
systems are presented by programs that exploit vulnerabilities in computing systems.
Such threats are referred to as malicious software , or malware . In this context, we
are concerned with threats to application programs as well as utility programs, such
as editors and compilers, and kernel-level programs.

 Malicious software can be divided into two categories: those that need a host
program, and those that are independent. The former, referred to as parasitic , are
essentially fragments of programs that cannot exist independently of some actual
application program, utility, or system program. Viruses, logic bombs, and back-
doors are examples. The latter are self-contained programs that can be scheduled
and run by the operating system. Worms and bot programs are examples.

 We can also differentiate between those software threats that do not replicate
and those that do. The former are programs or fragments of programs that are acti-
vated by a trigger. Examples are logic bombs, backdoors, and bot programs. The
latter consists of either a program fragment or an independent program that, when
executed, may produce one or more copies of itself to be activated later on the same
system or some other system. Viruses and worms are examples.

 Malicious software can be relatively harmless or may perform one or more of
a number of harmful actions, including destroying files and data in main memory,
bypassing controls to gain privileged access, and providing a means for intruders to
bypass access controls.

Countermeasures

INTRUSION DETECTION RFC 2828 (Internet Security Glossary) defines intrusion
detection as follows: A security service that monitors and analyzes system events
for the purpose of finding, and providing real-time or near real-time warning of,
attempts to access system resources in an unauthorized manner.

 Intrusion detection systems (IDSs) can be classified as follows:

 • Host-based IDS: Monitors the characteristics of a single host and the events
occurring within that host for suspicious activity

 • Network-based IDS: Monitors network traffic for particular network seg-
ments or devices and analyzes network, transport, and application protocols
to identify suspicious activity

3.6 / SECURITY ISSUES 145

 An IDS comprises three logical components:

 • Sensors: Sensors are responsible for collecting data. The input for a sensor
may be any part of a system that could contain evidence of an intrusion. Types
of input to a sensor include network packets, log files, and system call traces.
Sensors collect and forward this information to the analyzer.

 • Analyzers: Analyzers receive input from one or more sensors or from other
analyzers. The analyzer is responsible for determining if an intrusion has
occurred. The output of this component is an indication that an intrusion has
occurred. The output may include evidence supporting the conclusion that an
intrusion occurred. The analyzer may provide guidance about what actions to
take as a result of the intrusion.

 • User interface: The user interface to an IDS enables a user to view output
from the system or control the behavior of the system. In some systems, the
user interface may equate to a manager, director, or console component.

 Intrusion detection systems are typically designed to detect human intruder
behavior as well as malicious software behavior.

AUTHENTICATION In most computer security contexts, user authentication is the
fundamental building block and the primary line of defense. User authentication
is the basis for most types of access control and for user accountability. RFC 2828
defines user authentication as follows:

 The process of verifying an identity claimed by or for a system entity. An authen-
tication process consists of two steps:

• Identification step: Presenting an identifier to the security system. (Identifiers
should be assigned carefully, because authenticated identities are the basis
for other security services, such as access control service.)

• Verification step: Presenting or generating authentication information that
corroborates the binding between the entity and the identifier.

 For example, user Alice Toklas could have the user identifier ABTOKLAS.
This information needs to be stored on any server or computer system that Alice
wishes to use and could be known to system administrators and other users. A typical
item of authentication information associated with this user ID is a password, which
is kept secret (known only to Alice and to the system). If no one is able to obtain
or guess Alice’s password, then the combination of Alice’s user ID and password
enables administrators to set up Alice’s access permissions and audit her activity.
Because Alice’s ID is not secret, system users can send her e-mail, but because her
password is secret, no one can pretend to be Alice.

 In essence, identification is the means by which a user provides a claimed
identity to the system; user authentication is the means of establishing the validity
of the claim.

146 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

 There are four general means of authenticating a user’s identity, which can be
used alone or in combination:

 • Something the individual knows: Examples include a password, a personal
identification number (PIN), or answers to a prearranged set of questions.

 • Something the individual possesses: Examples include electronic keycards,
smart cards, and physical keys. This type of authenticator is referred to as a
token.

 • Something the individual is (static biometrics): Examples include recognition
by fingerprint, retina, and face.

 • Something the individual does (dynamic biometrics): Examples include recog-
nition by voice pattern, handwriting characteristics, and typing rhythm.

 All of these methods, properly implemented and used, can provide secure user
authentication. However, each method has problems. An adversary may be able to
guess or steal a password. Similarly, an adversary may be able to forge or steal a
token. A user may forget a password or lose a token. Further, there is a significant
administrative overhead for managing password and token information on systems
and securing such information on systems. With respect to biometric authenticators,
there are a variety of problems, including dealing with false positives and false nega-
tives, user acceptance, cost, and convenience.

ACCESS CONTROL Access control implements a security policy that specifies who
or what (e.g., in the case of a process) may have access to each specific system
resource and the type of access that is permitted in each instance.

 An access control mechanism mediates between a user (or a process executing
on behalf of a user) and system resources, such as applications, operating systems,
firewalls, routers, files, and databases. The system must first authenticate a user
seeking access. Typically, the authentication function determines whether the user
is permitted to access the system at all. Then the access control function determines
if the specific requested access by this user is permitted. A security administrator
maintains an authorization database that specifies what type of access to which
resources is allowed for this user. The access control function consults this database
to determine whether to grant access. An auditing function monitors and keeps a
record of user accesses to system resources.

FIREWALLS Firewalls can be an effective means of protecting a local system or
network of systems from network-based security threats while at the same time
affording access to the outside world via wide area networks and the Internet.
Traditionally, a firewall is a dedicated computer that interfaces with computers
outside a network and has special security precautions built into it in order to
protect sensitive files on computers within the network. It is used to service outside
network, especially Internet, connections and dial-in lines. Personal firewalls that
are implemented in hardware or software, and associated with a single workstation
or PC, are also common.

3.7 / UNIX SVR4 PROCESS MANAGEMENT 147

 [BELL94] lists the following design goals for a firewall:

 1. All traffic from inside to outside, and vice versa, must pass through the fire-
wall. This is achieved by physically blocking all access to the local network
except via the firewall. Various configurations are possible, as explained later
in this chapter.

 2. Only authorized traffic, as defined by the local security policy, will be allowed
to pass. Various types of firewalls are used, which implement various types of
security policies.

 3. The firewall itself is immune to penetration. This implies the use of a hard-
ened system with a secured operating system. Trusted computer systems are
suitable for hosting a firewall and often required in government applications.

3.7 UNIX SVR4 PROCESS MANAGEMENT

 UNIX System V makes use of a simple but powerful process facility that is highly
visible to the user. UNIX follows the model of Figure 3.15b , in which most of the OS
executes within the environment of a user process. UNIX uses two categories of pro-
cesses: system processes and user processes. System processes run in kernel mode and
execute operating system code to perform administrative and housekeeping func-
tions, such as allocation of memory and process swapping. User processes operate
in user mode to execute user programs and utilities and in kernel mode to execute
instructions that belong to the kernel. A user process enters kernel mode by issuing a
system call, when an exception (fault) is generated, or when an interrupt occurs.

Process States

 A total of nine process states are recognized by the UNIX SVR4 operating system;
these are listed in Table 3.9 and a state transition diagram is shown in Figure 3.17

Table 3.9 UNIX Process States

User Running Executing in user mode.

Kernel Running Executing in kernel mode.

Ready to Run, in
Memory

 Ready to run as soon as the kernel schedules it.

Asleep in Memory Unable to execute until an event occurs; process is in main memory (a blocked state).

Ready to Run,
Swapped

 Process is ready to run, but the swapper must swap the process into main memory
before the kernel can schedule it to execute.

Sleeping, Swapped The process is awaiting an event and has been swapped to secondary storage (a
blocked state).

Preempted Process is returning from kernel to user mode, but the kernel preempts it and does a
process switch to schedule another process.

Created Process is newly created and not yet ready to run.

Zombie Process no longer exists, but it leaves a record for its parent process to collect.

148 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

(based on figure in [BACH86]). This figure is similar to Figure 3.9b , with the two
UNIX sleeping states corresponding to the two blocked states. The differences are
as follows:

 • UNIX employs two Running states to indicate whether the process is execut-
ing in user mode or kernel mode.

 • A distinction is made between the two states: (Ready to Run, in Memory) and
(Preempted). These are essentially the same state, as indicated by the dotted
line joining them. The distinction is made to emphasize the way in which the
preempted state is entered. When a process is running in kernel mode (as a
result of a supervisor call, clock interrupt, or I/O interrupt), there will come
a time when the kernel has completed its work and is ready to return control
to the user program. At this point, the kernel may decide to preempt the cur-
rent process in favor of one that is ready and of higher priority. In that case,
the current process moves to the preempted state. However, for purposes of
dispatching, those processes in the Preempted state and those in the (Ready to
Run, in Memory) state form one queue.

 Preemption can only occur when a process is about to move from kernel mode
to user mode. While a process is running in kernel mode, it may not be preempted.
This makes UNIX unsuitable for real-time processing. Chapter 10 discusses the
requirements for real-time processing.

Fork

Not enough memory
(swapping system only)

Enough
memory

Swap in

Swap out

Swap out

WakeupWakeupSleep

Return

Preempt

Return
to User

System call,
interrupt

Exit

Reschedule
process

Interrupt,
interrupt return

Preempted
Created

Ready to run
swapped

Ready to run
in memory

Kernel
running

Zombie
Asleep in
memory

Sleep,
swapped

User
running

Figure 3.17 UNIX Process State Transition Diagram

3.7 / UNIX SVR4 PROCESS MANAGEMENT 149

 Two processes are unique in UNIX. Process 0 is a special process that is cre-
ated when the system boots; in effect, it is predefined as a data structure loaded
at boot time. It is the swapper process. In addition, process 0 spawns process 1,
referred to as the init process; all other processes in the system have process 1 as
an ancestor. When a new interactive user logs on to the system, it is process 1 that
creates a user process for that user. Subsequently, the user process can create child
processes in a branching tree, so that any particular application can consist of a
number of related processes.

Process Description

 A process in UNIX is a rather complex set of data structures that provide the OS
with all of the information necessary to manage and dispatch processes. Table 3.10
summarizes the elements of the process image, which are organized into three parts:
user-level context, register context, and system-level context.

 The user-level context contains the basic elements of a user’s program and
can be generated directly from a compiled object file. The user’s program is sepa-
rated into text and data areas; the text area is read-only and is intended to hold
the program’s instructions. While the process is executing, the processor uses the
user stack area for procedure calls and returns and parameter passing. The shared
memory area is a data area that is shared with other processes. There is only one
physical copy of a shared memory area, but, by the use of virtual memory, it appears

Table 3.10 UNIX Process Image

User-Level Context

 Process text Executable machine instructions of the program

 Process data Data accessible by the program of this process

 User stack Contains the arguments, local variables, and pointers for functions executing in user mode

 Shared memory Memory shared with other processes, used for interprocess communication

Register Context

 Program counter Address of next instruction to be executed; may be in kernel or user memory space of
this process

 Processor status
register

 Contains the hardware status at the time of preemption; contents and format are hard-
ware dependent

 Stack pointer Points to the top of the kernel or user stack, depending on the mode of operation at
the time or preemption

 General-purpose
registers

 Hardware dependent

System-Level Context

 Process table entry Defines state of a process; this information is always accessible to the operating system

 U (user) area Process control information that needs to be accessed only in the context of the process

 Per process region
table

 Defines the mapping from virtual to physical addresses; also contains a permission
field that indicates the type of access allowed the process: read-only, read-write, or
read-execute

 Kernel stack Contains the stack frame of kernel procedures as the process executes in kernel mode

150 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

to each sharing process that the shared memory region is in its address space. When
a process is not running, the processor status information is stored in the register
context area.

 The system-level context contains the remaining information that the OS
needs to manage the process. It consists of a static part, which is fixed in size and
stays with a process throughout its lifetime, and a dynamic part, which varies in
size through the life of the process. One element of the static part is the process
table entry. This is actually part of the process table maintained by the OS, with
one entry per process. The process table entry contains process control information
that is accessible to the kernel at all times; hence, in a virtual memory system, all
process table entries are maintained in main memory. Table 3.11 lists the contents
of a process table entry. The user area, or U area, contains additional process con-
trol information that is needed by the kernel when it is executing in the context of
this process; it is also used when paging processes to and from memory. Table 3.12
shows the contents of this table.

 The distinction between the process table entry and the U area reflects the
fact that the UNIX kernel always executes in the context of some process. Much
of the time, the kernel will be dealing with the concerns of that process. However,
some of the time, such as when the kernel is performing a scheduling algorithm
preparatory to dispatching another process, it will need access to information about
other processes. The information in a process table can be accessed when the given
process is not the current one.

 The third static portion of the system-level context is the per process region
table, which is used by the memory management system. Finally, the kernel stack is

Table 3.11 UNIX Process Table Entry

 Process status Current state of process.

 Pointers To U area and process memory area (text, data, stack).

 Process size Enables the operating system to know how much space to allocate the process.

 User
identifiers

 The real user ID identifies the user who is responsible for the running process. The effective
user ID may be used by a process to gain temporary privileges associated with a particular
program; while that program is being executed as part of the process, the process operates
with the effective user ID.

 Process
identifiers

 ID of this process; ID of parent process. These are set up when the process enters the
Created state during the fork system call.

 Event
descriptor

 Valid when a process is in a sleeping state; when the event occurs, the process is transferred
to a ready-to-run state.

 Priority Used for process scheduling.

 Signal Enumerates signals sent to a process but not yet handled.

 Timers Include process execution time, kernel resource utilization, and user-set timer used to send
alarm signal to a process.

 P_link Pointer to the next link in the ready queue (valid if process is ready to execute).

 Memory
status

 Indicates whether process image is in main memory or swapped out. If it is in memory,
this field also indicates whether it may be swapped out or is temporarily locked into main
memory.

3.7 / UNIX SVR4 PROCESS MANAGEMENT 151

the dynamic portion of the system-level context. This stack is used when the process
is executing in kernel mode and contains the information that must be saved and
restored as procedure calls and interrupts occur.

Process Control

 Process creation in UNIX is made by means of the kernel system call, fork(). When
a process issues a fork request, the OS performs the following functions [BACH86]:

 1. It allocates a slot in the process table for the new process.

 2. It assigns a unique process ID to the child process.

 3. It makes a copy of the process image of the parent, with the exception of any
shared memory.

 4. It increments counters for any files owned by the parent, to reflect that an
additional process now also owns those files.

 5. It assigns the child process to the Ready to Run state.

 6. It returns the ID number of the child to the parent process, and a 0 value to
the child process.

 All of this work is accomplished in kernel mode in the parent process. When
the kernel has completed these functions it can do one of the following, as part of
the dispatcher routine:

 • Stay in the parent process. Control returns to user mode at the point of the
fork call of the parent.

Table 3.12 UNIX U Area

 Process table
pointer

 Indicates entry that corresponds to the U area.

 User identifiers Real and effective user IDs. Used to determine user privileges.

 Timers Record time that the process (and its descendants) spent executing in user mode and in
kernel mode.

 Signal-handler
array

 For each type of signal defined in the system, indicates how the process will react to
receipt of that signal (exit, ignore, execute specified user function).

 Control terminal Indicates login terminal for this process, if one exists.

 Error field Records errors encountered during a system call.

 Return value Contains the result of system calls.

 I/O parameters Describe the amount of data to transfer, the address of the source (or target) data array
in user space, and file offsets for I/O.

 File parameters Current directory and current root describe the file system environment of the process.

 User file
descriptor table

 Records the files the process has opened.

 Limit fields Restrict the size of the process and the size of a file it can write.

 Permission modes
fields

 Mask mode settings on files the process creates.

152 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

 • Transfer control to the child process. The child process begins executing
at the same point in the code as the parent, namely at the return from the
fork call.

 • Transfer control to another process. Both parent and child are left in the
Ready to Run state.

 It is perhaps difficult to visualize this method of process creation because both
parent and child are executing the same passage of code. The difference is this:
When the return from the fork occurs, the return parameter is tested. If the value is
zero, then this is the child process, and a branch can be executed to the appropriate
user program to continue execution. If the value is nonzero, then this is the parent
process, and the main line of execution can continue.

3.8 SUMMARY

 The most fundamental concept in a modern OS is the process. The principal func-
tion of the OS is to create, manage, and terminate processes. While processes are
active, the OS must see that each is allocated time for execution by the proces-
sor, coordinate their activities, manage conflicting demands, and allocate system
resources to processes.

 To perform its process management functions, the OS maintains a description
of each process, or process image, which includes the address space within which the
process executes, and a process control block. The latter contains all of the informa-
tion that is required by the OS to manage the process, including its current state,
resources allocated to it, priority, and other relevant data.

 During its lifetime, a process moves among a number of states. The most
important of these are Ready, Running, and Blocked. A ready process is one that
is not currently executing but that is ready to be executed as soon as the OS dis-
patches it. The running process is that process that is currently being executed by
the processor. In a multiple-processor system, more than one process can be in this
state. A blocked process is waiting for the completion of some event, such as an I/O
operation.

 A running process is interrupted either by an interrupt, which is an event that
occurs outside the process and that is recognized by the processor, or by executing
a supervisor call to the OS. In either case, the processor performs a mode switch,
transferring control to an operating system routine. The OS, after it has completed
necessary work, may resume the interrupted process or switch to some other
 process.

3.9 RECOMMENDED READING

 Good descriptions of UNIX process management are found in [GOOD94] and
[GRAY97]. [NEHM75] is an interesting discussion of process states and the operat-
ing system primitives needed for process dispatching.

3.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 153

3.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 blocked state
 child process
 exit state
 interrupt
 kernel mode
 mode switch
 new state
 parent process
 preempt

 privileged mode
 process
 process control block
 process image
 process switch
 program status word
 ready state
 round robin
 running state

 suspend state
 swapping
 system mode
 task
 trace
 trap
 user mode

Review Questions

 3.1 What is an instruction trace?
 3.2 What common events lead to the creation of a process?
 3.3 For the processing model of Figure 3.6 , briefly define each state.
 3.4 What does it mean to preempt a process?
 3.5 What is swapping and what is its purpose?
 3.6 Why does Figure 3.9b have two blocked states?
 3.7 List four characteristics of a suspended process.
 3.8 For what types of entities does the OS maintain tables of information for management

purposes?
 3.9 List three general categories of information in a process control block.
 3.10 Why are two modes (user and kernel) needed?
 3.11 What are the steps performed by an OS to create a new process?
 3.12 What is the difference between an interrupt and a trap?
 3.13 Give three examples of an interrupt.
 3.14 What is the difference between a mode switch and a process switch?

Problems

 3.1 The following state transition table is a simplified model of process management, with
the labels representing transitions between states of READY, RUN, BLOCKED, and
NONRESIDENT.

GOOD94 Goodheart, B., and Cox, J. The Magic Garden Explained: The Internals of
UNIX System V Release 4. Englewood Cliffs, NJ: Prentice Hall, 1994.

GRAY97 Gray, J. Interprocess Communications in UNIX: The Nooks and Crannies.
Upper Saddle River, NJ: Prentice Hall, 1997.

NEHM75 Nehmer, J. “Dispatcher Primitives for the Construction of Operating
System Kernels.” Acta Informatica , vol. 5, 1975.

154 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

 READY RUN BLOCKED NONRESIDENT

 READY – 1 – 5

 RUN 2 – 3 –

 BLOCKED 4 – – 6

 Give an example of an event that can cause each of the above transitions. Draw a
diagram if that helps.

 3.2 Assume that at time 5 no system resources are being used except for the processor
and memory. Now consider the following events:

 At time 5: P1 executes a command to read from disk unit 3.
 At time 15: P5’s time slice expires.
 At time 18: P7 executes a command to write to disk unit 3.
 At time 20: P3 executes a command to read from disk unit 2.
 At time 24: P5 executes a command to write to disk unit 3.
 At time 28: P5 is swapped out.
 At time 33: An interrupt occurs from disk unit 2: P3’s read is complete.
 At time 36: An interrupt occurs from disk unit 3: P1’s read is complete.
 At time 38: P8 terminates.
 At time 40: An interrupt occurs from disk unit 3: P5’s write is complete.
 At time 44: P5 is swapped back in.
 At time 48: An interrupt occurs from disk unit 3: P7’s write is complete.

 For each time 22, 37, and 47, identify which state each process is in. If a process is
blocked, further identify the event on which is it blocked.

 3.3 Figure 3.9b contains seven states. In principle, one could draw a transition between
any two states, for a total of 42 different transitions.
a. List all of the possible transitions and give an example of what could cause each

transition.
b. List all of the impossible transitions and explain why.

 3.4 For the seven-state process model of Figure 3.9b , draw a queueing diagram similar to
that of Figure 3.8b .

 3.5 Consider the state transition diagram of Figure 3.9b . Suppose that it is time for the
OS to dispatch a process and that there are processes in both the Ready state and the
Ready/Suspend state, and that at least one process in the Ready/Suspend state has
higher scheduling priority than any of the processes in the Ready state. Two extreme
policies are as follows: (1) Always dispatch from a process in the Ready state, to mini-
mize swapping, and (2) always give preference to the highest-priority process, even
though that may mean swapping when swapping is not necessary. Suggest an interme-
diate policy that tries to balance the concerns of priority and performance.

 3.6 Table 3.13 shows the process states for the VAX/VMS operating system.
a. Can you provide a justification for the existence of so many distinct wait states?
b. Why do the following states not have resident and swapped-out versions: Page

Fault Wait, Collided Page Wait, Common Event Wait, Free Page Wait, and Re-
source Wait?

c. Draw the state transition diagram and indicate the action or occurrence that
causes each transition.

 3.7 The VAX/VMS operating system makes use of four processor access modes to facili-
tate the protection and sharing of system resources among processes. The access mode
determines
• Instruction execution privileges: What instructions the processor may execute
• Memory access privileges: Which locations in virtual memory the current instruc-

tion may access

3.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 155

 The four modes are as follows:
• Kernel: Executes the kernel of the VMS operating system, which includes memory

management, interrupt handling, and I/O operations
• Executive: Executes many of the OS service calls, including file and record (disk

and tape) management routines
• Supervisor: Executes other OS services, such as responses to user commands
• User: Executes user programs, plus utilities such as compilers, editors, linkers, and

debuggers
 A process executing in a less-privileged mode often needs to call a procedure that
executes in a more-privileged mode; for example, a user program requires an operat-
ing system service. This call is achieved by using a change-mode (CHM) instruction,
which causes an interrupt that transfers control to a routine at the new access mode. A
return is made by executing the REI (return from exception or interrupt) instruction.
a. A number of operating systems have two modes, kernel and user. What are the

advantages and disadvantages of providing four modes instead of two?
b. Can you make a case for even more than four modes?

 3.8 The VMS scheme discussed in the preceding problem is often referred to as a ring pro-
tection structure, as illustrated in Figure 3.18 . Indeed, the simple kernel/user scheme,
as described in Section 3.3 , is a two-ring structure. [SILB04] points out a problem with
this approach:

 The main disadvantage of the ring (hierarchical) structure is that it does not
allow us to enforce the need-to-know principle. In particular, if an object must

Table 3.13 VAX/VMS Process States

 Process State Process Condition

 Currently Executing Running process.

 Computable (resident) Ready and resident in main memory.

 Computable (outswapped) Ready, but swapped out of main memory.

 Page Fault Wait Process has referenced a page not in main memory and must wait for
the page to be read in.

 Collided Page Wait Process has referenced a shared page that is the cause of an existing
page fault wait in another process, or a private page that is in the
 process of being read in or written out.

 Common Event Wait Waiting for shared event flag (event flags are single-bit interprocess
signaling mechanisms).

 Free Page Wait Waiting for a free page in main memory to be added to the collection of
pages in main memory devoted to this process (the working set of the
process).

 Hibernate Wait (resident) Process puts itself in a wait state.

 Hibernate Wait (outswapped) Hibernating process is swapped out of main memory.

 Local Event Wait (resident) Process in main memory and waiting for local event flag (usually I/O
completion).

 Local Event Wait (outswapped) Process in local event wait is swapped out of main memory.

 Suspended Wait (resident) Process is put into a wait state by another process.

 Suspended Wait (outswapped) Suspended process is swapped out of main memory.

 Resource Wait Process waiting for miscellaneous system resource.

156 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

be accessible in domain D j but not accessible in domain D i , then we must have
j 6 i . But this means that every segment accessible in D i is also accessible in D j .

 Explain clearly what the problem is that is referred to in the preceding quote.
 3.9 Figure 3.8b suggests that a process can only be in one event queue at a time.

a. Is it possible that you would want to allow a process to wait on more than one
event at the same time? Provide an example.

b. In that case, how would you modify the queueing structure of the figure to support
this new feature?

 3.10 In a number of early computers, an interrupt caused the register values to be stored in
fixed locations associated with the given interrupt signal. Under what circumstances
is this a practical technique? Explain why it is inconvenient in general.

 3.11 In Section 3.4 , it was stated that UNIX is unsuitable for real-time applications because
a process executing in kernel mode may not be preempted. Elaborate.

 3.12 You have executed the following C program:

main ()

{ int pid;

pid = fork ();

printf (“%d \n”, pid);

}

 What are the possible outputs, assuming the fork succeeded?

Kernel

Executive

Supervisor

User

REICHM
x

Figure 3.18 VAX/VMS Access Modes

 4.1 Processes and Threads
 Multithreading
 Thread Functionality

 4.2 Types of Threads
 User-Level and Kernel-Level Threads
 Other Arrangements

 4.3 Multicore and Multithreading
 Performance of Software on Multicore
 Application Example: Valve Game Software

 4.4 Windows 7 Thread and SMP Management
 Process and Thread Objects
 Multithreading
 Thread States
 Support for OS Subsystems
 Symmetric Multiprocessing Support

 4.5 Solaris Thread and SMP Management
 Multithreaded Architecture
 Motivation
 Process Structure
 Thread Execution
 Interrupts as Threads

 4.6 Linux Process and Thread Management
 Linux Tasks
 Linux Threads

 4.7 Mac OS X Grand Central Dispatch

 4.8 Summary

 4.9 Recommended Reading

 4.10 Key Terms, Review Questions, and Problems

THREADS

157

CHAPTER

158 CHAPTER 4 / THREADS

 The basic idea is that the several components in any complex system
will perform particular subfunctions that contribute to the overall
function.

 —THE SCIENCES OF THE ARTIFICIAL, Herbert Simon

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

• Understand the distinction between process and thread.
• Describe the basic design issues for threads.
• Explain the difference between user-level threads and kernel-level threads.
• Describe the thread management facility in Windows 7.
• Describe the thread management facility in Solaris.
• Describe the thread management facility in Linux.

 This chapter examines some more advanced concepts related to process manage-
ment, which are found in a number of contemporary operating systems. We show
that the concept of process is more complex and subtle than presented so far and in
fact embodies two separate and potentially independent concepts: one relating to
resource ownership and another relating to execution. This distinction has led to the
development, in many operating systems, of a construct known as the thread .

4.1 PROCESSES AND THREADS

 The discussion so far has presented the concept of a process as embodying two
 characteristics:

 • Resource ownership: A process includes a virtual address space to hold the
process image; recall from Chapter 3 that the process image is the collection of
program, data, stack, and attributes defined in the process control block. From
time to time, a process may be allocated control or ownership of resources,
such as main memory, I/O channels, I/O devices, and files. The OS performs a
protection function to prevent unwanted interference between processes with
respect to resources.

 • Scheduling/execution: The execution of a process follows an execution path
(trace) through one or more programs (e.g., Figure 1.5). This execution may
be interleaved with that of other processes. Thus, a process has an execution
state (Running, Ready, etc.) and a dispatching priority and is the entity that is
scheduled and dispatched by the OS.

 Some thought should convince the reader that these two characteristics
are independent and could be treated independently by the OS. This is done in
a number of operating systems, particularly recently developed systems. To

4.1 / PROCESSES AND THREADS 159

 distinguish the two characteristics, the unit of dispatching is usually referred to
as a thread or lightweight process , while the unit of resource ownership is usually
referred to as a process or task . 1

Multithreading

Multithreading refers to the ability of an OS to support multiple, concurrent paths
of execution within a single process. The traditional approach of a single thread of
execution per process, in which the concept of a thread is not recognized, is referred
to as a single-threaded approach. The two arrangements shown in the left half of
 Figure 4.1 are single-threaded approaches. MS-DOS is an example of an OS that
supports a single user process and a single thread. Other operating systems, such
as some variants of UNIX, support multiple user processes but only support one
thread per process. The right half of Figure 4.1 depicts multithreaded approaches.
A Java run-time environment is an example of a system of one process with multi-
ple threads. Of interest in this section is the use of multiple processes, each of which
supports multiple threads. This approach is taken in Windows, Solaris, and many
modern versions of UNIX, among others. In this section we give a general description

1 Alas, even this degree of consistency is not maintained. In IBM’s mainframe operating systems, the con-
cepts of address space and task, respectively, correspond roughly to the concepts of process and thread
that we describe in this section. Also, in the literature, the term lightweight process is used as either (1)
equivalent to the term thread , (2) a particular type of thread known as a kernel-level thread, or (3) in the
case of Solaris, an entity that maps user-level threads to kernel-level threads.

One process
One thread

One process
Multiple threads

Multiple processes
One thread per process

= Instruction trace

Multiple processes
Multiple threads per process

Figure 4.1 Threads and Processes [ANDE97]

160 CHAPTER 4 / THREADS

of multithreading; the details of the Windows, Solaris, and Linux approaches are
discussed later in this chapter.

 In a multithreaded environment, a process is defined as the unit of resource
allocation and a unit of protection. The following are associated with processes:

 • A virtual address space that holds the process image

 • Protected access to processors, other processes (for interprocess communica-
tion), files, and I/O resources (devices and channels)

 Within a process, there may be one or more threads, each with the following:

 • A thread execution state (Running, Ready, etc.)

 • A saved thread context when not running; one way to view a thread is as an
independent program counter operating within a process

 • An execution stack

 • Some per-thread static storage for local variables

 • Access to the memory and resources of its process, shared with all other
threads in that process

 Figure 4.2 illustrates the distinction between threads and processes from the
point of view of process management. In a single-threaded process model (i.e.,
there is no distinct concept of thread), the representation of a process includes its
process control block and user address space, as well as user and kernel stacks to
manage the call/return behavior of the execution of the process. While the process
is running, it controls the processor registers. The contents of these registers are
saved when the process is not running. In a multithreaded environment, there is
still a single process control block and user address space associated with the proc-
ess, but now there are separate stacks for each thread, as well as a separate control

Single-threaded
process model

Process
control
block

User
address
space

User
stack

Kernel
stack

Multithreaded
process model

Process
control
block

User
address
space

User
stack

Kernel
stack

User
stack

Kernel
stack

User
stack

Kernel
stack

Thread
control
block

Thread Thread Thread

Thread
control
block

Thread
control
block

Figure 4.2 Single-Threaded and Multithreaded Process Models

4.1 / PROCESSES AND THREADS 161

block for each thread containing register values, priority, and other thread-related
state information.

 Thus, all of the threads of a process share the state and resources of that
process. They reside in the same address space and have access to the same data.
When one thread alters an item of data in memory, other threads see the results if
and when they access that item. If one thread opens a file with read privileges, other
threads in the same process can also read from that file.

 The key benefits of threads derive from the performance implications:

 1. It takes far less time to create a new thread in an existing process than to
create a brand-new process. Studies done by the Mach developers show that
thread creation is ten times faster than process creation in UNIX [TEVA87].

 2. It takes less time to terminate a thread than a process.

 3. It takes less time to switch between two threads within the same process than
to switch between processes.

 4. Threads enhance efficiency in communication between different executing
programs. In most operating systems, communication between independent
processes requires the intervention of the kernel to provide protection and the
mechanisms needed for communication. However, because threads within the
same process share memory and files, they can communicate with each other
without invoking the kernel.

 Thus, if there is an application or function that should be implemented as a
set of related units of execution, it is far more efficient to do so as a collection of
threads rather than a collection of separate processes.

 An example of an application that could make use of threads is a file server.
As each new file request comes in, a new thread can be spawned for the file manage-
ment program. Because a server will handle many requests, many threads will be
created and destroyed in a short period. If the server runs on a multiprocessor com-
puter, then multiple threads within the same process can be executing simultaneously
on different processors. Further, because processes or threads in a file server must
share file data and therefore coordinate their actions, it is faster to use threads and
shared memory than processes and message passing for this coordination.

 The thread construct is also useful on a single processor to simplify the structure
of a program that is logically doing several different functions.

 [LETW88] gives four examples of the uses of threads in a single-user multi-
processing system:

 • Foreground and background work: For example, in a spreadsheet program,
one thread could display menus and read user input, while another thread
 executes user commands and updates the spreadsheet. This arrangement often
increases the perceived speed of the application by allowing the program to
prompt for the next command before the previous command is complete.

 • Asynchronous processing: Asynchronous elements in the program can be
implemented as threads. For example, as a protection against power failure,
one can design a word processor to write its random access memory (RAM)
buffer to disk once every minute. A thread can be created whose sole job is

162 CHAPTER 4 / THREADS

periodic backup and that schedules itself directly with the OS; there is no need
for fancy code in the main program to provide for time checks or to coordinate
input and output.

 • Speed of execution: A multithreaded process can compute one batch of data
while reading the next batch from a device. On a multiprocessor system, mul-
tiple threads from the same process may be able to execute simultaneously.
Thus, even though one thread may be blocked for an I/O operation to read in
a batch of data, another thread may be executing.

 • Modular program structure: Programs that involve a variety of activities or a
variety of sources and destinations of input and output may be easier to design
and implement using threads.

 In an OS that supports threads, scheduling and dispatching is done on a thread
basis; hence, most of the state information dealing with execution is maintained in
thread-level data structures. There are, however, several actions that affect all of the
threads in a process and that the OS must manage at the process level. For example,
suspension involves swapping the address space of one process out of main memory
to make room for the address space of another process. Because all threads in a
process share the same address space, all threads are suspended at the same time.
Similarly, termination of a process terminates all threads within that process.

Thread Functionality

 Like processes, threads have execution states and may synchronize with one
another. We look at these two aspects of thread functionality in turn.

THREAD STATES As with processes, the key states for a thread are Running, Ready,
and Blocked. Generally, it does not make sense to associate suspend states with
threads because such states are process-level concepts. In particular, if a process is
swapped out, all of its threads are necessarily swapped out because they all share
the address space of the process.

 There are four basic thread operations associated with a change in thread
state [ANDE04]:

 • Spawn: Typically, when a new process is spawned, a thread for that process
is also spawned. Subsequently, a thread within a process may spawn another
thread within the same process, providing an instruction pointer and argu-
ments for the new thread. The new thread is provided with its own register
context and stack space and placed on the ready queue.

 • Block: When a thread needs to wait for an event, it will block (saving its user
registers, program counter, and stack pointers). The processor may now
turn to the execution of another ready thread in the same or a different
process.

 • Unblock: When the event for which a thread is blocked occurs, the thread is
moved to the Ready queue.

 • Finish: When a thread completes, its register context and stacks are
 deallocated.

4.1 / PROCESSES AND THREADS 163

 A significant issue is whether the blocking of a thread results in the blocking
of the entire process. In other words, if one thread in a process is blocked, does
this prevent the running of any other thread in the same process even if that other
thread is in a ready state? Clearly, some of the flexibility and power of threads is lost
if the one blocked thread blocks an entire process.

 We return to this issue subsequently in our discussion of user-level versus
 kernel-level threads, but for now let us consider the performance benefits of threads
that do not block an entire process. Figure 4.3 (based on one in [KLEI96]) shows a
program that performs two remote procedure calls (RPCs) 2 to two different hosts
to obtain a combined result. In a single-threaded program, the results are obtained
in sequence, so the program has to wait for a response from each server in turn.
Rewriting the program to use a separate thread for each RPC results in a substantial
speedup. Note that if this program operates on a uniprocessor, the requests must be
generated sequentially and the results processed in sequence; however, the program
waits concurrently for the two replies.

 2 An RPC is a technique by which two programs, which may execute on different machines, interact using
procedure call/return syntax and semantics. Both the called and calling program behave as if the partner
program were running on the same machine. RPCs are often used for client/server applications and are
discussed in Chapter 16 .

(a) RPC using single thread

(b) RPC using one thread per server (on a uniprocessor)

Time

Process 1

Blocked, waiting for response to RPC

Blocked, waiting for processor, which is in use by Thread B

Running

Thread A (Process 1)

Thread B (Process 1)

Server Server

Server

Server

RPC
request

RPC
request

RPC
request

RPC
request

 Figure 4.3 Remote Procedure Call (RPC) Using Threads

164 CHAPTER 4 / THREADS

 On a uniprocessor, multiprogramming enables the interleaving of multiple
threads within multiple processes. In the example of Figure 4.4 , three threads in
two processes are interleaved on the processor. Execution passes from one thread
to another either when the currently running thread is blocked or when its time slice
is exhausted. 3

THREAD SYNCHRONIZATION All of the threads of a process share the same address
space and other resources, such as open files. Any alteration of a resource by
one thread affects the environment of the other threads in the same process. It is
therefore necessary to synchronize the activities of the various threads so that they
do not interfere with each other or corrupt data structures. For example, if two
threads each try to add an element to a doubly linked list at the same time, one
element may be lost or the list may end up malformed.

 The issues raised and the techniques used in the synchronization of threads
are, in general, the same as for the synchronization of processes. These issues and
techniques are the subject of Chapters 5 and 6 .

4.2 TYPES OF THREADS

User-Level and Kernel-Level Threads

 There are two broad categories of thread implementation: user-level threads
(ULTs) and kernel-level threads (KLTs). 4 The latter are also referred to in the lit-
erature as kernel-supported threads or lightweight processes.

USER-LEVEL THREADS In a pure ULT facility, all of the work of thread
management is done by the application and the kernel is not aware of the existence
of threads. Figure 4.5a illustrates the pure ULT approach. Any application can be

Time

Blocked

I/O
request

Thread A (Process 1)

Thread B (Process 1)

Thread C (Process 2)

Ready Running

Request
complete

Time quantum
expires

Time quantum
expires

Process
created

Figure 4.4 Multithreading Example on a Uniprocessor

3 In this example, thread C begins to run after thread A exhausts its time quantum, even though thread B
is also ready to run. The choice between B and C is a scheduling decision, a topic covered in Part Four.
4 The acronyms ULT and KLT are not widely used but are introduced for conciseness.

4.2 / TYPES OF THREADS 165

programmed to be multithreaded by using a threads library, which is a package of
routines for ULT management. The threads library contains code for creating and
destroying threads, for passing messages and data between threads, for scheduling
thread execution, and for saving and restoring thread contexts.

 By default, an application begins with a single thread and begins running in
that thread. This application and its thread are allocated to a single process man-
aged by the kernel. At any time that the application is running (the process is in
the Running state), the application may spawn a new thread to run within the
same process. Spawning is done by invoking the spawn utility in the threads library.
Control is passed to that utility by a procedure call. The threads library creates a
data structure for the new thread and then passes control to one of the threads
within this process that is in the Ready state, using some scheduling algorithm.
When control is passed to the library, the context of the current thread is saved,
and when control is passed from the library to a thread, the context of that thread
is restored. The context essentially consists of the contents of user registers, the
program counter, and stack pointers.

 All of the activity described in the preceding paragraph takes place in user
space and within a single process. The kernel is unaware of this activity. The kernel
continues to schedule the process as a unit and assigns a single execution state
(Ready, Running, Blocked, etc.) to that process. The following examples should
clarify the relationship between thread scheduling and process scheduling. Suppose
that process B is executing in its thread 2; the states of the process and two ULTs
that are part of the process are shown in Figure 4.6a . Each of the following is a
 possible occurrence:

 1. The application executing in thread 2 makes a system call that blocks B. For
 example, an I/O call is made. This causes control to transfer to the kernel. The
kernel invokes the I/O action, places process B in the Blocked state, and switches
to another process. Meanwhile, according to the data structure maintained by

P P

User
space

Threads
library

Kernel
space

P

P

User
space

Kernel
space

P

User
space

Threads
library

Kernel
space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

Figure 4.5 User-Level and Kernel-Level Threads

166

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Process B

(a)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Process B

(b)

Ready Running

Blocked

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(c)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Blocked

Thread 2

Ready Running

Blocked

Process B

(d)

Figure 4.6 Examples of the Relationships between User-Level Thread States and Process States

4.2 / TYPES OF THREADS 167

the threads library, thread 2 of process B is still in the Running state. It is impor-
tant to note that thread 2 is not actually running in the sense of being executed
on a processor; but it is perceived as being in the Running state by the threads
library. The corresponding state diagrams are shown in Figure 4.6b .

 2. A clock interrupt passes control to the kernel, and the kernel determines
that the currently running process (B) has exhausted its time slice. The
 kernel places process B in the Ready state and switches to another process.
Meanwhile, according to the data structure maintained by the threads library,
thread 2 of process B is still in the Running state. The corresponding state
 diagrams are shown in Figure 4.6c .

 3. Thread 2 has reached a point where it needs some action performed by thread
1 of process B. Thread 2 enters a Blocked state and thread 1 transitions from
Ready to Running. The process itself remains in the Running state. The
 corresponding state diagrams are shown in Figure 4.6d .

 In cases 1 and 2 (Figures 4.6b and 4.6c), when the kernel switches control
back to process B, execution resumes in thread 2. Also note that a process can be
interrupted, either by exhausting its time slice or by being preempted by a higher-
priority process, while it is executing code in the threads library. Thus, a process
may be in the midst of a thread switch from one thread to another when inter-
rupted. When that process is resumed, execution continues within the threads
library, which completes the thread switch and transfers control to another thread
within that process.

 There are a number of advantages to the use of ULTs instead of KLTs,
 including the following:

 1. Thread switching does not require kernel mode privileges because all of the
thread management data structures are within the user address space of a
single process. Therefore, the process does not switch to the kernel mode to
do thread management. This saves the overhead of two mode switches (user
to kernel; kernel back to user).

 2. Scheduling can be application specific. One application may benefit most
from a simple round-robin scheduling algorithm, while another might benefit
from a priority-based scheduling algorithm. The scheduling algorithm can be
tailored to the application without disturbing the underlying OS scheduler.

 3. ULTs can run on any OS. No changes are required to the underlying kernel
to support ULTs. The threads library is a set of application-level functions
shared by all applications.

 There are two distinct disadvantages of ULTs compared to KLTs:

 1. In a typical OS, many system calls are blocking. As a result, when a ULT
 executes a system call, not only is that thread blocked, but also all of the
threads within the process are blocked.

 2. In a pure ULT strategy, a multithreaded application cannot take advantage
of multiprocessing. A kernel assigns one process to only one processor at a
time. Therefore, only a single thread within a process can execute at a time.
In effect, we have application-level multiprogramming within a single process.

168 CHAPTER 4 / THREADS

While this multiprogramming can result in a significant speedup of the appli-
cation, there are applications that would benefit from the ability to execute
portions of code simultaneously.

 There are ways to work around these two problems. For example, both prob-
lems can be overcome by writing an application as multiple processes rather than
multiple threads. But this approach eliminates the main advantage of threads: Each
switch becomes a process switch rather than a thread switch, resulting in much
greater overhead.

 Another way to overcome the problem of blocking threads is to use a tech-
nique referred to as jacketing . The purpose of jacketing is to convert a blocking
system call into a nonblocking system call. For example, instead of directly calling
a system I/O routine, a thread calls an application-level I/O jacket routine. Within
this jacket routine is code that checks to determine if the I/O device is busy. If it is,
the thread enters the Blocked state and passes control (through the threads library)
to another thread. When this thread later is given control again, the jacket routine
checks the I/O device again.

KERNEL-LEVEL THREADS In a pure KLT facility, all of the work of thread
management is done by the kernel. There is no thread management code in the
application level, simply an application programming interface (API) to the kernel
thread facility. Windows is an example of this approach.

 Figure 4.5b depicts the pure KLT approach. The kernel maintains context
information for the process as a whole and for individual threads within the process.
Scheduling by the kernel is done on a thread basis. This approach overcomes the
two principal drawbacks of the ULT approach. First, the kernel can simultaneously
schedule multiple threads from the same process on multiple processors. Second,
if one thread in a process is blocked, the kernel can schedule another thread of
the same process. Another advantage of the KLT approach is that kernel routines
themselves can be multithreaded.

 The principal disadvantage of the KLT approach compared to the ULT
approach is that the transfer of control from one thread to another within the same
process requires a mode switch to the kernel. To illustrate the differences, Table 4.1
shows the results of measurements taken on a uniprocessor VAX computer running
a UNIX-like OS. The two benchmarks are as follows: Null Fork, the time to create,
schedule, execute, and complete a process/thread that invokes the null procedure
(i.e., the overhead of forking a process/thread); and Signal-Wait, the time for a
process/thread to signal a waiting process/thread and then wait on a condition (i.e.,
the overhead of synchronizing two processes/threads together). We see that there is
an order of magnitude or more of difference between ULTs and KLTs and similarly
between KLTs and processes.

Table 4.1 Thread and Process Operation Latencies (μs)

 Operation User-Level Threads Kernel-Level Threads Processes

Null Fork 34 948 11,300

Signal Wait 37 441 1,840

4.2 / TYPES OF THREADS 169

 Thus, on the face of it, while there is a significant speedup by using KLT mul-
tithreading compared to single-threaded processes, there is an additional signifi-
cant speedup by using ULTs. However, whether or not the additional speedup is
realized depends on the nature of the applications involved. If most of the thread
switches in an application require kernel mode access, then a ULT-based scheme
may not perform much better than a KLT-based scheme.

COMBINED APPROACHES Some operating systems provide a combined ULT/
KLT facility (Figure 4.5c). In a combined system, thread creation is done
completely in user space, as is the bulk of the scheduling and synchronization of
threads within an application. The multiple ULTs from a single application are
mapped onto some (smaller or equal) number of KLTs. The programmer may
adjust the number of KLTs for a particular application and processor to achieve
the best overall results.

 In a combined approach, multiple threads within the same application can
run in parallel on multiple processors, and a blocking system call need not block
the entire process. If properly designed, this approach should combine the advan-
tages of the pure ULT and KLT approaches while minimizing the disadvantages.

 Solaris is a good example of an OS using this combined approach. The current
Solaris version limits the ULT/KLT relationship to be one-to-one.

Other Arrangements

 As we have said, the concepts of resource allocation and dispatching unit have
traditionally been embodied in the single concept of the process—that is, as a 1 : 1
relationship between threads and processes. Recently, there has been much inter-
est in providing for multiple threads within a single process, which is a many-to-
one relationship. However, as Table 4.2 shows, the other two combinations have
also been investigated, namely, a many-to-many relationship and a one-to-many
relationship.

MANY-TO-MANY RELATIONSHIP The idea of having a many-to-many relationship
between threads and processes has been explored in the experimental operating
system TRIX [PAZZ92, WARD80]. In TRIX, there are the concepts of domain

Table 4.2 Relationship between Threads and Processes

 Threads: Processes Description Example Systems

1:1 Each thread of execution is a unique process with its
own address space and resources.

 Traditional UNIX
implementations

M:1 A process defines an address space and dynamic
resource ownership. Multiple threads may be created
and executed within that process.

 Windows NT, Solaris,
Linux, OS/2, OS/390,
MACH

1:M A thread may migrate from one process environment
to another. This allows a thread to be easily moved
among distinct systems.

 Ra (Clouds),
Emerald

M:N Combines attributes of M:1 and 1:M cases. TRIX

170 CHAPTER 4 / THREADS

and thread. A domain is a static entity, consisting of an address space and “ports”
through which messages may be sent and received. A thread is a single execution
path, with an execution stack, processor state, and scheduling information.

 As with the multithreading approaches discussed so far, multiple threads
may execute in a single domain, providing the efficiency gains discussed earlier.
However, it is also possible for a single user activity, or application, to be per-
formed in multiple domains. In this case, a thread exists that can move from one
domain to another.

 The use of a single thread in multiple domains seems primarily motivated by
a desire to provide structuring tools for the programmer. For example, consider a
program that makes use of an I/O subprogram. In a multiprogramming environ-
ment that allows user-spawned processes, the main program could generate a new
process to handle I/O and then continue to execute. However, if the future progress
of the main program depends on the outcome of the I/O operation, then the main
program will have to wait for the other I/O program to finish. There are several
ways to implement this application:

 1. The entire program can be implemented as a single process. This is a rea-
sonable and straightforward solution. There are drawbacks related to
memory management. The process as a whole may require considerable
main memory to execute efficiently, whereas the I/O subprogram requires
a relatively small address space to buffer I/O and to handle the relatively
small amount of program code. Because the I/O program executes in the
address space of the larger program, either the entire process must remain
in main memory during the I/O operation or the I/O operation is subject
to swapping. This memory management effect would also exist if the main
program and the I/O subprogram were implemented as two threads in the
same address space.

 2. The main program and I/O subprogram can be implemented as two separate
processes. This incurs the overhead of creating the subordinate process. If the
I/O activity is frequent, one must either leave the subordinate process alive,
which consumes management resources, or frequently create and destroy the
subprogram, which is inefficient.

 3. Treat the main program and the I/O subprogram as a single activity that is to
be implemented as a single thread. However, one address space (domain)
could be created for the main program and one for the I/O subprogram.
Thus, the thread can be moved between the two address spaces as execu-
tion proceeds. The OS can manage the two address spaces independently,
and no process creation overhead is incurred. Furthermore, the address
space used by the I/O subprogram could also be shared by other simple I/O
 programs.

 The experiences of the TRIX developers indicate that the third option has
merit and may be the most effective solution for some applications.

ONE-TO-MANY RELATIONSHIP In the field of distributed operating systems
(designed to control distributed computer systems), there has been interest in the

4.3 / MULTICORE AND MULTITHREADING 171

concept of a thread as primarily an entity that can move among address spaces. 5 A
notable example of this research is the Clouds operating system, and especially its
kernel, known as Ra [DASG92]. Another example is the Emerald system [STEE95].

 A thread in Clouds is a unit of activity from the user’s perspective. A process
is a virtual address space with an associated process control block. Upon creation,
a thread starts executing in a process by invoking an entry point to a program in
that process. Threads may move from one address space to another and actually
span computer boundaries (i.e., move from one computer to another). As a thread
moves, it must carry with it certain information, such as the controlling terminal,
global parameters, and scheduling guidance (e.g., priority).

 The Clouds approach provides an effective way of insulating both users and
programmers from the details of the distributed environment. A user’s activity may
be represented as a single thread, and the movement of that thread among comput-
ers may be dictated by the OS for a variety of system-related reasons, such as the
need to access a remote resource, and load balancing.

4.3 MULTICORE AND MULTITHREADING

 The use of a multicore system to support a single application with multiple threads,
such as might occur on a workstation, a video-game console, or a personal computer
running a processor-intense application, raises issues of performance and applica-
tion design. In this section, we first look at some of the performance implications
of a multithreaded application on a multicore system and then describe a specific
example of an application designed to exploit multicore capabilities.

Performance of Software on Multicore

 The potential performance benefits of a multicore organization depend on the
ability to effectively exploit the parallel resources available to the application. Let
us focus first on a single application running on a multicore system. Amdahl’s law
(see Appendix E) states that:

 Speedup =
time to execute program on a single processor

time to execute program on N parallel processors
=

1

(1 - f) +
f

N
 The law assumes a program in which a fraction (1 - f) of the execution time
involves code that is inherently serial and a fraction f that involves code that is infi-
nitely parallelizable with no scheduling overhead.

 This law appears to make the prospect of a multicore organization attractive.
But as Figure 4.7a shows, even a small amount of serial code has a noticeable impact.
If only 10% of the code is inherently serial (f = 0.9) , running the program on a
multicore system with eight processors yields a performance gain of only a factor
of 4.7. In addition, software typically incurs overhead as a result of communication

5 The movement of processes or threads among address spaces, or thread migration, on different machines
has become a hot topic in recent years. Chapter 18 explores this topic.

172 CHAPTER 4 / THREADS

and distribution of work to multiple processors and cache coherence overhead. This
results in a curve where performance peaks and then begins to degrade because
of the increased burden of the overhead of using multiple processors. Figure 4.7b ,
from [MCDO07], is a representative example.

 However, software engineers have been addressing this problem and there are
numerous applications in which it is possible to effectively exploit a multicore sys-
tem. [MCDO07] reports on a set of database applications, in which great attention

R
el

at
iv

e
sp

ee
du

p

0

2

4

6

8

21

Number of processors

(a) Speedup with 0%, 2%, 5%, and 10% sequential portions

3 4 5 6

0%

2%

5%

10%

7 8

R
el

at
iv

e
sp

ee
du

p

10%
5%

15%
20%

0

0.5

1.0

1.5

2.0

2.5

21

Number of processors

(b) Speedup with overheads

3 4 5 6 7 8

Figure 4.7 Performance Effect of Multiple Cores

4.3 / MULTICORE AND MULTITHREADING 173

was paid to reducing the serial fraction within hardware architectures, operating
systems, middleware, and the database application software. Figure 4.8 shows the
result. As this example shows, database management systems and database applica-
tions are one area in which multicore systems can be used effectively. Many kinds of
servers can also effectively use the parallel multicore organization, because servers
typically handle numerous relatively independent transactions in parallel.

 In addition to general-purpose server software, a number of classes of applica-
tions benefit directly from the ability to scale throughput with the number of cores.
[MCDO06] lists the following examples:

 • Multithreaded native applications: Multithreaded applications are charac-
terized by having a small number of highly threaded processes. Examples
of threaded applications include Lotus Domino or Siebel CRM (Customer
Relationship Manager).

 • Multiprocess applications: Multiprocess applications are characterized by
the presence of many single-threaded processes. Examples of multiprocess
 applications include the Oracle database, SAP, and PeopleSoft.

 • Java applications: Java applications embrace threading in a fundamental way.
Not only does the Java language greatly facilitate multithreaded applications,
but the Java Virtual Machine is a multithreaded process that provides sched-
uling and memory management for Java applications. Java applications that
can benefit directly from multicore resources include application servers such
as Sun’s Java Application Server, BEA’s Weblogic, IBM’s Websphere, and
the open-source Tomcat application server. All applications that use a Java 2
Platform, Enterprise Edition (J2EE platform) application server can immedi-
ately benefit from multicore technology.

0
0

16

32

48

64

16 32

Number of CPUs

Sc
al

in
g

48 64

pe
rfe

ct
sc

ali
ng

Oracle DSS 4-way join
TMC data mining
DB2 DSS scan & aggs

Oracle ad hoc insurance OLTP

Figure 4.8 Scaling of Database Workloads on Multiple-Processor Hardware

174 CHAPTER 4 / THREADS

 • Multiinstance applications: Even if an individual application does not scale
to take advantage of a large number of threads, it is still possible to gain from
multicore architecture by running multiple instances of the application in
 parallel. If multiple application instances require some degree of isolation,
 virtualization technology (for the hardware of the operating system) can be
used to provide each of them with its own separate and secure environment.

Application Example: Valve Game Software

 Valve is an entertainment and technology company that has developed a number
of popular games, as well as the Source engine, one of the most widely played game
engines available. Source is an animation engine used by Valve for its games and
licensed for other game developers.

 In recent years, Valve has reprogrammed the Source engine software to use
multithreading to exploit the power of multicore processor chips from Intel and
AMD [REIM06]. The revised Source engine code provides more powerful support
for Valve games such as Half Life 2.

 From Valve’s perspective, threading granularity options are defined as follows
[HARR06]:

 • Coarse threading: Individual modules, called systems, are assigned to individ-
ual processors. In the Source engine case, this would mean putting rendering
on one processor, AI (artificial intelligence) on another, physics on another,
and so on. This is straightforward. In essence, each major module is single
threaded and the principal coordination involves synchronizing all the threads
with a timeline thread.

 • Fine-grained threading: Many similar or identical tasks are spread across mul-
tiple processors. For example, a loop that iterates over an array of data can be
split up into a number of smaller parallel loops in individual threads that can
be scheduled in parallel.

 • Hybrid threading: This involves the selective use of fine-grained threading for
some systems and single threading for other systems.

 Valve found that through coarse threading, it could achieve up to twice the
performance across two processors compared to executing on a single processor.
But this performance gain could only be achieved with contrived cases. For real-
world gameplay, the improvement was on the order of a factor of 1.2. Valve also
found that effective use of fine-grained threading was difficult. The time per work
unit can be variable, and managing the timeline of outcomes and consequences
involved complex programming.

 Valve found that a hybrid threading approach was the most promising and
would scale the best, as multicore systems with 8 or 16 processors became available.
Valve identified systems that operate very effectively being permanently assigned
to a single processor. An example is sound mixing, which has little user interaction,
is not constrained by the frame configuration of windows, and works on its own set
of data. Other modules, such as scene rendering, can be organized into a number
of threads so that the module can execute on a single processor but achieve greater
performance as it is spread out over more and more processors.

4.3 / MULTICORE AND MULTITHREADING 175

 Figure 4.9 illustrates the thread structure for the rendering module. In this hier-
archical structure, higher-level threads spawn lower-level threads as needed. The
rendering module relies on a critical part of the Source engine, the world list, which
is a database representation of the visual elements in the game’s world. The first task
is to determine what are the areas of the world that need to be rendered. The next
task is to determine what objects are in the scene as viewed from multiple angles.
Then comes the processor-intensive work. The rendering module has to work out
the rendering of each object from multiple points of view, such as the player’s view,
the view of TV monitors, and the point of view of reflections in water.

 Some of the key elements of the threading strategy for the rendering module
are listed in [LEON07] and include the following:

 • Construct scene-rendering lists for multiple scenes in parallel (e.g., the world
and its reflection in water).

 • Overlap graphics simulation.
 • Compute character bone transformations for all characters in all scenes in

parallel.
 • Allow multiple threads to draw in parallel.

 The designers found that simply locking key databases, such as the world list, for
a thread was too inefficient. Over 95% of the time, a thread is trying to read from a data
set, and only 5% of the time at most is spent in writing to a data set. Thus, a concurrency
mechanism known as the single-writer-multiple-readers model works effectively.

Render

Skybox Main view

Scene list

For each object

Particles

Sim and draw

Bone setup

Draw

Character

Etc.

Monitor Etc.

Figure 4.9 Hybrid Threading for Rendering Module

176 CHAPTER 4 / THREADS

4.4 WINDOWS 7 THREAD AND SMP MANAGEMENT

 Windows process design is driven by the need to provide support for a variety of OS
environments. Processes supported by different OS environments differ in a number
of ways, including the following:

 • How processes are named
 • Whether threads are provided within processes
 • How processes are represented
 • How process resources are protected
 • What mechanisms are used for interprocess communication and synchronization
 • How processes are related to each other

 Accordingly, the native process structures and services provided by the
Windows Kernel are relatively simple and general purpose, allowing each OS
 subsystem to emulate a particular process structure and functionality. Important
characteristics of Windows processes are the following:

 • Windows processes are implemented as objects.
 • A process can be created as new process, or as a copy of an existing process.
 • An executable process may contain one or more threads.
 • Both process and thread objects have built-in synchronization capabilities.

 Figure 4.10 , based on one in [RUSS11], illustrates the way in which a process
relates to the resources it controls or uses. Each process is assigned a security access

Process
object

Access
token

Virtual address descriptors

Thread x

File y

Section z

Handle1

Handle2

Handle3

Available
objectsHandle table

Figure 4.10 A Windows Process and Its Resources

4.4 / WINDOWS 7 THREAD AND SMP MANAGEMENT 177

token, called the primary token of the process. When a user first logs on, Windows
creates an access token that includes the security ID for the user. Every process that
is created by or runs on behalf of this user has a copy of this access token. Windows
uses the token to validate the user’s ability to access secured objects or to perform
restricted functions on the system and on secured objects. The access token controls
whether the process can change its own attributes. In this case, the process does not
have a handle opened to its access token. If the process attempts to open such a han-
dle, the security system determines whether this is permitted and therefore whether
the process may change its own attributes.

 Also related to the process is a series of blocks that define the virtual address
space currently assigned to this process. The process cannot directly modify these
structures but must rely on the virtual memory manager, which provides a memory-
allocation service for the process.

 Finally, the process includes an object table, with handles to other objects
known to this process. Figure 4.10 shows a single thread. In addition, the process
has access to a file object and to a section object that defines a section of shared
memory.

Process and Thread Objects

 The object-oriented structure of Windows facilitates the development of a gen-
eral-purpose process facility. Windows makes use of two types of process-related
objects: processes and threads. A process is an entity corresponding to a user job
or application that owns resources, such as memory and open files. A thread is a
dispatchable unit of work that executes sequentially and is interruptible, so that the
processor can turn to another thread.

 Each Windows process is represented by an object whose general structure
is shown in Figure 4.11a . Each process is defined by a number of attributes and
encapsulates a number of actions, or services, that it may perform. A process will
perform a service when called upon through a set of published interface methods.
When Windows creates a new process, it uses the object class, or type, defined for
the Windows process as a template to generate a new object instance. At the time of
creation, attribute values are assigned. Table 4.3 gives a brief definition of each of
the object attributes for a process object.

 A Windows process must contain at least one thread to execute. That thread
may then create other threads. In a multiprocessor system, multiple threads from
the same process may execute in parallel. Figure 4.11b depicts the object structure
for a thread object, and Table 4.4 defines the thread object attributes. Note that
some of the attributes of a thread resemble those of a process. In those cases, the
thread attribute value is derived from the process attribute value. For example,
the thread processor affinity is the set of processors in a multiprocessor system
that may execute this thread; this set is equal to or a subset of the process processor
affinity.

 Note that one of the attributes of a thread object is context, which contains the
values of the processor registers when the thread last ran. This information enables
threads to be suspended and resumed. Furthermore, it is possible to alter the behav-
ior of a thread by altering its context while it is suspended.

178 CHAPTER 4 / THREADS

Process ID
Security descriptor
Base priority
Default processor affinity
Quota limits
Execution time
I/O counters
VM operation counters
Exception/debugging ports
Exit status

Create process
Open process
Query process information
Set process information
Current process
Terminate process

Process
Object type

Object body
attributes

Services

Thread ID
Thread context
Dynamic priority
Base priority
Thread processor affinity
Thread execution time
Alert status
Suspension count
Impersonation token
Termination port
Thread exit status

Create thread
Open thread
Query thread information
Set thread information
Current thread
Terminate thread
Get context
Set context
Suspend
Resume
Alert thread
Test thread alert
Register termination port

Thread
Object type

Object body
attributes

Services

(a) Process object

(b) Thread object

Figure 4.11 Windows Process and Thread Objects

Table 4.3 Windows Process Object Attributes

Process ID A unique value that identifies the process to the operating system.

Security descriptor Describes who created an object, who can gain access to or use the object, and
who is denied access to the object.

Base priority A baseline execution priority for the process’s threads.

Default processor affinity The default set of processors on which the process’s threads can run.

Quota limits The maximum amount of paged and nonpaged system memory, paging file
space, and processor time a user’s processes can use.

Execution time The total amount of time all threads in the process have executed.

I/O counters Variables that record the number and type of I/O operations that the process’s
threads have performed.

VM operation counters Variables that record the number and types of virtual memory operations that
the process’s threads have performed.

Exception/debugging ports Interprocess communication channels to which the process manager sends a
message when one of the process’s threads causes an exception. Normally,
these are connected to environment subsystem and debugger processes,
respectively.

Exit status The reason for a process’s termination.

4.4 / WINDOWS 7 THREAD AND SMP MANAGEMENT 179

Multithreading

 Windows supports concurrency among processes because threads in different
 processes may execute concurrently (appear to run at the same time). Moreover, mul-
tiple threads within the same process may be allocated to separate processors and
execute simultaneously (actually run at the same time). A multithreaded process
achieves concurrency without the overhead of using multiple processes. Threads
within the same process can exchange information through their common address
space and have access to the shared resources of the process. Threads in different
processes can exchange information through shared memory that has been set up
between the two processes.

 An object-oriented multithreaded process is an efficient means of implementing
a server application. For example, one server process can service a number of clients
concurrently.

Thread States

 An existing Windows thread is in one of six states (Figure 4.12):

 • Ready: A ready thread may be scheduled for execution. The Kernel dispatcher
keeps track of all ready threads and schedules them in priority order.

 • Standby: A standby thread has been selected to run next on a particular proc-
essor. The thread waits in this state until that processor is made available.
If the standby thread’s priority is high enough, the running thread on that

Table 4.4 Windows Thread Object Attributes

Thread ID A unique value that identifies a thread when it calls a server.

Thread context The set of register values and other volatile data that defines the execution state
of a thread.

Dynamic priority The thread’s execution priority at any given moment.

Base priority The lower limit of the thread’s dynamic priority.

Thread processor affinity The set of processors on which the thread can run, which is a subset or all of the
processor affinity of the thread’s process.

Thread execution time The cumulative amount of time a thread has executed in user mode and in
 kernel mode.

Alert status A flag that indicates whether a waiting thread may execute an asynchronous
procedure call.

Suspension count The number of times the thread’s execution has been suspended without being
resumed.

Impersonation token A temporary access token allowing a thread to perform operations on behalf of
another process (used by subsystems).

Termination port An interprocess communication channel to which the process manager sends a
message when the thread terminates (used by subsystems).

Thread exit status The reason for a thread’s termination.

180 CHAPTER 4 / THREADS

processor may be preempted in favor of the standby thread. Otherwise, the
standby thread waits until the running thread blocks or exhausts its time slice.

 • Running: Once the Kernel dispatcher performs a thread switch, the standby
thread enters the Running state and begins execution and continues execution
until it is preempted by a higher-priority thread, exhausts its time slice, blocks,
or terminates. In the first two cases, it goes back to the Ready state.

 • Waiting: A thread enters the Waiting state when (1) it is blocked on an event
(e.g., I/O), (2) it voluntarily waits for synchronization purposes, or (3) an
environment subsystem directs the thread to suspend itself. When the waiting
 condition is satisfied, the thread moves to the Ready state if all of its resources
are available.

 • Transition: A thread enters this state after waiting if it is ready to run but the
resources are not available. For example, the thread’s stack may be paged
out of memory. When the resources are available, the thread goes to the
Ready state.

 • Terminated: A thread can be terminated by itself, by another thread, or when
its parent process terminates. Once housekeeping chores are completed, the
thread is removed from the system, or it may be retained by the Executive 6 for
future reinitialization.

6 The Windows Executive is described in Chapter 2 . It contains the base operating system services, such as
memory management, process and thread management, security, I/O, and interprocess communication.

Runnable

Not runnable

Pick to
run Switch

Preempted

Block/
suspend

Unblock/resume
Resource available

Resource
available

Unblock
Resource not available

Terminate

Standby

Ready Running

Transition Waiting Terminated

Figure 4.12 Windows Thread States

4.4 / WINDOWS 7 THREAD AND SMP MANAGEMENT 181

Support for OS Subsystems

 The general-purpose process and thread facility must support the particular process
and thread structures of the various OS environments. It is the responsibility of
each OS subsystem to exploit the Windows process and thread features to emulate
the process and thread facilities of its corresponding OS. This area of process/thread
management is complicated, and we give only a brief overview here.

 Process creation begins with a request for a new process from an application.
The application issues a create-process request to the corresponding protected
 subsystem, which passes the request to the Executive. The Executive creates a proc-
ess object and returns a handle for that object to the subsystem. When Windows
creates a process, it does not automatically create a thread. In the case of Win32, a
new process must always be created with an initial thread. Therefore, for the Win32
subsystem calls the Windows process manager again to create a thread for the new
process, receiving a thread handle back from Windows. The appropriate thread and
process information are then returned to the application. In the case of POSIX,
threads are not supported. Therefore, the POSIX subsystem obtains a thread for
the new process from Windows so that the process may be activated but returns only
process information to the application. The fact that the POSIX process is imple-
mented using both a process and a thread from the Windows Executive is not visible
to the application.

 When a new process is created by the Executive, the new process inherits
many of its attributes from the creating process. However, in the Win32 environ-
ment, this process creation is done indirectly. An application client process issues
its process creation request to the Win32 subsystem; then the subsystem in turn
issues a process request to the Windows executive. Because the desired effect is
that the new process inherits characteristics of the client process and not of the server
 process, Windows enables the subsystem to specify the parent of the new process.
The new process then inherits the parent’s access token, quota limits, base priority,
and default processor affinity.

Symmetric Multiprocessing Support

 Windows supports SMP hardware configurations. The threads of any process,
including those of the executive, can run on any processor. In the absence of affin-
ity restrictions, explained in the next paragraph, the kernel dispatcher assigns a
ready thread to the next available processor. This assures that no processor is
idle or is executing a lower-priority thread when a higher-priority thread is ready.
Multiple threads from the same process can be executing simultaneously on
 multiple processors.

 As a default, the kernel dispatcher uses the policy of soft affinity in assign-
ing threads to processors: The dispatcher tries to assign a ready thread to the same
 processor it last ran on. This helps reuse data still in that processor’s memory caches
from the previous execution of the thread. It is possible for an application to restrict
its thread execution only to certain processors (hard affinity).

182 CHAPTER 4 / THREADS

4.5 SOLARIS THREAD AND SMP MANAGEMENT

 Solaris implements multilevel thread support designed to provide considerable
 flexibility in exploiting processor resources.

Multithreaded Architecture

 Solaris makes use of four separate thread-related concepts:

 • Process: This is the normal UNIX process and includes the user’s address
space, stack, and process control block.

 • User-level threads: Implemented through a threads library in the address
space of a process, these are invisible to the OS. A user-level thread (ULT) 7 is
a user-created unit of execution within a process.

 • Lightweight processes: A lightweight process (LWP) can be viewed as a map-
ping between ULTs and kernel threads. Each LWP supports ULT and maps
to one kernel thread. LWPs are scheduled by the kernel independently and
may execute in parallel on multiprocessors.

 • Kernel threads: These are the fundamental entities that can be scheduled and
dispatched to run on one of the system processors.

 Figure 4.13 illustrates the relationship among these four entities. Note that
there is always exactly one kernel thread for each LWP. An LWP is visible within a
process to the application. Thus, LWP data structures exist within their respective
process address space. At the same time, each LWP is bound to a single dispatchable
kernel thread, and the data structure for that kernel thread is maintained within the
kernel’s address space.

Hardware

Kernel

System calls

syscall()syscall()

Process

Kernel
thread

Kernel
thread

Lightweight
process (LWP)

Lightweight
process (LWP)

User
thread

User
thread

Figure 4.13 Processes and Threads in Solaris [MCDO07]

7 Again, the acronym ULT is unique to this book and is not found in the Solaris literature.

4.5 / SOLARIS THREAD AND SMP MANAGEMENT 183

 A process may consist of a single ULT bound to a single LWP. In this case, there
is a single thread of execution, corresponding to a traditional UNIX process. When
concurrency is not required within a single process, an application uses this process
structure. If an application requires concurrency, its process contains multiple threads,
each bound to a single LWP, which in turn are each bound to a single kernel thread.

 In addition, there are kernel threads that are not associated with LWPs. The
kernel creates, runs, and destroys these kernel threads to execute specific system
functions. The use of kernel threads rather than kernel processes to implement
 system functions reduces the overhead of switching within the kernel (from a
 process switch to a thread switch).

Motivation

 The three-level thread structure (ULT, LWP, kernel thread) in Solaris is intended
to facilitate thread management by the OS and to provide a clean interface to appli-
cations. The ULT interface can be a standard thread library. A defined ULT maps
onto a LWP, which is managed by the OS and which has defined states of execution,
defined subsequently. An LWP is bound to a kernel thread with a one-to-one corre-
spondence in execution states. Thus, concurrency and execution are managed at the
level of the kernel thread.

 In addition, an application has access to hardware through an application pro-
gramming interface consisting of system calls. The API allows the user to invoke
kernel services to perform privileged tasks on behalf of the calling process, such as
read or write a file, issue a control command to a device, create a new process or
thread, allocate memory for the process to use, and so on.

Process Structure

 Figure 4.14 compares, in general terms, the process structure of a traditional UNIX
system with that of Solaris. On a typical UNIX implementation, the process struc-
ture includes the process ID; the user IDs; a signal dispatch table, which the kernel
uses to decide what to do when sending a signal to a process; file descriptors, which
describe the state of files in use by this process; a memory map, which defines the
address space for this process; and a processor state structure, which includes the
kernel stack for this process. Solaris retains this basic structure but replaces the pro-
cessor state block with a list of structures containing one data block for each LWP.

 The LWP data structure includes the following elements:

 • An LWP identifier

 • The priority of this LWP and hence the kernel thread that supports it

 • A signal mask that tells the kernel which signals will be accepted

 • Saved values of user-level registers (when the LWP is not running)

 • The kernel stack for this LWP, which includes system call arguments, results,
and error codes for each call level

 • Resource usage and profiling data

 • Pointer to the corresponding kernel thread

 • Pointer to the process structure

184 CHAPTER 4 / THREADS

Thread Execution

 Figure 4.15 shows a simplified view of both thread execution states. These states
reflect the execution status of both a kernel thread and the LWP bound to it. As
mentioned, some kernel threads are not associated with an LWP; the same execu-
tion diagram applies. The states are as follows:

 • RUN: The thread is runnable; that is, the thread is ready to execute.

 • ONPROC: The thread is executing on a processor.

 • SLEEP: The thread is blocked.

 • STOP: The thread is stopped.

 • ZOMBIE: The thread has terminated.

 • FREE: Thread resources have been released and the thread is awaiting
 removal from the OS thread data structure.

 A thread moves from ONPROC to RUN if it is preempted by a higher-priority
thread or because of time slicing. A thread moves from ONPROC to SLEEP if it

Process ID

UNIX process structure

User IDs

Signal dispatch table

File descriptors

Memory map

Priority
Signal mask

Registers

STACK

LWP ID

Processor state

Process ID

Solaris process structure

User IDs

Signal dispatch table

File descriptors

LWP 1

LWP ID

LWP 2

Memory map

Priority
Signal mask

Registers

STACK

Priority
Signal mask

Registers

STACK

Figure 4.14 Process Structure in Traditional UNIX and Solaris [LEWI96]

4.5 / SOLARIS THREAD AND SMP MANAGEMENT 185

is blocked and must await an event to return the RUN state. Blocking occurs if the
thread invokes a system call and must wait for the system service to be performed.
A thread enters the STOP state if its process is stopped; this might be done for
debugging purposes.

Interrupts as Threads

 Most operating systems contain two fundamental forms of concurrent activity:
 processes and interrupts. Processes (or threads) cooperate with each other and
manage the use of shared data structures by means of a variety of primitives
that enforce mutual exclusion (only one process at a time can execute certain
code or access certain data) and that synchronize their execution. Interrupts are
 synchronized by preventing their handling for a period of time. Solaris unifies
these two concepts into a single model, namely kernel threads and the mechanisms
for scheduling and executing kernel threads. To do this, interrupts are converted
to kernel threads.

 The motivation for converting interrupts to threads is to reduce overhead.
Interrupt handlers often manipulate data shared by the rest of the kernel. Therefore,
while a kernel routine that accesses such data is executing, interrupts must be
blocked, even though most interrupts will not affect that data. Typically, the way
this is done is for the routine to set the interrupt priority level higher to block inter-
rupts and then lower the priority level after access is completed. These operations
take time. The problem is magnified on a multiprocessor system. The kernel must
protect more objects and may need to block interrupts on all processors.

IDL

thread_create() intr()

swtch()
syscall()

wakeup()

prun() pstop() exit() reap()

preempt()

RUN

PINNED

SLEEP

STOP ZOMBIE FREE

ONPROC

Figure 4.15 Solaris Thread States

186 CHAPTER 4 / THREADS

 The solution in Solaris can be summarized as follows:

 1. Solaris employs a set of kernel threads to handle interrupts. As with any kernel
thread, an interrupt thread has its own identifier, priority, context, and stack.

 2. The kernel controls access to data structures and synchronizes among inter-
rupt threads using mutual exclusion primitives, of the type discussed in
 Chapter 5 . That is, the normal synchronization techniques for threads are used
in handling interrupts.

 3. Interrupt threads are assigned higher priorities than all other types of kernel
threads.

 When an interrupt occurs, it is delivered to a particular processor and the
thread that was executing on that processor is pinned. A pinned thread cannot
move to another processor and its context is preserved; it is simply suspended until
the interrupt is processed. The processor then begins executing an interrupt thread.
There is a pool of deactivated interrupt threads available, so that a new thread crea-
tion is not required. The interrupt thread then executes to handle the interrupt.
If the handler routine needs access to a data structure that is currently locked in
some fashion for use by another executing thread, the interrupt thread must wait for
access to that data structure. An interrupt thread can only be preempted by another
interrupt thread of higher priority.

 Experience with Solaris interrupt threads indicates that this approach provides
superior performance to the traditional interrupt-handling strategy [KLEI95].

4.6 LINUX PROCESS AND THREAD MANAGEMENT

Linux Tasks

 A process, or task, in Linux is represented by a task_struct data structure. The
task_struct data structure contains information in a number of categories:

 • State: The execution state of the process (executing, ready, suspended,
stopped, zombie). This is described subsequently.

 • Scheduling information: Information needed by Linux to schedule processes.
A process can be normal or real time and has a priority. Real-time processes
are scheduled before normal processes, and within each category, relative pri-
orities can be used. A counter keeps track of the amount of time a process is
allowed to execute.

 • Identifiers: Each process has a unique process identifier and also has user and
group identifiers. A group identifier is used to assign resource access privi-
leges to a group of processes.

 • Interprocess communication: Linux supports the IPC mechanisms found in
UNIX SVR4, described in Chapter 6 .

 • Links: Each process includes a link to its parent process, links to its siblings
(processes with the same parent), and links to all of its children.

4.6 / LINUX PROCESS AND THREAD MANAGEMENT 187

 • Times and timers: Includes process creation time and the amount of proces-
sor time so far consumed by the process. A process may also have associated
one or more interval timers. A process defines an interval timer by means of a
system call; as a result, a signal is sent to the process when the timer expires. A
timer may be single use or periodic.

 • File system: Includes pointers to any files opened by this process, as well as
pointers to the current and the root directories for this process.

 • Address space: Defines the virtual address space assigned to this process.

 • Processor-specific context: The registers and stack information that constitute
the context of this process.

 Figure 4.16 shows the execution states of a process. These are as follows:

 • Running: This state value corresponds to two states. A Running process is
either executing or it is ready to execute.

 • Interruptible: This is a blocked state, in which the process is waiting for an
event, such as the end of an I/O operation, the availability of a resource, or a
signal from another process.

 • Uninterruptible: This is another blocked state. The difference between this
and the Interruptible state is that in an Uninterruptible state, a process is wait-
ing directly on hardware conditions and therefore will not handle any signals.

Running
state

Creation
Scheduling

Termination

SignalSignal

Event
Signal

or
event

Stopped

Ready Executing Zombie

Uninterruptible

Interruptible

Figure 4.16 Linux Process/Thread Model

188 CHAPTER 4 / THREADS

 • Stopped: The process has been halted and can only resume by positive action
from another process. For example, a process that is being debugged can be
put into the Stopped state.

 • Zombie: The process has been terminated but, for some reason, still must
have its task structure in the process table.

Linux Threads

 Traditional UNIX systems support a single thread of execution per process, while
modern UNIX systems typically provide support for multiple kernel-level threads
per process. As with traditional UNIX systems, older versions of the Linux ker-
nel offered no support for multithreading. Instead, applications would need to
be written with a set of user-level library functions, the most popular of which is
known as pthread (POSIX thread) libraries , with all of the threads mapping into
a single kernel-level process. 8 We have seen that modern versions of UNIX offer
kernel-level threads. Linux provides a unique solution in that it does not recog-
nize a distinction between threads and processes. Using a mechanism similar to the
lightweight processes of Solaris, user-level threads are mapped into kernel-level
processes. Multiple user-level threads that constitute a single user-level process
are mapped into Linux kernel-level processes that share the same group ID. This
enables these processes to share resources such as files and memory and to avoid
the need for a context switch when the scheduler switches among processes in the
same group.

 A new process is created in Linux by copying the attributes of the current
process. A new process can be cloned so that it shares resources, such as files, sig-
nal handlers, and virtual memory. When the two processes share the same virtual
memory, they function as threads within a single process. However, no separate
type of data structure is defined for a thread. In place of the usual fork() com-
mand, processes are created in Linux using the clone() command. This command
includes a set of flags as arguments, defined in Table 4.5 . The traditional fork()
system call is implemented by Linux as a clone() system call with all of the clone
flags cleared.

 When the Linux kernel performs a switch from one process to another, it
checks whether the address of the page directory of the current process is the same
as that of the to-be-scheduled process. If they are, then they are sharing the same
address space, so that a context switch is basically just a jump from one location of
code to another location of code.

 Although cloned processes that are part of the same process group can share
the same memory space, they cannot share the same user stacks. Thus the clone()
call creates separate stack spaces for each process.

8 POSIX (Portable Operating Systems based on UNIX) is an IEEE API standard that includes a stan-
dard for a thread API. Libraries implementing the POSIX Threads standard are often named Pthreads.
Pthreads are most commonly used on UNIX-like POSIX systems such as Linux and Solaris, but Microsoft
Windows implementations also exist.

4.7 / MAC OS X GRAND CENTRAL DISPATCH 189

4.7 MAC OS X GRAND CENTRAL DISPATCH

 As was mentioned in Chapter 2 , Mac OS X Grand Central Dispatch (GCD) pro-
vides a pool of available threads. Designers can designate portions of applications,
called blocks, that can be dispatched independently and run concurrently. The OS
will provide as much concurrency as possible based on the number of cores avail-
able and the thread capacity of the system. Although other operating systems have
implemented thread pools, GCD provides a qualitative improvement in ease of use
and efficiency.

 A block is a simple extension to C or other languages, such as C++. The pur-
pose of defining a block is to define a self-contained unit of work, including code
plus data. Here is a simple example of a block definition:

x = ^{ printf(“hello world\n”); }

 A block is denoted by a caret at the start of the function, which is enclosed in
curly brackets. The above block definition defines x as a way of calling the func-
tion, so that invoking the function x() would print the words hello world.

Table 4.5 Linux clone () flags

CLONE_CLEARID Clear the task ID.

CLONE_DETACHED The parent does not want a SIGCHLD signal sent on exit.

CLONE_FILES Share the table that identifies the open files.

CLONE_FS Share the table that identifies the root directory and the current working directory, as
well as the value of the bit mask used to mask the initial file permissions of a new file.

CLONE_IDLETASK Set PID to zero, which refers to an idle task. The idle task is employed when all
available tasks are blocked waiting for resources.

CLONE_NEWNS Create a new namespace for the child.

CLONE_PARENT Caller and new task share the same parent process.

CLONE_PTRACE If the parent process is being traced, the child process will also be traced.

CLONE_SETTID Write the TID back to user space.

CLONE_SETTLS Create a new TLS for the child.

CLONE_SIGHAND Share the table that identifies the signal handlers.

CLONE_SYSVSEM Share System V SEM_UNDO semantics.

CLONE_THREAD Insert this process into the same thread group of the parent. If this flag is true, it
implicitly enforces CLONE_PARENT.

CLONE_VFORK If set, the parent does not get scheduled for execution until the child invokes the
execve() system call.

CLONE_VM Share the address space (memory descriptor and all page tables).

190 CHAPTER 4 / THREADS

 Blocks enable the programmer to encapsulate complex functions, together
with their arguments and data, so that they can easily be referenced and passed
around in a program, much like a variable. 9 Symbolically:

= F +F data

 Blocks are scheduled and dispatched by means of queues. The application
makes use of system queues provided by GCD and may also set up private queues.
Blocks are put onto a queue as they are encountered during program execution.
GCD then uses those queues to describe concurrency, serialization, and callbacks.
Queues are lightweight user-space data structures, which generally makes them far
more efficient than manually managing threads and locks. For example, this queue
has three blocks:

Queue

H G F

 Depending on the queue and how it is defined, GCD either treats these blocks
as potentially concurrent activities, or treats them as serial activities. In either case,
blocks are dispatched on a first-in-first-out basis. If this is a concurrent queue, then
the dispatcher assigns F to a thread as soon as one is available, then G, then H. If
this is a serial queue, the dispatcher assigns F to a thread, and then only assigns G
to a thread after F has completed. The use of predefined threads saves the cost of
creating a new thread for each request, reducing the latency associated with process-
ing a block. Thread pools are automatically sized by the system to maximize the
performance of the applications using GCD while minimizing the number of idle or
competing threads.

H G F

Pool Thread

 In addition to scheduling blocks directly, the application can associate a sin-
gle block and queue with an event source, such as a timer, network socket, or file
descriptor. Every time the source issues an event, the block is scheduled if it is not

9 Much of the material in the remainder of this section is based on [APPL09].

4.7 / MAC OS X GRAND CENTRAL DISPATCH 191

already running. This allows rapid response without the expense of polling or “park-
ing a thread” on the event source.

E

ESource

E

 An example from [SIRA09] indicates the ease of using GCD. Consider a
document-based application with a button that, when clicked, will analyze the
 current document and display some interesting statistics about it. In the common
case, this analysis should execute in under a second, so the following code is used
to connect the button with an action:

- (Inaction)analyzeDocument:(NSButton *)sender
{
 NSDictionary *stats = [myDoc analyze];
 [myModel setDict:stats];
 [myStatsView setNeedsDisplay:YES];
 [stats release];
}

 The first line of the function body analyzes the document, the second line
updates the application’s internal state, and the third line tells the application that
the statistics view needs to be updated to reflect this new state. This code, which fol-
lows a common pattern, is executed in the main thread. The design is acceptable so
long as the analysis does not take too long, because after the user clicks the button,
the main thread of the application needs to handle that user input as fast as pos-
sible so it can get back to the main event loop to process the next user action. But
if the user opens a very large or complex document, the analyze step may take an
unacceptably long amount of time. A developer may be reluctant to alter the code
to meet this unlikely event, which may involve application-global objects, thread
management, callbacks, argument marshalling, context objects, new variables, and
so on. But with GCD, a modest addition to the code produces the desired result:

- (IBAction)analyzeDocument:(NSButton *)sender
 { dispatch_async(dispatch_get_global_queue(0, 0), ^{
 NSDictionary *stats = [myDoc analyze];

dispatch_async(dispatch_get_main_queue(), ^{
 [myModel setDict:stats];
 [myStatsView setNeedsDisplay:YES];
 [stats release];

});
});

}

192 CHAPTER 4 / THREADS

 All functions in GCD begin with dispatch_. The outer dispatch_
async() call puts a task on a global concurrent queue. This tells the OS that the
block can be assigned to a separate concurrent queue, off the main queue, and exe-
cuted in parallel. Therefore, the main thread of execution is not delayed. When the
analyze function is complete, the inner dispatch_async() call is encountered.
This directs the OS to put the following block of code at the end of the main queue,
to be executed when it reaches the head of the queue. So, with very little work on
the part of the programmer, the desired requirement is met.

4.8 SUMMARY

 Some operating systems distinguish the concepts of process and thread, the for-
mer related to resource ownership and the latter related to program execution.
This approach may lead to improved efficiency and coding convenience. In a mul-
tithreaded system, multiple concurrent threads may be defined within a single
process. This may be done using either user-level threads or kernel-level threads.
User-level threads are unknown to the OS and are created and managed by a
threads library that runs in the user space of a process. User-level threads are
very efficient because a mode switch is not required to switch from one thread
to another. However, only a single user-level thread within a process can execute
at a time, and if one thread blocks, the entire process is blocked. Kernel-level
threads are threads within a process that are maintained by the kernel. Because
they are recognized by the kernel, multiple threads within the same process can
execute in parallel on a multiprocessor and the blocking of a thread does not
block the entire process. However, a mode switch is required to switch from one
thread to another.

4.9 RECOMMENDED READING

 [LEWI96] and [KLEI96] provide good overviews of thread concepts and a discus-
sion of programming strategies; the former focuses more on concepts and the latter
more on programming, but both provide useful coverage of both topics. [PHAM96]
discusses the Windows NT thread facility in depth. Good coverage of UNIX threads
concepts is found in [ROBB04].

KLEI96 Kleiman, S., Shah, D., and Smallders, B. Programming with Threads. Upper
Saddle River, NJ: Prentice Hall, 1996.

LEWI96 Lewis, B., and Berg, D. Threads Primer. Upper Saddle River, NJ: Prentice
Hall, 1996.

PHAM96 Pham, T., and Garg, P. Multithreaded Programming with Windows NT.
Upper Saddle River, NJ: Prentice Hall, 1996.

ROBB04 Robbins, K., and Robbins, S. UNIX Systems Programming: Communication,
Concurrency, and Threads. Upper Saddle River, NJ: Prentice Hall, 2004.

4.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 193

Review Questions

 4.1 Table 3.5 lists typical elements found in a process control block for an unthreaded OS.
Of these, which should belong to a thread control block and which should belong to a
process control block for a multithreaded system?

 4.2 List reasons why a mode switch between threads may be cheaper than a mode switch
between processes.

 4.3 What are the two separate and potentially independent characteristics embodied in
the concept of process?

 4.4 Give four general examples of the use of threads in a single-user multiprocessing sys-
tem.

 4.5 What resources are typically shared by all of the threads of a process?
 4.6 List three advantages of ULTs over KLTs.
 4.7 List two disadvantages of ULTs compared to KLTs.
 4.8 Define jacketing.

Problems

 4.1 It was pointed out that two advantages of using multiple threads within a process
are that (1) less work is involved in creating a new thread within an existing process
than in creating a new process, and (2) communication among threads within the
same process is simplified. Is it also the case that a mode switch between two threads
within the same process involves less work than a mode switch between two threads
in different processes?

 4.2 In the discussion of ULTs versus KLTs, it was pointed out that a disadvantage of ULTs
is that when a ULT executes a system call, not only is that thread blocked, but also all
of the threads within the process are blocked. Why is that so?

 4.3 OS/2 is an obsolete OS for PCs from IBM. In OS/2, what is commonly embodied in
the concept of process in other operating systems is split into three separate types
of entities: session, processes, and threads. A session is a collection of one or more
processes associated with a user interface (keyboard, display, and mouse). The ses-
sion represents an interactive user application, such as a word processing program
or a spreadsheet. This concept allows the personal-computer user to open more than
one application, giving each one or more windows on the screen. The OS must keep
track of which window, and therefore which session, is active, so that keyboard and
mouse input are routed to the appropriate session. At any time, one session is in
foreground mode, with other sessions in background mode. All keyboard and mouse
input is directed to one of the processes of the foreground session, as dictated by

4.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 kernel-level thread
 lightweight process
 message

 multithreading
 port
 process

 task
 thread
 user-level thread

194 CHAPTER 4 / THREADS

the applications. When a session is in foreground mode, a process performing video
output sends it directly to the hardware video buffer and thence to the user’s screen.
When the session is moved to the background, the hardware video buffer is saved to
a logical video buffer for that session. While a session is in background, if any of the
threads of any of the processes of that session executes and produces screen output,
that output is directed to the logical video buffer. When the session returns to fore-
ground, the screen is updated to reflect the current contents of the logical video buffer
for the new foreground session.

 There is a way to reduce the number of process-related concepts in OS/2 from
three to two. Eliminate sessions, and associate the user interface (keyboard, mouse,
and screen) with processes. Thus, one process at a time is in foreground mode. For
further structuring, processes can be broken up into threads.
a. What benefits are lost with this approach?
b. If you go ahead with this modification, where do you assign resources (memory,

files, etc.): at the process or thread level?
 4.4 Consider an environment in which there is a one-to-one mapping between user-level

threads and kernel-level threads that allows one or more threads within a process
to issue blocking system calls while other threads continue to run. Explain why this
model can make multithreaded programs run faster than their single-threaded coun-
terparts on a uniprocessor computer.

 4.5 If a process exits and there are still threads of that process running, will they continue
to run?

 4.6 The OS/390 mainframe operating system is structured around the concepts of
 address space and task. Roughly speaking, a single address space corresponds to
a single application and corresponds more or less to a process in other operat-
ing systems. Within an address space, a number of tasks may be generated and
execute concurrently; this corresponds roughly to the concept of multithreading.
Two data structures are key to managing this task structure. An address space
control block (ASCB) contains information about an address space needed
by OS/390 whether or not that address space is executing. Information in the
ASCB includes dispatching priority, real and virtual memory allocated to this
address space, the number of ready tasks in this address space, and whether
each is swapped out. A task control block (TCB) represents a user program in
execution. It contains information needed for managing a task within an address
space, including processor status information, pointers to programs that are part
of this task, and task execution state. ASCBs are global structures maintained in
system memory, while TCBs are local structures maintained within their address
space. What is the advantage of splitting the control information into global and
local portions?

 4.7 Many current language specifications, such as for C and C++, are inadequate for
multithreaded programs. This can have an impact on compilers and the correctness
of code, as this problem illustrates. Consider the following declarations and function
definition:

int global_positives = 0;

typedef struct list {

 struct list *next;

 double val;

} * list;

4.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 195

void count_positives(list l)

{

 list p;

for (p = l; p; p = p -> next)

if (p -> val > 0.0)

++global_positives;

}

 Now consider the case in which thread A performs

count_positives(<list containing only negative values>);

 while thread B performs

++global_positives;

a. What does the function do?
b. The C language only addresses single-threaded execution. Does the use of two

parallel threads create any problems or potential problems?

 4.8 But some existing optimizing compilers (including gcc, which tends to be relatively
conservative) will “optimize” count_positives to something similar to

void count_positives(list l)

{

 list p;

 register int r;

r = global_positives;

 for (p = l; p; p = p -> next)

 if (p -> val > 0.0) ++r;

 global_positives = r;

}

 What problem or potential problem occurs with this compiled version of the program
if threads A and B are executed concurrently?

 4.9 Consider the following code using the POSIX Pthreads API:

thread2.c

#include <pthread.h>

#include <stdlib.h>

#include <unistd.h>

#include <stdio.h>

int myglobal;

 void *thread_function(void *arg) {

 int i,j;

 for (i=0; i<20; i++) {

j=myglobal;

 j=j+1;

 printf(“.”);

 fflush(stdout);

 sleep(1);

 myglobal=j;

 }

196 CHAPTER 4 / THREADS

 return NULL;

}

int main(void) {

pthread_t mythread;

int i;

if (pthread_create(&mythread, NULL, thread_function,
 NULL)) {

 printf(ldquo;error creating thread.”);

 abort();

 }

for (i=0; i<20; i++) {

 myglobal=myglobal+1;

 printf(“o”);

 fflush(stdout);

 sleep(1);

}
if (pthread_join (mythread, NULL)) {
 printf(“error joining thread.”);

abort();

}

printf(“\nmyglobal equals %d\n”,myglobal);

exit(0);

}

 In main() we first declare a variable called mythread, which has a type of
pthread_t. This is essentially an ID for a thread. Next, the if statement cre-
ates a thread associated with mythread. The call pthread_create() returns
zero on success and a nonzero value on failure. The third argument of pthread_
create() is the name of a function that the new thread will execute when it starts.
When this thread_function() returns, the thread terminates. Meanwhile, the
main program itself defines a thread, so that there are two threads executing. The
pthread_join function enables the main thread to wait until the new thread
completes.
a. What does this program accomplish?
b. Here is the output from the executed program:

$./thread2

..o.o.o.o.oo.o.o.o.o.o.o.o.o.o..o.o.o.o.o

myglobal equals 21

 Is this the output you would expect? If not, what has gone wrong?
 4.10 The Solaris documentation states that a ULT may yield to another thread of the same

priority. Isn’t it possible that there will be a runnable thread of higher priority and that
therefore the yield function should result in yielding to a thread of the same or higher
priority?

 4.11 In Solaris 9 and Solaris 10, there is a one-to-one mapping between ULTs and LWPs. In
Solaris 8, a single LWP supports one or more ULTs.
a. What is the possible benefit of allowing a many-to-one mapping of ULTs to

LWPs?

4.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 197

b. In Solaris 8, the thread execution state of a ULT is distinct from that of its LWP.
Explain why.

c. Figure 4.17 shows the state transition diagrams for a ULT and its associated
LWP in Solaris 8 and 9. Explain the operation of the two diagrams and their
relationships.

 4.12. Explain the rationale for the Uninterruptible state in Linux.

User-level threads
Runnable

Continue

Sleep

Stop

Wakeup

Stop

Stop

D
is

pa
tc

h

Pr
ee

m
pt

Runnable

Lightweight processes

Running

Blocked

Dispatch

Stop

Continue

Time slice
or preempt Stop

Wakeup

Wakeup

Blocking
system

call
Stopped

Stopped

Active

Sleeping

Figure 4.17 Solaris User-Level Thread and LWP States

 5.1 Principles of Concurrency
 A Simple Example
 Race Condition
 Operating System Concerns
 Process Interaction
 Requirements for Mutual Exclusion

 5.2 Mutual Exclusion: Hardware Support
 Interrupt Disabling
 Special Machine Instructions

 5.3 Semaphores
 Mutual Exclusion
 The Producer/Consumer Problem
 Implementation of Semaphores

 5.4 Monitors
 Monitor with Signal
 Alternate Model of Monitors with Notify and Broadcast

 5.5 Message Passing
 Synchronization
 Addressing
 Message Format
 Queueing Discipline
 Mutual Exclusion

 5.6 Readers/Writers Problem
 Readers Have Priority
 Writers Have Priority

 5.7 Summary

 5.8 Recommended Reading

 5.9 Key Terms, Review Questions, and Problems

CONCURRENCY:
MUTUAL EXCLUSION AND
SYNCHRONIZATION

CHAPTER

198

CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION 199

 Designing correct routines for controlling concurrent activities proved
to be one of the most difficult aspects of systems programming. The
ad hoc techniques used by programmers of early multiprogramming
and real-time systems were always vulnerable to subtle programming
errors whose effects could be observed only when certain relatively
rare sequences of actions occurred. The errors are particularly difficult
to locate, since the precise conditions under which they appear are very
hard to reproduce.

 —THE COMPUTER SCIENCE AND ENGINEERING RESEARCH STUDY , MIT Press, 1980

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

• Discuss basic concepts related to concurrency, such as race conditions,
OS concerns, and mutual exclusion requirements.

• Understand hardware approaches to supporting mutual exclusion.
• Define and explain semaphores.
• Define and explain monitors.
• Define and explain monitors.
• Explain the readers/writers problem.

 The central themes of operating system design are all concerned with the manage-
ment of processes and threads:

 • Multiprogramming: The management of multiple processes within a unipro-
cessor system

 • Multiprocessing : The management of multiple processes within a multiprocessor

 • Distributed processing: The management of multiple processes executing on
multiple, distributed computer systems. The recent proliferation of clusters is
a prime example of this type of system.

 Fundamental to all of these areas, and fundamental to OS design, is concurrency.
Concurrency encompasses a host of design issues, including communication among pro-
cesses, sharing of and competing for resources (such as memory, files, and I/O access),
synchronization of the activities of multiple processes, and allocation of processor time
to processes. We shall see that these issues arise not just in multiprocessing and distrib-
uted processing environments but even in single-processor multiprogramming systems.

 Concurrency arises in three different contexts:

 • Multiple applications: Multiprogramming was invented to allow processing
time to be dynamically shared among a number of active applications.

 • Structured applications: As an extension of the principles of modular design
and structured programming, some applications can be effectively programmed
as a set of concurrent processes.

200 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

 • Operating system structure: The same structuring advantages apply to systems
programs, and we have seen that operating systems are themselves often im-
plemented as a set of processes or threads.

 Because of the importance of this topic, four chapters and an appendix focus
on concurrency-related issues. Chapters 5 and 6 deal with concurrency in multipro-
gramming and multiprocessing systems. Chapters 16 and 18 examine concurrency
issues related to distributed processing.

 This chapter begins with an introduction to the concept of concurrency and the
implications of the execution of multiple concurrent processes. 1 We find that the basic
requirement for support of concurrent processes is the ability to enforce mutual exclu-
sion; that is, the ability to exclude all other processes from a course of action while one
process is granted that ability. Next, we examine some hardware mechanisms that can
support mutual exclusion. Then we look at solutions that do not involve busy waiting
and that can be supported either by the OS or enforced by language compilers. We
examine three approaches: semaphores, monitors, and message passing.

 Two classic problems in concurrency are used to illustrate the concepts and
compare the approaches presented in this chapter. The producer/consumer prob-
lem is introduced in Section 5.3 and used as a running example. The chapter closes
with the readers/writers problem.

 Our discussion of concurrency continues in Chapter 6 , and we defer a discus-
sion of the concurrency mechanisms of our example systems until the end of that
chapter. Appendix A covers additional topics on concurrency. Table 5.1 lists some
key terms related to concurrency. A set of animations that illustrate concepts in this
chapter is available online. Click on the rotating globe at this book’s Web site at
WilliamStallings.com/OS/OS7e.html for access.

Table 5.1 Some Key Terms Related to Concurrency

atomic operation A function or action implemented as a sequence of one or more instructions that appears
to be indivisible; that is, no other process can see an intermediate state or interrupt the
operation. The sequence of instruction is guaranteed to execute as a group, or not execute
at all, having no visible effect on system state. Atomicity guarantees isolation from
 concurrent processes.

critical section A section of code within a process that requires access to shared resources and that must
not be executed while another process is in a corresponding section of code.

deadlock A situation in which two or more processes are unable to proceed because each is waiting
for one of the others to do something.

livelock A situation in which two or more processes continuously change their states in response
to changes in the other process(es) without doing any useful work.

mutual exclusion The requirement that when one process is in a critical section that accesses shared resources,
no other process may be in a critical section that accesses any of those shared resources.

race condition A situation in which multiple threads or processes read and write a shared data item and
the final result depends on the relative timing of their execution.

starvation A situation in which a runnable process is overlooked indefinitely by the scheduler;
although it is able to proceed, it is never chosen.

1 For simplicity, we generally refer to the concurrent execution of processes . In fact, as we have seen in the
preceding chapter, in some systems the fundamental unit of concurrency is a thread rather than a process.

5.1 / PRINCIPLES OF CONCURRENCY 201

5.1 PRINCIPLES OF CONCURRENCY

 In a single-processor multiprogramming system, processes are interleaved in time
to yield the appearance of simultaneous execution (Figure 2.12a). Even though
actual parallel processing is not achieved, and even though there is a certain amount
of overhead involved in switching back and forth between processes, interleaved
 execution provides major benefits in processing efficiency and in program structuring.
In a multiple-processor system, it is possible not only to interleave the execution of
multiple processes but also to overlap them (Figure 2.12b).

 At first glance, it may seem that interleaving and overlapping represent funda-
mentally different modes of execution and present different problems. In fact, both
techniques can be viewed as examples of concurrent processing, and both present
the same problems. In the case of a uniprocessor, the problems stem from a basic
characteristic of multiprogramming systems: The relative speed of execution of
processes cannot be predicted. It depends on the activities of other processes, the
way in which the OS handles interrupts, and the scheduling policies of the OS. The
following difficulties arise:

 1. The sharing of global resources is fraught with peril. For example, if two processes
both make use of the same global variable and both perform reads and writes on
that variable, then the order in which the various reads and writes are executed
is critical. An example of this problem is shown in the following subsection.

 2. It is difficult for the OS to manage the allocation of resources optimally. For
example, process A may request use of, and be granted control of, a particular
I/O channel and then be suspended before using that channel. It may be unde-
sirable for the OS simply to lock the channel and prevent its use by other pro-
cesses; indeed this may lead to a deadlock condition, as described in Chapter 6 .

 3. It becomes very difficult to locate a programming error because results are
typically not deterministic and reproducible (e.g., see [LEBL87, CARR89,
SHEN02] for a discussion of this point).

 All of the foregoing difficulties present themselves in a multiprocessor system
as well, because here too the relative speed of execution of processes is unpredictable.
A multiprocessor system must also deal with problems arising from the simultaneous
execution of multiple processes. Fundamentally, however, the problems are the same
as those for uniprocessor systems. This should become clear as the discussion proceeds.

A Simple Example

 Consider the following procedure:

void echo()
{
 chin = getchar();
 chout = chin;
 putchar(chout);
}

202 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

 This procedure shows the essential elements of a program that will provide a char-
acter echo procedure; input is obtained from a keyboard one keystroke at a time.
Each input character is stored in variable chin . It is then transferred to variable
chout and sent to the display. Any program can call this procedure repeatedly to
accept user input and display it on the user’s screen.

 Now consider that we have a single-processor multiprogramming system
supporting a single user. The user can jump from one application to another,
and each application uses the same keyboard for input and the same screen for
 output. Because each application needs to use the procedure echo , it makes
sense for it to be a shared procedure that is loaded into a portion of memory
global to all applications. Thus, only a single copy of the echo procedure is used,
saving space.

 The sharing of main memory among processes is useful to permit efficient and
close interaction among processes. However, such sharing can lead to problems.
Consider the following sequence:

 1. Process P1 invokes the echo procedure and is interrupted immediately after
getchar returns its value and stores it in chin . At this point, the most recently
entered character, x , is stored in variable chin .

 2. Process P2 is activated and invokes the echo procedure, which runs to conclu-
sion, inputting and then displaying a single character, y , on the screen.

 3. Process P1 is resumed. By this time, the value x has been overwritten in chin
and therefore lost. Instead, chin contains y , which is transferred to chout
and displayed.

 Thus, the first character is lost and the second character is displayed twice.
The essence of this problem is the shared global variable, chin . Multiple processes
have access to this variable. If one process updates the global variable and then is
interrupted, another process may alter the variable before the first process can use
its value. Suppose, however, that we permit only one process at a time to be in that
procedure. Then the foregoing sequence would result in the following:

 1. Process P1 invokes the echo procedure and is interrupted immediately after
the conclusion of the input function. At this point, the most recently entered
character, x , is stored in variable chin .

 2. Process P2 is activated and invokes the echo procedure. However, because P1
is still inside the echo procedure, although currently suspended, P2 is blocked
from entering the procedure. Therefore, P2 is suspended awaiting the avail-
ability of the echo procedure.

 3. At some later time, process P1 is resumed and completes execution of echo .
The proper character, x , is displayed.

 4. When P1 exits echo , this removes the block on P2. When P2 is later resumed,
the echo procedure is successfully invoked.

 This example shows that it is necessary to protect shared global variables
(and other shared global resources) and that the only way to do that is to control
the code that accesses the variable. If we impose the discipline that only one

5.1 / PRINCIPLES OF CONCURRENCY 203

process at a time may enter echo and that once in echo the procedure must run
to completion before it is available for another process, then the type of error
just discussed will not occur. How that discipline may be imposed is a major topic
of this chapter.

 This problem was stated with the assumption that there was a single-processor,
multiprogramming OS. The example demonstrates that the problems of concur-
rency occur even when there is a single processor. In a multiprocessor system, the
same problems of protected shared resources arise, and the same solution works.
First, suppose that there is no mechanism for controlling access to the shared global
variable:

 1. Processes P1 and P2 are both executing, each on a separate processor. Both
processes invoke the echo procedure.

 2. The following events occur; events on the same line take place in parallel:

Process P1 Process P2

• •

chin = getchar(); •
• chin = getchar();
chout = chin; chout = chin;
putchar(chout); •
• putchar(chout);
• •

 The result is that the character input to P1 is lost before being displayed, and
the character input to P2 is displayed by both P1 and P2. Again, let us add the capa-
bility of enforcing the discipline that only one process at a time may be in echo .
Then the following sequence occurs:

 1. Processes P1 and P2 are both executing, each on a separate processor. P1
 invokes the echo procedure.

 2. While P1 is inside the echo procedure, P2 invokes echo . Because P1 is still
inside the echo procedure (whether P1 is suspended or executing), P2 is
blocked from entering the procedure. Therefore, P2 is suspended awaiting the
availability of the echo procedure.

 3. At a later time, process P1 completes execution of echo , exits that procedure,
and continues executing. Immediately upon the exit of P1 from echo , P2 is
resumed and begins executing echo .

 In the case of a uniprocessor system, the reason we have a problem is that an
interrupt can stop instruction execution anywhere in a process. In the case of a mul-
tiprocessor system, we have that same condition and, in addition, a problem can be
caused because two processes may be executing simultaneously and both trying to
access the same global variable. However, the solution to both types of problem is
the same: control access to the shared resource.

204 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Race Condition

 A race condition occurs when multiple processes or threads read and write data
items so that the final result depends on the order of execution of instructions in the
multiple processes. Let us consider two simple examples.

 As a first example, suppose that two processes, P1 and P2, share the global
variable a . At some point in its execution, P1 updates a to the value 1, and at some
point in its execution, P2 updates a to the value 2. Thus, the two tasks are in a race
to write variable a . In this example, the “loser” of the race (the process that updates
last) determines the final value of a .

 For our second example, consider two process, P3 and P4, that share global
variables b and c , with initial values b = 1 and c = 2 . At some point in its execu-
tion, P3 executes the assignment b = b + c , and at some point in its execution,
P4 executes the assignment c = b + c . Note that the two processes update differ-
ent variables. However, the final values of the two variables depend on the order in
which the two processes execute these two assignments. If P3 executes its assignment
statement first, then the final values are b = 3 and c = 5 . If P4 executes its assign-
ment statement first, then the final values are b = 4 and c = 3 .

 Appendix A includes a discussion of race conditions using semaphores as an
example.

Operating System Concerns

 What design and management issues are raised by the existence of concurrency?
We can list the following concerns:

 1. The OS must be able to keep track of the various processes. This is done with
the use of process control blocks and was described in Chapter 4 .

 2. The OS must allocate and deallocate various resources for each active process.
At times, multiple processes want access to the same resource. These resources
include

 • Processor time: This is the scheduling function, discussed in Part Four.

 • Memory: Most operating systems use a virtual memory scheme. The topic
is addressed in Part Three.

 • Files: Discussed in Chapter 12 .

 • I/O devices: Discussed in Chapter 11 .

 3. The OS must protect the data and physical resources of each process against
unintended interference by other processes. This involves techniques that
relate to memory, files, and I/O devices. A general treatment of protection is
found in Part Seven .

 4. The functioning of a process, and the output it produces, must be independent
of the speed at which its execution is carried out relative to the speed of other
concurrent processes. This is the subject of this chapter.

 To understand how the issue of speed independence can be addressed, we
need to look at the ways in which processes can interact.

5.1 / PRINCIPLES OF CONCURRENCY 205

Process Interaction

 We can classify the ways in which processes interact on the basis of the degree to
which they are aware of each other’s existence. Table 5.2 lists three possible degrees
of awareness plus the consequences of each:

 • Processes unaware of each other: These are independent processes that are not
intended to work together. The best example of this situation is the multipro-
gramming of multiple independent processes. These can either be batch jobs
or interactive sessions or a mixture. Although the processes are not working
together, the OS needs to be concerned about competition for resources. For
example, two independent applications may both want to access the same disk
or file or printer. The OS must regulate these accesses.

 • Processes indirectly aware of each other: These are processes that are not nec-
essarily aware of each other by their respective process IDs but that share
access to some object, such as an I/O buffer. Such processes exhibit cooperation
in sharing the common object.

 • Processes directly aware of each other: These are processes that are able to
communicate with each other by process ID and that are designed to work
jointly on some activity. Again, such processes exhibit cooperation .

 Conditions will not always be as clear-cut as suggested in Table 5.2 . Rather,
several processes may exhibit aspects of both competition and cooperation.
Nevertheless, it is productive to examine each of the three items in the preceding
list separately and determine their implications for the OS.

Table 5.2 Process Interaction

 Degree of Awareness Relationship Influence that One
Process Has on the
Other

 Potential Control
Problems

 Processes unaware of
each other

 Competition • Results of one process
independent of the
action of others

• Timing of process may
be affected

• Mutual exclusion
• Deadlock (renewable

resource)
• Starvation

 Processes indirectly
aware of each other
(e.g., shared object)

 Cooperation by sharing • Results of one process
may depend on infor-
mation obtained from
others

• Timing of process may
be affected

• Mutual exclusion
• Deadlock (renewable

resource)
• Starvation
• Data coherence

 Processes directly aware
of each other (have
communication
primitives available
to them)

 Cooperation by commu-
nication

• Results of one process
may depend on infor-
mation obtained from
others

• Timing of process may
be affected

• Deadlock (consum-
able resource)

• Starvation

206 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

COMPETITION AMONG PROCESSES FOR RESOURCES Concurrent processes come
into conflict with each other when they are competing for the use of the same
resource. In its pure form, we can describe the situation as follows. Two or more
processes need to access a resource during the course of their execution. Each
process is unaware of the existence of other processes, and each is to be unaffected
by the execution of the other processes. It follows from this that each process should
leave the state of any resource that it uses unaffected. Examples of resources include
I/O devices, memory, processor time, and the clock.

 There is no exchange of information between the competing processes.
However, the execution of one process may affect the behavior of competing
 processes. In particular, if two processes both wish access to a single resource, then
one process will be allocated that resource by the OS, and the other will have to wait.
Therefore, the process that is denied access will be slowed down. In an extreme case,
the blocked process may never get access to the resource and hence will never termi-
nate successfully.

 In the case of competing processes three control problems must be faced.
First is the need for mutual exclusion . Suppose two or more processes require
access to a single nonsharable resource, such as a printer. During the course of
 execution, each process will be sending commands to the I/O device, receiving
status information, sending data, and/or receiving data. We will refer to such a
resource as a critical resource , and the portion of the program that uses it as a
critical section of the program. It is important that only one program at a time be
allowed in its critical section. We cannot simply rely on the OS to understand and
enforce this restriction because the detailed requirements may not be obvious. In
the case of the printer, for example, we want any individual process to have con-
trol of the printer while it prints an entire file. Otherwise, lines from competing
 processes will be interleaved.

 The enforcement of mutual exclusion creates two additional control problems.
One is that of deadlock . For example, consider two processes, P1 and P2, and two
resources, R1 and R2. Suppose that each process needs access to both resources to
perform part of its function. Then it is possible to have the following situation: the OS
assigns R1 to P2, and R2 to P1. Each process is waiting for one of the two resources.
Neither will release the resource that it already owns until it has acquired the other
resource and performed the function requiring both resources. The two processes are
deadlocked.

 A final control problem is starvation . Suppose that three processes (P1, P2,
P3) each require periodic access to resource R. Consider the situation in which
P1 is in possession of the resource, and both P2 and P3 are delayed, waiting for
that resource. When P1 exits its critical section, either P2 or P3 should be allowed
access to R. Assume that the OS grants access to P3 and that P1 again requires
access before P3 completes its critical section. If the OS grants access to P1 after
P3 has finished, and subsequently alternately grants access to P1 and P3, then P2
may indefinitely be denied access to the resource, even though there is no deadlock
situation.

 Control of competition inevitably involves the OS because it is the OS that
allocates resources. In addition, the processes themselves will need to be able to

5.1 / PRINCIPLES OF CONCURRENCY 207

express the requirement for mutual exclusion in some fashion, such as locking a
resource prior to its use. Any solution will involve some support from the OS, such
as the provision of the locking facility. Figure 5.1 illustrates the mutual exclusion
mechanism in abstract terms. There are n processes to be executed concurrently.
Each process includes (1) a critical section that operates on some resource Ra, and
(2) additional code preceding and following the critical section that does not involve
access to Ra. Because all processes access the same resource Ra, it is desired that
only one process at a time be in its critical section. To enforce mutual exclusion, two
functions are provided: entercritical and exitcritical . Each function takes
as an argument the name of the resource that is the subject of competition. Any
process that attempts to enter its critical section while another process is in its critical
section, for the same resource, is made to wait.

 It remains to examine specific mechanisms for providing the functions
entercritical and exitcritical . For the moment, we defer this issue while
we consider the other cases of process interaction.

COOPERATION AMONG PROCESSES BY SHARING The case of cooperation by sharing
covers processes that interact with other processes without being explicitly aware
of them. For example, multiple processes may have access to shared variables or
to shared files or databases. Processes may use and update the shared data without
reference to other processes but know that other processes may have access to the
same data. Thus the processes must cooperate to ensure that the data they share
are properly managed. The control mechanisms must ensure the integrity of the
shared data.

 Because data are held on resources (devices, memory), the control problems
of mutual exclusion, deadlock, and starvation are again present. The only difference
is that data items may be accessed in two different modes, reading and writing, and
only writing operations must be mutually exclusive.

 However, over and above these problems, a new requirement is introduced:
that of data coherence. As a simple example, consider a bookkeeping application in
which various data items may be updated. Suppose two items of data a and b are to
be maintained in the relationship a = b . That is, any program that updates one value

Figure 5.1 Illustration of Mutual Exclusion

/* PROCESS 1 */

void P1

{

while (true) {

 /* preceding code */;

 entercritical (Ra);

 /* critical section */;

 exitcritical (Ra);

 /* following code */;

 }

}

/* PROCESS 2 */

void P2

{

while (true) {

 /* preceding code */;

 entercritical (Ra);

 /* critical section */;

 exitcritical (Ra);

 /* following code */;

 }

}

/* PROCESS n */

void Pn

{

while (true) {

 /* preceding code */;

 entercritical (Ra);

 /* critical section */;

 exitcritical (Ra);

 /* following code */;

 }

}

• • •

208 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

must also update the other to maintain the relationship. Now consider the following
two processes:

P1:
a = a + 1;
b = b + 1;

P2:
b = 2 * b;
a = 2 * a;

 If the state is initially consistent, each process taken separately will leave the
shared data in a consistent state. Now consider the following concurrent execution
sequence, in which the two processes respect mutual exclusion on each individual
data item (a and b):

a = a + 1;
b = 2 * b;
b = b + 1;
a = 2 * a;

 At the end of this execution sequence, the condition a = b no longer holds. For
example, if we start with a = b = 1, at the end of this execution sequence we have
a = 4 and b = 3. The problem can be avoided by declaring the entire sequence in each
process to be a critical section.

 Thus, we see that the concept of critical section is important in the case of
cooperation by sharing. The same abstract functions of entercritical and
exitcritical discussed earlier (Figure 5.1) can be used here. In this case, the
argument for the functions could be a variable, a file, or any other shared object.
Furthermore, if critical sections are used to provide data integrity, then there may
be no specific resource or variable that can be identified as an argument. In that
case, we can think of the argument as being an identifier that is shared among con-
current processes to identify critical sections that must be mutually exclusive.

COOPERATION AMONG PROCESSES BY COMMUNICATION In the first two cases
that we have discussed, each process has its own isolated environment that does
not include the other processes. The interactions among processes are indirect. In
both cases, there is a sharing. In the case of competition, they are sharing resources
without being aware of the other processes. In the second case, they are sharing
values, and although each process is not explicitly aware of the other processes,
it is aware of the need to maintain data integrity. When processes cooperate by
communication, however, the various processes participate in a common effort that
links all of the processes. The communication provides a way to synchronize, or
coordinate, the various activities.

 Typically, communication can be characterized as consisting of messages of
some sort. Primitives for sending and receiving messages may be provided as part of
the programming language or provided by the OS kernel.

 Because nothing is shared between processes in the act of passing messages,
mutual exclusion is not a control requirement for this sort of cooperation. However,

5.2 / MUTUAL EXCLUSION: HARDWARE SUPPORT 209

the problems of deadlock and starvation are still present. As an example of dead-
lock, two processes may be blocked, each waiting for a communication from the
other. As an example of starvation, consider three processes, P1, P2, and P3, that
exhibit the following behavior. P1 is repeatedly attempting to communicate with
either P2 or P3, and P2 and P3 are both attempting to communicate with P1. A
sequence could arise in which P1 and P2 exchange information repeatedly, while P3
is blocked waiting for a communication from P1. There is no deadlock, because P1
remains active, but P3 is starved.

Requirements for Mutual Exclusion

 Any facility or capability that is to provide support for mutual exclusion should
meet the following requirements:

 1. Mutual exclusion must be enforced: Only one process at a time is allowed into
its critical section, among all processes that have critical sections for the same
resource or shared object.

 2. A process that halts in its noncritical section must do so without interfering
with other processes.

 3. It must not be possible for a process requiring access to a critical section to be
delayed indefinitely: no deadlock or starvation.

 4. When no process is in a critical section, any process that requests entry to its
critical section must be permitted to enter without delay.

 5. No assumptions are made about relative process speeds or number of processors.

 6. A process remains inside its critical section for a finite time only.

 There are a number of ways in which the requirements for mutual exclusion
can be satisfied. One approach is to leave the responsibility with the processes
that wish to execute concurrently. Processes, whether they are system programs or
application programs, would be required to coordinate with one another to enforce
mutual exclusion, with no support from the programming language or the OS. We
can refer to these as software approaches. Although this approach is prone to high
processing overhead and bugs, it is nevertheless useful to examine such approaches
to gain a better understanding of the complexity of concurrent processing. This
topic is covered in Appendix A . A second approach involves the use of special-
purpose machine instructions. These have the advantage of reducing overhead but
nevertheless will be shown to be unattractive as a general-purpose solution; they are
covered in Section 5.2 . A third approach is to provide some level of support within
the OS or a programming language. Three of the most important such approaches
are examined in Sections 5.3 through 5.5 .

5.2 MUTUAL EXCLUSION: HARDWARE SUPPORT

 In this section, we look at several interesting hardware approaches to mutual
 exclusion.

210 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Interrupt Disabling

 In a uniprocessor system, concurrent processes cannot have overlapped execution;
they can only be interleaved. Furthermore, a process will continue to run until it
invokes an OS service or until it is interrupted. Therefore, to guarantee mutual
exclusion, it is sufficient to prevent a process from being interrupted. This capability
can be provided in the form of primitives defined by the OS kernel for disabling and
enabling interrupts. A process can then enforce mutual exclusion in the following
way (compare Figure 5.1):

while (true) {
 /* disable interrupts */;
 /* critical section */;
 /* enable interrupts */;
 /* remainder */;
}

 Because the critical section cannot be interrupted, mutual exclusion is guar-
anteed. The price of this approach, however, is high. The efficiency of execution
could be noticeably degraded because the processor is limited in its ability to
interleave processes. Another problem is that this approach will not work in a
multiprocessor architecture. When the computer includes more than one proces-
sor, it is possible (and typical) for more than one process to be executing at a time.
In this case, dis abled interrupts do not guarantee mutual exclusion.

Special Machine Instructions

 In a multiprocessor configuration, several processors share access to a common
main memory. In this case, there is not a master/slave relationship; rather the pro-
cessors behave independently in a peer relationship. There is no interrupt mecha-
nism between processors on which mutual exclusion can be based.

 At the hardware level, as was mentioned, access to a memory location
excludes any other access to that same location. With this as a foundation, proc-
essor designers have proposed several machine instructions that carry out two
actions atomically, 2 such as reading and writing or reading and testing, of a single
memory location with one instruction fetch cycle. During execution of the instruc-
tion, access to the memory location is blocked for any other instruction referencing
that location.

 In this section, we look at two of the most commonly implemented instruc-
tions. Others are described in [RAYN86] and [STON93].

COMPARE&SWAP INSTRUCTION The compare&swap instruction, also called a
compare and exchange instruction, can be defined as follows [HERL90]:

2 The term atomic means that the instruction is treated as a single step that cannot be interrupted.

5.2 / MUTUAL EXCLUSION: HARDWARE SUPPORT 211

int compare_and_swap (int *word, int testval, int newval)
{

int oldval;
 oldval = *word

if (oldval == testval) *word = newval;
return oldval;

}

 This version of the instruction checks a memory location (*word) against a test
value (testval). If the memory location’s current value is testval, it is replaced with
newval ; otherwise it is left unchanged. The old memory value is always returned;
thus, the memory location has been updated if the returned value is the same as
the test value. This atomic instruction therefore has two parts: A compare is made
between a memory value and a test value; if the values are the same, a swap occurs.
The entire compare&swap function is carried out atomically—that is, it is not sub-
ject to interruption.

 Another version of this instruction returns a Boolean value: true if the swap
occurred; false otherwise. Some version of this instruction is available on nearly all
processor families (x86, IA64, sparc, IBM z series, etc.), and most operating systems
use this instruction for support of concurrency.

 Figure 5.2a shows a mutual exclusion protocol based on the use of this instruc-
tion.3 A shared variable bolt is initialized to 0. The only process that may enter
its critical section is one that finds bolt equal to 0. All other processes attempting

3 The construct parbegin (P1, P2, …, P n) means the following: suspend the execution of the main
program; initiate concurrent execution of procedures P1, P2, …, P n ; when all of P1, P2, …, P n have ter-
minated, resume the main program.

Figure 5.2 Hardware Support for Mutual Exclusion

/* program mutualexclusion */
int const n = /* number of processes */;
int bolt;
void P(int i)
{

int keyi = 1;
while (true) {

do exchange (&keyi, &bolt)
while (keyi != 0);

 /* critical section */;
 bolt = 0;
 /* remainder */;
 }
}
void main()
{
 bolt = 0;

parbegin (P(1), P(2), ..., P(n));
}

/* program mutualexclusion */
const int n = /* number of processes */;
int bolt;
void P(int i)
{

while (true) {
while (compare_and_swap(bolt, 0, 1) == 1)

 /* do nothing */;
 /* critical section */;
 bolt = 0;
 /* remainder */;
 }
}
void main()
{
 bolt = 0;

parbegin (P(1), P(2), ... ,P(n));

}

 (a) Compare and swap instruction (b) Exchange instruction

212 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

to enter their critical section go into a busy waiting mode. The term busy waiting,
or spin waiting, refers to a technique in which a process can do nothing until it gets
permission to enter its critical section but continues to execute an instruction or set
of instructions that tests the appropriate variable to gain entrance. When a process
leaves its critical section, it resets bolt to 0; at this point one and only one of the wait-
ing processes is granted access to its critical section. The choice of process depends
on which process happens to execute the compare&swap instruction next.

EXCHANGE INSTRUCTION The exchange instruction can be defined as follows:

void exchange (int *register, int *memory)
{

int temp;
 temp = *memory;

*memory = *register;
*register = temp;

}

 The instruction exchanges the contents of a register with that of a memory location.
Both the Intel IA-32 architecture (Pentium) and the IA-64 architecture (Itanium)
contain an XCHG instruction.

 Figure 5.2b shows a mutual exclusion protocol based on the use of an exchange
instruction. A shared variable bolt is initialized to 0. Each process uses a local vari-
able key that is initialized to 1. The only process that may enter its critical section
is one that finds bolt equal to 0. It excludes all other processes from the critical sec-
tion by setting bolt to 1. When a process leaves its critical section, it resets bolt to 0,
allowing another process to gain access to its critical section.

 Note that the following expression always holds because of the way in which
the variables are initialized and because of the nature of the exchange algorithm:

bolt + a
i

keyi = n

 If bolt = 0, then no process is in its critical section. If bolt = 1, then exactly one pro-
cess is in its critical section, namely the process whose key value equals 0.

PROPERTIES OF THE MACHINE-INSTRUCTION APPROACH The use of a special
machine instruction to enforce mutual exclusion has a number of advantages:

 • It is applicable to any number of processes on either a single processor or mul-
tiple processors sharing main memory.

 • It is simple and therefore easy to verify.

 • It can be used to support multiple critical sections; each critical section can be
defined by its own variable.

 There are some serious disadvantages:

 • Busy waiting is employed: Thus, while a process is waiting for access to a criti-
cal section, it continues to consume processor time.

5.3 / SEMAPHORES 213

 • Starvation is possible: When a process leaves a critical section and more than
one process is waiting, the selection of a waiting process is arbitrary. Thus,
some process could indefinitely be denied access.

 • Deadlock is possible: Consider the following scenario on a single-processor
system. Process P1 executes the special instruction (e.g., compare&swap,
exchange) and enters its critical section. P1 is then interrupted to give the
processor to P2, which has higher priority. If P2 now attempts to use the same
resource as P1, it will be denied access because of the mutual exclusion mecha-
nism. Thus, it will go into a busy waiting loop. However, P1 will never be dis-
patched because it is of lower priority than another ready process, P2.

 Because of the drawbacks of both the software and hardware solutions, we
need to look for other mechanisms.

5.3 SEMAPHORES

 We now turn to OS and programming language mechanisms that are used to pro-
vide concurrency. Table 5.3 summarizes mechanisms in common use. We begin, in
this section, with semaphores. The next two sections discuss monitors and message
passing. The other mechanisms in Table 5.3 are discussed when treating specific
OS examples, in Chapters 6 and 13 .

Table 5.3 Common Concurrency Mechanisms

Semaphore An integer value used for signaling among processes. Only three operations may be
performed on a semaphore, all of which are atomic: initialize, decrement, and incre-
ment. The decrement operation may result in the blocking of a process, and the incre-
ment operation may result in the unblocking of a process. Also known as a counting
semaphore or a general semaphore.

Binary Semaphore A semaphore that takes on only the values 0 and 1.

Mutex Similar to a binary semaphore. A key difference between the two is that the process that
locks the mutex (sets the value to zero) must be the one to unlock it (sets the value to 1).

Condition Variable A data type that is used to block a process or thread until a particular condition is true.

Monitor A programming language construct that encapsulates variables, access procedures, and
initialization code within an abstract data type. The monitor’s variable may only be
accessed via its access procedures and only one process may be actively accessing the
monitor at any one time. The access procedures are critical sections . A monitor may
have a queue of processes that are waiting to access it.

Event Flags A memory word used as a synchronization mechanism. Application code may associ-
ate a different event with each bit in a flag. A thread can wait for either a single event
or a combination of events by checking one or multiple bits in the corresponding flag.
The thread is blocked until all of the required bits are set (AND) or until at least one
of the bits is set (OR).

Mailboxes/Messages A means for two processes to exchange information and that may be used for
 synchronization.

Spinlocks Mutual exclusion mechanism in which a process executes in an infinite loop waiting for
the value of a lock variable to indicate availability.

214 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

 The first major advance in dealing with the problems of concurrent proc-
esses came in 1965 with Dijkstra’s treatise [DIJK65]. Dijkstra was concerned with
the design of an OS as a collection of cooperating sequential processes and with
the development of efficient and reliable mechanisms for supporting cooperation.
These mechanisms can just as readily be used by user processes if the processor and
OS make the mechanisms available.

 The fundamental principle is this: Two or more processes can cooperate by
means of simple signals, such that a process can be forced to stop at a specified place
until it has received a specific signal. Any complex coordination requirement can
be satisfied by the appropriate structure of signals. For signaling, special variables
called semaphores are used. To transmit a signal via semaphore s , a process exe-
cutes the primitive semSignal(s) . To receive a signal via semaphore s , a process
executes the primitive semWait(s) ; if the corresponding signal has not yet been
transmitted, the process is suspended until the transmission takes place. 4

 To achieve the desired effect, we can view the semaphore as a variable that
has an integer value upon which only three operations are defined:

 1. A semaphore may be initialized to a nonnegative integer value.

 2. The semWait operation decrements the semaphore value. If the value
becomes negative, then the process executing the semWait is blocked.
Otherwise, the process continues execution.

 3. The semSignal operation increments the semaphore value. If the resulting
value is less than or equal to zero, then a process blocked by a semWait oper-
ation, if any, is unblocked.

 Other than these three operations, there is no way to inspect or manipulate
 semaphores.

 We explain these operations as follows. To begin, the semaphore has a zero or
positive value. If the value is positive, that value equals the number of processes that
can issue a wait and immediately continue to execute. If the value is zero, either by
initialization or because a number of processes equal to the initial semaphore value
have issued a wait, the next process to issue a wait is blocked, and the semaphore
value goes negative. Each subsequent wait drives the semaphore value further into
minus territory. The negative value equals the number of processes waiting to be
unblocked. Each signal unblocks one of the waiting processes when the semaphore
value is negative.

 [DOWN08] points out three interesting consequences of the semaphore
 definition:

 • In general, there is no way to know before a process decrements a semaphore
whether it will block or not.

4 In Dijkstra’s original paper and in much of the literature, the letter P is used for semWait and the letter
V for semSignal ; these are the initials of the Dutch words for test (proberen) and increment (verhogen).
In some of the literature, the terms wait and signal are used. This book uses semWait and semSig-
nal for clarity, and to avoid confusion with similar wait and signal operations in monitors, discussed
subsequently

5.3 / SEMAPHORES 215

 • After a process increments a semaphore and another process gets woken
up, both processes continue running concurrently. There is no way to
know which process, if either, will continue immediately on a uniprocessor
 system.

 • When you signal a semaphore, you don’t necessarily know whether another
process is waiting, so the number of unblocked processes may be zero or one.

 Figure 5.3 suggests a more formal definition of the primitives for sema-
phores. The semWait and semSignal primitives are assumed to be atomic. A
more restricted version, known as the binary semaphore , is defined in Figure 5.4 .
A binary semaphore may only take on the values 0 and 1 and can be defined by the
following three operations:

 1. A binary semaphore may be initialized to 0 or 1.

 2. The semWaitB operation checks the semaphore value. If the value is zero,
then the process executing the semWaitB is blocked. If the value is one, then
the value is changed to zero and the process continues execution.

 3. The semSignalB operation checks to see if any processes are blocked on
this semaphore (semaphore value equals 0). If so, then a process blocked by a
semWaitB operation is unblocked. If no processes are blocked, then the value
of the semaphore is set to one.

 In principle, it should be easier to implement the binary semaphore, and it
can be shown that it has the same expressive power as the general semaphore (see
Problem 5.16). To contrast the two types of semaphores, the nonbinary semaphore
is often referred to as either a counting semaphore or a general semaphore .

 A concept related to the binary semaphore is the mutex . A key difference
between the two is that the process that locks the mutex (sets the value to zero)

Figure 5.3 A Defi nition of Semaphore Primitives

struct semaphore {
int count;
queueType queue;

};
void semWait(semaphore s)
{
 s.count--;

if (s.count < 0) {
 /* place this process in s.queue */;
 /* block this process */;
 }
}
void semSignal(semaphore s)
{
 s.count++;

if (s.count<= 0) {
 /* remove a process P from s.queue */;
 /* place process P on ready list */;
 }

}

216 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

must be the one to unlock it (sets the value to 1). In contrast, it is possible for one
process to lock a binary semaphore and for another to unlock it. 5

 For both counting semaphores and binary semaphores, a queue is used to
hold processes waiting on the semaphore. The question arises of the order in
which processes are removed from such a queue. The fairest removal policy is
first-in-first-out (FIFO): The process that has been blocked the longest is released
from the queue first; a semaphore whose definition includes this policy is called
a strong semaphore . A semaphore that does not specify the order in which proc-
esses are removed from the queue is a weak semaphore . Figure 5.5 , based on
one in [DENN84], is an example of the operation of a strong semaphore. Here
processes A, B, and C depend on a result from process D. Initially (1), A is run-
ning; B, C, and D are ready; and the semaphore count is 1, indicating that one of
D’s results is available. When A issues a semWait instruction on semaphore s ,
the semaphore decrements to 0, and A can continue to execute; subsequently it
rejoins the ready queue. Then B runs (2), eventually issues a semWait instruc-
tion, and is blocked, allowing D to run (3). When D completes a new result, it
issues a semSignal instruction, which allows B to move to the ready queue (4).
D rejoins the ready queue and C begins to run (5) but is blocked when it issues a
semWait instruction. Similarly, A and B run and are blocked on the semaphore,
allowing D to resume execution (6). When D has a result, it issues a semSignal ,
which transfers C to the ready queue. Later cycles of D will release A and B from
the Blocked state.

struct binary_semaphore {
enum {zero, one} value;
queueType queue;

};
void semWaitB(binary_semaphore s)
{

if (s.value == one)
 s.value = zero;

else {
 /* place this process in s.queue */;
 /* block this process */;
 }
}
void semSignalB(semaphore s)
{

if (s.queue is empty())
 s.value = one;

else {
 /* remove a process P from s.queue */;
 /* place process P on ready list */;
 }

}

Figure 5.4 A Defi nition of Binary Semaphore Primitives

5 In some of the literature, and in some textbooks, no distinction is made between a mutex and a binary
semaphore. However, in practice, a number of operating systems, such as Linux, Windows, and Solaris
offer a mutex facility which conforms to the definition in this book.

5.3 / SEMAPHORES 217

Processor

SemaphoreBlocked queue Ready queue

A

s � 1 BDC

1

Processor

SemaphoreBlocked queue Ready queue

B

s � 0 DCA

2

Processor

SemaphoreBlocked queue Ready queue

D

s � �1 CAB

3

Processor

SemaphoreBlocked queue Ready queue

D

s � 0 CAB

4

Processor

SemaphoreBlocked queue Ready queue

C

s � 0 ABD

5

Processor

SemaphoreBlocked queue Ready queue

D

s � �3CAB

6

Processor

SemaphoreBlocked queue Ready queue

D

s � �2 CAB

7

Figure 5.5 Example of Semaphore Mechanism

218 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

/* program mutualexclusion */
const int n = /* number of processes */;
semaphore s = 1;
void P(int i)
{

while (true) {
 semWait(s);
 /* critical section */;
 semSignal(s);
 /* remainder */;
 }
}
void main()
{

parbegin (P(1), P(2),…, P(n));

}

Figure 5.6 Mutual Exclusion Using Semaphores

 For the mutual exclusion algorithm discussed in the next subsection and illus-
trated in Figure 5.6 , strong semaphores guarantee freedom from starvation, while
weak semaphores do not. We will assume strong semaphores because they are more
convenient and because this is the form of semaphore typically provided by operat-
ing systems.

Mutual Exclusion

 Figure 5.6 shows a straightforward solution to the mutual exclusion problem using
a semaphore s (compare Figure 5.1). Consider n processes, identified in the array
P (i), all of which need access to the same resource. Each process has a critical sec-
tion used to access the resource. In each process, a semWait(s) is executed just
before its critical section. If the value of s becomes negative, the process is blocked.
If the value is 1, then it is decremented to 0 and the process immediately enters its
critical section; because s is no longer positive, no other process will be able to enter
its critical section.

 The semaphore is initialized to 1. Thus, the first process that executes a
semWait will be able to enter the critical section immediately, setting the value
of s to 0. Any other process attempting to enter the critical section will find it busy
and will be blocked, setting the value of s to –1. Any number of processes may
attempt entry; each such unsuccessful attempt results in a further decrement of the
value of s . When the process that initially entered its critical section departs, s is
incremented and one of the blocked processes (if any) is removed from the queue of
blocked processes associated with the semaphore and put in a Ready state. When it
is next scheduled by the OS, it may enter the critical section.

 Figure 5.7 , based on one in [BACO03], shows a possible sequence for three
processes using the mutual exclusion discipline of Figure 5.6 . In this example three
processes (A, B, C) access a shared resource protected by the semaphore lock .
Process A executes semWait(lock) ; because the semaphore has a value of 1 at
the time of the semWait operation, A can immediately enter its critical section and
the semaphore takes on the value 0. While A is in its critical section, both B and C

5.3 / SEMAPHORES 219

perform a semWait operation and are blocked pending the availability of the sema-
phore. When A exits its critical section and performs semSignal(lock) , B, which
was the first process in the queue, can now enter its critical section.

 The program of Figure 5.6 can equally well handle a requirement that more
than one process be allowed in its critical section at a time. This requirement is met
simply by initializing the semaphore to the specified value. Thus, at any time, the
value of s.count can be interpreted as follows:

 • s.count ≥ 0: s.count is the number of processes that can execute semWait(s)
without suspension (if no semSignal(s) is executed in the meantime). Such
situations will allow semaphores to support synchronization as well as mutual
exclusion.

 • s.count < 0: The magnitude of s.count is the number of processes suspended in
s.queue .

The Producer/Consumer Problem

 We now examine one of the most common problems faced in concurrent process-
ing: the producer/consumer problem. The general statement is this: There are one
or more producers generating some type of data (records, characters) and placing

B

BC

C

1

1

0

0

�1

�1

�2

semWait(lock)

A
Value of

semaphore lock
Queue for

semaphore lock B C

semSignal(lock)

semSignal(lock)

semSignal(lock)

semWait(lock)

semWait(lock)

Critical
region

Normal
execution

Blocked on
semaphore
lock

Note that normal
execution can
proceed in parallel
but that critical
regions are serialized.

Figure 5.7 Processes Accessing Shared Data Protected by a Semaphore

220 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

these in a buffer. There is a single consumer that is taking items out of the buffer
one at a time. The system is to be constrained to prevent the overlap of buffer oper-
ations. That is, only one agent (producer or consumer) may access the buffer at any
one time. The problem is to make sure that the producer won’t try to add data into
the buffer if it’s full and that the consumer won’t try to remove data from an empty
buffer. We will look at a number of solutions to this problem to illustrate both the
power and the pitfalls of semaphores.

 To begin, let us assume that the buffer is infinite and consists of a linear array
of elements. In abstract terms, we can define the producer and consumer functions
as follows:

producer: consumer:

while (true) { while (true) {

 /* produce item v */; while (in <= out)

 b[in] = v; /* do nothing */;

 in++; w = b[out];

} out++;

 /* consume item w */;

}

 Figure 5.8 illustrates the structure of buffer b . The producer can generate
items and store them in the buffer at its own pace. Each time, an index (in) into the
buffer is incremented. The consumer proceeds in a similar fashion but must make
sure that it does not attempt to read from an empty buffer. Hence, the consumer
makes sure that the producer has advanced beyond it (in > out) before proceeding.

 Let us try to implement this system using binary semaphores. Figure 5.9 is a
first attempt. Rather than deal with the indices in and out , we can simply keep track
of the number of items in the buffer, using the integer variable n (= in – out). The
semaphore s is used to enforce mutual exclusion; the semaphore delay is used to
force the consumer to semWait if the buffer is empty.

 This solution seems rather straightforward. The producer is free to add
to the buffer at any time. It performs semWaitB(s) before appending and
semSignalB(s) afterward to prevent the consumer or any other producer from

b[1] b[2]

Out

b[3] b[4] b[5]

0 1 2 3 4

In
Note: Shaded area indicates portion of buffer that is occupied

Figure 5.8 Infi nite Buffer for the
 Producer/Consumer Problem

5.3 / SEMAPHORES 221

accessing the buffer during the append operation. Also, while in the critical section,
the producer increments the value of n . If n = 1, then the buffer was empty just prior
to this append, so the producer performs semSignalB(delay) to alert the con-
sumer of this fact. The consumer begins by waiting for the first item to be produced,
using semWaitB(delay) . It then takes an item and decrements n in its critical
section. If the producer is able to stay ahead of the consumer (a common situation),
then the consumer will rarely block on the semaphore delay because n will usually
be positive. Hence both producer and consumer run smoothly.

 There is, however, a flaw in this program. When the consumer has exhausted
the buffer, it needs to reset the delay semaphore so that it will be forced to wait until
the producer has placed more items in the buffer. This is the purpose of the state-
ment: if n == 0 semWaitB(delay) . Consider the scenario outlined in Table 5.4 .
In line 14, the consumer fails to execute the semWaitB operation. The consumer did
indeed exhaust the buffer and set n to 0 (line 8), but the producer has incremented n
before the consumer can test it in line 14. The result is a semSignalB not matched
by a prior semWaitB . The value of –1 for n in line 20 means that the consumer has
consumed an item from the buffer that does not exist. It would not do simply to move
the conditional statement inside the critical section of the consumer because this
could lead to deadlock (e.g., after line 8 of Table 5.4).

Figure 5.9 An Incorrect Solution to the Infi nite-Buffer Producer/Consumer Problem
 Using Binary Semaphores

/* program producerconsumer */
int n;

 binary_semaphore s = 1, delay = 0;
void producer()

 {
while (true) {

 produce();
 semWaitB(s);
 append();
 n++;

if (n==1) semSignalB(delay);
 semSignalB(s);
 }
 }

void consumer()
 {
 semWaitB(delay);

while (true) {
 semWaitB(s);
 take();
 n--;
 semSignalB(s);
 consume();

if (n==0) semWaitB(delay);
 }
 }

void main()
 {
 n = 0;

parbegin (producer, consumer);

 }

222 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

 A fix for the problem is to introduce an auxiliary variable that can be set in the
consumer’s critical section for use later on. This is shown in Figure 5.10 . A careful
trace of the logic should convince you that deadlock can no longer occur.

 A somewhat cleaner solution can be obtained if general semaphores (also
called counting semaphores) are used, as shown in Figure 5.11 . The variable n
is now a semaphore. Its value still is equal to the number of items in the buffer.
Suppose now that in transcribing this program, a mistake is made and the opera-
tions semSignal(s) and semSignal(n) are interchanged. This would require
that the semSignal(n) operation be performed in the producer’s critical sec-
tion without interruption by the consumer or another producer. Would this affect

Table 5.4 Possible Scenario for the Program of Figure 5.9

 Producer Consumer s n Delay

 1 1 0 0

 2 semWaitB(s) 0 0 0

 3 n++ 0 1 0

 4 if (n==1)
(semSignalB(delay)) 0 1 1

 5 semSignalB(s) 1 1 1

 6 semWaitB(delay) 1 1 0

 7 semWaitB(s) 0 1 0

 8 n-- 0 0 0

 9 semSignalB(s) 1 0 0

 10 semWaitB(s) 0 0 0

 11 n++ 0 1 0

 12 if (n==1)
(semSignalB(delay)) 0 1 1

 13 semSignalB(s) 1 1 1

 14 if (n==0)
(semWaitB(delay)) 1 1 1

 15 semWaitB(s) 0 1 1

 16 n-- 0 0 1

 17 semSignalB(s) 1 0 1

 18 if (n==0)
(semWaitB(delay)) 1 0 0

 19 semWaitB(s) 0 0 0

 20 n-- 0 –1 0

 21 semSignalB(s) 1 –1 0

Note: White areas represent the critical section controlled by semaphore s .

5.3 / SEMAPHORES 223

the program? No, because the consumer must wait on both semaphores before
proceeding in any case.

 Now suppose that the semWait(n) and semWait(s) operations are acci-
dentally reversed. This produces a serious, indeed a fatal, flaw. If the consumer ever
enters its critical section when the buffer is empty (n.count = 0), then no producer
can ever append to the buffer and the system is deadlocked. This is a good example
of the subtlety of semaphores and the difficulty of producing correct designs.

 Finally, let us add a new and realistic restriction to the producer/consumer
problem: namely, that the buffer is finite. The buffer is treated as a circular storage
(Figure 5.12), and pointer values must be expressed modulo the size of the buffer.
The following relationships hold:

 Block on: Unblock on:

 Producer: insert in full buffer Consumer: item inserted

 Consumer: remove from empty buffer Producer: item removed

/* program producerconsumer */
int n;

 binary_semaphore s = 1, delay = 0;
void producer()

 {
while (true) {

 produce();
 semWaitB(s);
 append();
 n++;
 if (n==1) semSignalB(delay);
 semSignalB(s);
 }
 }

void consumer()
 {

int m; /* a local variable */
 semWaitB(delay);

while (true) {
 semWaitB(s);
 take();
 n--;
 m = n;
 semSignalB(s);
 consume();

if (m==0) semWaitB(delay);
 }
 }

void main()
 {
 n = 0;

parbegin (producer, consumer);
 }

Figure 5.10 A Correct Solution to the Infi nite-Buffer Producer/Consumer Problem Using
Binary Semaphores

224 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

 The producer and consumer functions can be expressed as follows (variable in
and out are initialized to 0 and n is the size of the buffer):

producer: consumer:
while (true) { while (true) {

 /* produce item v */ while (in == out)

while ((in + 1) % n == out) /* do nothing */;
 /* do nothing */; w = b[out];
 b[in] = v; out = (out + 1) % n;

 in = (in + 1) % n; /* consume item w */;
} }

 Figure 5.13 shows a solution using general semaphores. The semaphore e has
been added to keep track of the number of empty spaces.

 Another instructive example in the use of semaphores is the barbershop prob-
lem, described in Appendix A . Appendix A also includes additional examples of
the problem of race conditions when using semaphores.

Implementation of Semaphores

 As was mentioned earlier, it is imperative that the semWait and semSignal oper-
ations be implemented as atomic primitives. One obvious way is to implement them

Figure 5.11 A Solution to the Infi nite-Buffer Producer/Consumer Problem Using
 Semaphores

/* program producerconsumer */
 semaphore n = 0, s = 1;

void producer()
 {

while (true) {
 produce();
 semWait(s);
 append();
 semSignal(s);
 semSignal(n);
 }
 }

void consumer()
 {

while (true) {
 semWait(n);
 semWait(s);
 take();
 semSignal(s);
 consume();
 }
 }

void main()
 {

parbegin (producer, consumer);
 }

5.3 / SEMAPHORES 225

b[1] b[2]

Out

b[3] b[4] b[5] b[n]

In

b[1] b[2]

In

b[3] b[4] b[5] b[n]

Out

(a)

(b)

Figure 5.12 Finite Circular Buffer for the
 Producer/Consumer Problem

in hardware or firmware. Failing this, a variety of schemes have been suggested. The
essence of the problem is one of mutual exclusion: Only one process at a time may
manipulate a semaphore with either a semWait or semSignal operation. Thus,
any of the software schemes, such as Dekker’s algorithm or Peterson’s algorithm
(Appendix A), could be used; this would entail a substantial processing overhead.

Figure 5.13 A Solution to the Bounded-Buffer Producer/Consumer Problem Using
 Semaphores

/* program boundedbuffer */
const int sizeofbuffer = /* buffer size */;

 semaphore s = 1, n = 0, e = sizeofbuffer;
void producer()

 {
while (true) {

 produce();
 semWait(e);
 semWait(s);
 append();
 semSignal(s);
 semSignal(n);
 }
 }

void consumer()
 {

while (true) {
 semWait(n);
 semWait(s);
 take();
 semSignal(s);
 semSignal(e);
 consume();
 }
 }

void main()
 {

parbegin (producer, consumer);
 }

226 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Another alternative is to use one of the hardware-supported schemes for mutual
exclusion. For example, Figure 5.14a shows the use of a compare&swap instruc-
tion. In this implementation, the semaphore is again a structure, as in Figure 5.3 ,
but now includes a new integer component, s.flag . Admittedly, this involves a form
of busy waiting. However, the semWait and semSignal operations are relatively
short, so the amount of busy waiting involved should be minor.

 For a single-processor system, it is possible to inhibit interrupts for the duration
of a semWait or semSignal operation, as suggested in Figure 5.14b . Once again, the
relatively short duration of these operations means that this approach is reasonable.

5.4 MONITORS

 Semaphores provide a primitive yet powerful and flexible tool for enforcing mutual
exclusion and for coordinating processes. However, as Figure 5.9 suggests, it may be
difficult to produce a correct program using semaphores. The difficulty is that sem-
Wait and semSignal operations may be scattered throughout a program and it is
not easy to see the overall effect of these operations on the semaphores they affect.

 The monitor is a programming-language construct that provides equivalent
functionality to that of semaphores and that is easier to control. The concept was
first formally defined in [HOAR74]. The monitor construct has been implemented
in a number of programming languages, including Concurrent Pascal, Pascal-Plus,
Modula-2, Modula-3, and Java. It has also been implemented as a program library.
This allows programmers to put a monitor lock on any object. In particular, for

semWait(s)
{
 inhibit interrupts;
 s.count--;

if (s.count < 0) {
 /* place this process in s.queue */;
 /* block this process and allow inter-
rupts*/;
 }

else
 allow interrupts;
}

semSignal(s)
{
 inhibit interrupts;
 s.count++;

if (s.count<= 0) {
 /* remove a process P from s.queue */;
 /* place process P on ready list */;
 }
 allow interrupts;
}

semWait(s)
{

while (compare_and_swap(s.flag, 0 , 1) == 1)
 /* do nothing */;
 s.count--;

if (s.count < 0) {
 /* place this process in s.queue*/;
 /* block this process (must also set
s.flag to 0) */;
 }
 s.flag = 0;
}

semSignal(s)
{

while (compare_and_swap(s.flag, 0 , 1) == 1)
 /* do nothing */;
 s.count++;

if (s.count<= 0) {
 /* remove a process P from s.queue */;
 /* place process P on ready list */;
 }
 s.flag = 0;
}

Figure 5.14 Two Possible Implementations of Semaphores

 (a) Compare and Swap Instruction (b) Interrupts

5.4 / MONITORS 227

something like a linked list, you may want to lock all linked lists with one lock, or
have one lock for each list, or have one lock for each element of each list.

 We begin with a look at Hoare’s version and then examine a refinement.

Monitor with Signal

 A monitor is a software module consisting of one or more procedures, an initial-
ization sequence, and local data. The chief characteristics of a monitor are the
following:

 1. The local data variables are accessible only by the monitor’s procedures and
not by any external procedure.

 2. A process enters the monitor by invoking one of its procedures.

 3. Only one process may be executing in the monitor at a time; any other pro-
cesses that have invoked the monitor are blocked, waiting for the monitor to
become available.

 The first two characteristics are reminiscent of those for objects in object-oriented
software. Indeed, an object-oriented OS or programming language can readily
implement a monitor as an object with special characteristics.

 By enforcing the discipline of one process at a time, the monitor is able to pro-
vide a mutual exclusion facility. The data variables in the monitor can be accessed
by only one process at a time. Thus, a shared data structure can be protected by
placing it in a monitor. If the data in a monitor represent some resource, then the
monitor provides a mutual exclusion facility for accessing the resource.

 To be useful for concurrent processing, the monitor must include synchroni-
zation tools. For example, suppose a process invokes the monitor and, while in the
monitor, must be blocked until some condition is satisfied. A facility is needed by
which the process is not only blocked but releases the monitor so that some other
process may enter it. Later, when the condition is satisfied and the monitor is again
available, the process needs to be resumed and allowed to reenter the monitor at
the point of its suspension.

 A monitor supports synchronization by the use of condition variables that are
contained within the monitor and accessible only within the monitor. Condition var-
iables are a special data type in monitors, which are operated on by two functions:

 • cwait(c) : Suspend execution of the calling process on condition c . The mon-
itor is now available for use by another process.

 • csignal(c) : Resume execution of some process blocked after a cwait on
the same condition. If there are several such processes, choose one of them; if
there is no such process, do nothing.

 Note that monitor wait and signal operations are different from those for the
semaphore. If a process in a monitor signals and no task is waiting on the condition
variable, the signal is lost.

 Figure 5.15 illustrates the structure of a monitor. Although a process can enter
the monitor by invoking any of its procedures, we can think of the monitor as hav-
ing a single entry point that is guarded so that only one process may be in the moni-
tor at a time. Other processes that attempt to enter the monitor join a queue of

228 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

processes blocked waiting for monitor availability. Once a process is in the monitor,
it may temporarily block itself on condition x by issuing cwait(x) ; it is then placed
in a queue of processes waiting to reenter the monitor when the condition changes,
and resume execution at the point in its program following the cwait(x) call.

 If a process that is executing in the monitor detects a change in the condition
variable x , it issues csignal(x) , which alerts the corresponding condition queue
that the condition has changed.

 As an example of the use of a monitor, let us return to the bounded-buffer
producer/consumer problem. Figure 5.16 shows a solution using a monitor. The
monitor module, boundedbuffer , controls the buffer used to store and retrieve
characters. The monitor includes two condition variables (declared with the con-
struct cond): notfull is true when there is room to add at least one character to the
buffer, and notempty is true when there is at least one character in the buffer.

Entrance

Queue of
entering
processes

Exit

Condition c1

cwait(c1)

Urgent queue

csignal

Condition cn

cwait(cn)

Local data

Condition variables

Procedure 1

Procedure k

Initialization code

Monitor waiting area

MONITOR

Figure 5.15 Structure of a Monitor

5.4 / MONITORS 229

 A producer can add characters to the buffer only by means of the procedure
append inside the monitor; the producer does not have direct access to buffer . The
procedure first checks the condition notfull to determine if there is space available
in the buffer. If not, the process executing the monitor is blocked on that condition.
Some other process (producer or consumer) may now enter the monitor. Later,
when the buffer is no longer full, the blocked process may be removed from the
queue, reactivated, and resume processing. After placing a character in the buffer,

Figure 5.16 A Solution to the Bounded-Buffer Producer/Consumer Problem Using a
Monitor

/* program producerconsumer */
monitor boundedbuffer;
char buffer [N]; /* space for N items */
int nextin, nextout; /* buffer pointers */
int count; /* number of items in buffer */
cond notfull, notempty; /* condition variables for synchronization */

void append (char x)
{

if (count == N) cwait(notfull); /* buffer is full; avoid overflow */
 buffer[nextin] = x;
 nextin = (nextin + 1) % N;
 count++;
 /* one more item in buffer */
 csignal (nonempty); /*resume any waiting consumer */
}
void take (char x)
{

if (count == 0) cwait(notempty); /* buffer is empty; avoid underflow */
 x = buffer[nextout];
 nextout = (nextout + 1) % N);
 count--; /* one fewer item in buffer */
 csignal (notfull); /* resume any waiting producer */
}
{ /* monitor body */
 nextin = 0; nextout = 0; count = 0; /* buffer initially empty */
}

void producer()
{

char x;
while (true) {

 produce(x);
 append(x);
 }
}
void consumer()
{

char x;
while (true) {

 take(x);
 consume(x);
 }
}
void main()
{

parbegin (producer, consumer);
}

230 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

the process signals the notempty condition. A similar description can be made of the
consumer function.

 This example points out the division of responsibility with monitors compared
to semaphores. In the case of monitors, the monitor construct itself enforces mutual
exclusion: It is not possible for both a producer and a consumer simultaneously to
access the buffer. However, the programmer must place the appropriate cwait and
csignal primitives inside the monitor to prevent processes from depositing items in
a full buffer or removing them from an empty one. In the case of semaphores, both
mutual exclusion and synchronization are the responsibility of the programmer.

 Note that in Figure 5.16 , a process exits the monitor immediately after executing
the csignal function. If the csignal does not occur at the end of the procedure,
then, in Hoare’s proposal, the process issuing the signal is blocked to make the moni-
tor available and placed in a queue until the monitor is free. One possibility at this
point would be to place the blocked process in the entrance queue, so that it would
have to compete for access with other processes that had not yet entered the monitor.
However, because a process blocked on a csignal function has already partially
performed its task in the monitor, it makes sense to give this process precedence over
newly entering processes by setting up a separate urgent queue (Figure 5.15). One
language that uses monitors, Concurrent Pascal, requires that csignal only appear
as the last operation executed by a monitor procedure.

 If there are no processes waiting on condition x , then the execution of
csignal(x) has no effect.

 As with semaphores, it is possible to make mistakes in the synchroniza-
tion function of monitors. For example, if either of the csignal functions in the
boundedbuffer monitor are omitted, then processes entering the corresponding
condition queue are permanently hung up. The advantage that monitors have over
semaphores is that all of the synchronization functions are confined to the monitor.
Therefore, it is easier to verify that the synchronization has been done correctly and
to detect bugs. Furthermore, once a monitor is correctly programmed, access to the
protected resource is correct for access from all processes. In contrast, with sema-
phores, resource access is correct only if all of the processes that access the resource
are programmed correctly.

Alternate Model of Monitors with Notify and Broadcast

 Hoare’s definition of monitors [HOAR74] requires that if there is at least one pro-
cess in a condition queue, a process from that queue runs immediately when another
process issues a csignal for that condition. Thus, the process issuing the csignal
must either immediately exit the monitor or be blocked on the monitor.

 There are two drawbacks to this approach:

 1. If the process issuing the csignal has not finished with the monitor, then two
additional process switches are required: one to block this process and another
to resume it when the monitor becomes available.

 2. Process scheduling associated with a signal must be perfectly reliable. When
a csignal is issued, a process from the corresponding condition queue must
be activated immediately and the scheduler must ensure that no other process

5.4 / MONITORS 231

enters the monitor before activation. Otherwise, the condition under which
the process was activated could change. For example, in Figure 5.16 , when a
csignal(notempty) is issued, a process from the notempty queue must
be activated before a new consumer enters the monitor. Another example:
a producer process may append a character to an empty buffer and then fail
before signaling; any processes in the notempty queue would be permanently
hung up.

 Lampson and Redell developed a different definition of monitors for the lan-
guage Mesa [LAMP80]. Their approach overcomes the problems just listed and
supports several useful extensions. The Mesa monitor structure is also used in the
Modula-3 systems programming language [NELS91]. In Mesa, the csignal prim-
itive is replaced by cnotify , with the following interpretation: When a process
executing in a monitor executes cnotify(x) , it causes the x condition queue to be
notified, but the signaling process continues to execute. The result of the notifica-
tion is that the process at the head of the condition queue will be resumed at some
convenient future time when the monitor is available. However, because there is
no guarantee that some other process will not enter the monitor before the waiting
process, the waiting process must recheck the condition. For example, the proce-
dures in the boundedbuffer monitor would now have the code of Figure 5.17 .

 The if statements are replaced by while loops. Thus, this arrangement results
in at least one extra evaluation of the condition variable. In return, however, there
are no extra process switches, and no constraints on when the waiting process must
run after a cnotify .

 One useful refinement that can be associated with the cnotify primitive is
a watchdog timer associated with each condition primitive. A process that has been
waiting for the maximum timeout interval will be placed in a Ready state regard-
less of whether the condition has been notified. When activated, the process checks
the condition and continues if the condition is satisfied. The timeout prevents the
indefinite starvation of a process in the event that some other process fails before
signaling a condition.

Figure 5.17 Bounded-Buffer Monitor Code for Mesa Monitor

void append (char x)
{

while (count == N) cwait(notfull); /* buffer is full; avoid overflow */
 buffer[nextin] = x;
 nextin = (nextin + 1) % N;
 count++; /* one more item in buffer */
 cnotify(notempty); /* notify any waiting consumer */
}

void take (char x)
{

while (count == 0) cwait(notempty); /* buffer is empty; avoid underflow */
 x = buffer[nextout];
 nextout = (nextout + 1) % N);
 count--; /* one fewer item in buffer */
 cnotify(notfull); /* notify any waiting producer */
}

232 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

 With the rule that a process is notified rather than forcibly reactivated, it is
possible to add a cbroadcast primitive to the repertoire. The broadcast causes all
processes waiting on a condition to be placed in a Ready state. This is convenient
in situations where a process does not know how many other processes should be
reactivated. For example, in the producer/consumer program, suppose that both
the append and the take functions can apply to variable length blocks of charac-
ters. In that case, if a producer adds a block of characters to the buffer, it need not
know how many characters each waiting consumer is prepared to consume. It sim-
ply issues a cbroadcast and all waiting processes are alerted to try again.

 In addition, a broadcast can be used when a process would have difficulty fig-
uring out precisely which other process to reactivate. A good example is a memory
manager. The manager has j bytes free; a process frees up an additional k bytes, but it
does not know which waiting process can proceed with a total of k + j bytes. Hence it
uses broadcast, and all processes check for themselves if there is enough memory free.

 An advantage of Lampson/Redell monitors over Hoare monitors is that the
Lampson/Redell approach is less prone to error. In the Lampson/Redell approach,
because each procedure checks the monitor variable after being signaled, with the
use of the while construct, a process can signal or broadcast incorrectly without
causing an error in the signaled program. The signaled program will check the rel-
evant variable and, if the desired condition is not met, continue to wait.

 Another advantage of the Lampson/Redell monitor is that it lends itself to a
more modular approach to program construction. For example, consider the imple-
mentation of a buffer allocator. There are two levels of conditions to be satisfied for
cooperating sequential processes:

 1. Consistent data structures. Thus, the monitor enforces mutual exclusion and
completes an input or output operation before allowing another operation on
the buffer.

 2. Level 1, plus enough memory for this process to complete its allocation request.

 In the Hoare monitor, each signal conveys the level 1 condition but also car-
ries the implicit message, “I have freed enough bytes for your particular allocate call
to work now.” Thus, the signal implicitly carries the level 2 condition. If the pro-
grammer later changes the definition of the level 2 condition, it will be necessary to
reprogram all signaling processes. If the programmer changes the assumptions made
by any particular waiting process (i.e., waiting for a slightly different level 2 invari-
ant), it may be necessary to reprogram all signaling processes. This is unmodular and
likely to cause synchronization errors (e.g., wake up by mistake) when the code is
modified. The programmer has to remember to modify all procedures in the monitor
every time a small change is made to the level 2 condition. With a Lampson/Redell
monitor, a broadcast ensures the level 1 condition and carries a hint that level 2 might
hold; each process should check the level 2 condition itself. If a change is made in
the level 2 condition in either a waiter or a signaler, there is no possibility of errone-
ous wakeup because each procedure checks its own level 2 condition. Therefore, the
level 2 condition can be hidden within each procedure. With the Hoare monitor,
the level 2 condition must be carried from the waiter into the code of every signaling
process, which violates data abstraction and interprocedural modularity principles.

5.5 / MESSAGE PASSING 233

5.5 MESSAGE PASSING

 When processes interact with one another, two fundamental requirements must
be satisfied: synchronization and communication. Processes need to be synchro-
nized to enforce mutual exclusion; cooperating processes may need to exchange
information. One approach to providing both of these functions is message passing.
Message passing has the further advantage that it lends itself to implementation in
distributed systems as well as in shared-memory multiprocessor and uniprocessor
systems.

 Message-passing systems come in many forms. In this section, we provide a
general introduction that discusses features typically found in such systems. The
actual function of message passing is normally provided in the form of a pair of
primitives:

send (destination, message)
receive (source, message)

 This is the minimum set of operations needed for processes to engage in mes-
sage passing. A process sends information in the form of a message to another proc-
ess designated by a destination . A process receives information by executing the
receive primitive, indicating the source and the message .

 A number of design issues relating to message-passing systems are listed in
 Table 5.5 , and examined in the remainder of this section.

Table 5.5 Design Characteristics of Message Systems for Interprocess Communication
and Synchronization

Synchronization Format

 Send Content
 blocking Length
 nonblocking fixed
 Receive variable
 blocking
 nonblocking Queueing Discipline
 test for arrival FIFO

 Priority
Addressing
 Direct
 send
 receive
 explicit
 implicit
 Indirect
 static
 dynamic
 ownership

234 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Synchronization

 The communication of a message between two processes implies some level of syn-
chronization between the two: The receiver cannot receive a message until it has
been sent by another process. In addition, we need to specify what happens to a
process after it issues a send or receive primitive.

 Consider the send primitive first. When a send primitive is executed in a
process, there are two possibilities: Either the sending process is blocked until the
message is received, or it is not. Similarly, when a process issues a receive primi-
tive, there are two possibilities:

 1. If a message has previously been sent, the message is received and execution
continues.

 2. If there is no waiting message, then either (a) the process is blocked until
a message arrives, or (b) the process continues to execute, abandoning the
attempt to receive.

 Thus, both the sender and receiver can be blocking or nonblocking. Three
combinations are common, although any particular system will usually have only
one or two combinations implemented:

 • Blocking send, blocking receive: Both the sender and receiver are blocked un-
til the message is delivered; this is sometimes referred to as a rendezvous . This
combination allows for tight synchronization between processes.

 • Nonblocking send, blocking receive: Although the sender may continue on,
the receiver is blocked until the requested message arrives. This is probably
the most useful combination. It allows a process to send one or more messages
to a variety of destinations as quickly as possible. A process that must receive
a message before it can do useful work needs to be blocked until such a mes-
sage arrives. An example is a server process that exists to provide a service or
resource to other processes.

 • Nonblocking send, nonblocking receive: Neither party is required to wait.

 The nonblocking send is more natural for many concurrent programming
tasks. For example, if it is used to request an output operation, such as printing, it
allows the requesting process to issue the request in the form of a message and then
carry on. One potential danger of the nonblocking send is that an error could lead
to a situation in which a process repeatedly generates messages. Because there is no
blocking to discipline the process, these messages could consume system resources,
including processor time and buffer space, to the detriment of other processes and
the OS. Also, the nonblocking send places the burden on the programmer to deter-
mine that a message has been received: Processes must employ reply messages to
acknowledge receipt of a message.

 For the receive primitive, the blocking version appears to be more natural
for many concurrent programming tasks. Generally, a process that requests a mes-
sage will need the expected information before proceeding. However, if a message
is lost, which can happen in a distributed system, or if a process fails before it sends
an anticipated message, a receiving process could be blocked indefinitely. This

5.5 / MESSAGE PASSING 235

problem can be solved by the use of the nonblocking receive . However, the dan-
ger of this approach is that if a message is sent after a process has already executed
a matching receive , the message will be lost. Other possible approaches are to
allow a process to test whether a message is waiting before issuing a receive and
allow a process to specify more than one source in a receive primitive. The latter
approach is useful if a process is waiting for messages from more than one source
and can proceed if any of these messages arrive.

Addressing

 Clearly, it is necessary to have a way of specifying in the send primitive which pro-
cess is to receive the message. Similarly, most implementations allow a receiving
process to indicate the source of a message to be received.

 The various schemes for specifying processes in send and receive primi-
tives fall into two categories: direct addressing and indirect addressing. With direct
addressing , the send primitive includes a specific identifier of the destination proc-
ess. The receive primitive can be handled in one of two ways. One possibility is
to require that the process explicitly designate a sending process. Thus, the proc-
ess must know ahead of time from which process a message is expected. This will
often be effective for cooperating concurrent processes. In other cases, however,
it is impossible to specify the anticipated source process. An example is a printer-
server process, which will accept a print request message from any other process.
For such applications, a more effective approach is the use of implicit addressing. In
this case, the source parameter of the receive primitive possesses a value returned
when the receive operation has been performed.

 The other general approach is indirect addressing . In this case, messages are
not sent directly from sender to receiver but rather are sent to a shared data struc-
ture consisting of queues that can temporarily hold messages. Such queues are gen-
erally referred to as mailboxes . Thus, for two processes to communicate, one proc-
ess sends a message to the appropriate mailbox and the other process picks up the
message from the mailbox.

 A strength of the use of indirect addressing is that, by decoupling the sender
and receiver, it allows for greater flexibility in the use of messages. The relationship
between senders and receivers can be one to one, many to one, one to many, or
many to many (Figure 5.18). A one-to-one relationship allows a private communi-
cations link to be set up between two processes. This insulates their interaction from
erroneous interference from other processes. A many-to-one relationship is use-
ful for client/server interaction; one process provides service to a number of other
processes. In this case, the mailbox is often referred to as a port . A one-to-many
relationship allows for one sender and multiple receivers; it is useful for applications
where a message or some information is to be broadcast to a set of processes. A
many-to-many relationship allows multiple server processes to provide concurrent
service to multiple clients.

 The association of processes to mailboxes can be either static or dynamic.
Ports are often statically associated with a particular process; that is, the port is
created and assigned to the process permanently. Similarly, a one-to-one relation-
ship is typically defined statically and permanently. When there are many senders,

236 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

the association of a sender to a mailbox may occur dynamically. Primitives such as
connect and disconnect may be used for this purpose.

 A related issue has to do with the ownership of a mailbox. In the case of a port,
it is typically owned by and created by the receiving process. Thus, when the process is
destroyed, the port is also destroyed. For the general mailbox case, the OS may offer
a create-mailbox service. Such mailboxes can be viewed either as being owned by the
creating process, in which case they terminate with the process, or as being owned by
the OS, in which case an explicit command will be required to destroy the mailbox.

Message Format

 The format of the message depends on the objectives of the messaging facility and
whether the facility runs on a single computer or on a distributed system. For some
operating systems, designers have preferred short, fixed-length messages to mini-
mize processing and storage overhead. If a large amount of data is to be passed, the
data can be placed in a file and the message then simply references that file. A more
flexible approach is to allow variable-length messages.

 Figure 5.19 shows a typical message format for operating systems that support
variable-length messages. The message is divided into two parts: a header, which
contains information about the message, and a body, which contains the actual con-
tents of the message. The header may contain an identification of the source and
intended destination of the message, a length field, and a type field to discriminate
among various types of messages. There may also be additional control information,

S1

Sn

R1

Rn

Mailbox

S1

Sn

R1Port

(b) Many to one

S1 R1Mailbox

S1

(a) One to one

(d) Many to many

R1

Rn

Mailbox

(c) One to many

Figure 5.18 Indirect Process Communication

5.5 / MESSAGE PASSING 237

such as a pointer field so that a linked list of messages can be created; a sequence
number, to keep track of the number and order of messages passed between source
and destination; and a priority field.

Queueing Discipline

 The simplest queueing discipline is first-in-first-out, but this may not be sufficient
if some messages are more urgent than others. An alternative is to allow the speci-
fying of message priority, on the basis of message type or by designation by the
sender. Another alternative is to allow the receiver to inspect the message queue
and select which message to receive next.

Mutual Exclusion

 Figure 5.20 shows one way in which message passing can be used to enforce mutual
exclusion (compare Figures 5.1 , 5.2 , and 5.6). We assume the use of the blocking
receive primitive and the nonblocking send primitive. A set of concurrent pro-
cesses share a mailbox, box , which can be used by all processes to send and receive.

Message type

Destination ID

Source IDHeader

Body

Message length

Control information

Message contents

Figure 5.19 General Message
Format

Figure 5.20 Mutual Exclusion Using Messages

/* program mutualexclusion */
const int n = /* number of process */
void P(int i)
{

message msg;
while (true) {

 receive (box, msg);
 /* critical section */;
 send (box, msg);
 /* remainder */;
 }
}
void main()
{
 create mailbox (box);
 send (box, null);

parbegin (P(1), P(2),…, P(n));

238 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

The mailbox is initialized to contain a single message with null content. A process
wishing to enter its critical section first attempts to receive a message. If the mailbox
is empty, then the process is blocked. Once a process has acquired the message,
it performs its critical section and then places the message back into the mailbox.
Thus, the message functions as a token that is passed from process to process.

 The preceding solution assumes that if more than one process performs the
receive operation concurrently, then:

 • If there is a message, it is delivered to only one process and the others are
blocked, or

 • If the message queue is empty, all processes are blocked; when a message is
available, only one blocked process is activated and given the message.

 These assumptions are true of virtually all message-passing facilities.
 As an example of the use of message passing, Figure 5.21 is a solution to the

bounded-buffer producer/consumer problem. Using the basic mutual-exclusion
power of message passing, the problem could have been solved with an algorithmic
structure similar to that of Figure 5.13 . Instead, the program of Figure 5.21 takes
advantage of the ability of message passing to be used to pass data in addition to
signals. Two mailboxes are used. As the producer generates data, it is sent as mes-
sages to the mailbox mayconsume . As long as there is at least one message in that
mailbox, the consumer can consume. Hence mayconsume serves as the buffer; the
data in the buffer are organized as a queue of messages. The “size” of the buffer is

Figure 5.21 A Solution to the Bounded-Buffer Producer/Consumer Problem Using Messages

const int
 capacity = /* buffering capacity */ ;
 null = /* empty message */ ;
int i;
void producer()
{ message pmsg;

while (true) {
 receive (mayproduce,pmsg);
 pmsg = produce();
 send (mayconsume,pmsg);
 }
}
void consumer()
{ message cmsg;

while (true) {
 receive (mayconsume,cmsg);
 consume (cmsg);
 send (mayproduce,null);
 }
}
void main()
{
 create_mailbox (mayproduce);
 create_mailbox (mayconsume);

for (int i = 1;i<= capacity;i++) send (mayproduce,null);
parbegin (producer,consumer);

}

5.6 / READERS/WRITERS PROBLEM 239

determined by the global variable capacity . Initially, the mailbox mayproduce
is filled with a number of null messages equal to the capacity of the buffer. The
number of messages in mayproduce shrinks with each production and grows with
each consumption.

 This approach is quite flexible. There may be multiple producers and consum-
ers, as long as all have access to both mailboxes. The system may even be distrib-
uted, with all producer processes and the mayproduce mailbox at one site and all
the consumer processes and the mayconsume mailbox at another.

5.6 READERS/WRITERS PROBLEM

 In dealing with the design of synchronization and concurrency mechanisms, it is
useful to be able to relate the problem at hand to known problems and to be able
to test any solution in terms of its ability to solve these known problems. In the
literature, several problems have assumed importance and appear frequently, both
because they are examples of common design problems and because of their edu-
cational value. One such problem is the producer/consumer problem, which has
already been explored. In this section, we look at another classic problem: the read-
ers/writers problem.

 The readers/writers problem is defined as follows: There is a data area shared
among a number of processes. The data area could be a file, a block of main mem-
ory, or even a bank of processor registers. There are a number of processes that
only read the data area (readers) and a number that only write to the data area
(writers). The conditions that must be satisfied are as follows:

 1. Any number of readers may simultaneously read the file.

 2. Only one writer at a time may write to the file.

 3. If a writer is writing to the file, no reader may read it.

 Thus, readers are processes that are not required to exclude one another and
writers are processes that are required to exclude all other processes, readers and
writers alike.

 Before proceeding, let us distinguish this problem from two others: the general
mutual exclusion problem and the producer/consumer problem. In the readers/writ-
ers problem readers do not also write to the data area, nor do writers read the data
area while writing. A more general case, which includes this case, is to allow any of
the processes to read or write the data area. In that case, we can declare any por-
tion of a process that accesses the data area to be a critical section and impose the
general mutual exclusion solution. The reason for being concerned with the more
restricted case is that more efficient solutions are possible for this case and that the
less efficient solutions to the general problem are unacceptably slow. For example,
suppose that the shared area is a library catalog. Ordinary users of the library read
the catalog to locate a book. One or more librarians are able to update the catalog.
In the general solution, every access to the catalog would be treated as a critical sec-
tion, and users would be forced to read the catalog one at a time. This would clearly
impose intolerable delays. At the same time, it is important to prevent writers from

240 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

interfering with each other and it is also required to prevent reading while writing is
in progress to prevent the access of inconsistent information.

 Can the producer/consumer problem be considered simply a special case of
the readers/writers problem with a single writer (the producer) and a single reader
(the consumer)? The answer is no. The producer is not just a writer. It must read
queue pointers to determine where to write the next item, and it must determine if
the buffer is full. Similarly, the consumer is not just a reader, because it must adjust
the queue pointers to show that it has removed a unit from the buffer.

 We now examine two solutions to the problem.

Readers Have Priority

 Figure 5.22 is a solution using semaphores, showing one instance each of a reader
and a writer; the solution does not change for multiple readers and writers. The
writer process is simple. The semaphore wsem is used to enforce mutual exclusion.
As long as one writer is accessing the shared data area, no other writers and no
readers may access it. The reader process also makes use of wsem to enforce mutual
exclusion. However, to allow multiple readers, we require that, when there are no
readers reading, the first reader that attempts to read should wait on wsem . When

/* program readersandwriters */
int readcount;
semaphore x = 1,wsem = 1;
void reader()
{

while (true){
 semWait (x);
 readcount++;

if(readcount == 1)
 semWait (wsem);
 semSignal (x);
 READUNIT();
 semWait (x);
 readcount;

if(readcount == 0)
 semSignal (wsem);
 semSignal (x);
 }
}
void writer()
{

while (true){
 semWait (wsem);
 WRITEUNIT();
 semSignal (wsem);
 }
}

void main()
{
 readcount = 0;

parbegin (reader,writer);
}

Figure 5.22 A Solution to the Readers/Writers Problem Using Semaphore: Readers Have
Priority

5.6 / READERS/WRITERS PROBLEM 241

there is already at least one reader reading, subsequent readers need not wait before
entering. The global variable readcount is used to keep track of the number of
readers, and the semaphore x is used to assure that readcount is updated properly.

Writers Have Priority

 In the previous solution, readers have priority. Once a single reader has begun to
access the data area, it is possible for readers to retain control of the data area as
long as there is at least one reader in the act of reading. Therefore, writers are sub-
ject to starvation.

 Figure 5.23 shows a solution that guarantees that no new readers are allowed
access to the data area once at least one writer has declared a desire to write. For

/* program readersandwriters */
int readcount,writecount;
void reader()
{

while (true){
 semWait (z);
 semWait (rsem);
 semWait (x);
 readcount++;
 if (readcount == 1)
 semWait (wsem);
 semSignal (x);
 semSignal (rsem);
 semSignal (z);
 READUNIT();
 semWait (x);
 readcount--;
 if (readcount == 0) semSignal (wsem);
 semSignal (x);
 }
}
void writer ()
{

while (true){
 semWait (y);
 writecount++;
 if (writecount == 1)
 semWait (rsem);
 semSignal (y);
 semWait (wsem);
 WRITEUNIT();
 semSignal (wsem);
 semWait (y);
 writecount;
 if (writecount == 0) semSignal (rsem);
 semSignal (y);
 }
}
void main()
{
 readcount = writecount = 0;

parbegin (reader, writer);

}

Figure 5.23 A Solution to the Readers/Writers Problem Using Semaphore: Writers Have
Priority

242 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

writers, the following semaphores and variables are added to the ones already
defined:

 • A semaphore rsem that inhibits all readers while there is at least one writer
desiring access to the data area

 • A variable writecount that controls the setting of rsem

 • A semaphore y that controls the updating of writecount

 For readers, one additional semaphore is needed. A long queue must not
be allowed to build up on rsem ; otherwise writers will not be able to jump the
queue. Therefore, only one reader is allowed to queue on rsem , with any additional
readers queueing on semaphore z , immediately before waiting on rsem . Table 5.6
 summarizes the possibilities.

 An alternative solution, which gives writers priority and which is implemented
using message passing, is shown in Figure 5.24 . In this case, there is a controller
process that has access to the shared data area. Other processes wishing to access
the data area send a request message to the controller, are granted access with an
“OK” reply message, and indicate completion of access with a “finished” message.
The controller is equipped with three mailboxes, one for each type of message that
it may receive.

 The controller process services write request messages before read request
messages to give writers priority. In addition, mutual exclusion must be enforced.
To do this the variable count is used, which is initialized to some number greater
than the maximum possible number of readers. In this example, we use a value of
100. The action of the controller can be summarized as follows:

 • If count > 0, then no writer is waiting and there may or may not be read-
ers active. Service all “finished” messages first to clear active readers. Then
 service write requests and then read requests.

 • If count = 0, then the only request outstanding is a write request. Allow the
writer to proceed and wait for a “finished” message.

Table 5.6 State of the Process Queues for Program of Figure 5.23

 Readers only in the system • wsem set
• no queues

 Writers only in the system • wsem and rsem set
• writers queue on wsem

 Both readers and writers with read first • wsem set by reader
• rsem set by writer
• all writers queue on wsem
• one reader queues on rsem
• other readers queue on z

 Both readers and writers with write first • wsem set by writer
• rsem set by writer
• writers queue on wsem
• one reader queues on rsem
• other readers queue on z

5.7 / SUMMARY 243

 • If count < 0, then a writer has made a request and is being made to wait
to clear all active readers. Therefore, only “finished” messages should be
serviced.

5.7 SUMMARY

 The central themes of modern operating systems are multiprogramming, multipro-
cessing, and distributed processing. Fundamental to these themes, and fundamen-
tal to the technology of OS design, is concurrency. When multiple processes are
executing concurrently, either actually in the case of a multiprocessor system or vir-
tually in the case of a single-processor multiprogramming system, issues of conflict
resolution and cooperation arise.

 Concurrent processes may interact in a number of ways. Processes that are
unaware of each other may nevertheless compete for resources, such as processor
time or access to I/O devices. Processes may be indirectly aware of one another
because they share access to a common object, such as a block of main memory or
a file. Finally, processes may be directly aware of each other and cooperate by the
exchange of information. The key issues that arise in these interactions are mutual
exclusion and deadlock.

void reader(int i) void controller()
{ {
 message rmsg; while (true)

while (true) { {
 rmsg = i; if (count > 0) {
 send (readrequest, rmsg); if (!empty (finished)) {
 receive (mbox[i], rmsg); receive (finished, msg);
 READUNIT (); count++;
 rmsg = i; }
 send (finished, rmsg); else if (!empty (writerequest)) {
 } receive (writerequest, msg);
} writer_id = msg.id;
void writer(int j) count = count – 100;
{ }
 message rmsg; else if (!empty (readrequest)) {

while(true) { receive (readrequest, msg);
 rmsg = j; count--;
 send (writerequest, rmsg); send (msg.id, “OK”);
 receive (mbox[j], rmsg); }
 WRITEUNIT (); }
 rmsg = j; if (count == 0) {
 send (finished, rmsg); send (writer_id, “OK”);
 } receive (finished, msg);
} count = 100;
 }
 while (count < 0) {
 receive (finished, msg);
 count++;
 }
 }
 }

Figure 5.24 A Solution to the Readers/Writers Problem Using Message Passing

244 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

 Mutual exclusion is a condition in which there is a set of concurrent processes,
only one of which is able to access a given resource or perform a given function
at any time. Mutual exclusion techniques can be used to resolve conflicts, such as
competition for resources, and to synchronize processes so that they can coop-
erate. An example of the latter is the producer/consumer model, in which one
process is putting data into a buffer and one or more processes are extracting data
from that buffer.

 One approach to supporting mutual exclusion involves the use of special-pur-
pose machine instructions. This approach reduces overhead but is still inefficient
because it uses busy waiting.

 Another approach to supporting mutual exclusion is to provide features within
the OS. Two of the most common techniques are semaphores and message facili-
ties. Semaphores are used for signaling among processes and can be readily used to
enforce a mutual-exclusion discipline. Messages are useful for the enforcement of
mutual exclusion and also provide an effective means of interprocess communication.

5.8 RECOMMENDED READING

 The misnamed Little Book of Semaphores (291 pages) [DOWN08] provides numer-
ous examples of the uses of semaphores; available free online.

 [ANDR83] surveys many of the mechanisms described in this chapter.
[BEN82] provides a very clear and even entertaining discussion of concurrency,
mutual exclusion, semaphores, and other related topics. A more formal treatment,
expanded to include distributed systems, is contained in [BEN06]. [AXFO88]
is another readable and useful treatment; it also contains a number of problems
with worked-out solutions. [RAYN86] is a comprehensive and lucid collection of
algorithms for mutual exclusion, covering software (e.g., Dekker) and hardware
approaches, as well as semaphores and messages. [HOAR85] is a very readable
classic that presents a formal approach to defining sequential processes and concur-
rency. [LAMP86] is a lengthy formal treatment of mutual exclusion. [RUDO90] is
a useful aid in understanding concurrency. [BACO03] is a well-organized treatment
of concurrency. [BIRR89] provides a good practical introduction to programming
using concurrency. [BUHR95] is an exhaustive survey of monitors. [KANG98] is
an instructive analysis of 12 different scheduling policies for the readers/writers
 problem.

ANDR83 Andrews, G., and Schneider, F. “Concepts and Notations for Concurrent
Programming.” Computing Surveys , March 1983.

AXFO88 Axford, T. Concurrent Programming: Fundamental Techniques for Real-
Time and Parallel Software Design. New York: Wiley, 1988.

BACO03 Bacon, J., and Harris, T. Operating Systems: Concurrent and Distributed
Software Design. Reading, MA: Addison-Wesley, 2003.

BEN82 Ben-Ari, M. Principles of Concurrent Programming . Englewood Cliffs, NJ:
Prentice Hall, 1982.

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 245

BEN06 Ben-Ari, M. Principles of Concurrent and Distributed Programming . Harlow,
England: Addison-Wesley, 2006.

BIRR89 Birrell, A. An Introduction to Programming with Threads. SRC Research
Report 35, Compaq Systems Research Center, Palo Alto, CA, January 1989.
Available at http://www.research.compaq.com/SRC

BUHR95 Buhr, P., and Fortier, M. “Monitor Classification.” ACM Computing
Surveys , March 1995.

DOWN08 Downey, A. The Little Book of Semaphores. www.greenteapress.com
/semaphores/

HOAR85 Hoare, C. Communicating Sequential Processes. Englewood Cliffs, NJ:
Prentice-Hall, 1985.

KANG98 Kang, S., and Lee, J. “Analysis and Solution of Non-Preemptive Policies for
Scheduling Readers and Writers.” Operating Systems Review , July 1998.

LAMP86 Lamport, L. “The Mutual Exclusion Problem.” Journal of the ACM , April
1986.

RAYN86 Raynal, M. Algorithms for Mutual Exclusion. Cambridge, MA: MIT Press,
1986.

RUDO90 Rudolph, B. “Self-Assessment Procedure XXI: Concurrency.”
Communications of the ACM , May 1990.

5.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 atomic
 binary semaphore
 blocking
 busy waiting
 concurrency
 concurrent processes
 coroutine
 counting semaphore

 critical resource
 critical section
 deadlock
 general semaphore
 message passing
 monitor
 mutual exclusion
 mutex

 nonblocking
 race condition
 semaphore
 spin waiting
 starvation
 strong semaphore
 weak semaphore

Review Questions

 5.1 List four design issues for which the concept of concurrency is relevant.
 5.2 What are three contexts in which concurrency arises?
 5.3 What is the basic requirement for the execution of concurrent processes?
 5.4 List three degrees of awareness between processes and briefly define each.
 5.5 What is the distinction between competing processes and cooperating processes?
 5.6 List the three control problems associated with competing processes and briefly de-

fine each.
 5.7 List the requirements for mutual exclusion.
 5.8 What operations can be performed on a semaphore?

http://www.research.compaq.com/SRC
www.greenteapress.com/semaphores/
www.greenteapress.com/semaphores/

246 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

 5.9 What is the difference between binary and general semaphores?
 5.10 What is the difference between strong and weak semaphores?
 5.11 What is a monitor?
 5.12 What is the distinction between blocking and nonblocking with respect to messages?
 5.13 What conditions are generally associated with the readers/writers problem?

Problems

 5.1 At the beginning of Section 5.1 , it is stated that multiprogramming and multiprocess-
ing present the same problems, with respect to concurrency. This is true as far as it
goes. However, cite two differences in terms of concurrency between multiprogram-
ming and multiprocessing.

 5.2 Processes and threads provide a powerful structuring tool for implementing programs
that would be much more complex as simple sequential programs. An earlier con-
struct that is instructive to examine is the coroutine. The purpose of this problem is to
introduce coroutines and compare them to processes. Consider this simple problem
from [CONW63]:

 Read 80-column cards and print them on 125-character lines, with the following
changes. After every card image an extra blank is inserted, and every adjacent
pair of asterisks (**) on a card is replaced by the character.

a. Develop a solution to this problem as an ordinary sequential program. You
will find that the program is tricky to write. The interactions among the various
 elements of the program are uneven because of the conversion from a length of
80 to 125; furthermore, the length of the card image, after conversion, will vary
depending on the number of double asterisk occurrences. One way to improve
clarity, and to minimize the potential for bugs, is to write the application as three
separate procedures. The first procedure reads in card images, pads each image
with a blank, and writes a stream of characters to a temporary file. After all of
the cards have been read, the second procedure reads the temporary file, does the
character substitution, and writes out a second temporary file. The third procedure
reads the stream of characters from the second temporary file and prints lines of
125 characters each.

b. The sequential solution is unattractive because of the overhead of I/O and tempo-
rary files. Conway proposed a new form of program structure, the coroutine, that
allows the application to be written as three programs connected by one-character
buffers (Figure 5.25). In a traditional procedure , there is a master/slave relation-
ship between the called and calling procedure. The calling procedure may execute
a call from any point in the procedure; the called procedure is begun at its entry
point and returns to the calling procedure at the point of call. The coroutine exhib-
its a more symmetric relationship. As each call is made, execution takes up from
the last active point in the called procedure. Because there is no sense in which
a calling procedure is “higher” than the called, there is no return. Rather, any co-
routine can pass control to any other coroutine with a resume command. The first
time a coroutine is invoked, it is “resumed” at its entry point. Subsequently, the co-
routine is reactivated at the point of its own last resume command. Note that only
one coroutine in a program can be in execution at one time and that the transition
points are explicitly defined in the code, so this is not an example of concurrent
processing. Explain the operation of the program in Figure 5.25 .

c. The program does not address the termination condition. Assume that the I/O
routine READCARD returns the value true if it has placed an 80-character image
in inbuf ; otherwise it returns false. Modify the program to include this contingency.
Note that the last printed line may therefore contain less than 125 characters.

d. Rewrite the solution as a set of three processes using semaphores.

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 247

 5.3 Consider the following program:

 P1: { P2:{
shared int x; shared int x;
x = 10; x = 10;
while (1) { while (1) {
 x = x - 1; x = x - 1;
 x = x + 1; x = x + 1;
 if (x != 10) if (x!=10)
 printf(“x is %d”,x) printf(“x is %d”,x)
 } }
 } }
} }

 Note that the scheduler in a uniprocessor system would implement pseudo-parallel
execution of these two concurrent processes by interleaving their instructions, without
restriction on the order of the interleaving.

a. Show a sequence (i.e., trace the sequence of interleavings of statements) such that
the statement “x is 10” is printed.

b. Show a sequence such that the statement “x is 8” is printed. You should remember
that the increment/decrements at the source language level are not done atomi-
cally, that is, the assembly language code:

LD R0,X /* load R0 from memory location x */
INCR R0 /* increment R0 */
STO R0,X /* store the incremented value back in X */

 implements the single C increment instruction (x = x + 1).

char rs, sp; void squash()
char inbuf[80], outbuf[125] ; {
void read() while (true) {
{ if (rs != “*”) {

while (true) { sp = rs;
READCARD (inbuf); RESUME print;
for (int i=0; i < 80; i++){ }

rs = inbuf [i]; else{
RESUME squash RESUME read;

} if (rs == “*”) {
rs = “ “; sp = “ ”;
RESUME squash; RESUME print;

} }
} else {
void print() sp = “*”;
{ RESUME print;

while (true) { sp = rs;
for (int j = 0; j < 125; j++){ RESUME print;

outbuf [j] = sp; }
RESUME squash }

} RESUME read;
OUTPUT (outbuf); }

} }
}

Figure 5.25 An Application of Coroutines

248 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

 5.4 Consider the following program:

const int n = 50;
int tally;
void total()
{

int count;
for (count = 1; count<= n; count++){

tally++;
}

}
void main()
{

tally = 0;
parbegin (total (), total ());
write (tally);

}

a. Determine the proper lower bound and upper bound on the final value of the
shared variable tally output by this concurrent program. Assume processes can
execute at any relative speed and that a value can only be incremented after it has
been loaded into a register by a separate machine instruction.

b. Suppose that an arbitrary number of these processes are permitted to execute in
parallel under the assumptions of part (a). What effect will this modification have
on the range of final values of tally ?

 5.5 Is busy waiting always less efficient (in terms of using processor time) than a blocking
wait? Explain.

 5.6 Consider the following program:

boolean blocked [2];
int turn;
void P (int id)
{
while (true) {

blocked[id] = true;
while (turn != id) {

while (blocked[1-id])
/* do nothing */;

turn = id;
}
/* critical section */
blocked[id] = false;
/* remainder */

 }
}
void main()
{
blocked[0] = false;
blocked[1] = false;
turn = 0;
parbegin (P(0), P(1));
}

 This software solution to the mutual exclusion problem for two processes is proposed
in [HYMA66]. Find a counterexample that demonstrates that this solution is incor-
rect. It is interesting to note that even the Communications of the ACM was fooled
on this one.

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 249

 5.7 A software approach to mutual exclusion is Lamport’s bakery algorithm [LAMP74],
so called because it is based on the practice in bakeries and other shops in which every
customer receives a numbered ticket on arrival, allowing each to be served in turn.
The algorithm is as follows:

boolean choosing[n];
int number[n];
while (true) {

choosing[i] = true;
number[i] = 1 + getmax(number[], n);
choosing[i] = false;
for (int j = 0; j < n; j++){
while (choosing[j]) { };
while ((number[j] != 0) && (number[j], j) < (number[i], i)) { };

}
/* critical section */;
number [i] = 0;
/* remainder */;

}

 The arrays choosing and number are initialized to false and 0, respectively. The i th
element of each array may be read and written by process i but only read by other
processes. The notation (a , b) < (c , d) is defined as:

 (a < c) or (a = c and b < d)

a. Describe the algorithm in words.
b. Show that this algorithm avoids deadlock.
c. Show that it enforces mutual exclusion.

 5.8 Now consider a version of the bakery algorithm without the variable choosing .
Then we have

1 int number[n];
2 while (true) {
3 number[i] = 1 + getmax(number[], n);
4 for (int j = 0; j < n; j++){
5 while ((number[j] != 0) && (number[j],j) < (number[i],i)) { };
6 }
7 /* critical section */;
8 number [i] = 0;
9 /* remainder */;
10 }

 Does this version violate mutual exclusion? Explain why or why not.
 5.9 Consider the following program which provides a software approach to mutual

 exclusion:

integer array control [1 :N]; integer k
 where 1 ≤ k ≤ N, and each element of “control” is either 0, 1,
 or 2. All elements of “control” are initially zero; the initial value
 of k is immaterial.

 The program of the ith process (1 ≤ i ≤ N) is

begin integer j;
L0: control [i] := l;
LI: for j:=k step l until N, l step l until k do

begin
if j = i then goto L2;

250 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

if control [j] ≠ 0 then goto L1
end;

L2: control [i] := 2;
for j := 1 step 1 until N do

if j ≠ i and control [j] = 2 then goto L0;
L3: if control [k] ≠ 0 and k ≠ i then goto L0;
L4: k := i;

critical section;
L5: for j := k step 1 until N, 1 step 1 until k do

if j ≠ k and control [j] ≠ 0 then
begin
k := j;

goto L6
end;

L6: control [i] := 0;
L7: remainder of cycle;

goto L0;
end

 This is referred to as the Eisenberg-McGuire algorithm. Explain its operation and its
key features.

 5.10 Consider the first instance of the statement bolt = 0 in Figure 5.2b .
a. Achieve the same result using the exchange instruction.
b. Which method is preferable?

 5.11 When a special machine instruction is used to provide mutual exclusion in the fash-
ion of Figure 5.2 , there is no control over how long a process must wait before being
granted access to its critical section. Devise an algorithm that uses the compare&swap
 instruction but that guarantees that any process waiting to enter its critical section will
do so within n – 1 turns, where n is the number of processes that may require access
to the critical section and a “turn” is an event consisting of one process leaving the
critical section and another process being granted access.

 5.12 Consider the following definition of semaphores:

void semWait(s)
{

if (s.count > 0) {
s.count--;

}
else {
place this process in s.queue;
block;

}
}
void semSignal (s)
{

if (there is at least one process blocked on
 semaphore s) {

remove a process P from s.queue;
place process P on ready list;

 }
else

s.count++;
}

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 251

 Compare this set of definitions with that of Figure 5.3 . Note one difference: With
the preceding definition, a semaphore can never take on a negative value. Is there
any difference in the effect of the two sets of definitions when used in programs?
That is, could you substitute one set for the other without altering the meaning of the
 program?

 5.13 Consider a sharable resource with the following characteristics: (1) As long as there
are fewer than three processes using the resource, new processes can start using it
right away. (2) Once there are three process using the resource, all three must leave
before any new processes can begin using it. We realize that counters are needed to
keep track of how many processes are waiting and active, and that these counters are
themselves shared resources that must be protected with mutual exclusion. So we
might create the following solution:

1 semaphore mutex = 1, block = 0; /* share variables: semaphores, */

2 int active = 0, waiting = 0; /* counters, and */

3 boolean must_wait = false; /* state information */

4

5 semWait(mutex); /* Enter the mutual exclusion */

6 if(must_wait) { /* If there are (or were) 3, then */

7 ++waiting; /* we must wait, but we must leave */

8 semSignal(mutex); /* the mutual exclusion first */

9 semWait(block); /* Wait for all current users to depart */

10 SemWait(mutex); /* Reenter the mutual exclusion */

11 --waiting; /* and update the waiting count */

12 }

13 ++active; /* Update active count, and remember */

14 must_wait = active == 3; /* if the count reached 3 */

15 semSignal(mutex); /* Leave the mutual exclusion */

16

17 /* critical section */

18

19 semWait(mutex); /* Enter mutual exclusion */

20 --active; /* and update the active count */

21 if(active == 0) { /* Last one to leave? */

22 int n;

23 if (waiting < 3) n = waiting;

24 else n = 3; /* If so, unblock up to 3 */

25 while(n > 0) { /* waiting processes */

26 semSignal(block);

27 --n;

28 }

29 must_wait = false; /* All active processes have left */

30 }

31 semSignal(mutex); /* Leave the mutual exclusion */

 The solution appears to do everything right: All accesses to the shared variables are
protected by mutual exclusion, processes do not block themselves while in the mutual
exclusion, new processes are prevented from using the resource if there are (or
were) three active users, and the last process to depart unblocks up to three waiting
processes.

a. The program is nevertheless incorrect. Explain why.
b. Suppose we change the if in line 6 to a while. Does this solve any problem in the

program? Do any difficulties remain?

252 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

 5.14 Now consider this correct solution to the preceding problem:

1 semaphore mutex = 1, block = 0; /* share variables: semaphores, */

2 int active = 0, waiting = 0; /* counters, and */

3 boolean must_wait = false; /* state information */

4

5 semWait(mutex); /* Enter the mutual exclusion */

6 if(must_wait) { /* If there are (or were) 3, then */

7 ++waiting; /* we must wait, but we must leave */

8 semSignal(mutex); /* the mutual exclusion first */

9 semWait(block); /* Wait for all current users to depart */

10 } else {

11 ++active; /* Update active count, and */

12 must_wait = active == 3; /* remember if the count reached 3 */

13 semSignal(mutex); /* Leave mutual exclusion */

14 }

15

16 /* critical section */

17

18 semWait(mutex); /* Enter mutual exclusion */

19 --active; /* and update the active count */

20 if(active == 0) { /* Last one to leave? */

21 int n;

22 if (waiting < 3) n = waiting;

23 else n = 3; /* If so, see how many processes to unblock */

24 waiting -= n; /* Deduct this number from waiting count */

25 active = n; /* and set active to this number */

26 while(n > 0) { /* Now unblock the processes */

27 semSignal(block); /* one by one */

28 --n;

29 }

30 must_wait = active == 3; /* Remember if the count is 3 */

31 }

32 semSignal(mutex); /* Leave the mutual exclusion */

a. Explain how this program works and why it is correct.
b. This solution does not completely prevent newly arriving processes from cutting

in line but it does make it less likely. Give an example of cutting in line.
c. This program is an example of a general design pattern that is a uniform way to

implement solutions to many concurrency problems using semaphores. It has been
referred to as the I’ll Do It For You pattern. Describe the pattern.

 5.15 Now consider another correct solution to the preceding problem:

1 semaphore mutex = 1, block = 0; /* share variables: semaphores, */

2 int active = 0, waiting = 0; /* counters, and */

3 boolean must_wait = false; /* state information */

4

5 semWait(mutex); /* Enter the mutual exclusion */

6 if(must_wait) { /* If there are (or were) 3, then */

7 ++waiting; /* we must wait, but we must leave */

8 semSignal(mutex); /* the mutual exclusion first */

9 semWait(block); /* Wait for all current users to depart */

10 --waiting; /* We’ve got the mutual exclusion; update count */

11 }

12 ++active; /* Update active count, and remember */

13 must_wait = active == 3; /* if the count reached 3 */

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 253

14 if(waiting > 0 && !must_wait) /* If there are others waiting */

15 semSignal(block);; /* and we don’t yet have 3 active, */

16 /* unblock a waiting process */

17 else semSignal(mutex); /* otherwise open the mutual exclusion */

18

19 /* critical section */

20

21 semWait(mutex); /* Enter mutual exclusion */

22 --active; /* and update the active count */

23 if(active == 0) /* If last one to leave? */

24 must_wait = false; /* set up to let new processes enter */

25 if(waiting == 0 && !must_wait) /* If there are others waiting */

26 semSignal(block);; /* and we don’t have 3 active, */

27 /* unblock a waiting process */

28 else semSignal(mutex); /* otherwise open the mutual exclusion */

a. Explain how this program works and why it is correct.
b. Does this solution differ from the preceding one in terms of the number of pro-

cesses that can be unblocked at a time? Explain.
c. This program is an example of a general design pattern that is a uniform way to

implement solutions to many concurrency problems using semaphores. It has been
referred to as the Pass The Baton pattern. Describe the pattern.

 5.16 It should be possible to implement general semaphores using binary semaphores. We
can use the operations semWaitB and semSignalB and two binary semaphores,
delay and mutex . Consider the following:

void semWait(semaphore s)
{

semWaitB(mutex);
s--;
if (s < 0) {

semSignalB(mutex);
semWaitB(delay);

}
else SemsignalB(mutex);

}
void semSignal(semaphore s);
{

semWaitB(mutex);
s++;
if (s <= 0)

semSignalB(delay);
semSignalB(mutex);

}

 Initially, s is set to the desired semaphore value. Each semWait operation decrements
s , and each semSignal operation increments s . The binary semaphore mutex, which
is initialized to 1, assures that there is mutual exclusion for the updating of s . The bi-
nary semaphore delay, which is initialized to 0, is used to block processes.

 There is a flaw in the preceding program. Demonstrate the flaw and propose a
change that will fix it. Hint: Suppose two processes each call semWait(s) when s is
initially 0, and after the first has just performed semSignalB(mutex) but not per-
formed semWaitB(delay) , the second call to semWait(s) proceeds to the same
point. All that you need to do is move a single line of the program.

 5.17 In 1978, Dijkstra put forward the conjecture that there was no solution to the mutual
exclusion problem avoiding starvation, applicable to an unknown but finite number
of processes, using a finite number of weak semaphores. In 1979, J. M. Morris refuted

254 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

this conjecture by publishing an algorithm using three weak semaphores. The behavior
of the algorithm can be described as follows: If one or several process are waiting in a
semWait(S) operation and another process is executing semSignal(S) , the value
of the semaphore S is not modified and one of the waiting processes is unblocked inde-
pendently of semWait(S) . Apart from the three semaphores, the algorithm uses two
nonnegative integer variables as counters of the number of processes in certain sections
of the algorithm. Thus, semaphores A and B are initialized to 1, while semaphore M
and counters NA and NM are initialized to 0. The mutual exclusion semaphore B pro-
tects access to the shared variable NA. A process attempting to enter its critical section
must cross two barriers represented by semaphores A and M. Counters NA and NM,
respectively, contain the number of processes ready to cross barrier A and those having
already crossed barrier A but not yet barrier M. In the second part of the protocol, the
NM processes blocked at M will enter their critical sections one by one, using a cascade
technique similar to that used in the first part. Define an algorithm that conforms to this
description.

 5.18 The following problem was once used on an exam:

 Jurassic Park consists of a dinosaur museum and a park for safari riding. There
are m passengers and n single-passenger cars. Passengers wander around the
museum for a while, then line up to take a ride in a safari car. When a car is
available, it loads the one passenger it can hold and rides around the park for a
random amount of time. If the n cars are all out riding passengers around, then
a passenger who wants to ride waits; if a car is ready to load but there are no
waiting passengers, then the car waits. Use semaphores to synchronize the m
passenger processes and the n car processes.

 The following skeleton code was found on a scrap of paper on the floor of the exam
room. Grade it for correctness. Ignore syntax and missing variable declarations.
 Remember that P and V correspond to semWait and semSignal .

 resource Jurassic_Park()
 sem car_avail := 0, car_taken := 0, car_filled := 0, passenger_released := 0
 process passenger(i := 1 to num_passengers)
 do true -> nap(int(random(1000*wander_time)))
 P(car_avail); V(car_taken); P(car_filled)
 P(passenger_released)
 od
 end passenger

 process car(j := 1 to num_cars)
 do true -> V(car_avail); P(car_taken); V(car_filled)
 nap(int(random(1000*ride_time)))
 V(passenger_released)
 od
 end car
 end Jurassic_Park

 5.19 In the commentary on Figure 5.9 and Table 5.4 , it was stated that “it would not do
simply to move the conditional statement inside the critical section (controlled by s)
of the consumer because this could lead to deadlock.” Demonstrate this with a table
similar to Table 5.4 .

 5.20 Consider the solution to the infinite-buffer producer/consumer problem defined in
 Figure 5.10 . Suppose we have the (common) case in which the producer and consumer
are running at roughly the same speed. The scenario could be:

 Producer: append; semSignal ; produce; … ; append; semSignal ; produce; …
 Consumer: consume; … ; take; semWait ; consume; … ; take; semWait ; …

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 255

 The producer always manages to append a new element to the buffer and signal
during the consumption of the previous element by the consumer. The producer is
always appending to an empty buffer and the consumer is always taking the sole item
in the buffer. Although the consumer never blocks on the semaphore, a large number
of calls to the semaphore mechanism is made, creating considerable overhead.

 Construct a new program that will be more efficient under these circumstances. Hints:
Allow n to have the value –1, which is to mean that not only is the buffer empty but
that the consumer has detected this fact and is going to block until the producer sup-
plies fresh data. The solution does not require the use of the local variable m found
in Figure 5.10 .

 5.21 Consider Figure 5.13 . Would the meaning of the program change if the following were
interchanged?
a. semWait(e) ; semWait(s)
b. semSignal(s) ; semSignal(n)
c. semWait(n) ; semWait(s)
d. semSignal(s) ; semSignal(e)

 5.22 The following pseudocode is a correct implementation of the producer/consumer
problem with a bounded buffer:

item[3] buffer; // initially empty
semaphore empty; // initialized to +3
semaphore full; // initialized to 0
binary_semaphore mutex; // initialized to 1

void producer() void consumer()
{ {
 … …
 while (true) { while (true) {
 item = produce(); c1: wait(full);
p1: wait(empty); / wait(mutex);
 / wait(mutex); c2: item = take();
p2: append(item); \ signal(mutex);
 \ signal(mutex); c3: signal(empty);
p3: signal(full); consume(item);
 } }
} }

 Labels p1, p2, p3 and c1, c2, c3 refer to the lines of code shown above (p2 and c2 each
cover three lines of code). Semaphores empty and full are linear semaphores that can
take unbounded negative and positive values. There are multiple producer processes,
referred to as Pa, Pb, Pc, etc., and multiple consumer processes, referred to as Ca, Cb,
Cc, etc. Each semaphore maintains a FIFO (first-in-first-out) queue of blocked pro-
cesses. In the scheduling chart below, each line represents the state of the buffer and
semaphores after the scheduled execution has occurred. To simplify, we assume that
scheduling is such that processes are never interrupted while executing a given por-
tion of code p1, or p2, …, or c3. Your task is to complete the following chart.

 Scheduled
Step of Execution

 full’s State and
Queue Buffer

 empty’s State
and Queue

 Initialization full = 0 OOO empty = +3
 Ca executes c1 full = –1 (Ca) OOO empty = +3
 Cb executes c1 full = –2 (Ca, Cb) OOO empty = +3

256 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

 Scheduled
Step of Execution

 full’s State and
Queue Buffer

 empty’s State
and Queue

 Pa executes p1 full = –2 (Ca, Cb) OOO empty = +2
 Pa executes p2 full = –2 (Ca, Cb) X OO empty = +2
 Pa executes p3 full = –1 (Cb) Ca X OO empty = +2
 Ca executes c2 full = –1 (Cb) OOO empty = +2
 Ca executes c3 full = –1 (Cb) OOO empty = +3
 Pb executes p1 full = empty =
 Pa executes p1 full = empty =
 Pa executes __ full = empty =
 Pb executes __ full = empty =
 Pb executes __ full = empty =
 Pc executes p1 full = empty =
 Cb executes __ full = empty =
 Pc executes __ full = empty =
 Cb executes __ full = empty =
 Pa executes __ full = empty =

 Pb executes p1-p3 full = empty =
 Pc executes __ full = empty =
 Pa executes p1 full = empty =
 Pd executes p1 full = empty =

 Ca executes c1-c3 full = empty =
 Pa executes __ full = empty =

 Cc executes c1-c2 full = empty =
 Pa executes __ full = empty =
 Cc executes c3 full = empty =

 Pd executes p2-p3 full = empty =

 5.23 This problem demonstrates the use of semaphores to coordinate three types of pro-
cesses. 6 Santa Claus sleeps in his shop at the North Pole and can only be wakened by
either (1) all nine reindeer being back from their vacation in the South Pacific, or (2)
some of the elves having difficulties making toys; to allow Santa to get some sleep,
the elves can only wake him when three of them have problems. When three elves
are having their problems solved, any other elves wishing to visit Santa must wait for
those elves to return. If Santa wakes up to find three elves waiting at his shop’s door,
along with the last reindeer having come back from the tropics, Santa has decided that
the elves can wait until after Christmas, because it is more important to get his sleigh
ready. (It is assumed that the reindeer do not want to leave the tropics, and therefore
they stay there until the last possible moment.) The last reindeer to arrive must get
Santa while the others wait in a warming hut before being harnessed to the sleigh.
Solve this problem using semaphores.

 5.24 Show that message passing and semaphores have equivalent functionality by
a. Implementing message passing using semaphores. Hint: Make use of a shared

 buffer area to hold mailboxes, each one consisting of an array of message slots.
b. Implementing a semaphore using message passing. Hint: Introduce a separate

 synchronization process.

6 I am grateful to John Trono of St. Michael’s College in Vermont for supplying this problem.

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 257

 5.25 Explain what is the problem with this implementation of the one-writer many-readers
problem?

int readcount; // shared and initialized to 0

Semaphore mutex, wrt; // shared and initialized to 1;

// Writer : // Readers :

semWait(mutex);

readcount := readcount + 1;

semWait(wrt); if readcount == 1 then semWait(wrt);

/* Writing performed*/ semSignal(mutex);

semSignal(wrt); /*reading performed*/

semWait(mutex);

readcount := readcount - 1;

if readcount == 0 then Up(wrt);

semSignal(mutex);

 6.1 Principles of Deadlock
 Reusable Resources
 Consumable Resources
 Resource Allocation Graphs
 The Conditions for Deadlock

 6.2 Deadlock Prevention
 Mutual Exclusion
 Hold and Wait
 No Preemption
 Circular Wait

 6.3 Deadlock Avoidance
 Process Initiation Denial
 Resource Allocation Denial

 6.4 Deadlock Detection
 Deadlock Detection Algorithm
 Recovery

 6.5 An Integrated Deadlock Strategy

 6.6 Dining Philosophers Problem
 Solution Using Semaphores
 Solution Using a Monitor

 6.7 UNIX Concurrency Mechanisms

 6.8 Linux Kernel Concurrency Mechanisms

 6.9 Solaris Thread Synchronization Primitives

 6.10 Windows 7 Concurrency Mechanisms

 6.11 Summary

 6.12 Recommended Reading

 6.13 Key Terms, Review Questions, and Problems

CONCURRENCY: DEADLOCK
AND STARVATION

CHAPTER

258

6.1 / PRINCIPLES OF DEADLOCK 259

 When two trains approach each other at a crossing, both shall come
to a full stop and neither shall start up again until the other has gone.

STATUTE PASSED BY THE KANSAS STATE LEGISLATURE, EARLY IN THE 20TH CENTURY

—A TREASURY OF RAILROAD FOLKLORE ,
B. A. Botkin and Alvin F. Harlow

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

• List and explain the conditions for deadlock.
• Define deadlock prevention and describe deadlock prevention strategies

related to each of the conditions for deadlock.
• Explain the difference between deadlock prevention and deadlock avoidance.
• Understand two approaches to deadlock avoidance.
• Explain the fundamental difference in approach between deadlock detection

and deadlock prevention or avoidance.
• Understand how an integrated deadlock strategy can be designed.
• Analyze the dining philosophers problem.
• Explain the concurrency and synchronization methods used in UNIX, Linux,

Solaris, and Windows 7.

 This chapter examines two problems that plague all efforts to support concurrent
processing: deadlock and starvation. We begin with a discussion of the underlying
principles of deadlock and the related problem of starvation. Then we examine
the three common approaches to dealing with deadlock: prevention, detection,
and avoidance. We then look at one of the classic problems used to illustrate
both synchronization and deadlock issues: the dining philosophers problem.

 As with Chapter 5 , the discussion in this chapter is limited to a consideration
of concurrency and deadlock on a single system. Measures to deal with distributed
deadlock problems are assessed in Chapter 18 . An animation illustrating deadlock
is available online. Click on the rotating globe at WilliamStallings.com/OS/OS7e.
html for access.

6.1 PRINCIPLES OF DEADLOCK

 Deadlock can be defined as the permanent blocking of a set of processes that either
compete for system resources or communicate with each other. A set of processes
is deadlocked when each process in the set is blocked awaiting an event (typically
the freeing up of some requested resource) that can only be triggered by another
blocked process in the set. Deadlock is permanent because none of the events is
ever triggered. Unlike other problems in concurrent process management, there is
no efficient solution in the general case.

260 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

 All deadlocks involve conflicting needs for resources by two or more proc-
esses. A common example is the traffic deadlock. Figure 6.1a shows a situation in
which four cars have arrived at a four-way stop intersection at approximately the
same time. The four quadrants of the intersection are the resources over which con-
trol is needed. In particular, if all four cars wish to go straight through the intersec-
tion, the resource requirements are as follows:

 • Car 1, traveling north, needs quadrants a and b.

 • Car 2 needs quadrants b and c.

 • Car 3 needs quadrants c and d.

 • Car 4 needs quadrants d and a.

 The rule of the road in the United States is that a car at a four-way stop should
defer to a car immediately to its right. This rule works if there are only two or three
cars at the intersection. For example, if only the northbound and westbound cars
arrive at the intersection, the northbound car will wait and the westbound car pro-
ceeds. However, if all four cars arrive at about the same time and all four follow the
rule, each will refrain from entering the intersection. This causes a potential deadlock.
It is only a potential deadlock, because the necessary resources are available for any
of the cars to proceed. If one car eventually chooses to proceed, it can do so.

 However, if all four cars ignore the rules and proceed (cautiously) into the
intersection at the same time, then each car seizes one resource (one quadrant) but
cannot proceed because the required second resource has already been seized by
another car. This is an actual deadlock.

 Let us now look at a depiction of deadlock involving processes and com-
puter resources. Figure 6.2 (based on one in [BACO03]), which we refer to as a
joint progress diagram , illustrates the progress of two processes competing for two

c b

d a

(a) Deadlock possible (b) Deadlock

4 4

1

1

3

32 2

Figure 6.1 Illustration of Deadlock

6.1 / PRINCIPLES OF DEADLOCK 261

resources. Each process needs exclusive use of both resources for a certain period of
time. Two processes, P and Q, have the following general form:

 Process P Process Q
 • • • • • •
 Get A Get B
 • • • • • •
 Get B Get A
 • • • • • •
 Release A Release B
 • • • • • •
 Release B Release A
 • • • • • •

 In Figure 6.2 , the x -axis represents progress in the execution of P and the y -axis
represents progress in the execution of Q. The joint progress of the two processes
is therefore represented by a path that progresses from the origin in a northeasterly
direction. For a uniprocessor system, only one process at a time may execute, and
the path consists of alternating horizontal and vertical segments, with a horizontal

Progress
of Q

Progress
of PGet A

Get A

Get B

Get B

B Required

A
Required

A
Required

Release A

Release
A

Release B

Release
B

Deadlock
inevitable

P and Q
want A

P and Q
want B

1 2

3

4

5

6

� Possible progress path of P and Q.
 Horizontal portion of path indicates P is executing and Q is waiting.
 Vertical portion of path indicates Q is executing and P is waiting.

� Both P and Q want resource A

� Both P and Q want resource B

� Deadlock-inevitable region

B
Required

 Figure 6.2 Example of Deadlock

262 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

segment representing a period when P executes and Q waits and a vertical segment
representing a period when Q executes and P waits. The figure indicates areas in
which both P and Q require resource A (upward slanted lines); both P and Q require
resource B (downward slanted lines); and both P and Q require both resources.
Because we assume that each process requires exclusive control of any resource,
these are all forbidden regions; that is, it is impossible for any path representing the
joint execution progress of P and Q to enter these regions.

 The figure shows six different execution paths. These can be summarized as
follows:

 1. Q acquires B and then A and then releases B and A. When P resumes execution,
it will be able to acquire both resources.

 2. Q acquires B and then A. P executes and blocks on a request for A. Q releases
B and A. When P resumes execution, it will be able to acquire both resources.

 3. Q acquires B and then P acquires A. Deadlock is inevitable, because as execution
proceeds, Q will block on A and P will block on B.

 4. P acquires A and then Q acquires B. Deadlock is inevitable, because as execu-
tion proceeds, Q will block on A and P will block on B.

 5. P acquires A and then B. Q executes and blocks on a request for B. P releases
A and B. When Q resumes execution, it will be able to acquire both resources.

 6. P acquires A and then B and then releases A and B. When Q resumes execution,
it will be able to acquire both resources.

 The gray-shaded area of Figure 6.2 , which can be referred to as a fatal region ,
applies to the commentary on paths 3 and 4. If an execution path enters this fatal
region, then deadlock is inevitable. Note that the existence of a fatal region depends
on the logic of the two processes. However, deadlock is only inevitable if the joint
progress of the two processes creates a path that enters the fatal region.

 Whether or not deadlock occurs depends on both the dynamics of the execu-
tion and on the details of the application. For example, suppose that P does not need
both resources at the same time so that the two processes have the following form:

 Process P Process Q
 • • • • • •
 Get A Get B
 • • • • • •
 Release A Get A
 • • • • • •
 Get B Release B
 • • • • • •
 Release B Release A
 • • • • • •

 This situation is reflected in Figure 6.3 . Some thought should convince you that
regardless of the relative timing of the two processes, deadlock cannot occur.

 As shown, the joint progress diagram can be used to record the execution his-
tory of two processes that share resources. In cases where more than two processes

6.1 / PRINCIPLES OF DEADLOCK 263

may compete for the same resource, a higher-dimensional diagram would be
required. The principles concerning fatal regions and deadlock would remain
the same.

 Reusable Resources

 Two general categories of resources can be distinguished: reusable and consumable.
A reusable resource is one that can be safely used by only one process at a time and
is not depleted by that use. Processes obtain resource units that they later release
for reuse by other processes. Examples of reusable resources include processors;
I/O channels; main and secondary memory; devices; and data structures such as
files, databases, and semaphores.

 As an example of deadlock involving reusable resources, consider two
 processes that compete for exclusive access to a disk file D and a tape drive T. The
programs engage in the operations depicted in Figure 6.4 . Deadlock occurs if each
process holds one resource and requests the other. For example, deadlock occurs
if the multiprogramming system interleaves the execution of the two processes as
follows:

 p 0 p 1 q 0 q 1 p 2 q 2

Progress
of PGet A Get B

A Required B Required

� Both P and Q want resource A

� Both P and Q want resource B

Release A Release B

1 2 3

4

5

6

P and Q
want A

P and Q
want B

� Possible progress path of P and Q.
 Horizontal portion of path indicates P is executing and Q is waiting.
 Vertical portion of path indicates Q is executing and P is waiting.

Progress
of Q

Get A

Get B

A
Required

Release
A

Release
B

B
Required

 Figure 6.3 Example of No Deadlock [BACO03]

264 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

 It may appear that this is a programming error rather than a problem for the OS
designer. However, we have seen that concurrent program design is challenging.
Such deadlocks do occur, and the cause is often embedded in complex program
logic, making detection difficult. One strategy for dealing with such a deadlock is
to impose system design constraints concerning the order in which resources can be
requested.

 Another example of deadlock with a reusable resource has to do with requests
for main memory. Suppose the space available for allocation is 200 Kbytes, and the
following sequence of requests occurs:

 P1 P2

 … …
 Request 80 Kbytes; Request 70 Kbytes;
 … …
 Request 60 Kbytes; Request 80 Kbytes;

 Deadlock occurs if both processes progress to their second request. If the
amount of memory to be requested is not known ahead of time, it is difficult to deal
with this type of deadlock by means of system design constraints. The best way to
deal with this particular problem is, in effect, to eliminate the possibility by using
virtual memory, which is discussed in Chapter 8 .

Consumable Resources

 A consumable resource is one that can be created (produced) and destroyed (con-
sumed). Typically, there is no limit on the number of consumable resources of a
particular type. An unblocked producing process may create any number of such
resources. When a resource is acquired by a consuming process, the resource ceases
to exist. Examples of consumable resources are interrupts, signals, messages, and
information in I/O buffers.

Figure 6.4 Example of Two Processes Competing for Reusable Resources

 Step Process P Action Step Process Q Action

 p0 Request (D) q0 Request (T)
 p1 Lock (D) q1 Lock (T)
 p2 Request (T) q2 Request (D)
 p3 Lock (T) q3 Lock (D)
 p4 Perform function q4 Perform function
 p5 Unlock (D) q5 Unlock (T)
 p6 Unlock (T) q6 Unlock (D)

6.1 / PRINCIPLES OF DEADLOCK 265

 As an example of deadlock involving consumable resources, consider the
following pair of processes, in which each process attempts to receive a message
from the other process and then send a message to the other process:

 P1 P2

 … …
 Receive (P2); Receive (P1);
 … …
 Send (P2, M1); Send (P1, M2);

 Deadlock occurs if the Receive is blocking (i.e., the receiving process is
blocked until the message is received). Once again, a design error is the cause of
the deadlock. Such errors may be quite subtle and difficult to detect. Furthermore,
it may take a rare combination of events to cause the deadlock; thus a program

Table 6.1 Summary of Deadlock Detection, Prevention, and Avoidance Approaches for Operating
Systems [ISLO80]

Approach

 Resource
Allocation
Policy

Different
Schemes Major Advantages Major Disadvantages

 Requesting all
resources at
once

 • Works well for processes
that perform a single
burst of activity

 • No preemption necessary

 • Inefficient
 • Delays process initiation
 • Future resource require-

ments must be known by
processes

 Prevention Conservative;
undercommits
resources

 Preemption • Convenient when
applied to resources
whose state can be saved
and restored easily

 • Preempts more often
than necessary

 Resource
ordering

 • Feasible to enforce via
compile-time checks

 • Needs no run-time com-
putation since problem is
solved in system design

 • Disallows incremental
resource requests

 Avoidance Midway
between that
of detection
and prevention

 Manipulate to
find at least
one safe path

 • No preemption
necessary

 • Future resource require-
ments must be known
by OS

 • Processes can be blocked
for long periods

 Detection Very liberal;
requested
resources are
granted where
possible

 Invoke peri-
odically to
test for
deadlock

 • Never delays process
initiation

 • Facilitates online
handling

 • Inherent preemption
losses

266 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

could be in use for a considerable period of time, even years, before the deadlock
actually occurs.

 There is no single effective strategy that can deal with all types of deadlock.
 Table 6.1 summarizes the key elements of the most important approaches that have
been developed: prevention, avoidance, and detection. We examine each of these
in turn, after first introducing resource allocation graphs and then discussing the
conditions for deadlock.

Resource Allocation Graphs

 A useful tool in characterizing the allocation of resources to processes is the
resource allocation graph , introduced by Holt [HOLT72]. The resource allocation
graph is a directed graph that depicts a state of the system of resources and pro-
cesses, with each process and each resource represented by a node. A graph edge
directed from a process to a resource indicates a resource that has been requested
by the process but not yet granted (Figure 6.5a). Within a resource node, a dot is
shown for each instance of that resource. Examples of resource types that may have
multiple instances are I/O devices that are allocated by a resource management
module in the OS. A graph edge directed from a reusable resource node dot to a
process indicates a request that has been granted (Figure 6.5b); that is, the process

Rb

Ra

Ra

(c) Circular wait

(a) Resource is requested

Rb

Ra

(d) No deadlock

Ra

(b) Resource is held

Requests Held by

Req
uest

s
Held by

Req
uest

sHeld by

Req
uest

s
Held by

Req
uest

sHeld by

P1

P1

P1

P2 P1 P2

Figure 6.5 Examples of Resource Allocation Graphs

6.1 / PRINCIPLES OF DEADLOCK 267

has been assigned one unit of that resource. A graph edge directed from a consum-
able resource node dot to a process indicates that the process is the producer of that
resource.

 Figure 6.5c shows an example deadlock. There is only one unit each of
resources Ra and Rb. Process P1 holds Rb and requests Ra, while P2 holds Ra but
requests Rb. Figure 6.5d has the same topology as Figure 6.5c , but there is no dead-
lock because multiple units of each resource are available.

 The resource allocation graph of Figure 6.6 corresponds to the deadlock situa-
tion in Figure 6.1b . Note that in this case, we do not have a simple situation in which
two processes each have one resource the other needs. Rather, in this case, there is
a circular chain of processes and resources that results in deadlock.

The Conditions for Deadlock

 Three conditions of policy must be present for a deadlock to be possible:

 1. Mutual exclusion. Only one process may use a resource at a time. No process
may access a resource unit that has been allocated to another process.

 2. Hold and wait. A process may hold allocated resources while awaiting assign-
ment of other resources.

 3. No preemption. No resource can be forcibly removed from a process holding it.

 In many ways these conditions are quite desirable. For example, mutual
exclusion is needed to ensure consistency of results and the integrity of a data-
base. Similarly, preemption should not be done arbitrarily. For example, when data
resources are involved, preemption must be supported by a rollback recovery mech-
anism, which restores a process and its resources to a suitable previous state from
which the process can eventually repeat its actions.

 The first three conditions are necessary but not sufficient for a deadlock to
exist. For deadlock to actually take place, a fourth condition is required:

 4. Circular wait. A closed chain of processes exists, such that each process holds
at least one resource needed by the next process in the chain (e.g., Figure 6.5c
and Figure 6.6).

Ra Rb Rc Rd

P1 P2 P3 P4

Figure 6.6 Resource Allocation Graph for Figure 6.1b

268 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

 The fourth condition is, actually, a potential consequence of the first three.
That is, given that the first three conditions exist, a sequence of events may occur
that lead to an unresolvable circular wait. The unresolvable circular wait is in fact
the definition of deadlock. The circular wait listed as condition 4 is unresolvable
because the first three conditions hold. Thus, the four conditions, taken together,
constitute necessary and sufficient conditions for deadlock. 1

 To clarify this discussion, it is useful to return to the concept of the joint
progress diagram, such as the one shown in Figure 6.2 . Recall that we defined a
fatal region as one such that once the processes have progressed into that region,
those processes will deadlock. A fatal region exists only if all of the first three con-
ditions listed above are met. If one or more of these conditions are not met, there
is no fatal region and deadlock cannot occur. Thus, these are necessary conditions
for deadlock. For deadlock to occur, there must not only be a fatal region, but
also a sequence of resource requests that has led into the fatal region. If a circular
wait condition occurs, then in fact the fatal region has been entered. Thus, all four
 conditions listed above are sufficient for deadlock. To summarize,

 Possibility of Deadlock Existence of Deadlock

1. Mutual exclusion
2. No preemption
3. Hold and wait

1. Mutual exclusion
2. No preemption
3. Hold and wait
4. Circular wait

 Three general approaches exist for dealing with deadlock. First, one can
prevent deadlock by adopting a policy that eliminates one of the conditions
 (conditions 1 through 4). Second, one can avoid deadlock by making the appropri-
ate dynamic choices based on the current state of resource allocation. Third, one
can attempt to detect the presence of deadlock (conditions 1 through 4 hold) and
take action to recover. We discuss each of these approaches in turn.

6.2 DEADLOCK PREVENTION

 The strategy of deadlock prevention is, simply put, to design a system in such a
way that the possibility of deadlock is excluded. We can view deadlock prevention
methods as falling into two classes. An indirect method of deadlock prevention
is to prevent the occurrence of one of the three necessary conditions listed previ-
ously (items 1 through 3). A direct method of deadlock prevention is to prevent the
occurrence of a circular wait (item 4). We now examine techniques related to each
of the four conditions.

1 Virtually all textbooks simply list these four conditions as the conditions needed for deadlock, but such
a presentation obscures some of the subtler issues. Item 4, the circular wait condition, is fundamentally
different from the other three conditions. Items 1 through 3 are policy decisions, while item 4 is a circum-
stance that might occur depending on the sequencing of requests and releases by the involved processes.
Linking circular wait with the three necessary conditions leads to inadequate distinction between preven-
tion and avoidance. See [SHUB90] and [SHUB03] for a discussion.

6.2 / DEADLOCK PREVENTION 269

Mutual Exclusion

 In general, the first of the four listed conditions cannot be disallowed. If access to
a resource requires mutual exclusion, then mutual exclusion must be supported by
the OS. Some resources, such as files, may allow multiple accesses for reads but
only exclusive access for writes. Even in this case, deadlock can occur if more than
one process requires write permission.

Hold and Wait

 The hold-and-wait condition can be prevented by requiring that a process request
all of its required resources at one time and blocking the process until all requests
can be granted simultaneously. This approach is inefficient in two ways. First, a
process may be held up for a long time waiting for all of its resource requests to be
filled, when in fact it could have proceeded with only some of the resources. Second,
resources allocated to a process may remain unused for a considerable period,
 during which time they are denied to other processes. Another problem is that a
process may not know in advance all of the resources that it will require.

 There is also the practical problem created by the use of modular program-
ming or a multithreaded structure for an application. An application would need
to be aware of all resources that will be requested at all levels or in all modules to
make the simultaneous request.

No Preemption

 This condition can be prevented in several ways. First, if a process holding certain
resources is denied a further request, that process must release its original resources
and, if necessary, request them again together with the additional resource.
Alternatively, if a process requests a resource that is currently held by another pro-
cess, the OS may preempt the second process and require it to release its resources.
This latter scheme would prevent deadlock only if no two processes possessed the
same priority.

 This approach is practical only when applied to resources whose state can be
easily saved and restored later, as is the case with a processor.

Circular Wait

 The circular-wait condition can be prevented by defining a linear ordering of
resource types. If a process has been allocated resources of type R , then it may
 subsequently request only those resources of types following R in the ordering.

 To see that this strategy works, let us associate an index with each resource
type. Then resource Ri precedes Rj in the ordering if i < j . Now suppose that two
processes, A and B, are deadlocked because A has acquired Ri and requested Rj ,
and B has acquired Rj and requested Ri . This condition is impossible because it
implies i < j and j < i .

 As with hold-and-wait prevention, circular-wait prevention may be inefficient,
slowing down processes and denying resource access unnecessarily.

270 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

6.3 DEADLOCK AVOIDANCE

 An approach to solving the deadlock problem that differs subtly from deadlock
prevention is deadlock avoidance. 2 In deadlock prevention , we constrain resource
requests to prevent at least one of the four conditions of deadlock. This is either
done indirectly, by preventing one of the three necessary policy conditions (mutual
exclusion, hold and wait, no preemption), or directly, by preventing circular wait.
This leads to inefficient use of resources and inefficient execution of processes.
Deadlock avoidance , on the other hand, allows the three necessary conditions but
makes judicious choices to assure that the deadlock point is never reached. As such,
avoidance allows more concurrency than prevention. With deadlock avoidance, a
decision is made dynamically whether the current resource allocation request will,
if granted, potentially lead to a deadlock. Deadlock avoidance thus requires knowl-
edge of future process resource requests.

 In this section, we describe two approaches to deadlock avoidance:

 • Do not start a process if its demands might lead to deadlock.

 • Do not grant an incremental resource request to a process if this allocation
might lead to deadlock.

Process Initiation Denial

 Consider a system of n processes and m different types of resources. Let us define
the following vectors and matrices:

2 The term avoidance is a bit confusing. In fact, one could consider the strategies discussed in this
 section to be examples of deadlock prevention because they indeed prevent the occurrence of a
 deadlock.

 Resource = R = (R1,R2,c ,Rm) Total amount of each resource in the system

 Available = V = (V1,V2,c ,Vm) Total amount of each resource not allocated to any process

 Claim = C = •C11 C12 c C1m

C21 C22 c C2m

f f f f

Cn1 Cn2 c Cnm

μ C ij = requirement of process i for resource j

 Allocation = A = •A11 A12 c A1m

A21 A22 c A2m

f f f f

An1 An2 c Anm

μ
 A ij = current allocation to process i of resource j

 The matrix Claim gives the maximum requirement of each process for
each resource, with one row dedicated to each process. This information must be

6.3 / DEADLOCK AVOIDANCE 271

declared in advance by a process for deadlock avoidance to work. Similarly, the
matrix Allocation gives the current allocation to each process. The following rela-
tionships hold:

1. Rj = Vj + a
n

i=1
Aij, for all j All resources are either available or allocated.

2. Cij … Rj, for all i,j No process can claim more than the total
amount of resources in the system.

 3. Aij … Cij, for all i,j No process is allocated more resources of any
type than the process originally claimed to need.

 With these quantities defined, we can define a deadlock avoidance policy that
refuses to start a new process if its resource requirements might lead to deadlock.
Start a new process Pn+1 only if

Rj Ú C(n+1)j + a
n

i=1
Cij for all j

 That is, a process is only started if the maximum claim of all current processes plus
those of the new process can be met. This strategy is hardly optimal, because it
assumes the worst: that all processes will make their maximum claims together.

Resource Allocation Denial

 The strategy of resource allocation denial, referred to as the banker’s algorithm , 3

was first proposed in [DIJK65]. Let us begin by defining the concepts of state and
safe state. Consider a system with a fixed number of processes and a fixed number
of resources. At any time a process may have zero or more resources allocated to it.
The state of the system reflects the current allocation of resources to processes. Thus,
the state consists of the two vectors, Resource and Available, and the two matrices,
Claim and Allocation, defined earlier. A safe state is one in which there is at least
one sequence of resource allocations to processes that does not result in a deadlock
(i.e., all of the processes can be run to completion). An unsafe state is, of course, a
state that is not safe.

 The following example illustrates these concepts. Figure 6.7a shows the
state of a system consisting of four processes and three resources. The total
amount of resources R1, R2, and R3 are 9, 3, and 6 units, respectively. In the cur-
rent state allocations have been made to the four processes, leaving 1 unit of R2

3 Dijkstra used this name because of the analogy of this problem to one in banking, with customers who
wish to borrow money corresponding to processes and the money to be borrowed corresponding to
resources. Stated as a banking problem, the bank has a limited reserve of money to lend and a list of
customers, each with a line of credit. A customer may choose to borrow against the line of credit a por-
tion at a time, and there is no guarantee that the customer will make any repayment until after having
taken out the maximum amount of loan. The banker can refuse a loan to a customer if there is a risk
that the bank will have insufficient funds to make further loans that will permit the customers to repay
eventually.

272 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

R1 R2 R3

P1 3 2 2
P2 6 1 3
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3

P1 1 0 0
P2 6 1 2
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3

P1 2 2 2
P2 0 0 1
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3

9 3 6

Available vector V

R1 R2 R3

0 1 1

(a) Initial state

R1 R2 R3

P1 3 2 2
P2 0 0 0
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3

P1 1 0 0
P2 0 0 0
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3

P1 2 2 2
P2 0 0 0
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3

9 3 6

Available vector V

R1 R2 R3

6 2 3

(b) P2 runs to completion

R1 R2 R3

P1 0 0 0
P2 0 0 0
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3

P1 0 0 0
P2 0 0 0
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3

P1 0 0 0
P2 0 0 0
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3

9 3 6

Available vector V

R1 R2 R3

7 2 3

(c) P1 runs to completion

R1 R2 R3

P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 4 2 2

Claim matrix C

R1 R2 R3

P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 0 0 2

Allocation matrix A

R1 R2 R3

P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 4 2 0

C – A

Resource vector R

R1 R2 R3

9 3 6

Available vector V

R1 R2 R3

9 3 4

(d) P3 runs to completion

Figure 6.7 Determination of a Safe State

6.3 / DEADLOCK AVOIDANCE 273

and 1 unit of R3 available. Is this a safe state? To answer this question, we ask an
intermediate question: Can any of the four processes be run to completion with
the resources available? That is, can the difference between the maximum require-
ment and current allocation for any process be met with the available resources?
In terms of the matrices and vectors introduced earlier, the condition to be met
for process i is:

Cij - Aij … Vj, for all j

 Clearly, this is not possible for P1, which has only 1 unit of R1 and requires 2
more units of R1, 2 units of R2, and 2 units of R3. However, by assigning one unit of
R3 to process P2, P2 has its maximum required resources allocated and can run to
completion. Let us assume that this is accomplished. When P2 completes, its resources
can be returned to the pool of available resources. The resulting state is shown in
 Figure 6.7b . Now we can ask again if any of the remaining processes can be completed.
In this case, each of the remaining processes could be completed. Suppose we choose
P1, allocate the required resources, complete P1, and return all of P1’s resources to the
available pool. We are left in the state shown in Figure 6.7c . Next, we can complete
P3, resulting in the state of Figure 6.7d . Finally, we can complete P4. At this point, all
of the processes have been run to completion. Thus, the state defined by Figure 6.7a
is a safe state.

 These concepts suggest the following deadlock avoidance strategy, which
ensures that the system of processes and resources is always in a safe state. When a
process makes a request for a set of resources, assume that the request is granted,
update the system state accordingly, and then determine if the result is a safe state.
If so, grant the request and, if not, block the process until it is safe to grant the
request.

 Consider the state defined in Figure 6.8a . Suppose P2 makes a request for
one additional unit of R1 and one additional unit of R3. If we assume the request
is granted, then the resulting state is that of Figure 6.7a . We have already seen that
this is a safe state; therefore, it is safe to grant the request. Now let us return to
the state of Figure 6.8a and suppose that P1 makes the request for one additional
unit each of R1 and R3; if we assume that the request is granted, we are left in the
state of Figure 6.8b . Is this a safe state? The answer is no, because each process
will need at least one additional unit of R1, and there are none available. Thus, on
the basis of deadlock avoidance, the request by P1 should be denied and P1 should
be blocked.

 It is important to point out that Figure 6.8b is not a deadlocked state. It merely
has the potential for deadlock. It is possible, for example, that if P1 were run from
this state it would subsequently release one unit of R1 and one unit of R3 prior
to needing these resources again. If that happened, the system would return to a
safe state. Thus, the deadlock avoidance strategy does not predict deadlock with
certainty; it merely anticipates the possibility of deadlock and assures that there is
never such a possibility.

274 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

 Figure 6.9 gives an abstract version of the deadlock avoidance logic. The
main algorithm is shown in part (b). With the state of the system defined by the
data structure state , request[*] is a vector defining the resources requested
by process i . First, a check is made to assure that the request does not exceed the
original claim of the process. If the request is valid, the next step is to determine if
it is possible to fulfill the request (i.e., there are sufficient resources available). If
it is not possible, then the process is suspended. If it is possible, the final step is to
determine if it is safe to fulfill the request. To do this, the resources are tentatively
assigned to process i to form newstate . Then a test for safety is made using the
algorithm in Figure 6.9c .

 Deadlock avoidance has the advantage that it is not necessary to preempt and
rollback processes, as in deadlock detection, and is less restrictive than deadlock
prevention. However, it does have a number of restrictions on its use:

 • The maximum resource requirement for each process must be stated in
 advance.

 • The processes under consideration must be independent; that is, the order
in which they execute must be unconstrained by any synchronization
 requirements.

 • There must be a fixed number of resources to allocate.

 • No process may exit while holding resources.

R1 R2 R3

P1 3 2 2
P2 6 1 3
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3

P1 1 0 0
P2 5 1 1
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3

P1 2 2 2
P2 1 0 2
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3

9 3 6

Available vector V

R1 R2 R3

1 1 2

(a) Initial state

R1 R2 R3

P1 3 2 2
P2 6 1 3
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3

P1 2 0 1
P2 5 1 1
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3

P1 1 2 1
P2 1 0 2
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3

9 3 6

Available vector V

R1 R2 R3

0 1 1

(b) P1 requests one unit each of R1 and R3

Figure 6.8 Determination of an Unsafe State

6.3 / DEADLOCK AVOIDANCE 275

Figure 6.9 Deadlock Avoidance Logic

struct state {
int resource[m];
int available[m];
int claim[n][m];
int alloc[n][m];

}

if (alloc [i,*] + request [*] > claim [i,*])
 <error>; /* total request > claim*/

else if (request [*] > available [*])
 <suspend process>;

else { /* simulate alloc */
 <define newstate by:
 alloc [i,*] = alloc [i,*] + request [*];
 available [*] = available [*] - request [*]>;

}
if (safe (newstate))
 <carry out allocation>;

else {
 <restore original state>;
 <suspend process>;

}

boolean safe (state S) {
int currentavail[m];
process rest[<number of processes>];
currentavail = available;
rest = {all processes};
possible = true;
while (possible) {
 <find a process Pk in rest such that

 claim [k,*] – alloc [k,*]<= currentavail;
if (found) { /* simulate execution of Pk */

 currentavail = currentavail + alloc [k,*];
 rest = rest - {Pk};
 }
else possible = false;

}
return (rest == null);

}

 (a) Global data structures

 (b) Resource alloc algorithm

 (c) Test for safety algorithm (banker’s algorithm)

276 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

6.4 DEADLOCK DETECTION

 Deadlock prevention strategies are very conservative; they solve the problem
of deadlock by limiting access to resources and by imposing restrictions on pro-
cesses. At the opposite extreme, deadlock detection strategies do not limit resource
access or restrict process actions. With deadlock detection, requested resources are
granted to processes whenever possible. Periodically, the OS performs an algorithm
that allows it to detect the circular wait condition described earlier in condition (4)
and illustrated in Figure 6.6 .

Deadlock Detection Algorithm

 A check for deadlock can be made as frequently as each resource request or,
less frequently, depending on how likely it is for a deadlock to occur. Checking
at each resource request has two advantages: It leads to early detection, and the
algorithm is relatively simple because it is based on incremental changes to the
state of the system. On the other hand, such frequent checks consume consider-
able processor time.

 A common algorithm for deadlock detection is one described in [COFF71].
The Allocation matrix and Available vector described in the previous section are
used. In addition, a request matrix Q is defined such that Qij represents the amount
of resources of type j requested by process i . The algorithm proceeds by marking
processes that are not deadlocked. Initially, all processes are unmarked. Then the
following steps are performed:

 1. Mark each process that has a row in the Allocation matrix of all zeros.

 2. Initialize a temporary vector W to equal the Available vector.

 3. Find an index i such that process i is currently unmarked and the i th row of Q
is less than or equal to W . That is, Qik … Wk, for 1 … k … m . If no such row is
found, terminate the algorithm.

 4. If such a row is found, mark process i and add the corresponding row of the
allocation matrix to W . That is, set Wk = Wk + Aik, for 1 … k … m . Return
to step 3.

 A deadlock exists if and only if there are unmarked processes at the end of
the algorithm. Each unmarked process is deadlocked. The strategy in this algo-
rithm is to find a process whose resource requests can be satisfied with the available
resources, and then assume that those resources are granted and that the process
runs to completion and releases all of its resources. The algorithm then looks for
another process to satisfy. Note that this algorithm does not guarantee to prevent
deadlock; that will depend on the order in which future requests are granted. All
that it does is determine if deadlock currently exists.

 We can use Figure 6.10 to illustrate the deadlock detection algorithm. The
algorithm proceeds as follows:

 1. Mark P4, because P4 has no allocated resources.

 2. Set W = (0 0 0 0 1).

6.4 / DEADLOCK DETECTION 277

R1 R2 R3 R4 R5

P1 0 1 0 0 1

P2 0 0 1 0 1

P3 0 0 0 0 1

P4 1 0 1 0 1

Request matrix Q

R1 R2 R3 R4 R5

P1 1 0 1 1 0

P2 1 1 0 0 0

P3 0 0 0 1 0

P4 0 0 0 0 0

Allocation matrix A

R1 R2 R3 R4 R5

2 1 1 2 1

Resource vector

R1 R2 R3 R4 R5

0 0 0 0 1

Available vector

Figure 6.10 Example for Deadlock Detection

 3. The request of process P3 is less than or equal to W , so mark P3 and set

W = W + (0 0 0 1 0) = (0 0 0 1 1).

 4. No other unmarked process has a row in Q that is less than or equal to W .
Therefore, terminate the algorithm.

 The algorithm concludes with P1 and P2 unmarked, indicating that these
processes are deadlocked.

Recovery

 Once deadlock has been detected, some strategy is needed for recovery. The follow-
ing are possible approaches, listed in order of increasing sophistication:

 1. Abort all deadlocked processes. This is, believe it or not, one of the most
 common, if not the most common, solution adopted in operating systems.

 2. Back up each deadlocked process to some previously defined checkpoint, and
restart all processes. This requires that rollback and restart mechanisms be built
in to the system. The risk in this approach is that the original deadlock may
recur. However, the nondeterminancy of concurrent processing may ensure that
this does not happen.

 3. Successively abort deadlocked processes until deadlock no longer exists. The
order in which processes are selected for abortion should be on the basis of
some criterion of minimum cost. After each abortion, the detection algorithm
must be reinvoked to see whether deadlock still exists.

 4. Successively preempt resources until deadlock no longer exists. As in (3), a cost-
based selection should be used, and reinvocation of the detection algorithm is
required after each preemption. A process that has a resource preempted from
it must be rolled back to a point prior to its acquisition of that resource.

 For (3) and (4), the selection criteria could be one of the following. Choose the
process with the

 • least amount of processor time consumed so far

 • least amount of output produced so far

 • most estimated time remaining

278 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

 • least total resources allocated so far

 • lowest priority

 Some of these quantities are easier to measure than others. Estimated time
remaining is particularly suspect. Also, other than by means of the priority measure,
there is no indication of the “cost” to the user, as opposed to the cost to the system
as a whole.

6.5 AN INTEGRATED DEADLOCK STRATEGY

 As Table 6.1 suggests, there are strengths and weaknesses to all of the strategies for
dealing with deadlock. Rather than attempting to design an OS facility that employs
only one of these strategies, it might be more efficient to use different strategies in
different situations. [HOWA73] suggests one approach:

 • Group resources into a number of different resource classes.

 • Use the linear ordering strategy defined previously for the prevention of circular
wait to prevent deadlocks between resource classes.

 • Within a resource class, use the algorithm that is most appropriate for that class.

 As an example of this technique, consider the following classes of resources:

 • Swappable space: Blocks of memory on secondary storage for use in swapping
processes

 • Process resources: Assignable devices, such as tape drives, and files

 • Main memory: Assignable to processes in pages or segments

 • Internal resources: Such as I/O channels

 The order of the preceding list represents the order in which resources are
assigned. The order is a reasonable one, considering the sequence of steps that a
process may follow during its lifetime. Within each class, the following strategies
could be used:

 • Swappable space: Prevention of deadlocks by requiring that all of the required
resources that may be used be allocated at one time, as in the hold-and-wait
prevention strategy. This strategy is reasonable if the maximum storage
 requirements are known, which is often the case. Deadlock avoidance is also a
possibility.

 • Process resources: Avoidance will often be effective in this category, because
it is reasonable to expect processes to declare ahead of time the resources that
they will require in this class. Prevention by means of resource ordering within
this class is also possible.

 • Main memory: Prevention by preemption appears to be the most appropriate
strategy for main memory. When a process is preempted, it is simply swapped
to secondary memory, freeing space to resolve the deadlock.

 • Internal resources: Prevention by means of resource ordering can be used.

6.6 / DINING PHILOSOPHERS PROBLEM 279

6.6 DINING PHILOSOPHERS PROBLEM

 We now turn to the dining philosophers problem, introduced by Dijkstra [DIJK71].
Five philosophers live in a house, where a table is laid for them. The life of each phi-
losopher consists principally of thinking and eating, and through years of thought,
all of the philosophers had agreed that the only food that contributed to their think-
ing efforts was spaghetti. Due to a lack of manual skill, each philosopher requires
two forks to eat spaghetti.

 The eating arrangements are simple (Figure 6.11): a round table on which is
set a large serving bowl of spaghetti, five plates, one for each philosopher, and five
forks. A philosopher wishing to eat goes to his or her assigned place at the table
and, using the two forks on either side of the plate, takes and eats some spaghetti.
The problem: Devise a ritual (algorithm) that will allow the philosophers to eat. The
algorithm must satisfy mutual exclusion (no two philosophers can use the same fork
at the same time) while avoiding deadlock and starvation (in this case, the term has
literal as well as algorithmic meaning!).

 This problem may not seem important or relevant in itself. However, it does
illustrate basic problems in deadlock and starvation. Furthermore, attempts to
develop solutions reveal many of the difficulties in concurrent programming (e.g.,
see [GING90]). In addition, the dining philosophers problem can be seen as repre-
sentative of problems dealing with the coordination of shared resources, which may

P3

P0

P2

P4

P1

Figure 6.11 Dining Arrangement for Philosophers

280 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

occur when an application includes concurrent threads of execution. Accordingly,
this problem is a standard test case for evaluating approaches to synchronization.

Solution Using Semaphores

 Figure 6.12 suggests a solution using semaphores. Each philosopher picks up first
the fork on the left and then the fork on the right. After the philosopher is finished
eating, the two forks are replaced on the table. This solution, alas, leads to deadlock:
If all of the philosophers are hungry at the same time, they all sit down, they all pick
up the fork on their left, and they all reach out for the other fork, which is not there.
In this undignified position, all philosophers starve.

 To overcome the risk of deadlock, we could buy five additional forks (a more
sanitary solution!) or teach the philosophers to eat spaghetti with just one fork.
As another approach, we could consider adding an attendant who only allows four
philosophers at a time into the dining room. With at most four seated philosophers,
at least one philosopher will have access to two forks. Figure 6.13 shows such a solu-
tion, again using semaphores. This solution is free of deadlock and starvation.

Solution Using a Monitor

 Figure 6.14 shows a solution to the dining philosophers problem using a monitor. A
vector of five condition variables is defined, one condition variable per fork. These
condition variables are used to enable a philosopher to wait for the availability of a
fork. In addition, there is a Boolean vector that records the availability status of each
fork (true means the fork is available). The monitor consists of two procedures.
The get_forks procedure is used by a philosopher to seize his or her left and

Figure 6.12 A First Solution to the Dining Philosophers Problem

/* program diningphilosophers */
semaphore fork [5] = {1};
int i;
void philosopher (int i)
{

while (true) {
 think();
 wait (fork[i]);
 wait (fork [(i+1) mod 5]);
 eat();
 signal(fork [(i+1) mod 5]);
 signal(fork[i]);

}
}
void main()
{

parbegin (philosopher (0), philosopher (1),
 philosopher (2), philosopher (3),
 philosopher (4));
 }

6.7 / UNIX CONCURRENCY MECHANISMS 281

right forks. If either fork is unavailable, the philosopher process is queued on the
appropriate condition variable. This enables another philosopher process to enter
the monitor. The release-forks procedure is used to make two forks available.
Note that the structure of this solution is similar to that of the semaphore solution
proposed in Figure 6.12 . In both cases, a philosopher seizes first the left fork and
then the right fork. Unlike the semaphore solution, this monitor solution does not
suffer from deadlock, because only one process at a time may be in the monitor. For
example, the first philosopher process to enter the monitor is guaranteed that it can
pick up the right fork after it picks up the left fork before the next philosopher to the
right has a chance to seize its left fork, which is this philosopher’s right fork.

6.7 UNIX CONCURRENCY MECHANISMS

 UNIX provides a variety of mechanisms for interprocessor communication and syn-
chronization. Here, we look at the most important of these:

 • Pipes
 • Messages
 • Shared memory
 • Semaphores
 • Signals

Figure 6.13 A Second Solution to the Dining Philosophers Problem

/* program diningphilosophers */
semaphore fork[5] = {1};
semaphore room = {4};
int i;
void philosopher (int i)
{

while (true) {
 think();
 wait (room);
 wait (fork[i]);
 wait (fork [(i+1) mod 5]);
 eat();
 signal (fork [(i+1) mod 5]);
 signal (fork[i]);
 signal (room);

}
}
void main()
{

parbegin (philosopher (0), philosopher (1),
 philosopher (2), philosopher (3),
 philosopher (4));
}

282 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

Figure 6.14 A Solution to the Dining Philosophers Problem Using a Monitor

monitor dining_controller;
cond ForkReady[5]; /* condition variable for synchronization */
boolean fork[5] = {true}; /* availability status of each fork */

void get_forks(int pid) /* pid is the philosopher id number */
{

int left = pid;
int right = (++pid) % 5;

 /*grant the left fork*/
if (!fork(left)

 cwait(ForkReady[left]); /* queue on condition variable */
 fork(left) = false;
 /*grant the right fork*/

if (!fork(right)
 cwait(ForkReady(right); /* queue on condition variable */
 fork(right) = false:
}
void release_forks(int pid)
{

int left = pid;
int right = (++pid) % 5;

 /*release the left fork*/
if (empty(ForkReady[left])/*no one is waiting for this fork */

 fork(left) = true;
else /* awaken a process waiting on this fork */

 csignal(ForkReady[left]);
 /*release the right fork*/

if (empty(ForkReady[right])/*no one is waiting for this fork */
 fork(right) = true;

else /* awaken a process waiting on this fork */
 csignal(ForkReady[right]);
}

void philosopher[k=0 to 4] /* the five philosopher clients */
{

while (true) {
 <think>;
 get_forks(k); /* client requests two forks via monitor */
 <eat spaghetti>;
 release_forks(k); /* client releases forks via the monitor */
 }
}

6.7 / UNIX CONCURRENCY MECHANISMS 283

 Pipes, messages, and shared memory can be used to communicate data between
processes, whereas semaphores and signals are used to trigger actions by other
processes.

Pipes

 One of the most significant contributions of UNIX to the development of operating
systems is the pipe. Inspired by the concept of coroutines [RITC84], a pipe is a circu-
lar buffer allowing two processes to communicate on the producer–consumer model.
Thus, it is a first-in-first-out queue, written by one process and read by another.

 When a pipe is created, it is given a fixed size in bytes. When a process attempts
to write into the pipe, the write request is immediately executed if there is sufficient
room; otherwise the process is blocked. Similarly, a reading process is blocked if
it attempts to read more bytes than are currently in the pipe; otherwise the read
request is immediately executed. The OS enforces mutual exclusion: that is, only
one process can access a pipe at a time.

 There are two types of pipes: named and unnamed. Only related processes
can share unnamed pipes, while either related or unrelated processes can share
named pipes.

Messages

 A message is a block of bytes with an accompanying type. UNIX provides msgsnd
and msgrcv system calls for processes to engage in message passing. Associated
with each process is a message queue, which functions like a mailbox.

 The message sender specifies the type of message with each message sent, and
this can be used as a selection criterion by the receiver. The receiver can either
retrieve messages in first-in-first-out order or by type. A process will block when
trying to send a message to a full queue. A process will also block when trying to
read from an empty queue. If a process attempts to read a message of a certain type
and fails because no message of that type is present, the process is not blocked.

Shared Memory

 The fastest form of interprocess communication provided in UNIX is shared
memory. This is a common block of virtual memory shared by multiple processes.
Processes read and write shared memory using the same machine instructions they
use to read and write other portions of their virtual memory space. Permission is
read-only or read-write for a process, determined on a per-process basis. Mutual
exclusion constraints are not part of the shared-memory facility but must be provided
by the processes using the shared memory.

Semaphores

 The semaphore system calls in UNIX System V are a generalization of the semWait
and semSignal primitives defined in Chapter 5 ; several operations can be per-
formed simultaneously and the increment and decrement operations can be values
greater than 1. The kernel does all of the requested operations atomically; no other
process may access the semaphore until all operations have completed.

284 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

 A semaphore consists of the following elements:

 • Current value of the semaphore
 • Process ID of the last process to operate on the semaphore
 • Number of processes waiting for the semaphore value to be greater than its

current value
 • Number of processes waiting for the semaphore value to be zero

 Associated with the semaphore are queues of processes blocked on that semaphore.
 Semaphores are actually created in sets, with a semaphore set consisting of

one or more semaphores. There is a semctl system call that allows all of the sema-
phore values in the set to be set at the same time. In addition, there is a sem_op
system call that takes as an argument a list of semaphore operations, each defined
on one of the semaphores in a set. When this call is made, the kernel performs the
indicated operations one at a time. For each operation, the actual function is speci-
fied by the value sem_op . The following are the possibilities:

 • If sem_op is positive, the kernel increments the value of the semaphore and
awakens all processes waiting for the value of the semaphore to increase.

 • If sem_op is 0, the kernel checks the semaphore value. If the semaphore value
equals 0, the kernel continues with the other operations on the list. Otherwise,
the kernel increments the number of processes waiting for this semaphore to be
0 and suspends the process to wait for the event that the value of the semaphore
equals 0.

 • If sem_op is negative and its absolute value is less than or equal to the sema-
phore value, the kernel adds sem_op (a negative number) to the semaphore
value. If the result is 0, the kernel awakens all processes waiting for the value
of the semaphore to equal 0.

 • If sem_op is negative and its absolute value is greater than the semaphore
value, the kernel suspends the process on the event that the value of the sema-
phore increases.

 This generalization of the semaphore provides considerable flexibility in per-
forming process synchronization and coordination.

Signals

 A signal is a software mechanism that informs a process of the occurrence of asyn-
chronous events. A signal is similar to a hardware interrupt but does not employ
priorities. That is, all signals are treated equally; signals that occur at the same time
are presented to a process one at a time, with no particular ordering.

 Processes may send each other signals, or the kernel may send signals inter-
nally. A signal is delivered by updating a field in the process table for the process
to which the signal is being sent. Because each signal is maintained as a single bit,
signals of a given type cannot be queued. A signal is processed just after a process
wakes up to run or whenever the process is preparing to return from a system call.
A process may respond to a signal by performing some default action (e.g., termina-
tion), executing a signal-handler function, or ignoring the signal.

 Table 6.2 lists signals defined for UNIX SVR4.

6.8 / LINUX KERNEL CONCURRENCY MECHANISMS 285

6.8 LINUX KERNEL CONCURRENCY MECHANISMS

 Linux includes all of the concurrency mechanisms found in other UNIX systems,
such as SVR4, including pipes, messages, shared memory, and signals. In addi-
tion, Linux 2.6 includes a rich set of concurrency mechanisms specifically intended
for use when a thread is executing in kernel mode. That is, these are mechanisms
used within the kernel to provide concurrency in the execution of kernel code. This
 section examines the Linux kernel concurrency mechanisms.

Atomic Operations

 Linux provides a set of operations that guarantee atomic operations on a variable.
These operations can be used to avoid simple race conditions. An atomic operation
executes without interruption and without interference. On a uniprocessor system,
a thread performing an atomic operation cannot be interrupted once the operation
has started until the operation is finished. In addition, on a multiprocessor system,

Table 6.2 UNIX Signals

 Value Name Description

 01 SIGHUP Hang up; sent to process when kernel assumes that the user of that process is doing
no useful work

 02 SIGINT Interrupt

 03 SIGQUIT Quit; sent by user to induce halting of process and production of core dump

 04 SIGILL Illegal instruction

 05 SIGTRAP Trace trap; triggers the execution of code for process tracing

 06 SIGIOT IOT instruction

 07 SIGEMT EMT instruction

 08 SIGFPE Floating-point exception

 09 SIGKILL Kill; terminate process

 10 SIGBUS Bus error

 11 SIGSEGV Segmentation violation; process attempts to access location outside its virtual
address space

 12 SIGSYS Bad argument to system call

 13 SIGPIPE Write on a pipe that has no readers attached to it

 14 SIGALRM Alarm clock; issued when a process wishes to receive a signal after a period of time

 15 SIGTERM Software termination

 16 SIGUSR1 User-defined signal 1

 17 SIGUSR2 User-defined signal 2

 18 SIGCHLD Death of a child

 19 SIGPWR Power failure

286 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

the variable being operated on is locked from access by other threads until this oper-
ation is completed.

 Two types of atomic operations are defined in Linux: integer operations,
which operate on an integer variable, and bitmap operations, which operate
on one bit in a bitmap (Table 6.3). These operations must be implemented on
any architecture that implements Linux. For some architectures, there are cor-
responding assembly language instructions for the atomic operations. On other
architectures, an operation that locks the memory bus is used to guarantee that
the operation is atomic.

 For atomic integer operations , a special data type is used, atomic_t . The
atomic integer operations can be used only on this data type, and no other operations

Table 6.3 Linux Atomic Operations

Atomic Integer Operations

ATOMIC_INIT (int i) At declaration: initialize an atomic_t to i

int atomic_read(atomic_t *v) Read integer value of v

void atomic_set(atomic_t *v, int i) Set the value of v to integer i

void atomic_add(int i, atomic_t *v) Add i to v

void atomic_sub(int i, atomic_t *v) Subtract i from v

void atomic_inc(atomic_t *v) Add 1 to v

void atomic_dec(atomic_t *v) Subtract 1 from v

int atomic_sub_and_test(int i,
atomic_t *v)

 Subtract i from v; return 1 if the result is zero;
return 0 otherwise

int atomic_add_negative(int i,
atomic_t *v)

 Add i to v; return 1 if the result is negative;
return 0 otherwise (used for implementing
semaphores)

int atomic_dec_and_test(atomic_t *v) Subtract 1 from v; return 1 if the result is
zero; return 0 otherwise

int atomic_inc_and_test(atomic_t *v) Add 1 to v; return 1 if the result is zero;
return 0 otherwise

Atomic Bitmap Operations

void set_bit(int nr, void *addr) Set bit nr in the bitmap pointed to by addr

void clear_bit(int nr, void *addr) Clear bit nr in the bitmap pointed to by addr

void change_bit(int nr, void *addr) Invert bit nr in the bitmap pointed to by addr

int test_and_set_bit(int nr,
void *addr)

 Set bit nr in the bitmap pointed to by addr;
return the old bit value

int test_and_clear_bit(int nr,
void *addr)

 Clear bit nr in the bitmap pointed to by addr;
return the old bit value

int test_and_change_bit(int nr,
void *addr)

 Invert bit nr in the bitmap pointed to by addr;
return the old bit value

int test_bit(int nr, void *addr) Return the value of bit nr in the bitmap
pointed to by addr

6.8 / LINUX KERNEL CONCURRENCY MECHANISMS 287

are allowed on this data type. [LOVE04] lists the following advantages for these
restrictions:

 1. The atomic operations are never used on variables that might in some circum-
stances be unprotected from race conditions.

 2. Variables of this data type are protected from improper use by nonatomic
operations.

 3. The compiler cannot erroneously optimize access to the value (e.g., by using
an alias rather than the correct memory address).

 4. This data type serves to hide architecture-specific differences in its imple-
mentation.

 A typical use of the atomic integer data type is to implement counters.
 The atomic bitmap operations operate on one of a sequence of bits at an arbi-

trary memory location indicated by a pointer variable. Thus, there is no equivalent
to the atomic_t data type needed for atomic integer operations.

 Atomic operations are the simplest of the approaches to kernel synchroniza-
tion. More complex locking mechanisms can be built on top of them.

Spinlocks

 The most common technique used for protecting a critical section in Linux is the spin-
lock. Only one thread at a time can acquire a spinlock. Any other thread attempting
to acquire the same lock will keep trying (spinning) until it can acquire the lock. In
essence a spinlock is built on an integer location in memory that is checked by each
thread before it enters its critical section. If the value is 0, the thread sets the value to
1 and enters its critical section. If the value is nonzero, the thread continually checks
the value until it is zero. The spinlock is easy to implement but has the disadvantage
that locked-out threads continue to execute in a busy-waiting mode. Thus spinlocks
are most effective in situations where the wait time for acquiring a lock is expected
to be very short, say on the order of less than two context changes.

 The basic form of use of a spinlock is the following:

spin_lock(&lock)
/* critical section */
spin_unlock(&lock)

BASIC SPINLOCKS The basic spinlock (as opposed to the reader–writer spinlock
explained subsequently) comes in four flavors (Table 6.4):

 • Plain: If the critical section of code is not executed by interrupt handlers or if
the interrupts are disabled during the execution of the critical section, then the
plain spinlock can be used. It does not affect the interrupt state on the processor
on which it is run.

 • _irq: If interrupts are always enabled, then this spinlock should be used.

 • _irqsave: If it is not known if interrupts will be enabled or disabled at the time
of execution, then this version should be used. When a lock is acquired, the cur-
rent state of interrupts on the local processor is saved, to be restored when the
lock is released.

288 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

 • _bh: When an interrupt occurs, the minimum amount of work necessary is
performed by the corresponding interrupt handler. A piece of code, called
the bottom half , performs the remainder of the interrupt-related work, allow-
ing the current interrupt to be enabled as soon as possible. The _bh spinlock
is used to disable and then enable bottom halves to avoid conflict with the
 protected critical section.

 The plain spinlock is used if the programmer knows that the protected data
is not accessed by an interrupt handler or bottom half. Otherwise, the appropriate
nonplain spinlock is used.

 Spinlocks are implemented differently on a uniprocessor system versus a mul-
tiprocessor system. For a uniprocessor system, the following considerations apply.
If kernel preemption is turned off, so that a thread executing in kernel mode cannot
be interrupted, then the locks are deleted at compile time; they are not needed.
If kernel preemption is enabled, which does permit interrupts, then the spinlocks
again compile away (i.e., no test of a spinlock memory location occurs) but are sim-
ply implemented as code that enables/disables interrupts. On a multiple processor
system, the spinlock is compiled into code that does in fact test the spinlock loca-
tion. The use of the spinlock mechanism in a program allows it to be independent
of whether it is executed on a uniprocessor or multiprocessor system.

READER–WRITER SPINLOCK The reader–writer spinlock is a mechanism that
allows a greater degree of concurrency within the kernel than the basic spinlock.
The reader–writer spinlock allows multiple threads to have simultaneous access
to the same data structure for reading only but gives exclusive access to the

Table 6.4 Linux Spinlocks

void spin_lock(spinlock_t *lock) Acquires the specified lock, spinning if needed
until it is available

void spin_lock_irq(spinlock_t *lock) Like spin_lock, but also disables interrupts on the
local processor

void spin_lock_irqsave(spinlock_t *lock,
unsigned long flags)

 Like spin_lock_irq, but also saves the current
interrupt state in flags

void spin_lock_bh(spinlock_t *lock) Like spin_lock, but also disables the execution
of all bottom halves

void spin_unlock(spinlock_t *lock) Releases given lock

void spin_unlock_irq(spinlock_t *lock) Releases given lock and enables local interrupts

void spin_unlock_irqrestore(spinlock_t
*lock, unsigned long flags)

 Releases given lock and restores local interrupts
to given previous state

void spin_unlock_bh(spinlock_t *lock) Releases given lock and enables bottom halves

void spin_lock_init(spinlock_t *lock) Initializes given spinlock

int spin_trylock(spinlock_t *lock) Tries to acquire specified lock; returns nonzero if
lock is currently held and zero otherwise

int spin_is_locked(spinlock_t *lock) Returns nonzero if lock is currently held and zero
otherwise

6.8 / LINUX KERNEL CONCURRENCY MECHANISMS 289

spinlock for a thread that intends to update the data structure. Each reader–writer
spinlock consists of a 24-bit reader counter and an unlock flag, with the following
interpretation:

 Counter Flag Interpretation

 0 1 The spinlock is released and available for use

 0 0 Spinlock has been acquired for writing by one thread

n (n > 0) 0 Spinlock has been acquired for reading by n threads

n (n > 0) 1 Not valid

 As with the basic spinlock, there are plain, _irq , and _irqsave versions of
the reader–writer spinlock.

 Note that the reader–writer spinlock favors readers over writers. If the spin-
lock is held for readers, then so long as there is at least one reader, the spinlock
cannot be preempted by a writer. Furthermore, new readers may be added to the
spinlock even while a writer is waiting.

Semaphores

 At the user level, Linux provides a semaphore interface corresponding to that in
UNIX SVR4. Internally, Linux provides an implementation of semaphores for its
own use. That is, code that is part of the kernel can invoke kernel semaphores.
These kernel semaphores cannot be accessed directly by the user program via sys-
tem calls. They are implemented as functions within the kernel and are thus more
efficient than user-visible semaphores.

 Linux provides three types of semaphore facilities in the kernel: binary sema-
phores, counting semaphores, and reader–writer semaphores.

BINARY AND COUNTING SEMAPHORES The binary and counting semaphores
defined in Linux 2.6 (Table 6.5) have the same functionality as described for
such semaphores in Chapter 5 . The function names down and up are used for the
functions referred to in Chapter 5 as semWait and semSignal , respectively.

 A counting semaphore is initialized using the sema_init function, which gives
the semaphore a name and assigns an initial value to the semaphore. Binary sema-
phores, called MUTEXes in Linux, are initialized using the init_MUTEX and init_
MUTEX_LOCKED functions, which initialize the semaphore to 1 or 0, respectively.

 Linux provides three versions of the down (semWait) operation.

 1. The down function corresponds to the traditional semWait operation. That
is, the thread tests the semaphore and blocks if the semaphore is not available.
The thread will awaken when a corresponding up operation on this sema-
phore occurs. Note that this function name is used for an operation on either a
counting semaphore or a binary semaphore.

 2. The down_interruptible function allows the thread to receive and
respond to a kernel signal while being blocked on the down operation. If the
thread is woken up by a signal, the down_interruptible function incre-
ments the count value of the semaphore and returns an error code known in

290 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

Linux as -EINTR . This alerts the thread that the invoked semaphore function
has aborted. In effect, the thread has been forced to “give up” the semaphore.
This feature is useful for device drivers and other services in which it is conve-
nient to override a semaphore operation.

 3. The down_trylock function makes it possible to try to acquire a semaphore
without being blocked. If the semaphore is available, it is acquired. Otherwise,
this function returns a nonzero value without blocking the thread.

READER–WRITER SEMAPHORES The reader–writer semaphore divides users into
readers and writers; it allows multiple concurrent readers (with no writers) but only
a single writer (with no concurrent readers). In effect, the semaphore functions as
a counting semaphore for readers but a binary semaphore (MUTEX) for writers.
 Table 6.5 shows the basic reader–writer semaphore operations. The reader–writer
semaphore uses uninterruptible sleep, so there is only one version of each of the
down operations.

Table 6.5 Linux Semaphores

Traditional Semaphores

void sema_init(struct semaphore *sem,
int count)

 Initializes the dynamically created semaphore to the
given count

void init_MUTEX(struct semaphore *sem) Initializes the dynamically created semaphore with a
count of 1 (initially unlocked)

void init_MUTEX_LOCKED(struct sema-
phore *sem)

 Initializes the dynamically created semaphore with a
count of 0 (initially locked)

void down(struct semaphore *sem) Attempts to acquire the given semaphore, entering
uninterruptible sleep if semaphore is unavailable

int down_interruptible(struct
semaphore *sem)

 Attempts to acquire the given semaphore, enter-
ing interruptible sleep if semaphore is unavailable;
returns-EINTR value if a signal other than the result
of an up operation is received

int down_trylock(struct semaphore
*sem)

 Attempts to acquire the given semaphore, and
returns a nonzero value if semaphore is unavailable

void up(struct semaphore *sem) Releases the given semaphore

Reader–Writer Semaphores

void init_rwsem(struct rw_semaphore,
*rwsem)

 Initializes the dynamically created semaphore with a
count of 1

void down_read(struct rw_semaphore,
*rwsem)

 Down operation for readers

void up_read(struct rw_semaphore,
*rwsem)

 Up operation for readers

void down_write(struct rw_semaphore,
*rwsem)

 Down operation for writers

void up_write(struct rw_semaphore,
*rwsem)

 Up operation for writers

6.8 / LINUX KERNEL CONCURRENCY MECHANISMS 291

Barriers

 In some architectures, compilers and/or the processor hardware may reorder mem-
ory accesses in source code to optimize performance. These reorderings are done
to optimize the use of the instruction pipeline in the processor. The reordering
algorithms contain checks to ensure that data dependencies are not violated. For
example, the code:

a = 1;
b = 1;

 may be reordered so that memory location b is updated before memory location a
is updated. However, the code:

a = 1;
b = a;

 will not be reordered. Even so, there are occasions when it is important that reads
or writes are executed in the order specified because of use of the information that
is made by another thread or a hardware device.

 To enforce the order in which instructions are executed, Linux provides the
memory barrier facility. Table 6.6 lists the most important functions that are defined
for this facility. The rmb() operation insures that no reads occur across the bar-
rier defined by the place of the rmb() in the code. Similarly, the wmb() operation
insures that no writes occur across the barrier defined by the place of the wmb() in
the code. The mb() operation provides both a load and store barrier.

 Two important points to note about the barrier operations:

 1. The barriers relate to machine instructions, namely loads and stores. Thus the
higher-level language instruction a = b involves both a load (read) from loca-
tion b and a store (write) to location a .

 2. The rmb , wmb , and mb operations dictate the behavior of both the compiler
and the processor. In the case of the compiler, the barrier operation dictates
that the compiler not reorder instructions during the compile process. In the
case of the processor, the barrier operation dictates that any instructions pend-
ing in the pipeline before the barrier must be committed for execution before
any instructions encountered after the barrier.

Table 6.6 Linux Memory Barrier Operations

rmb() Prevents loads from being reordered across the barrier

wmb() Prevents stores from being reordered across the barrier

mb() Prevents loads and stores from being reordered across the barrier

Barrier() Prevents the compiler from reordering loads or stores across the barrier

smp_rmb() On SMP, provides a rmb() and on UP provides a barrier()

smp_wmb() On SMP, provides a wmb() and on UP provides a barrier()

smp_mb() On SMP, provides a mb() and on UP provides a barrier()

Note : SMP = symmetric multiprocessor;
UP = uniprocessor

292 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

 The barrier() operation is a lighter-weight version of the mb() operation,
in that it only controls the compiler’s behavior. This would be useful if it is known
that the processor will not perform undesirable reorderings. For example, the Intel
x86 processors do not reorder writes.

 The smp_rmb , smp_wmb , and smp_mb operations provide an optimization for
code that may be compiled on either a uniprocessor (UP) or a symmetric multiproc-
essor (SMP). These instructions are defined as the usual memory barriers for an
SMP, but for a UP, they are all treated only as compiler barriers. The smp_ opera-
tions are useful in situations in which the data dependencies of concern will only
arise in an SMP context.

6.9 SOLARIS THREAD SYNCHRONIZATION PRIMITIVES

 In addition to the concurrency mechanisms of UNIX SVR4, Solaris supports four
thread synchronization primitives:

 • Mutual exclusion (mutex) locks

 • Semaphores

 • Multiple readers, single writer (readers/writer) locks

 • Condition variables

 Solaris implements these primitives within the kernel for kernel threads; they
are also provided in the threads library for user-level threads. Figure 6.15 shows
the data structures for these primitives. The initialization functions for the primi-
tives fill in some of the data members. Once a synchronization object is created,
there are essentially only two operations that can be performed: enter (acquire
lock) and release (unlock). There are no mechanisms in the kernel or the threads
library to enforce mutual exclusion or to prevent deadlock. If a thread attempts to
access a piece of data or code that is supposed to be protected but does not use the
appropriate synchronization primitive, then such access occurs. If a thread locks
an object and then fails to unlock it, no kernel action is taken.

 All of the synchronization primitives require the existence of a hardware
instruction that allows an object to be tested and set in one atomic operation.

Mutual Exclusion Lock

 A mutex is used to ensure that only one thread at a time can access the resource
protected by the mutex. The thread that locks the mutex must be the one that
unlocks it. A thread attempts to acquire a mutex lock by executing the mutex_
enter primitive. If mutex_enter cannot set the lock (because it is already set
by another thread), the blocking action depends on type-specific information
stored in the mutex object. The default blocking policy is a spinlock: A blocked
thread polls the status of the lock while executing in a busy waiting loop.
An interrupt-based blocking mechanism is optional. In this latter case, the
mutex includes a turnstile id that identifies a queue of threads sleeping on
this lock.

6.9 / SOLARIS THREAD SYNCHRONIZATION PRIMITIVES 293

 The operations on a mutex lock are:

mutex_enter() Acquires the lock, potentially blocking if it is already
 held

mutex_exit() Releases the lock, potentially unblocking a waiter
mutex_tryenter() Acquires the lock if it is not already held

 The mutex_tryenter() primitive provides a nonblocking way of performing
the mutual exclusion function. This enables the programmer to use a busy-wait
approach for user-level threads, which avoids blocking the entire process because
one thread is blocked.

Semaphores

 Solaris provides classic counting semaphores, with the following primitives:

sema_p() Decrements the semaphore, potentially blocking the thread
sema_v() Increments the semaphore, potentially unblocking a waiting

thread
sema_tryp() Decrements the semaphore if blocking is not required

 Again, the sema_tryp() primitive permits busy waiting.

(a) MUTEX lock

(b) Semaphore

(c) Reader/writer lock

(d) Condition variable

Owner (3 octets)

Lock (1 octet)

Type (1 octet)
wlock (1 octet)

Waiters (2 octets)

Waiters (2 octets)

Thread owner (4 octets)

Union (4 octets)
(statistic pointer or

number of write requests)

Type (1 octet)
wlock (1 octet)

Waiters (2 octets)

Count (4 octets)

Waiters (2 octets)

Type-specific info (4 octets)
(possibly a turnstile id,

lock type filler,
or statistics pointer)

Figure 6.15 Solaris Synchronization Data Structures

294 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

Readers/Writer Lock

 The readers/writer lock allows multiple threads to have simultaneous read-only
access to an object protected by the lock. It also allows a single thread to access the
object for writing at one time, while excluding all readers. When the lock is acquired
for writing it takes on the status of write lock : All threads attempting access
for reading or writing must wait. If one or more readers have acquired the lock, its
 status is read lock . The primitives are as follows:

rw_enter() Attempts to acquire a lock as reader or writer.
rw_exit() Releases a lock as reader or writer.
rw_tryenter() Acquires the lock if blocking is not required.
rw_downgrade() A thread that has acquired a write lock converts it to a

read lock. Any waiting writer remains waiting until this
thread releases the lock. If there are no waiting writers,
the primitive wakes up any pending readers.

rw_tryupgrade() Attempts to convert a reader lock into a writer lock.

Condition Variables

 A condition variable is used to wait until a particular condition is true. Condition
variables must be used in conjunction with a mutex lock. This implements a monitor
of the type illustrated in Figure 6.14 . The primitives are as follows:

cv_wait() Blocks until the condition is signaled
cv_signal() Wakes up one of the threads blocked in cv_wait()
cv_broadcast() Wakes up all of the threads blocked in cv_wait()

cv_wait() releases the associated mutex before blocking and reacquires
it before returning. Because reacquisition of the mutex may be blocked by other
threads waiting for the mutex, the condition that caused the wait must be retested.
Thus, typical usage is as follows:

mutex_enter(&m)
* *
while (some_condition) {
 cv_wait(&cv, &m);
}
* *
mutex_exit(&m);

 This allows the condition to be a complex expression, because it is protected by the
mutex.

6.10 WINDOWS 7 CONCURRENCY MECHANISMS

 Windows provides synchronization among threads as part of the object architecture.
The most important methods of synchronization are Executive dispatcher objects,
user–mode critical sections, slim reader–writer locks, condition variables, and lock-free

6.10 / WINDOWS 7 CONCURRENCY MECHANISMS 295

operations. Dispatcher objects make use of wait functions. We first describe wait func-
tions and then look at the synchronization methods.

Wait Functions

 The wait functions allow a thread to block its own execution. The wait functions
do not return until the specified criteria have been met. The type of wait func-
tion determines the set of criteria used. When a wait function is called, it checks
whether the wait criteria have been met. If the criteria have not been met, the
calling thread enters the wait state. It uses no processor time while waiting for the
criteria to be met.

 The most straightforward type of wait function is one that waits on a single
object. The WaitForSingleObject function requires a handle to one synchroni-
zation object. The function returns when one of the following occurs:

 • The specified object is in the signaled state.

 • The time-out interval elapses. The time-out interval can be set to INFINITE
to specify that the wait will not time out.

Dispatcher Objects

 The mechanism used by the Windows Executive to implement synchronization
facilities is the family of dispatcher objects, which are listed with brief descriptions
in Table 6.7 .

Table 6.7 Windows Synchronization Objects

 Object Type Definition
 Set to Signaled State
When

 Effect on Waiting
Threads

 Notification
event

 An announcement that a
system event has occurred

 Thread sets the event All released

 Synchronization
event

 An announcement that a
system event has occurred.

 Thread sets the event One thread released

 Mutex A mechanism that provides
mutual exclusion capabilities;
equivalent to a binary semaphore

 Owning thread or other
thread releases the
mutex

 One thread released

 Semaphore A counter that regulates the number
of threads that can use a resource

 Semaphore count drops
to zero

 All released

 Waitable timer A counter that records the passage
of time

 Set time arrives or time
interval expires

 All released

 File An instance of an opened file or
I/O device

 I/O operation completes All released

 Process A program invocation, including
the address space and resources
required to run the program

 Last thread terminates All released

 Thread An executable entity within a process Thread terminates All released

Note: Shaded rows correspond to objects that exist for the sole purpose of synchronization.

296 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

 The first five object types in the table are specifically designed to support
 synchronization. The remaining object types have other uses but also may be used
for synchronization.

 Each dispatcher object instance can be in either a signaled or unsignaled
state. A thread can be blocked on an object in an unsignaled state; the thread
is released when the object enters the signaled state. The mechanism is straight-
forward: A thread issues a wait request to the Windows Executive, using the
 handle of the synchronization object. When an object enters the signaled state, the
Windows Executive releases one or all of the thread objects that are waiting on
that dispatcher object.

 The event object is useful in sending a signal to a thread indicating that a par-
ticular event has occurred. For example, in overlapped input and output, the system
sets a specified event object to the signaled state when the overlapped operation
has been completed. The mutex object is used to enforce mutually exclusive access
to a resource, allowing only one thread object at a time to gain access. It there-
fore functions as a binary semaphore. When the mutex object enters the signaled
state, only one of the threads waiting on the mutex is released. Mutexes can be used
to synchronize threads running in different processes. Like mutexes, semaphore
objects may be shared by threads in multiple processes. The Windows semaphore is
a counting semaphore. In essence, the waitable timer object signals at a certain time
and/or at regular intervals.

Critical Sections

 Critical sections provide a synchronization mechanism similar to that provided by
mutex objects, except that critical sections can be used only by the threads of a
single process. Event, mutex, and semaphore objects can also be used in a single-
process application, but critical sections provide a much faster, more efficient mech-
anism for mutual-exclusion synchronization.

 The process is responsible for allocating the memory used by a critical section.
Typically, this is done by simply declaring a variable of type CRITICAL_SECTION .
Before the threads of the process can use it, initialize the critical section by using the
InitializeCriticalSection function.

 A thread uses the EnterCriticalSection or TryEnterCriticalSection
function to request ownership of a critical section. It uses theLeaveCriticalSection
function to release ownership of a critical section. If the critical section is currently
owned by another thread, EnterCriticalSection waits indefinitely for owner-
ship. In contrast, when a mutex object is used for mutual exclusion, the wait functions
accept a specified time-out interval. The TryEnterCriticalSection function
attempts to enter a critical section without blocking the calling thread.

 Critical sections use a sophisticated algorithm when trying to acquire the
mutex. If the system is a multiprocessor, the code will attempt to acquire a spinlock.
This works well in situations where the critical section is acquired for only a short
time. Effectively the spinlock optimizes for the case where the thread that currently
owns the critical section is executing on another processor. If the spinlock cannot
be acquired within a reasonable number of iterations, a dispatcher object is used to
block the thread so that the Kernel can dispatch another thread onto the processor.

6.10 / WINDOWS 7 CONCURRENCY MECHANISMS 297

The dispatcher object is only allocated as a last resort. Most critical sections are
needed for correctness, but in practice are rarely contended. By lazily allocating the
dispatcher object the system saves significant amounts of kernel virtual memory.

Slim Read-Writer Locks and Condition Variables

 Windows Vista added a user mode reader–writer. Like critical sections, the reader–
writer lock enters the kernel to block only after attempting to use a spinlock. It is
slim in the sense that it normally only requires allocation of a single pointer-sized
piece of memory.

 To use an SRW lock, a process declares a variable of type SRWLOCK and a calls
InitializeSRWLock to initialize it. Threads call AcquireSRWLockExclusive or
AcquireSRWLockShared to acquire the lock and ReleaseSRWLockExclusive
or ReleaseSRWLockShared to release it.

 Windows also has condition variables. The process must declare a
CONDITION_VARIABLE and initialize it in some thread by calling
InitializeConditionVariable . Condition variables can be used with either crit-
ical sections or SRW locks, so there are two methods,SleepConditionVariableCS
and SleepConditionVariableSRW , which sleep on the specified condition and
releases the specified lock as an atomic operation.

 There are two wake methods, WakeConditionVariable and Wake
AllConditionVariable , which wake one or all of the sleeping threads, respec-
tively. Condition variables are used as follows:

 1. Acquire exclusive lock

 2. While (predicate() == FALSE) SleepConditionVariable()

 3. Perform the protected operation

 4. Release the lock

Lock-free Synchronization

 Windows also relies heavily on interlocked operations for synchronization.
Interlocked operations use hardware facilities to guarantee that memory locations
can be read, modified, and written in a single atomic operation. Examples include
InterlockedIncrement and InterlockedCompareExchange ; the latter
allows a memory location to be updated only if it hasn’t changed values since
being read.

 Many of the synchronization primitives use interlocked operations within
their implementation, but these operations are also available to programmers for
situations where they want to synchronize without taking a software lock. These
so-called lock-free synchronization primitives have the advantage that a thread can
never be switched away from a processor, say at the end of its timeslice, while still
holding a lock. Thus they cannot block another thread from running.

 More complex lock-free primitives can be built out of the interlocked oper-
ations, most notably Windows SLists, which provide a lock-free LIFO queue.
SLists are managed using functions like InterlockedPushEntrySList and
InterlockedPopEntrySList .

298 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

6.11 SUMMARY

 Deadlock is the blocking of a set of processes that either compete for system
resources or communicate with each other. The blockage is permanent unless the
OS takes some extraordinary action, such as killing one or more processes or forcing
one or more processes to backtrack. Deadlock may involve reusable resources or
consumable resources. A reusable resource is one that is not depleted or destroyed
by use, such as an I/O channel or a region of memory. A consumable resource is one
that is destroyed when it is acquired by a process; examples include messages and
information in I/O buffers.

 There are three general approaches to dealing with deadlock: prevention,
detection, and avoidance. Deadlock prevention guarantees that deadlock will not
occur, by assuring that one of the necessary conditions for deadlock is not met.
Deadlock detection is needed if the OS is always willing to grant resource requests;
periodically, the OS must check for deadlock and take action to break the deadlock.
Deadlock avoidance involves the analysis of each new resource request to deter-
mine if it could lead to deadlock, and granting it only if deadlock is not possible.

6.12 RECOMMENDED READING

 The classic paper on deadlocks, [HOLT72], is still well worth a read, as is [COFF71].
Another good survey is [ISLO80]. [CORB96] is a thorough treatment of deadlock
detection. [DIMI98] is a nice overview of deadlocks. Two papers by Levine [LEVI03a,
LEVI03b] clarify some of the concepts used in discussions of deadlock. [SHUB03] is
a useful overview of deadlock. [ABRA06] describes a deadlock detection package.

 The concurrency mechanisms in UNIX SVR4, Linux, and Solaris 2 are well covered
in [GRAY97], [LOVE10], and [MCDO07], respectively. [HALL10] is a thorough treat-
ment of UNIX concurrency and interprocess communication mechanisms.

ABRA06 Abramson, T. “Detecting Potential Deadlocks.” Dr. Dobb’s Journal ,
January 2006.

COFF71 Coffman, E., Elphick, M., and Shoshani, A. “System Deadlocks.” Computing
Surveys , June 1971.

CORB96 Corbett, J. “Evaluating Deadlock Detection Methods for Concurrent
Software.” IEEE Transactions on Software Engineering , March 1996.

DIMI98 Dimitoglou, G. “Deadlocks and Methods for Their Detection, Prevention, and
Recovery in Modern Operating Systems.” Operating Systems Review , July 1998.

GRAY97 Gray, J. Interprocess Communications in UNIX: The Nooks and Crannies.
Upper Saddle River, NJ: Prentice Hall, 1997.

HALL10 Hall, B. Beej’s Guide to Unix IPC. 2010. Document available in premium
content section for this book.

HOLT72 Holt, R. “Some Deadlock Properties of Computer Systems.” Computing
Surveys , September 1972.

6.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 299

6.13 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

ISLO80 Isloor, S., and Marsland, T. “The Deadlock Problem: An Overview.”
Computer , September 1980.

LEVI03a Levine, G. “Defining Deadlock.” Operating Systems Review , January 2003.
LEVI03b Levine, G. “Defining Deadlock with Fungible Resources.” Operating

Systems Review , July 2003.
LOVE10 Love, R. Linux Kernel Development. Upper Saddle River, NJ: Addison-

Wesley, 2010.
MCDO07 McDougall, R., and Mauro, J. Solaris Internals: Solaris 10 and OpenSolaris

Kernel Architecture. Palo Alto, CA: Sun Microsystems Press, 2007.
SHUB03 Shub, C. “A Unified Treatment of Deadlock.” Journal of Computing in

Small Colleges , October 2003. Available through the ACM digital library.

 banker’s algorithm
 circular wait
 consumable resource
 deadlock
 deadlock avoidance
 deadlock detection

 deadlock prevention
 hold and wait
 joint progress diagram
 memory barrier
 message
 mutual exclusion

 pipe
 preemption
 resource allocation graph
 reusable resource
 spinlock
 starvation

Review Questions

 6.1 Give examples of reusable and consumable resources.
 6.2 What are the three conditions that must be present for deadlock to be possible?
 6.3 What are the four conditions that create deadlock?
 6.4 How can the hold-and-wait condition be prevented?
 6.5 List two ways in which the no-preemption condition can be prevented.
 6.6 How can the circular wait condition be prevented?
 6.7 What is the difference among deadlock avoidance, detection, and prevention?

Problems

 6.1 Show that the four conditions of deadlock apply to Figure 6.1a .
 6.2 Show how each of the techniques of prevention, avoidance, and detection can be

 applied to Figure 6.1 .
 6.3 For Figure 6.3 , provide a narrative description of each of the six depicted paths, simi-

lar to the description of the paths of Figure 6.2 provided in Section 6.1 .
 6.4 It was stated that deadlock cannot occur for the situation reflected in Figure 6.3 .

 Justify that statement.

300 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

 6.5 Given the following state for the Banker’s Algorithm.
 6 processes P0 through P5
 4 resource types: A (15 instances); B (6 instances)
 C (9 instances); D (10 instances)
 Snapshot at time T0:

 Available
 A B C D
 6 3 5 4

 Current allocation Maximum demand
 Process A B C D A B C D

 P0 2 0 2 1 9 5 5 5
 P1 0 1 1 1 2 2 3 3
 P2 4 1 0 2 7 5 4 4
 P3 1 0 0 1 3 3 3 2
 P4 1 1 0 0 5 2 2 1
 P5 1 0 1 1 4 4 4 4

a. Verify that the Available array has been calculated correctly.
b. Calculate the Need matrix.
c. Show that the current state is safe, that is, show a safe sequence of processes. In

addition, to the sequence show how the Available (working array) changes as each
process terminates.

d. Given the request (3,2,3,3) from Process P5. Should this request be granted? Why
or why not?

 6.6 In the code below, three processes are competing for six resources labeled A to F.
a. Using a resource allocation graph (Figures 6.5 and 6.6), show the possibility of a

deadlock in this implementation.
b. Modify the order of some of the get requests to prevent the possibility of any

deadlock. You cannot move requests across procedures, only change the order
inside each procedure. Use a resource allocation graph to justify your answer.

void P0()

{

 while (true) {

 get(A);

 get(B);

 get(C);

 // critical region:

 // use A, B, C

 release(A);

 release(B);

 release(C);

 }

}

void P1()

{

 while (true) {

 get(D);

 get(E);

 get(B);

 // critical region:

 // use D, E, B

 release(D);

 release(E);

 release(B);

 }

}

void P2()

{

 while (true) {

 get(C);

 get(F);

 get(D);

 // critical region:

 // use C, F, D

 release(C);

 release(F);

 release(D);

 }

}

 6.7 A spooling system (Figure 6.16) consists of an input process I, a user process P,
and an output process O connected by two buffers. The processes exchange data in

6.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 301

blocks of equal size. These blocks are buffered on a disk using a floating boundary
between the input and the output buffers, depending on the speed of the processes.
The communication primitives used ensure that the following resource constraint
is satisfied:

i + o … max
 where

 max = maximum number of blocks on disk
 i = number of input blocks on disk

o = number of output blocks on disk

 The following is known about the processes:
1. As long as the environment supplies data, process I will eventually input it to the

disk (provided disk space becomes available).
2. As long as input is available on the disk, process P will eventually consume it and

output a finite amount of data on the disk for each block input (provided disk
space becomes available).

3. As long as output is available on the disk, process O will eventually consume it.

 Show that this system can become deadlocked.
 6.8 Suggest an additional resource constraint that will prevent the deadlock in Problem

6.7 but still permit the boundary between input and output buffers to vary in accor-
dance with the present needs of the processes.

 6.9 In the THE multiprogramming system [DIJK68], a drum (precursor to the disk for
secondary storage) is divided into input buffers, processing areas, and output buffers,
with floating boundaries, depending on the speed of the processes involved. The current
state of the drum can be characterized by the following parameters:

max = maximum number of pages on drum
i = number of input pages on drum

p = number of processing pages on drum
o = number of output pages on drum

reso = minimum number of pages reserved for output
resp = minimum number of pages reserved for processing

 Formulate the necessary resource constraints that guarantee that the drum capacity
is not exceeded and that a minimum number of pages is reserved permanently for
output and processing.

 6.10 In the THE multiprogramming system, a page can make the following state transitions:

1. empty : input buffer (input production)
2. input buffer : processing area (input consumption)
3. processing area : output buffer (output production)
4. output buffer : empty (output consumption)
5. empty : processing area (procedure call)
6. processing area : empty (procedure return)

a. Define the effect of these transitions in terms of the quantities i , o , and p .
b. Can any of them lead to a deadlock if the assumptions made in Problem 6.6 about

input processes, user processes, and output processes hold?

I P
Input
buffer

O
Output
buffer

Figure 6.16 A Spooling System

302 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

 6.11 Consider a system with a total of 150 units of memory, allocated to three processes as
shown:

 Process Max Hold
 1 70 45
 2 60 40
 3 60 15

 Apply the banker’s algorithm to determine whether it would be safe to grant each of
the following requests. If yes, indicate a sequence of terminations that could be guar-
anteed possible. If no, show the reduction of the resulting allocation table.
a. A fourth process arrives, with a maximum memory need of 60 and an initial need

of 25 units.
b. A fourth process arrives, with a maximum memory need of 60 and an initial need

of 35 units.
 6.12 Evaluate the banker’s algorithm for its usefulness in an OS.
 6.13 A pipeline algorithm is implemented so that a stream of data elements of type T pro-

duced by a process P0 passes through a sequence of processes P1 , P2 , …, Pn – 1 , which
operates on the elements in that order.
a. Define a generalized message buffer that contains all the partially consumed data

elements and write an algorithm for process Pi (0 	 i 	 n – 1), of the form

repeat
 receive from predecessor;
 consume element;
 send to successor:

forever

 Assume P0 receives input elements sent by Pn – 1 . The algorithm should enable
the processes to operate directly on messages stored in the buffer so that copying
is unnecessary.

b. Show that the processes cannot be deadlocked with respect to the common buffer.
 6.14 Suppose the following two processes, foo and bar are executed concurrently and

share the semaphore variables S and R (each initialized to 1) and the integer variable
x (initialized to 0).

void foo() {
 do {
 semWait(S);
 semWait(R);
 x++;
 semSignal(S);
 SemSignal(R);
 } while (1);
}

void bar() {
do {
 semWait(R);
 semWait(S);
 x--;
 semSignal(S;
 SemSignal(R);
} while (1);
}

a. Can the concurrent execution of these two processes result in one or both being
blocked forever? If yes, give an execution sequence in which one or both are
blocked forever.

b. Can the concurrent execution of these two processes result in the indefinite
 postponement of one of them? If yes, give an execution sequence in which one is
indefinitely postponed.

 6.15 Consider a system consisting of four processes and a single resource. The current state
of the claim and allocation matrices are:

6.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 303

C = §3
2
9
7

¥ A = §1
1
3
2

¥
 What is the minimum number of units of the resource needed to be available for this
state to be safe?

 6.16 Consider the following ways of handling deadlock: (1) banker’s algorithm, (2) detect
deadlock and kill thread, releasing all resources, (3) reserve all resources in advance,
(4) restart thread and release all resources if thread needs to wait, (5) resource order-
ing, and (6) detect deadlock and roll back thread’s actions.
a. One criterion to use in evaluating different approaches to deadlock is which

 approach permits the greatest concurrency. In other words, which approach allows
the most threads to make progress without waiting when there is no deadlock?
Give a rank order from 1 to 6 for each of the ways of handling deadlock just listed,
where 1 allows the greatest degree of concurrency. Comment on your ordering.

b. Another criterion is efficiency; in other words, which requires the least processor
overhead. Rank order the approaches from 1 to 6, with 1 being the most efficient,
assuming that deadlock is a very rare event. Comment on your ordering. Does
your ordering change if deadlocks occur frequently?

 6.17 Comment on the following solution to the dining philosophers problem. A hungry phi-
losopher first picks up his left fork; if his right fork is also available, he picks up his right
fork and starts eating; otherwise he puts down his left fork again and repeats the cycle.

 6.18 Suppose that there are two types of philosophers. One type always picks up his left
fork first (a “lefty”), and the other type always picks up his right fork first (a “righty”).
The behavior of a lefty is defined in Figure 6.12 . The behavior of a righty is as follows:

begin

repeat

 think;

 wait (fork[(i+1) mod 5]);

 wait (fork[i]);

 eat;

 signal (fork[i]);

 signal (fork[(i+1) mod 5]);

forever

end;

 Prove the following:
a. Any seating arrangement of lefties and righties with at least one of each avoids

deadlock.
b. Any seating arrangement of lefties and righties with at least one of each prevents

starvation.
 6.19 Figure 6.17 shows another solution to the dining philosophers problem using moni-

tors. Compare to Figure 6.14 and report your conclusions.
 6.20 In Table 6.3 , some of the Linux atomic operations do not involve two accesses to a

variable, such as atomic_read(atomic_t *v) . A simple read operation is obvi-
ously atomic in any architecture. Therefore, why is this operation added to the reper-
toire of atomic operations?

 6.21 Consider the following fragment of code on a Linux system.
read_lock(&mr_rwlock);

write_lock(&mr_rwlock);

 Where mr_rwlock is a reader–writer lock. What is the effect of this code?

304 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

 6.22 The two variables a and b have initial values of 1 and 2, respectively. The following
code is for a Linux system:

 Thread 1 Thread 2
a = 3; —
mb(); —
b = 4; c = b;
— rmb();
— d = a;

 What possible errors are avoided by the use of the memory barriers?

Figure 6.17 Another Solution to the Dining Philosophers Problem Using a Monitor

monitor dining_controller;
enum states {thinking, hungry, eating} state[5];
cond needFork[5] /* condition variable */

void get_forks(int pid) /* pid is the philosopher id number */
{
 state[pid] = hungry; /* announce that I’m hungry */

if (state[(pid+1) % 5] == eating || (state[(pid-1) % 5] == eating)
 cwait(needFork[pid]); /* wait if either neighbor is eating */
 state[pid] = eating; /* proceed if neither neighbor is eating */
}

void release_forks(int pid)
{
 state[pid] = thinking;
 /* give right (higher) neighbor a chance to eat */

if (state[(pid+1) % 5] == hungry) && (state[(pid+2)
 % 5]) != eating)
 csignal(needFork[pid+1]);
 /* give left (lower) neighbor a chance to eat */

else if (state[(pid–1) % 5] == hungry) && (state[(pid–2)
 % 5]) != eating)
 csignal(needFork[pid–1]);
}

void philosopher[k=0 to 4] /* the five philosopher clients */
{

while (true) {
 <think>;
 get_forks(k); /* client requests two forks via monitor */
 <eat spaghetti>;
 release_forks(k); /* client releases forks via the monitor */
 }

 }

305

 7.1 Memory Management Requirements
 Relocation
 Protection
 Sharing
 Logical Organization
 Physical Organization

 7.2 Memory Partitioning
 Fixed Partitioning
 Dynamic Partitioning
 Buddy System
 Relocation

 7.3 Paging

 7.4 Segmentation

 7.5 Security Issues
 Buffer Overflow Attacks
 Defending against Buffer Overflows

 7.6 Summary

 7.7 Recommended Reading

 7.8 Key Terms, Review Questions, and Problems

APPENDIX 7A Loading and Linking

MEMORY MANAGEMENT

CHAPTER

Memory PART 3

306 CHAPTER 7 / MEMORY MANAGEMENT

 I cannot guarantee that I carry all the facts in my mind. Intense mental
concentration has a curious way of blotting out what has passed.
Each of my cases displaces the last, and Mlle. Carère has blurred my
recollection of Baskerville Hall. Tomorrow some other little problem
may be submitted to my notice which will in turn dispossess the fair
French lady and the infamous Upwood.

 — THE HOUND OF THE BASKERVILLES ,
Arthur Conan Doyle.

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

• Discuss the principal requirements for memory management.
• Understand the reason for memory partitioning and explain the various

 techniques that are used.
• Understand and explain the concept of paging.
• Understand and explain the concept of segmentation.
• Assess the relative advantages of paging and segmentation.
• Summarize key security issues related to memory management.
• Describe the concepts of loading and linking.

 In a uniprogramming system, main memory is divided into two parts: one part for
the operating system (resident monitor, kernel) and one part for the program cur-
rently being executed. In a multiprogramming system, the “user” part of memory
must be further subdivided to accommodate multiple processes. The task of subdi-
vision is carried out dynamically by the operating system and is known as memory
management .

 Effective memory management is vital in a multiprogramming system. If only
a few processes are in memory, then for much of the time all of the processes
will be waiting for I/O and the processor will be idle. Thus memory needs to be
allocated to ensure a reasonable supply of ready processes to consume available
processor time.

 We begin with the requirements that memory management is intended to
satisfy. Next, we discuss a variety of simple schemes that have been used for
memory management

 Table 7.1 introduces some key terms for our discussion. A set of animations
that illustrate concepts in this chapter is available online. Click on the rotating globe
at WilliamStallings.com/OS/OS7e.html for access.

7.1 / MEMORY MANAGEMENT REQUIREMENTS 307

7.1 MEMORY MANAGEMENT REQUIREMENTS

 While surveying the various mechanisms and policies associated with memory man-
agement, it is helpful to keep in mind the requirements that memory management is
intended to satisfy. These requirements include the following:

 • Relocation

 • Protection

 • Sharing

 • Logical organization

 • Physical organization

Relocation

 In a multiprogramming system, the available main memory is generally shared
among a number of processes. Typically, it is not possible for the programmer to
know in advance which other programs will be resident in main memory at the time
of execution of his or her program. In addition, we would like to be able to swap
active processes in and out of main memory to maximize processor utilization by
providing a large pool of ready processes to execute. Once a program is swapped
out to disk, it would be quite limiting to specify that when it is next swapped back in,
it must be placed in the same main memory region as before. Instead, we may need
to relocate the process to a different area of memory.

 Thus, we cannot know ahead of time where a program will be placed, and we
must allow for the possibility that the program may be moved about in main memory
due to swapping. These facts raise some technical concerns related to addressing,
as illustrated in Figure 7.1 . The figure depicts a process image. For simplicity, let
us assume that the process image occupies a contiguous region of main memory.
Clearly, the operating system will need to know the location of process control
information and of the execution stack, as well as the entry point to begin execution
of the program for this process. Because the operating system is managing mem-
ory and is responsible for bringing this process into main memory, these addresses
are easy to come by. In addition, however, the processor must deal with memory

Table 7.1 Memory Management Terms

Frame A fixed-length block of main memory.

Page A fixed-length block of data that resides in secondary memory (such as disk). A page of data may
temporarily be copied into a frame of main memory.

Segment A variable-length block of data that resides in secondary memory. An entire segment may tempo-
rarily be copied into an available region of main memory (segmentation) or the segment may be
divided into pages which can be individually copied into main memory (combined segmentation
and paging).

308 CHAPTER 7 / MEMORY MANAGEMENT

references within the program. Branch instructions contain an address to reference
the instruction to be executed next. Data reference instructions contain the address
of the byte or word of data referenced. Somehow, the processor hardware and oper-
ating system software must be able to translate the memory references found in the
code of the program into actual physical memory addresses, reflecting the current
location of the program in main memory.

Protection

 Each process should be protected against unwanted interference by other
 processes, whether accidental or intentional. Thus, programs in other processes
should not be able to reference memory locations in a process for reading or writing
 purposes without permission. In one sense, satisfaction of the relocation require-
ment increases the difficulty of satisfying the protection requirement. Because
the location of a program in main memory is unpredictable, it is impossible to
check absolute addresses at compile time to assure protection. Furthermore, most
programming languages allow the dynamic calculation of addresses at run time
(e.g., by computing an array subscript or a pointer into a data structure). Hence all
memory references generated by a process must be checked at run time to ensure
that they refer only to the memory space allocated to that process. Fortunately,
we shall see that mechanisms that support relocation also support the protection
requirement.

 Normally, a user process cannot access any portion of the operating system,
neither program nor data. Again, usually a program in one process cannot branch
to an instruction in another process. Without special arrangement, a program in one
process cannot access the data area of another process. The processor must be able
to abort such instructions at the point of execution.

Process control block

Program

Data

Stack

Current top
of stack

Entry point
to program

Process control
information

Increasing
address
values

Branch
instruction

Reference
to data

Figure 7.1 Addressing Requirements for a Process

7.1 / MEMORY MANAGEMENT REQUIREMENTS 309

 Note that the memory protection requirement must be satisfied by the proces-
sor (hardware) rather than the operating system (software). This is because the OS
cannot anticipate all of the memory references that a program will make. Even if
such anticipation were possible, it would be prohibitively time consuming to screen
each program in advance for possible memory-reference violations. Thus, it is only
possible to assess the permissibility of a memory reference (data access or branch)
at the time of execution of the instruction making the reference. To accomplish this,
the processor hardware must have that capability.

Sharing

 Any protection mechanism must have the flexibility to allow several processes to
access the same portion of main memory. For example, if a number of processes are
executing the same program, it is advantageous to allow each process to access the
same copy of the program rather than have its own separate copy. Processes that
are cooperating on some task may need to share access to the same data structure.
The memory management system must therefore allow controlled access to shared
areas of memory without compromising essential protection. Again, we will see that
the mechanisms used to support relocation support sharing capabilities.

Logical Organization

 Almost invariably, main memory in a computer system is organized as a linear,
or one-dimensional, address space, consisting of a sequence of bytes or words.
Secondary memory, at its physical level, is similarly organized. While this organi-
zation closely mirrors the actual machine hardware, it does not correspond to the
way in which programs are typically constructed. Most programs are organized into
modules, some of which are unmodifiable (read only, execute only) and some of
which contain data that may be modified. If the operating system and computer
hardware can effectively deal with user programs and data in the form of modules
of some sort, then a number of advantages can be realized:

 1. Modules can be written and compiled independently, with all references from
one module to another resolved by the system at run time.

 2. With modest additional overhead, different degrees of protection (read only,
execute only) can be given to different modules.

 3. It is possible to introduce mechanisms by which modules can be shared among
processes. The advantage of providing sharing on a module level is that this
corresponds to the user’s way of viewing the problem, and hence it is easy for
the user to specify the sharing that is desired.

 The tool that most readily satisfies these requirements is segmentation, which is one
of the memory management techniques explored in this chapter.

Physical Organization

 As we discussed in Section 1.5 , computer memory is organized into at least two
levels, referred to as main memory and secondary memory. Main memory provides
fast access at relatively high cost. In addition, main memory is volatile; that is, it

310 CHAPTER 7 / MEMORY MANAGEMENT

does not provide permanent storage. Secondary memory is slower and cheaper than
main memory and is usually not volatile. Thus secondary memory of large capacity
can be provided for long-term storage of programs and data, while a smaller main
memory holds programs and data currently in use.

 In this two-level scheme, the organization of the flow of information between
main and secondary memory is a major system concern. The responsibility for this
flow could be assigned to the individual programmer, but this is impractical and
undesirable for two reasons:

 1. The main memory available for a program plus its data may be insufficient. In
that case, the programmer must engage in a practice known as overlaying , in
which the program and data are organized in such a way that various modules
can be assigned the same region of memory, with a main program responsible
for switching the modules in and out as needed. Even with the aid of compiler
tools, overlay programming wastes programmer time.

 2. In a multiprogramming environment, the programmer does not know at the
time of coding how much space will be available or where that space will be.

 It is clear, then, that the task of moving information between the two levels
of memory should be a system responsibility. This task is the essence of memory
management.

7.2 MEMORY PARTITIONING

 The principal operation of memory management is to bring processes into main
memory for execution by the processor. In almost all modern multiprogramming
systems, this involves a sophisticated scheme known as virtual memory. Virtual
memory is, in turn, based on the use of one or both of two basic techniques: segmen-
tation and paging. Before we can look at these virtual memory techniques, we must
prepare the ground by looking at simpler techniques that do not involve virtual
memory (Table 7.2 summarizes all the techniques examined in this chapter and the
next). One of these techniques, partitioning, has been used in several variations in
some now-obsolete operating systems. The other two techniques, simple paging and
simple segmentation, are not used by themselves. However, it will clarify the dis-
cussion of virtual memory if we look first at these two techniques in the absence of
virtual memory considerations.

Fixed Partitioning

 In most schemes for memory management, we can assume that the OS occupies
some fixed portion of main memory and that the rest of main memory is available
for use by multiple processes. The simplest scheme for managing this available
memory is to partition it into regions with fixed boundaries.

PARTITION SIZES Figure 7.2 shows examples of two alternatives for fixed
partitioning. One possibility is to make use of equal-size partitions. In this case,
any process whose size is less than or equal to the partition size can be loaded into

7.2 / MEMORY PARTITIONING 311

any available partition. If all partitions are full and no process is in the Ready or
Running state, the operating system can swap a process out of any of the partitions
and load in another process, so that there is some work for the processor.

 There are two difficulties with the use of equal-size fixed partitions:

 • A program may be too big to fit into a partition. In this case, the programmer
must design the program with the use of overlays so that only a portion of the
program need be in main memory at any one time. When a module is needed

Table 7.2 Memory Management Techniques

 Technique Description Strengths Weaknesses

Fixed
Partitioning

 Main memory is divided into
a number of static partitions
at system generation time.
A process may be loaded
into a partition of equal or
greater size.

 Simple to implement; little
operating system overhead.

 Inefficient use of memory
due to internal fragmenta-
tion; maximum number of
active processes is fixed.

Dynamic
Partitioning

 Partitions are created
dynamically, so that each
process is loaded into a
partition of exactly the same
size as that process.

 No internal fragmentation;
more efficient use of main
memory.

 Inefficient use of processor
due to the need for com-
paction to counter external
fragmentation.

Simple Paging Main memory is divided
into a number of equal-size
frames. Each process is
divided into a number of
equal-size pages of the same
length as frames. A process
is loaded by loading all of its
pages into available, not nec-
essarily contiguous, frames.

 No external fragmentation. A small amount of internal
fragmentation.

Simple
Segmentation

 Each process is divided into
a number of segments. A
process is loaded by load-
ing all of its segments into
dynamic partitions that need
not be contiguous.

 No internal fragmentation;
improved memory utiliza-
tion and reduced overhead
compared to dynamic
 partitioning.

 External fragmentation.

Virtual Memory
Paging

 As with simple paging,
except that it is not necessary
to load all of the pages of a
process. Nonresident pages
that are needed are brought
in later automatically.

 No external fragmentation;
higher degree of multipro-
gramming; large virtual
address space.

 Overhead of complex
memory management.

Virtual Memory
Segmentation

 As with simple segmenta-
tion, except that it is not
necessary to load all of
the segments of a process.
Nonresident segments that
are needed are brought in
later automatically.

 No internal fragmentation,
higher degree of multipro-
gramming; large virtual
address space; protection
and sharing support.

 Overhead of complex
memory management.

312 CHAPTER 7 / MEMORY MANAGEMENT

that is not present, the user’s program must load that module into the pro-
gram’s partition, overlaying whatever programs or data are there.

 • Main memory utilization is extremely inefficient. Any program, no matter
how small, occupies an entire partition. In our example, there may be a pro-
gram whose length is less than 2 Mbytes; yet it occupies an 8-Mbyte partition
whenever it is swapped in. This phenomenon, in which there is wasted space
internal to a partition due to the fact that the block of data loaded is smaller
than the partition, is referred to as internal fragmentation .

 Both of these problems can be lessened, though not solved, by using unequal-
size partitions (Figure 7.2b). In this example, programs as large as 16 Mbytes can
be accommodated without overlays. Partitions smaller than 8 Mbytes allow smaller
programs to be accommodated with less internal fragmentation.

PLACEMENT ALGORITHM With equal-size partitions, the placement of processes
in memory is trivial. As long as there is any available partition, a process can be

Operating system
8M

Operating system
8M

8M

2M

4M

6M

8M

8M

12M

16M

8M

8M

8M

8M

8M

8M

(a) Equal-size partitions (b) Unequal-size partitions

Figure 7.2 Example of Fixed Partitioning of a 64-Mbyte Memory

7.2 / MEMORY PARTITIONING 313

loaded into that partition. Because all partitions are of equal size, it does not matter
which partition is used. If all partitions are occupied with processes that are not
ready to run, then one of these processes must be swapped out to make room for a
new process. Which one to swap out is a scheduling decision; this topic is explored
in Part Four.

 With unequal-size partitions, there are two possible ways to assign processes
to partitions. The simplest way is to assign each process to the smallest partition
within which it will fit. 1 In this case, a scheduling queue is needed for each parti-
tion, to hold swapped-out processes destined for that partition (Figure 7.3a). The
advantage of this approach is that processes are always assigned in such a way as to
minimize wasted memory within a partition (internal fragmentation).

 Although this technique seems optimum from the point of view of an indi-
vidual partition, it is not optimum from the point of view of the system as a whole.
In Figure 7.2b , for example, consider a case in which there are no processes with a
size between 12 and 16M at a certain point in time. In that case, the 16M partition
will remain unused, even though some smaller process could have been assigned to
it. Thus, a preferable approach would be to employ a single queue for all processes
(Figure 7.3b). When it is time to load a process into main memory, the smallest
available partition that will hold the process is selected. If all partitions are occupied,
then a swapping decision must be made. Preference might be given to swapping out
of the smallest partition that will hold the incoming process. It is also possible to

Operating
system

New
processes

New
processes

Operating
system

(a) One process queue per partition (b) Single queue

Figure 7.3 Memory Assignment for Fixed Partitioning

1 This assumes that one knows the maximum amount of memory that a process will require. This is not
always the case. If it is not known how large a process may become, the only alternatives are an overlay
scheme or the use of virtual memory.

314 CHAPTER 7 / MEMORY MANAGEMENT

consider other factors, such as priority, and a preference for swapping out blocked
processes versus ready processes.

 The use of unequal-size partitions provides a degree of flexibility to fixed
 partitioning. In addition, it can be said that fixed-partitioning schemes are relatively
simple and require minimal OS software and processing overhead. However, there
are disadvantages:

 • The number of partitions specified at system generation time limits the number
of active (not suspended) processes in the system.

 • Because partition sizes are preset at system generation time, small jobs will not
utilize partition space efficiently. In an environment where the main storage
requirement of all jobs is known beforehand, this may be reasonable, but in
most cases, it is an inefficient technique.

 The use of fixed partitioning is almost unknown today. One example of a suc-
cessful operating system that did use this technique was an early IBM mainframe
operating system, OS/MFT (Multiprogramming with a Fixed Number of Tasks).

Dynamic Partitioning

 To overcome some of the difficulties with fixed partitioning, an approach known
as dynamic partitioning was developed. Again, this approach has been supplanted
by more sophisticated memory management techniques. An important operating
system that used this technique was IBM’s mainframe operating system, OS/MVT
(Multiprogramming with a Variable Number of Tasks).

 With dynamic partitioning, the partitions are of variable length and number.
When a process is brought into main memory, it is allocated exactly as much mem-
ory as it requires and no more. An example, using 64 Mbytes of main memory, is
shown in Figure 7.4 . Initially, main memory is empty, except for the OS (a). The
first three processes are loaded in, starting where the operating system ends and
occupying just enough space for each process (b, c, d). This leaves a “hole” at
the end of memory that is too small for a fourth process. At some point, none of
the processes in memory is ready. The operating system swaps out process 2 (e),
which leaves sufficient room to load a new process, process 4 (f). Because process
4 is smaller than process 2, another small hole is created. Later, a point is reached
at which none of the processes in main memory is ready, but process 2, in the
Ready-Suspend state, is available. Because there is insufficient room in memory
for process 2, the operating system swaps process 1 out (g) and swaps process 2
back in (h).

 As this example shows, this method starts out well, but eventually it leads to a
situation in which there are a lot of small holes in memory. As time goes on, mem-
ory becomes more and more fragmented, and memory utilization declines. This
phenomenon is referred to as external fragmentation , indicating that the memory
that is external to all partitions becomes increasingly fragmented. This is in contrast
to internal fragmentation, referred to earlier.

 One technique for overcoming external fragmentation is compaction : From
time to time, the OS shifts the processes so that they are contiguous and so that all of
the free memory is together in one block. For example, in Figure 7.4h , compaction

7.2 / MEMORY PARTITIONING 315

will result in a block of free memory of length 16M. This may well be sufficient
to load in an additional process. The difficulty with compaction is that it is a time-
consuming procedure and wasteful of processor time. Note that compaction implies
the need for a dynamic relocation capability. That is, it must be possible to move a
program from one region to another in main memory without invalidating the
 memory references in the program (see Appendix 7A).

PLACEMENT ALGORITHM Because memory compaction is time consuming, the OS
designer must be clever in deciding how to assign processes to memory (how to plug
the holes). When it is time to load or swap a process into main memory, and if there
is more than one free block of memory of sufficient size, then the operating system
must decide which free block to allocate.

 Three placement algorithms that might be considered are best-fit, first-fit, and
next-fit. All, of course, are limited to choosing among free blocks of main memory
that are equal to or larger than the process to be brought in. Best-fit chooses the
block that is closest in size to the request. First-fit begins to scan memory from the

(a)

Operating
system 8M

20M

36M

56M

(b)

Operating
system

Process 1 20M

14M

22M

(c)

Operating
system

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating
system

Process 1

Process 2

14MProcess 2

Process 3

(e)

Operating
system

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating
system

Process 1

Process 4

Process 3

(g)

Operating
system

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating
system

Process 4

Process 3

20M

14M

18M

4M

18M

20M

8M

6M

18M

4M

18M

Figure 7.4 The Effect of Dynamic Partitioning

316 CHAPTER 7 / MEMORY MANAGEMENT

beginning and chooses the first available block that is large enough. Next-fit begins
to scan memory from the location of the last placement, and chooses the next avail-
able block that is large enough.

 Figure 7.5a shows an example memory configuration after a number of place-
ment and swapping-out operations. The last block that was used was a 22-Mbyte
block from which a 14-Mbyte partition was created. Figure 7.5b shows the
 difference between the best-, first-, and next-fit placement algorithms in satisfying
a 16-Mbyte allocation request. Best-fit will search the entire list of available blocks
and make use of the 18-Mbyte block, leaving a 2-Mbyte fragment. First-fit results
in a 6-Mbyte fragment, and next-fit results in a 20-Mbyte fragment.

 Which of these approaches is best will depend on the exact sequence of proc-
ess swappings that occurs and the size of those processes. However, some general
comments can be made (see also [BREN89], [SHOR75], and [BAYS77]). The
 first-fit algorithm is not only the simplest but usually the best and fastest as well.
The next-fit algorithm tends to produce slightly worse results than the first-fit. The
next-fit algorithm will more frequently lead to an allocation from a free block at the
end of memory. The result is that the largest block of free memory, which usually

8M

12M

22M

18M

8M

6M

14M

36M

(a) Before

Last
allocated
block (14K)

8M

12M

6M

2M

8M

6M

14M

20M

(b) After

Next fit

Allocated block

Best fit

First fit

Free block

Possible new allocation

Figure 7.5 Example Memory Confi guration before and after Allocation of
16-Mbyte Block

7.2 / MEMORY PARTITIONING 317

appears at the end of the memory space, is quickly broken up into small fragments.
Thus, compaction may be required more frequently with next-fit. On the other
hand, the first-fit algorithm may litter the front end with small free partitions that
need to be searched over on each subsequent first-fit pass. The best-fit algorithm,
despite its name, is usually the worst performer. Because this algorithm looks for
the smallest block that will satisfy the requirement, it guarantees that the fragment
left behind is as small as possible. Although each memory request always wastes
the smallest amount of memory, the result is that main memory is quickly littered
by blocks too small to satisfy memory allocation requests. Thus, memory compac-
tion must be done more frequently than with the other algorithms.

REPLACEMENT ALGORITHM In a multiprogramming system using dynamic
partitioning, there will come a time when all of the processes in main memory
are in a blocked state and there is insufficient memory, even after compaction,
for an additional process. To avoid wasting processor time waiting for an active
process to become unblocked, the OS will swap one of the processes out of main
memory to make room for a new process or for a process in a Ready-Suspend state.
Therefore, the operating system must choose which process to replace. Because
the topic of replacement algorithms will be covered in some detail with respect to
various virtual memory schemes, we defer a discussion of replacement algorithms
until then.

Buddy System

 Both fixed and dynamic partitioning schemes have drawbacks. A fixed partition-
ing scheme limits the number of active processes and may use space inefficiently
if there is a poor match between available partition sizes and process sizes. A
dynamic partitioning scheme is more complex to maintain and includes the over-
head of compaction. An interesting compromise is the buddy system ([KNUT97],
[PETE77]).

 In a buddy system, memory blocks are available of size 2 K words, L 	 K 	 U ,
where

 2 L � smallest size block that is allocated

 2 U � largest size block that is allocated; generally 2 U is the size of the entire
memory available for allocation

 To begin, the entire space available for allocation is treated as a single block
of size 2 U . If a request of size s such that 2 U –1 < s 	 2 U is made, then the entire block
is allocated. Otherwise, the block is split into two equal buddies of size 2 U –1 . If 2 U –2

< s 	 2 U –1 , then the request is allocated to one of the two buddies. Otherwise, one
of the buddies is split in half again. This process continues until the smallest block
greater than or equal to s is generated and allocated to the request. At any time, the
buddy system maintains a list of holes (unallocated blocks) of each size 2 i . A hole
may be removed from the (i + 1) list by splitting it in half to create two buddies of
size 2 i in the i list. Whenever a pair of buddies on the i list both become unallocated,
they are removed from that list and coalesced into a single block on the (i + 1)

318 CHAPTER 7 / MEMORY MANAGEMENT

list. Presented with a request for an allocation of size k such that 2 i –1 � k 	 2 i , the
 following recursive algorithm is used to find a hole of size 2 i:

void get_hole(int i)
{
if (i == (U + 1)) <failure>;
if (<i_list empty>) {

get_hole(i + 1);
<split hole into buddies>;
<put buddies on i_list>;

}
<take first hole on i_list>;

}

 Figure 7.6 gives an example using a 1-Mbyte initial block. The first request, A,
is for 100 Kbytes, for which a 128K block is needed. The initial block is divided into
two 512K buddies. The first of these is divided into two 256K buddies, and the first
of these is divided into two 128K buddies, one of which is allocated to A. The next
request, B, requires a 256K block. Such a block is already available and is allocated.
The process continues with splitting and coalescing occurring as needed. Note that
when E is released, two 128K buddies are coalesced into a 256K block, which is
immediately coalesced with its buddy.

 Figure 7.7 shows a binary tree representation of the buddy allocation immedi-
ately after the Release B request. The leaf nodes represent the current partitioning
of the memory. If two buddies are leaf nodes, then at least one must be allocated;
otherwise they would be coalesced into a larger block.

1-Mbyte block 1M

1M

Request 100K

Request 240K

Request 64K

Request 256K

Release B

Release A

Request 75K

Release C

Release E

Release D

512K256KA � 128K 128K

512KB � 256KA � 128K 128K

512KB � 256KA � 128K C � 64K 64K

256KB � 256K D � 256KA � 128K C � 64K 64K

256K 256KD � 256KA � 128K C � 64K 64K

256K 256KD � 256KE � 128K C � 64K 64K

256K 256KD � 256KE � 128K 128K

512K 256KD � 256K

256K 256KD � 256K128K C � 64K 64K

Figure 7.6 Example of Buddy System

7.2 / MEMORY PARTITIONING 319

 The buddy system is a reasonable compromise to overcome the disadvantages
of both the fixed and variable partitioning schemes, but in contemporary operating
systems, virtual memory based on paging and segmentation is superior. However,
the buddy system has found application in parallel systems as an efficient means
of allocation and release for parallel programs (e.g., see [JOHN92]). A modified
form of the buddy system is used for UNIX kernel memory allocation (described in
 Chapter 8).

 Relocation

 Before we consider ways of dealing with the shortcomings of partitioning, we must
clear up one loose end, which relates to the placement of processes in memory.
When the fixed partition scheme of Figure 7.3a is used, we can expect that a pro-
cess will always be assigned to the same partition. That is, whichever partition is
selected when a new process is loaded will always be used to swap that process back
into memory after it has been swapped out. In that case, a simple relocating loader,
such as is described in Appendix 7A, can be used: When the process is first loaded,
all relative memory references in the code are replaced by absolute main memory
addresses, determined by the base address of the loaded process.

 In the case of equal-size partitions (Figure 7.2), and in the case of a single proc-
ess queue for unequal-size partitions (Figure 7.3b), a process may occupy different
partitions during the course of its life. When a process image is first created, it is

256K 256KA � 128K D � 256KC � 64K 64K

1M

512K

256K

128K

64K

Leaf node for
allocated block

Leaf node for
unallocated block

Non-leaf node

 Figure 7.7 Tree Representation of Buddy System

320 CHAPTER 7 / MEMORY MANAGEMENT

loaded into some partition in main memory. Later, the process may be swapped out;
when it is subsequently swapped back in, it may be assigned to a different partition
than the last time. The same is true for dynamic partitioning. Observe in Figure 7.4c
and Figure 7.4h that process 2 occupies two different regions of memory on the two
occasions when it is brought in. Furthermore, when compaction is used, processes
are shifted while they are in main memory. Thus, the locations (of instructions and
data) referenced by a process are not fixed. They will change each time a process is
swapped in or shifted. To solve this problem, a distinction is made among several
types of addresses. A logical address is a reference to a memory location independ-
ent of the current assignment of data to memory; a translation must be made to a
physical address before the memory access can be achieved. A relative address is a
particular example of logical address, in which the address is expressed as a location
relative to some known point, usually a value in a processor register. A physical
address , or absolute address, is an actual location in main memory.

 Programs that employ relative addresses in memory are loaded using dynamic
run-time loading (see Appendix 7A for a discussion). Typically, all of the memory
references in the loaded process are relative to the origin of the program. Thus a hard-
ware mechanism is needed for translating relative addresses to physical main memory
addresses at the time of execution of the instruction that contains the reference.

 Figure 7.8 shows the way in which this address translation is typically accom-
plished. When a process is assigned to the Running state, a special processor register,
sometimes called the base register, is loaded with the starting address in main memory
of the program. There is also a “bounds” register that indicates the ending location

Process control block

Program

Data

Stack

Comparator

Interrupt to
operating system

Absolute
address

Process image in
main memory

Relative address

Base register

Bounds register

Adder

Figure 7.8 Hardware Support for Relocation

7.3 / PAGING 321

of the program; these values must be set when the program is loaded into memory or
when the process image is swapped in. During the course of execution of the proc-
ess, relative addresses are encountered. These include the contents of the instruc-
tion register, instruction addresses that occur in branch and call instructions, and
data addresses that occur in load and store instructions. Each such relative address
goes through two steps of manipulation by the processor. First, the value in the base
 register is added to the relative address to produce an absolute address. Second, the
resulting address is compared to the value in the bounds register. If the address is
within bounds, then the instruction execution may proceed. Otherwise, an interrupt is
generated to the operating system, which must respond to the error in some fashion.

 The scheme of Figure 7.8 allows programs to be swapped in and out of mem-
ory during the course of execution. It also provides a measure of protection: Each
process image is isolated by the contents of the base and bounds registers and safe
from unwanted accesses by other processes.

7.3 PAGING

 Both unequal fixed-size and variable-size partitions are inefficient in the use of
memory; the former results in internal fragmentation, the latter in external frag-
mentation. Suppose, however, that main memory is partitioned into equal fixed-size
chunks that are relatively small, and that each process is also divided into small
fixed-size chunks of the same size. Then the chunks of a process, known as pages,
could be assigned to available chunks of memory, known as frames, or page frames.
We show in this section that the wasted space in memory for each process is due
to internal fragmentation consisting of only a fraction of the last page of a process.
There is no external fragmentation.

 Figure 7.9 illustrates the use of pages and frames. At a given point in time, some
of the frames in memory are in use and some are free. A list of free frames is main-
tained by the OS. Process A, stored on disk, consists of four pages. When it is time to
load this process, the OS finds four free frames and loads the four pages of process A
into the four frames (Figure 7.9b). Process B, consisting of three pages, and process C,
consisting of four pages, are subsequently loaded. Then process B is suspended and is
swapped out of main memory. Later, all of the processes in main memory are blocked,
and the OS needs to bring in a new process, process D, which consists of five pages.

 Now suppose, as in this example, that there are not sufficient unused contiguous
frames to hold the process. Does this prevent the operating system from loading D?
The answer is no, because we can once again use the concept of logical address.
A simple base address register will no longer suffice. Rather, the operating system
maintains a page table for each process. The page table shows the frame location for
each page of the process. Within the program, each logical address consists of a page
number and an offset within the page. Recall that in the case of simple partition, a
logical address is the location of a word relative to the beginning of the program; the
processor translates that into a physical address. With paging, the logical-to-physical
address translation is still done by processor hardware. Now the processor must
know how to access the page table of the current process. Presented with a logical

322 CHAPTER 7 / MEMORY MANAGEMENT

address (page number, offset), the processor uses the page table to produce a physi-
cal address (frame number, offset).

 Continuing our example, the five pages of process D are loaded into frames 4,
5, 6, 11, and 12. Figure 7.10 shows the various page tables at this time. A page table
contains one entry for each page of the process, so that the table is easily indexed by
the page number (starting at page 0). Each page table entry contains the number of
the frame in main memory, if any, that holds the corresponding page. In addition,
the OS maintains a single free-frame list of all the frames in main memory that are
currently unoccupied and available for pages.

 Thus we see that simple paging, as described here, is similar to fixed parti-
tioning. The differences are that, with paging, the partitions are rather small; a

Frame
number

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(a) Fifteen available frames

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(d) Load process C

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(e) Swap out B

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(f) Load process D

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(b) Load process A

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(c) Load process B

A.0
A.1
A.2
A.3

A.0
A.1
A.2
A.3

A.0
A.1
A.2
A.3

A.0
A.1
A.2
A.3

A.0
A.1
A.2
A.3

C.0
C.1
C.2
C.3

C.1
C.2
C.3

C.1
C.2
C.3

C.0 C.0

D.0
D.1
D.2

B.0
B.1
B.2

D.3
D.4

B.0
B.1
B.2

 Figure 7.9 Assignment of Process to Free Frames

7.3 / PAGING 323

program may occupy more than one partition; and these partitions need not be
contiguous.

 To make this paging scheme convenient, let us dictate that the page size,
hence the frame size, must be a power of 2. With the use of a page size that is a
power of 2, it is easy to demonstrate that the relative address, which is defined with
reference to the origin of the program, and the logical address, expressed as a page
number and offset, are the same. An example is shown in Figure 7.11 . In this exam-
ple, 16-bit addresses are used, and the page size is 1K � 1,024 bytes. The relative
address 1502, in binary form, is 0000010111011110. With a page size of 1K, an offset
field of 10 bits is needed, leaving 6 bits for the page number. Thus a program can
consist of a maximum of 2 6 � 64 pages of 1K bytes each. As Figure 7.11b shows, rel-
ative address 1502 corresponds to an offset of 478 (0111011110) on page 1 (000001),
which yields the same 16-bit number, 0000010111011110.

 The consequences of using a page size that is a power of 2 are twofold. First,
the logical addressing scheme is transparent to the programmer, the assembler, and

00
11
22
33

Process A
page table

13
14

Free frame
list

70
81
92

103

Process C
page table Process D

page table

40
51
62
113
124

0
1
2

Process B
page table

—
—
—

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

Logical address �
Segment# � 1, Offset � 752

In
te

rn
al

fr
ag

m
en

ta
tio

n

(c) Segmentation(a) Partitioning

(b) Paging
(page size � 1K)

75
2

Se
gm

en
t 1

1,
95

0
by

te
s

0000010111011110 0001001011110000

Logical address �
Page# � 1, Offset � 478Relative address � 1502

0000010111011110

47
8

U
se

r
pr

oc
es

s
(2

,7
00

 b
yt

es
)

Se
gm

en
t 0

75
0

by
te

s

Pa
ge

 2
Pa

ge
 1

Pa
ge

 0

Figure 7.11 Logical Addresses

324 CHAPTER 7 / MEMORY MANAGEMENT

the linker. Each logical address (page number, offset) of a program is identical to
its relative address. Second, it is a relatively easy matter to implement a function in
hardware to perform dynamic address translation at run time. Consider an address
of n + m bits, where the leftmost n bits are the page number and the rightmost m
bits are the offset. In our example (Figure 7.11b), n � 6 and m � 10. The following
steps are needed for address translation:

 • Extract the page number as the leftmost n bits of the logical address.

 • Use the page number as an index into the process page table to find the frame
number, k .

 • The starting physical address of the frame is k × 2 m , and the physical address
of the referenced byte is that number plus the offset. This physical address
need not be calculated; it is easily constructed by appending the frame number
to the offset.

 In our example, we have the logical address 0000010111011110, which is page
number 1, offset 478. Suppose that this page is residing in main memory frame
6 � binary 000110. Then the physical address is frame number 6, offset 478 �
0001100111011110 (Figure 7.12a).

0

0
1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process
page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address

(a) Paging

000101

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address

(b) Segmentation

0010111011100
1

0000010000000000
0111100111100010000000100000 +

000110
011001

4-bit segment #

Figure 7.12 Examples of Logical-to-Physical Address Translation

7.4 / SEGMENTATION 325

 To summarize, with simple paging, main memory is divided into many small
equal-size frames. Each process is divided into frame-size pages. Smaller processes
require fewer pages; larger processes require more. When a process is brought in,
all of its pages are loaded into available frames, and a page table is set up. This
approach solves many of the problems inherent in partitioning.

7.4 SEGMENTATION

 A user program can be subdivided using segmentation, in which the program and its
associated data are divided into a number of segments . It is not required that all seg-
ments of all programs be of the same length, although there is a maximum segment
length. As with paging, a logical address using segmentation consists of two parts, in
this case a segment number and an offset.

 Because of the use of unequal-size segments, segmentation is similar to
dynamic partitioning. In the absence of an overlay scheme or the use of virtual
memory, it would be required that all of a program’s segments be loaded into mem-
ory for execution. The difference, compared to dynamic partitioning, is that with
segmentation a program may occupy more than one partition, and these partitions
need not be contiguous. Segmentation eliminates internal fragmentation but, like
dynamic partitioning, it suffers from external fragmentation. However, because a
process is broken up into a number of smaller pieces, the external fragmentation
should be less.

 Whereas paging is invisible to the programmer, segmentation is usually visible
and is provided as a convenience for organizing programs and data. Typically, the
programmer or compiler will assign programs and data to different segments. For
purposes of modular programming, the program or data may be further broken
down into multiple segments. The principal inconvenience of this service is that the
programmer must be aware of the maximum segment size limitation.

 Another consequence of unequal-size segments is that there is no simple rela-
tionship between logical addresses and physical addresses. Analogous to paging, a
simple segmentation scheme would make use of a segment table for each process
and a list of free blocks of main memory. Each segment table entry would have
to give the starting address in main memory of the corresponding segment. The
entry should also provide the length of the segment, to assure that invalid addresses
are not used. When a process enters the Running state, the address of its segment
table is loaded into a special register used by the memory management hardware.
Consider an address of n � m bits, where the leftmost n bits are the segment number
and the rightmost m bits are the offset. In our example (Figure 7.11c), n � 4 and
m � 12. Thus the maximum segment size is 2 12 � 4096. The following steps are
needed for address translation:

 • Extract the segment number as the leftmost n bits of the logical address.

 • Use the segment number as an index into the process segment table to find the
starting physical address of the segment.

 • Compare the offset, expressed in the rightmost m bits, to the length of the seg-
ment. If the offset is greater than or equal to the length, the address is invalid.

326 CHAPTER 7 / MEMORY MANAGEMENT

 • The desired physical address is the sum of the starting physical address of the
segment plus the offset.

 In our example, we have the logical address 0001001011110000, which is
 segment number 1, offset 752. Suppose that this segment is residing in main mem-
ory starting at physical address 0010000000100000. Then the physical address is
0010000000100000 + 001011110000 � 0010001100010000 (Figure 7.12b).

 To summarize, with simple segmentation, a process is divided into a number
of segments that need not be of equal size. When a process is brought in, all of its
segments are loaded into available regions of memory, and a segment table is set up.

7.5 SECURITY ISSUES

 Main memory and virtual memory are system resources subject to security threats
and for which security countermeasures need to be taken. The most obvious secu-
rity requirement is the prevention of unauthorized access to the memory contents
of processes. If a process has not declared a portion of its memory to be sharable,
then no other process should have access to the contents of that portion of memory.
If a process declares that a portion of memory may be shared by other designated
processes, then the security service of the OS must ensure that only the designated
 processes have access. The security threats and countermeasures discussed in
 Chapter 3 are relevant to this type of memory protection.

 In this section, we summarize another threat that involves memory protection.
Part Seven provides more detail.

Buffer Overflow Attacks

 One serious security threat related to memory management remains to be intro-
duced: buffer overflow , also known as a buffer overrun , which is defined in the NIST
(National Institute of Standards and Technology) Glossary of Key Information
Security Terms as follows:

buffer overrun: A condition at an interface under which more input can be
placed into a buffer or data-holding area than the capacity allocated, overwrit-
ing other information. Attackers exploit such a condition to crash a system or to
insert specially crafted code that allows them to gain control of the system.

 A buffer overflow can occur as a result of a programming error when a process
attempts to store data beyond the limits of a fixed-sized buffer and consequently
overwrites adjacent memory locations. These locations could hold other program
variables or parameters or program control flow data such as return addresses
and pointers to previous stack frames. The buffer could be located on the stack,
in the heap, or in the data section of the process. The consequences of this error
include corruption of data used by the program, unexpected transfer of control in
the program, possibly memory access violations, and very likely eventual program

7.5 / SECURITY ISSUES 327

termination. When done deliberately as part of an attack on a system, the transfer
of control could be to code of the attacker’s choosing, resulting in the ability to
execute arbitrary code with the privileges of the attacked process. Buffer overflow
attacks are one of the most prevalent and dangerous types of security attacks.

 To illustrate the basic operation of a common type of buffer overflow,
known as stack overflow , consider the C main function given in Figure 7.13a . This
contains three variables (valid , str1 , and str2), 2 whose values will typically
be saved in adjacent memory locations. Their order and location depends on the
type of variable (local or global), the language and compiler used, and the target
machine architecture. For this example, we assume that they are saved in consecu-
tive memory locations, from highest to lowest, as shown in Figure 7.14 . 3 This is
typically the case for local variables in a C function on common processor archi-
tectures such as the Intel Pentium family. The purpose of the code fragment is to
call the function next_tag(str1) to copy into str1 some expected tag value.

2 In this example, the flag variable is saved as an integer rather than a Boolean. This is done both because
it is the classic C style and to avoid issues of word alignment in its storage. The buffers are deliberately
small to accentuate the buffer overflow issue being illustrated.
3 Address and data values are specified in hexadecimal in this and related figures. Data values are also
shown in ASCII where appropriate.

Figure 7.13 Basic Buffer Overfl ow Example

int main(int argc, char *argv[]) {
int valid = FALSE;
char str1[8];
char str2[8];

next_tag(str1);
gets(str2);
if (strncmp(str1, str2, 8) == 0)

valid = TRUE;
 printf(“buffer1: str1(%s), str2(%s), valid(%d)\n”, str1, str2, valid);
}

$ cc -g -o buffer1 buffer1.c
$./buffer1
START
buffer1: str1(START), str2(START), valid(1)
$./buffer1
EVILINPUTVALUE
buffer1: str1(TVALUE), str2(EVILINPUTVALUE), valid(0)
$./buffer1
BADINPUTBADINPUT
buffer1: str1(BADINPUT), str2(BADINPUTBADINPUT), valid(1)

 (a) Basic buffer overflow C code

 (b) Basic buffer overflow example runs

328 CHAPTER 7 / MEMORY MANAGEMENT

Let’s assume this will be the string START . It then reads the next line from the
standard input for the program using the C library gets() function, and then
compares the string read with the expected tag. If the next line did indeed contain
just the string START , this comparison would succeed, and the variable valid would
be set to TRUE . 4 This case is shown in the first of the three example program runs
in Figure 7.13b . Any other input tag would leave it with the value FALSE . Such a
code fragment might be used to parse some structured network protocol interac-
tion or formatted text file.

 The problem with this code exists because the traditional C library gets()
function does not include any checking on the amount of data copied. It reads the
next line of text from the program’s standard input up until the first newline 5 char-
acter occurs and copies it into the supplied buffer followed by the NULL terminator

4 In C the logical values FALSE and TRUE are simply integers with the values 0 and 1 (or indeed any
nonzero value), respectively. Symbolic defines are often used to map these symbolic names to their
 underlying value, as was done in this program.

Figure 7.14 Basic Buffer Overfl ow Stack Values

Memory
Address

Before
gets (str2)

After
gets (str2)

Contains
Value of

.

bffffbf4 34fcffbf 34fcffbf argv
4 . . . 3 . . .

bffffbf0 01000000 01000000 argc
.

bffffbec c6bd0340 c6bd0340 return addr
. . . @ . . . @

bffffbe8 08fcffbf 08fcffbf old base ptr
.

bffffbe4 00000000 01000000 valid
.

bffffbe0 80640140 00640140
. d . @ . d . @

bffffbdc 54001540 4e505554 str1[4-7]
T . . @ N P U T

bffffbd8 53544152 42414449 str1[0-3]
S T A R B A D I

bffffbd4 00850408 4e505554 str2[4-7]
. . . . N P U T

bffffbd0 30561540 42414449 str2[0-3]
0 v . @ B A D I

.

5 The newline (NL) or linefeed (LF) character is the standard end of line terminator for UNIX systems,
and hence for C, and is the character with the ASCII value 0x0a.

7.5 / SECURITY ISSUES 329

used with C strings. 6 If more than seven characters are present on the input line,
when read in they will (along with the terminating NULL character) require more
room than is available in the str2 buffer. Consequently, the extra characters will
overwrite the values of the adjacent variable, str1 in this case. For example, if the
input line contained EVILINPUTVALUE , the result will be that str1 will be over-
written with the characters TVALUE , and str2 will use not only the eight characters
allocated to it but seven more from str1 as well. This can be seen in the second
example run in Figure 7.13b . The overflow has resulted in corruption of a variable
not directly used to save the input. Because these strings are not equal, valid also
retains the value FALSE . Further, if 16 or more characters were input, additional
memory locations would be overwritten.

 The preceding example illustrates the basic behavior of a buffer overflow. At
its simplest, any unchecked copying of data into a buffer could result in corruption
of adjacent memory locations, which may be other variables, or possibly program
control addresses and data. Even this simple example could be taken further.
Knowing the structure of the code processing it, an attacker could arrange for the
overwritten value to set the value in str1 equal to the value placed in str2 , result-
ing in the subsequent comparison succeeding. For example, the input line could
be the string BADINPUTBADINPUT . This results in the comparison succeeding, as
shown in the third of the three example program runs in Figure 7.13b , and illus-
trated in Figure 7.14 , with the values of the local variables before and after the call
to gets() . Note also that the terminating NULL for the input string was written to
the memory location following str1 . This means the flow of control in the program
will continue as if the expected tag was found, when in fact the tag read was some-
thing completely different. This will almost certainly result in program behavior
that was not intended. How serious this is depends very much on the logic in the
attacked program. One dangerous possibility occurs if instead of being a tag, the
values in these buffers were an expected and supplied password needed to access
privileged features. If so, the buffer overflow provides the attacker with a means of
accessing these features without actually knowing the correct password.

 To exploit any type of buffer overflow, such as those we have illustrated here,
the attacker needs:

 1. To identify a buffer overflow vulnerability in some program that can be trig-
gered using externally sourced data under the attackers control, and

 2. To understand how that buffer will be stored in the processes memory, and
hence the potential for corrupting adjacent memory locations and potentially
altering the flow of execution of the program.

 Identifying vulnerable programs may be done by inspection of program source,
tracing the execution of programs as they process oversized input, or using tools
such as fuzzing , which we discuss in Part Seven, to automatically identify potentially

6 Strings in C are stored in an array of characters and terminated with the NULL character, which has the
ASCII value 0x00. Any remaining locations in the array are undefined, and typically contain whatever
value was previously saved in that area of memory. This can be clearly seen in the value in the variable
str2 in the “Before” column of Figure 7.14 .

330 CHAPTER 7 / MEMORY MANAGEMENT

 vulnerable programs. What the attacker does with the resulting corruption of
 memory varies considerably, depending on what values are being overwritten.

Defending against Buffer Overflows

 Finding and exploiting a stack buffer overflow is not that difficult. The large num-
ber of exploits over the previous couple of decades clearly illustrates this. There
is consequently a need to defend systems against such attacks by either prevent-
ing them or at least detecting and aborting such attacks. Countermeasures can be
broadly classified into two categories:

 • Compile-time defenses, which aim to harden programs to resist attacks in new
programs

 • Run-time defenses, which aim to detect and abort attacks in existing programs

 While suitable defenses have been known for a couple of decades, the very
large existing base of vulnerable software and systems hinders their deployment.
Hence the interest in run-time defenses, which can be deployed in operating
 systems and updates and can provide some protection for existing vulnerable
 programs.

7.6 SUMMARY

 One of the most important and complex tasks of an operating system is memory
management. Memory management involves treating main memory as a resource
to be allocated to and shared among a number of active processes. To use the pro-
cessor and the I/O facilities efficiently, it is desirable to maintain as many processes
in main memory as possible. In addition, it is desirable to free programmers from
size restrictions in program development.

 The basic tools of memory management are paging and segmentation. With
paging, each process is divided into relatively small, fixed-size pages. Segmentation
provides for the use of pieces of varying size. It is also possible to combine segmen-
tation and paging in a single memory management scheme.

7.7 RECOMMENDED READING

 Because partitioning has been supplanted by virtual memory techniques, most OS
books offer only cursory coverage. One of the more complete and interesting treat-
ments is in [MILE92]. A thorough discussion of partitioning strategies is found in
[KNUT97].

 The topics of linking and loading are covered in many books on program
development, computer architecture, and operating systems. A particularly detailed
treatment is [BECK97]. [CLAR98] also contains a good discussion. A thorough
practical discussion of this topic, with numerous OS examples, is [LEVI00].

7.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 331

7.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

BECK97 Beck, L. System Software. Reading, MA: Addison-Wesley, 1997.
CLAR98 Clarke, D., and Merusi, D. System Software Programming: The Way Things

Work. Upper Saddle River, NJ: Prentice Hall, 1998.
KNUT97 Knuth, D. The Art of Computer Programming, Volume 1: Fundamental

Algorithms. Reading, MA: Addison-Wesley, 1997.
LEVI00 Levine, J. Linkers and Loaders. San Francisco: Morgan Kaufmann, 2000.
MILE92 Milenkovic, M. Operating Systems: Concepts and Design. New York:

McGraw-Hill, 1992.

 absolute loading
 buddy system
 compaction
 dynamic linking
 dynamic partitioning
 dynamic run-time loading
 external fragmentation
 fixed partitioning
 frame
 internal fragmentation

 linkage editor
 linking
 loading
 logical address
 logical organization
 memory management
 page
 page table
 paging
 partitioning

 physical address
 physical organization
 protection
 relative address
 relocatable loading
 relocation
 segment
 segmentation
 sharing

Review Questions

 7.1 What requirements is memory management intended to satisfy?
 7.2 Why is the capability to relocate processes desirable?
 7.3 Why is it not possible to enforce memory protection at compile time?
 7.4 What are some reasons to allow two or more processes to all have access to a particu-

lar region of memory?
 7.5 In a fixed-partitioning scheme, what are the advantages of using unequal-size

 partitions?
 7.6 What is the difference between internal and external fragmentation?
 7.7 What are the distinctions among logical, relative, and physical addresses?
 7.8 What is the difference between a page and a frame?
 7.9 What is the difference between a page and a segment?

Problems

 7.1 In Section 2.3 , we listed five objectives of memory management, and in Section 7.1 ,
we listed five requirements. Argue that each list encompasses all of the concerns ad-
dressed in the other.

332 CHAPTER 7 / MEMORY MANAGEMENT

 7.2 Consider a fixed partitioning scheme with equal-size partitions of 2 16 bytes and a total
main memory size of 2 24 bytes. A process table is maintained that includes a pointer
to a partition for each resident process. How many bits are required for the pointer?

 7.3 Consider a dynamic partitioning scheme. Show that, on average, the memory contains
half as many holes as segments.

 7.4 To implement the various placement algorithms discussed for dynamic partitioning
(Section 7.2), a list of the free blocks of memory must be kept. For each of the three
methods discussed (best-fit, first-fit, next-fit), what is the average length of the search?

 7.5 Another placement algorithm for dynamic partitioning is referred to as worst-fit. In
this case, the largest free block of memory is used for bringing in a process.
a. Discuss the pros and cons of this method compared to first-, next-, and best-fit.
b. What is the average length of the search for worst-fit?

 7.6 This diagram shows an example of memory configuration under dynamic partition-
ing, after a number of placement and swapping-out operations have been carried out.
 Addresses go from left to right; gray areas indicate blocks occupied by processes;
white areas indicate free memory blocks. The last process placed is 2-Mbyte and is
marked with an X. Only one process was swapped out after that.

4M X 5M 8M 2M 4M 3M
1
M

a. What was the maximum size of the swapped out process?
b. What was the size of the free block just before it was partitioned by X?
c. A new 3-Mbyte allocation request must be satisfied next. Indicate the intervals of

memory where a partition will be created for the new process under the following
four placement algorithms: best-fit, first-fit, next-fit, worst-fit. For each algorithm,
draw a horizontal segment under the memory strip and label it clearly.

 7.7 A 1-Mbyte block of memory is allocated using the buddy system.
a. Show the results of the following sequence in a figure similar to Figure 7.6 : Request 70;

Request 35; Request 80; Return A; Request 60; Return B; Return D; Return C.
b. Show the binary tree representation following Return B.

 7.8 Consider a buddy system in which a particular block under the current allocation has
an address of 011011110000.
a. If the block is of size 4, what is the binary address of its buddy?
b. If the block is of size 16, what is the binary address of its buddy?

 7.9 Let buddy k (x) � address of the buddy of the block of size 2 k whose address is x . Write
a general expression for buddy k (x).

 7.10 The Fibonacci sequence is defined as follows:

 F 0 � 0, F 1 � 1, F n +2 � F n +1 + F n , n
 0

a. Could this sequence be used to establish a buddy system?
b. What would be the advantage of this system over the binary buddy system

 described in this chapter?
 7.11 During the course of execution of a program, the processor will increment the contents

of the instruction register (program counter) by one word after each instruction fetch,
but will alter the contents of that register if it encounters a branch or call instruction
that causes execution to continue elsewhere in the program. Now consider Figure 7.8 .
There are two alternatives with respect to instruction addresses:
• Maintain a relative address in the instruction register and do the dynamic address

translation using the instruction register as input. When a successful branch or call
is encountered, the relative address generated by that branch or call is loaded into
the instruction register.

• Maintain an absolute address in the instruction register. When a successful branch
or call is encountered, dynamic address translation is employed, with the results
stored in the instruction register.

 Which approach is preferable?

7.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 333

 7.12 Consider a simple paging system with the following parameters: 2 32 bytes of physical
memory; page size of 2 10 bytes; 2 16 pages of logical address space.
a. How many bits are in a logical address?
b. How many bytes in a frame?
c. How many bits in the physical address specify the frame?
d. How many entries in the page table?
e. How many bits in each page table entry? Assume each page table entry contains a

valid/invalid bit.
 7.13 Write the binary translation of the logical address 0001010010111010 under the

following hypothetical memory management schemes, and explain your answer:
a. a paging system with a 256-address page size, using a page table in which the frame

number happens to be four times smaller than the page number
b. a segmentation system with a 1K-address maximum segment size, using a segment

table in which bases happen to be regularly placed at real addresses: 22 � 4,096 �
segment #

 7.14 Consider a simple segmentation system that has the following segment table:

 Starting Address Length (bytes)
 660 248
 1,752 422
 222 198
 996 604

 For each of the following logical addresses, determine the physical address or indicate
if a segment fault occurs:
a. 0, 198
b. 2, 156
c. 1, 530
d. 3, 444
e. 0, 222

 7.15 Consider a memory in which contiguous segments S 1 , S 2 , . . . , S n are placed in their
order of creation from one end of the store to the other, as suggested by the following
figure:

HoleS2 SnS1

 When segment S n +1 is being created, it is placed immediately after segment S n even
though some of the segments S1, S2, . . . , S n may already have been deleted. When the
boundary between segments (in use or deleted) and the hole reaches the other end of
the memory, the segments in use are compacted.
a. Show that the fraction of time F spent on compacting obeys the following

 inequality:

F Ú
1 - f

1 + kf
 where k =

t
2s

- 1

 where
s � average length of a segment, in words
t � average lifetime of a segment, in memory references
f � fraction of the memory that is unused under equilibrium conditions

Hint: Find the average speed at which the boundary crosses the memory and
 assume that the copying of a single word requires at least two memory references.

b. Find F for f � 0.2, t � 1,000, and s � 50.

334 CHAPTER 7 / MEMORY MANAGEMENT

APPENDIX 7A LOADING AND LINKING

 The first step in the creation of an active process is to load a program into main
memory and create a process image (Figure 7.15). Figure 7.16 depicts a scenario typ-
ical for most systems. The application consists of a number of compiled or assembled
modules in object-code form. These are linked to resolve any references between
modules. At the same time, references to library routines are resolved. The library
routines themselves may be incorporated into the program or referenced as shared
code that must be supplied by the operating system at run time. In this appendix, we
summarize the key features of linkers and loaders. For clarity in the presentation,
we begin with a description of the loading task when a single program module is
involved; no linking is required.

Loading

 In Figure 7.16 , the loader places the load module in main memory starting at loca-
tion x . In loading the program, the addressing requirement illustrated in Figure 7.1
must be satisfied. In general, three approaches can be taken:

 • Absolute loading

 • Relocatable loading

 • Dynamic run-time loading

ABSOLUTE LOADING An absolute loader requires that a given load module
always be loaded into the same location in main memory. Thus, in the load module
presented to the loader, all address references must be to specific, or absolute, main

Process control block

Program

Data

Stack

Process image in
main memory

Program

Data

Object code

Figure 7.15 The Loading Function

APPENDIX 7A / LOADING AND LINKING 335

memory addresses. For example, if x in Figure 7.16 is location 1024, then the first
word in a load module destined for that region of memory has address 1024.

 The assignment of specific address values to memory references within a
 program can be done either by the programmer or at compile or assembly time
(Table 7.3a). There are several disadvantages to the former approach. First, every
programmer would have to know the intended assignment strategy for placing mod-
ules into main memory. Second, if any modifications are made to the program that
involve insertions or deletions in the body of the module, then all of the addresses
will have to be altered. Accordingly, it is preferable to allow memory references
within programs to be expressed symbolically and then resolve those symbolic refer-
ences at the time of compilation or assembly. This is illustrated in Figure 7.17 . Every
reference to an instruction or item of data is initially represented by a symbol. In
preparing the module for input to an absolute loader, the assembler or compiler will
convert all of these references to specific addresses (in this example, for a module to
be loaded starting at location 1024), as shown in Figure 7.17b .

RELOCATABLE LOADING The disadvantage of binding memory references to
specific addresses prior to loading is that the resulting load module can only be
placed in one region of main memory. However, when many programs share main
memory, it may not be desirable to decide ahead of time into which region of memory
a particular module should be loaded. It is better to make that decision at load time.
Thus we need a load module that can be located anywhere in main memory.

 To satisfy this new requirement, the assembler or compiler produces not
actual main memory addresses (absolute addresses) but addresses that are relative
to some known point, such as the start of the program. This technique is illustrated
in Figure 7.17c . The start of the load module is assigned the relative address 0, and

Loader
Load

module
Linker

Module 2

Module 1

Module n
Main memory

Run-time
linker/
loader

x

Dynamic
library

Dynamic
library

Static
library

Figure 7.16 A Linking and Loading Scenario

336 CHAPTER 7 / MEMORY MANAGEMENT

JUMP X

X

Y

PROGRAM

DATA

(a) Object module

LOAD Y

JUMP 1424

1424

1024 0

2224

PROGRAM

DATA

(b) Absolute load module

LOAD 2224

JUMP 400

400

1200

PROGRAM

DATA

(c) Relative load module

LOAD 1200

JUMP 400

PROGRAM

DATA

LOAD 1200

1200 + x

400 + x

x

Main memory
addresses

(d) Relative load module
loaded into main memory

starting at location x

Symbolic
addresses

Absolute
addresses

Relative
addresses

Figure 7.17 Absolute and Relocatable Load Modules

Table 7.3 Address Binding

(a) Loader

Binding Time Function

 Programming time All actual physical addresses are directly specified by the programmer in the
program itself.

 Compile or assembly time The program contains symbolic address references, and these are converted to
actual physical addresses by the compiler or assembler.

 Load time The compiler or assembler produces relative addresses. The loader translates
these to absolute addresses at the time of program loading.

 Run time The loaded program retains relative addresses. These are converted dynamically
to absolute addresses by processor hardware.

(b) Linker

Linkage Time Function

 Programming time No external program or data references are allowed. The programmer must
place into the program the source code for all subprograms that are referenced.

 Compile or assembly time The assembler must fetch the source code of every subroutine that is referenced
and assemble them as a unit.

 Load module creation All object modules have been assembled using relative addresses. These
 modules are linked together and all references are restated relative to the origin
of the final load module.

 Load time External references are not resolved until the load module is to be loaded into
main memory. At that time, referenced dynamic link modules are appended to
the load module, and the entire package is loaded into main or virtual memory.

 Run time External references are not resolved until the external call is executed by the
processor. At that time, the process is interrupted and the desired module is
linked to the calling program.

APPENDIX 7A / LOADING AND LINKING 337

all other memory references within the module are expressed relative to the begin-
ning of the module.

 With all memory references expressed in relative format, it becomes a simple
task for the loader to place the module in the desired location. If the module is to be
loaded beginning at location x , then the loader must simply add x to each memory
reference as it loads the module into memory. To assist in this task, the load module
must include information that tells the loader where the address references are and
how they are to be interpreted (usually relative to the program origin, but also pos-
sibly relative to some other point in the program, such as the current location). This
set of information is prepared by the compiler or assembler and is usually referred
to as the relocation dictionary.

DYNAMIC RUN-TIME LOADING Relocatable loaders are common and provide
obvious benefits relative to absolute loaders. However, in a multiprogramming
environment, even one that does not depend on virtual memory, the relocatable
loading scheme is inadequate. We have referred to the need to swap process images
in and out of main memory to maximize the utilization of the processor. To maximize
main memory utilization, we would like to be able to swap the process image back into
different locations at different times. Thus, a program, once loaded, may be swapped
out to disk and then swapped back in at a different location. This would be impossible
if memory references had been bound to absolute addresses at the initial load time.

 The alternative is to defer the calculation of an absolute address until it is
actually needed at run time. For this purpose, the load module is loaded into main
memory with all memory references in relative form (Figure 7.17c). It is not until
an instruction is actually executed that the absolute address is calculated. To assure
that this function does not degrade performance, it must be done by special proces-
sor hardware rather than software. This hardware is described in Section 7.2 .

 Dynamic address calculation provides complete flexibility. A program can be
loaded into any region of main memory. Subsequently, the execution of the pro-
gram can be interrupted and the program can be swapped out of main memory, to
be later swapped back in at a different location.

Linking

 The function of a linker is to take as input a collection of object modules and pro-
duce a load module, consisting of an integrated set of program and data modules, to
be passed to the loader. In each object module, there may be address references to
locations in other modules. Each such reference can only be expressed symbolically
in an unlinked object module. The linker creates a single load module that is the
contiguous joining of all of the object modules. Each intramodule reference must be
changed from a symbolic address to a reference to a location within the overall load
module. For example, module A in Figure 7.18a contains a procedure invocation
of module B. When these modules are combined in the load module, this symbolic
reference to module B is changed to a specific reference to the location of the entry
point of B within the load module.

LINKAGE EDITOR The nature of this address linkage will depend on the type
of load module to be created and when the linkage occurs (Table 7.3b). If, as is

338 CHAPTER 7 / MEMORY MANAGEMENT

usually the case, a relocatable load module is desired, then linkage is usually done
in the following fashion. Each compiled or assembled object module is created with
references relative to the beginning of the object module. All of these modules are
put together into a single relocatable load module with all references relative to the
origin of the load module. This module can be used as input for relocatable loading
or dynamic run-time loading.

 A linker that produces a relocatable load module is often referred to as a link-
age editor. Figure 7.18 illustrates the linkage editor function.

DYNAMIC LINKER As with loading, it is possible to defer some linkage functions.
The term dynamic linking is used to refer to the practice of deferring the linkage of
some external modules until after the load module has been created. Thus, the load
module contains unresolved references to other programs. These references can be
resolved either at load time or run time.

 For load-time dynamic linking (involving upper dynamic library in Figure 7.16),
the following steps occur. The load module (application module) to be loaded is
read into memory. Any reference to an external module (target module) causes the
loader to find the target module, load it, and alter the reference to a relative address
in memory from the beginning of the application module. There are several advan-
tages to this approach over what might be called static linking:

0

Relative
addresses

JSR "L"

Return

Return

Return

L � 1
L

L � M � 1
L � M

L � M � N � 1

Module A

JSR "L � M"

Module B

Module C

CALL B;External
reference to
module B

Return

Module A

(a) Object modules

CALL C;

Module B

Return

(b) Load moduleReturn

Module C

Length L

Length N

Length M

Figure 7.18 The Linking Function

APPENDIX 7A / LOADING AND LINKING 339

 • It becomes easier to incorporate changed or upgraded versions of the target
module, which may be an operating system utility or some other general-
purpose routine. With static linking, a change to such a supporting module
would require the relinking of the entire application module. Not only is this
inefficient, but it may be impossible in some circumstances. For example, in
the personal computer field, most commercial software is released in load
module form; source and object versions are not released.

 • Having target code in a dynamic link file paves the way for automatic code
sharing. The operating system can recognize that more than one application is
using the same target code because it loaded and linked that code. It can use
that information to load a single copy of the target code and link it to both
applications, rather than having to load one copy for each application.

 • It becomes easier for independent software developers to extend the function-
ality of a widely used operating system such as Linux. A developer can come
up with a new function that may be useful to a variety of applications and
package it as a dynamic link module.

 With run-time dynamic linking (involving lower dynamic library in
 Figure 7.16), some of the linking is postponed until execution time. External refer-
ences to target modules remain in the loaded program. When a call is made to the
absent module, the operating system locates the module, loads it, and links it to the
calling module. Such modules are typically shareable. In the Windows environment,
these are call dynamic-link libraries (DLLs). Thus, if one process is already making
use of a dynamically-linked shared module, then that module is in main memory
and a new process can simply link to the already-loaded module.

 The use of DLLs can lead to a problem commonly referred to as DLL hell .
DLL hell occurs if two or more processes are sharing a DLL module but expect dif-
ferent versions of the module. For example, an application or system function might
be reinstalled and bring in with it an older version of a DLL file.

 We have seen that dynamic loading allows an entire load module to be moved
around; however, the structure of the module is static, being unchanged throughout
the execution of the process and from one execution to the next. However, in some
cases, it is not possible to determine prior to execution which object modules will
be required. This situation is typified by transaction-processing applications, such as
an airline reservation system or a banking application. The nature of the transaction
dictates which program modules are required, and they are loaded as appropriate
and linked with the main program. The advantage of the use of such a dynamic
linker is that it is not necessary to allocate memory for program units unless those
units are referenced. This capability is used in support of segmentation systems.

 One additional refinement is possible: An application need not know the
names of all the modules or entry points that may be called. For example, a charting
program may be written to work with a variety of plotters, each of which is driven
by a different driver package. The application can learn the name of the plotter that
is currently installed on the system from another process or by looking it up in a
configuration file. This allows the user of the application to install a new plotter that
did not exist at the time the application was written.

340

CHAPTER

VIRTUAL MEMORY
 8.1 Hardware and Control Structures

 Locality and Virtual Memory
 Paging
 Segmentation
 Combined Paging and Segmentation
 Protection and Sharing

 8.2 Operating System Software
 Fetch Policy
 Placement Policy
 Replacement Policy
 Resident Set Management
 Cleaning Policy
 Load Control

 8.3 UNIX and Solaris Memory Management
 Paging System
 Kernel Memory Allocator

 8.4 Linux Memory Management
 Linux Virtual Memory
 Kernel Memory Allocation

 8.5 Windows Memory Management
 Windows Virtual Address Map
 Windows Paging

 8.6 Summary

 8.7 Recommended Reading and Web Sites

 8.8 Key Terms, Review Questions, and Problems

340

8.1 / HARDWARE AND CONTROL STRUCTURES 341

 You’re gonna need a bigger boat.
 — Steven Spielberg, JAWS , 1975

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

• Define virtual memory.
• Describe the hardware and control structures that support virtual memory.
• Describe the various OS mechanisms used to implement virtual memory.
• Describe the virtual memory management mechanisms in UNIX, Linux, and

Windows 7.

 Chapter 7 introduced the concepts of paging and segmentation and analyzed their
shortcomings. We now move to a discussion of virtual memory. An analysis of this
topic is complicated by the fact that memory management is a complex interrela-
tionship between processor hardware and operating system software. We focus first
on the hardware aspect of virtual memory, looking at the use of paging, segmenta-
tion, and combined paging and segmentation. Then we look at the issues involved in
the design of a virtual memory facility in operating systems.

 Table 8.1 defines some key terms related to virtual memory. A set of anima-
tions that illustrate concepts in this chapter is available online. Click on the rotating
globe at WilliamStallings.com/OS/OS7e.html for access.

8.1 HARDWARE AND CONTROL STRUCTURES

 Comparing simple paging and simple segmentation, on the one hand, with fixed and
dynamic partitioning, on the other, we see the foundation for a fundamental break-
through in memory management. Two characteristics of paging and segmentation
are the keys to this breakthrough:

Table 8.1 Virtual Memory Terminology

Virtual memory A storage allocation scheme in which secondary memory can be addressed as
though it were part of main memory. The addresses a program may use to reference
memory are distinguished from the addresses the memory system uses to identify
physical storage sites, and program-generated addresses are translated automatically
to the corresponding machine addresses. The size of virtual storage is limited by the
addressing scheme of the computer system and by the amount of secondary memory
available and not by the actual number of main storage locations.

Virtual address The address assigned to a location in virtual memory to allow that location to be
accessed as though it were part of main memory.

Virtual address space The virtual storage assigned to a process.

Address space The range of memory addresses available to a process.

Real address The address of a storage location in main memory.

342 CHAPTER 8 / VIRTUAL MEMORY

 1. All memory references within a process are logical addresses that are dynami-
cally translated into physical addresses at run time. This means that a process
may be swapped in and out of main memory such that it occupies different
regions of main memory at different times during the course of execution.

 2. A process may be broken up into a number of pieces (pages or segments) and
these pieces need not be contiguously located in main memory during execu-
tion. The combination of dynamic run-time address translation and the use of
a page or segment table permits this.

 Now we come to the breakthrough. If the preceding two characteristics are
present, then it is not necessary that all of the pages or all of the segments of a process
be in main memory during execution. If the piece (segment or page) that holds the
next instruction to be fetched and the piece that holds the next data location to be
accessed are in main memory, then at least for a time execution may proceed.

 Let us consider how this may be accomplished. For now, we can talk in general
terms, and we will use the term piece to refer to either page or segment, depending
on whether paging or segmentation is employed. Suppose that it is time to bring a
new process into memory. The OS begins by bringing in only one or a few pieces, to
include the initial program piece and the initial data piece to which those instructions
refer. The portion of a process that is actually in main memory at any time is called
the resident set of the process. As the process executes, things proceed smoothly as
long as all memory references are to locations that are in the resident set. Using the
segment or page table, the processor always is able to determine whether this is so.
If the processor encounters a logical address that is not in main memory, it generates
an interrupt indicating a memory access fault. The OS puts the interrupted process
in a blocking state. For the execution of this process to proceed later, the OS must
bring into main memory the piece of the process that contains the logical address
that caused the access fault. For this purpose, the OS issues a disk I/O read request.
After the I/O request has been issued, the OS can dispatch another process to run
while the disk I/O is performed. Once the desired piece has been brought into main
memory, an I/O interrupt is issued, giving control back to the OS, which places the
affected process back into a Ready state.

 It may immediately occur to you to question the efficiency of this maneuver,
in which a process may be executing and have to be interrupted for no other reason
than that you have failed to load in all of the needed pieces of the process. For now,
let us defer consideration of this question with the assurance that efficiency is possible.
Instead, let us ponder the implications of our new strategy. There are two implications,
the second more startling than the first, and both lead to improved system utilization:

 1. More processes may be maintained in main memory. Because we are only go-
ing to load some of the pieces of any particular process, there is room for more
processes. This leads to more efficient utilization of the processor because it
is more likely that at least one of the more numerous processes will be in a
Ready state at any particular time.

 2. A process may be larger than all of main memory. One of the most fundamental
restrictions in programming is lifted. Without the scheme we have been discuss-
ing, a programmer must be acutely aware of how much memory is available.
If the program being written is too large, the programmer must devise ways to

8.1 / HARDWARE AND CONTROL STRUCTURES 343

structure the program into pieces that can be loaded separately in some sort of
overlay strategy. With virtual memory based on paging or segmentation, that
job is left to the OS and the hardware. As far as the programmer is concerned,
he or she is dealing with a huge memory, the size associated with disk storage.
The OS automatically loads pieces of a process into main memory as required.

 Because a process executes only in main memory, that memory is referred to
as real memory. But a programmer or user perceives a potentially much larger mem-
ory—that which is allocated on disk. This latter is referred to as virtual memory.
Virtual memory allows for very effective multiprogramming and relieves the user
of the unnecessarily tight constraints of main memory. Table 8.2 summarizes char-
acteristics of paging and segmentation, with and without the use of virtual memory.

Table 8.2 Characteristics of Paging and Segmentation

 Simple Paging
 Virtual Memory

Paging Simple Segmentation
 Virtual Memory

Segmentation

 Main memory parti-
tioned into small fixed-
size chunks called frames

 Main memory parti-
tioned into small fixed-
size chunks called frames

 Main memory not
 partitioned

 Main memory not
 partitioned

 Program broken into
pages by the compiler
or memory management
system

 Program broken into
pages by the compiler
or memory management
system

 Program segments speci-
fied by the programmer
to the compiler (i.e., the
decision is made by the
programmer)

 Program segments speci-
fied by the programmer
to the compiler (i.e., the
decision is made by the
programmer)

 Internal fragmentation
within frames

 Internal fragmentation
within frames

 No internal
 fragmentation

 No internal
 fragmentation

 No external
 fragmentation

 No external
 fragmentation

 External fragmentation External fragmentation

 Operating system must
maintain a page table
for each process showing
which frame each page
occupies

 Operating system must
maintain a page table
for each process showing
which frame each page
occupies

 Operating system must
maintain a segment table
for each process show-
ing the load address and
length of each segment

 Operating system must
maintain a segment table
for each process show-
ing the load address and
length of each segment

 Operating system must
maintain a free frame
list

 Operating system must
maintain a free frame
list

 Operating system must
maintain a list of free
holes in main memory

 Operating system must
maintain a list of free
holes in main memory

 Processor uses page
number, offset to calcu-
late absolute address

 Processor uses page
number, offset to calcu-
late absolute address

 Processor uses segment
number, offset to calcu-
late absolute address

 Processor uses segment
number, offset to calcu-
late absolute address

 All the pages of a
 process must be in main
memory for process to
run, unless overlays are
used

 Not all pages of a process
need be in main memory
frames for the process to
run. Pages may be read
in as needed

 All the segments of a
process must be in main
memory for process to
run, unless overlays are
used

 Not all segments of a
process need be in main
memory for the process
to run. Segments may be
read in as needed

 Reading a page into
main memory may
require writing a page
out to disk

 Reading a segment into
main memory may require
writing one or more seg-
ments out to disk

344 CHAPTER 8 / VIRTUAL MEMORY

Locality and Virtual Memory

 The benefits of virtual memory are attractive, but is the scheme practical? At one
time, there was considerable debate on this point, but experience with numerous
operating systems has demonstrated beyond doubt that virtual memory does work.
Accordingly, virtual memory, based on either paging or paging plus segmentation,
has become an essential component of contemporary operating systems.

 To understand the key issue and why virtual memory was a matter of much
debate, let us examine again the task of the OS with respect to virtual memory.
Consider a large process, consisting of a long program plus a number of arrays of
data. Over any short period of time, execution may be confined to a small section of
the program (e.g., a subroutine) and access to perhaps only one or two arrays of data.
If this is so, then it would clearly be wasteful to load in dozens of pieces for that proc-
ess when only a few pieces will be used before the program is suspended and swapped
out. We can make better use of memory by loading in just a few pieces. Then, if the
program branches to an instruction or references a data item on a piece not in main
memory, a fault is triggered. This tells the OS to bring in the desired piece.

 Thus, at any one time, only a few pieces of any given process are in memory,
and therefore more processes can be maintained in memory. Furthermore, time is
saved because unused pieces are not swapped in and out of memory. However, the
OS must be clever about how it manages this scheme. In the steady state, practically
all of main memory will be occupied with process pieces, so that the processor and
OS have direct access to as many processes as possible. Thus, when the OS brings one
piece in, it must throw another out. If it throws out a piece just before it is used, then it
will just have to go get that piece again almost immediately. Too much of this leads to
a condition known as thrashing : The system spends most of its time swapping pieces
rather than executing instructions. The avoidance of thrashing was a major research
area in the 1970s and led to a variety of complex but effective algorithms. In essence,
the OS tries to guess, based on recent history, which pieces are least likely to be used
in the near future.

 This reasoning is based on belief in the principle of locality , which was intro-
duced in Chapter 1 (see especially Appendix 1A). To summarize, the principle of
locality states that program and data references within a process tend to cluster.
Hence, the assumption that only a few pieces of a process will be needed over a
short period of time is valid. Also, it should be possible to make intelligent guesses
about which pieces of a process will be needed in the near future, which avoids
thrashing.

 One way to confirm the principle of locality is to look at the performance of
processes in a virtual memory environment. Figure 8.1 is a rather famous diagram
that dramatically illustrates the principle of locality [HATF72]. Note that, during
the lifetime of the process, references are confined to a subset of pages.

 Thus we see that the principle of locality suggests that a virtual memory
scheme may work. For virtual memory to be practical and effective, two ingre-
dients are needed. First, there must be hardware support for the paging and/or
segmentation scheme to be employed. Second, the OS must include software for
managing the movement of pages and/or segments between secondary memory
and main memory. In this section, we examine the hardware aspect and look at the

8.1 / HARDWARE AND CONTROL STRUCTURES 345

necessary control structures, which are created and maintained by the OS but are
used by the memory management hardware. An examination of the OS issues is
provided in the next section.

Paging

 The term virtual memory is usually associated with systems that employ paging,
although virtual memory based on segmentation is also used and is discussed next.
The use of paging to achieve virtual memory was first reported for the Atlas com-
puter [KILB62] and soon came into widespread commercial use.

 In the discussion of simple paging, we indicated that each process has its
own page table, and when all of its pages are loaded into main memory, the page

Execution time

18Pa
ge

 n
um

be
rs 20

22

24

26

28

30

32

34

Figure 8.1 Paging Behavior

346 CHAPTER 8 / VIRTUAL MEMORY

table for a process is created and loaded into main memory. Each page table entry
(PTE) contains the frame number of the corresponding page in main memory. A
page table is also needed for a virtual memory scheme based on paging. Again, it
is typical to associate a unique page table with each process. In this case, however,
the page table entries become more complex (Figure 8.2a). Because only some of
the pages of a process may be in main memory, a bit is needed in each page table
entry to indicate whether the corresponding page is present (P) in main memory or
not. If the bit indicates that the page is in memory, then the entry also includes the
frame number of that page.

 The page table entry includes a modify (M) bit, indicating whether the con-
tents of the corresponding page have been altered since the page was last loaded
into main memory. If there has been no change, then it is not necessary to write the
page out when it comes time to replace the page in the frame that it currently occu-
pies. Other control bits may also be present. For example, if protection or sharing is
managed at the page level, then bits for that purpose will be required.

Virtual address

Page number Offset

(a) Paging only

Page table entry

Frame numberP M Other control bits

Virtual address

Segment number Offset

(b) Segmentation only

Segment table entry

Length Segment baseP M Other control bits

Segment number Page number Offset

Virtual address

Segment table entry

(c) Combined segmentation and paging

Page table entry

Frame numberP M Other control bits

Length Segment baseControl bits

P � present bit
M � modified bit

Figure 8.2 Typical Memory Management Formats

8.1 / HARDWARE AND CONTROL STRUCTURES 347

PAGE TABLE STRUCTURE The basic mechanism for reading a word from memory
involves the translation of a virtual, or logical, address, consisting of page number
and offset, into a physical address, consisting of frame number and offset, using a
page table. Because the page table is of variable length, depending on the size of the
process, we cannot expect to hold it in registers. Instead, it must be in main memory
to be accessed. Figure 8.3 suggests a hardware implementation. When a particular
process is running, a register holds the starting address of the page table for that
process. The page number of a virtual address is used to index that table and look
up the corresponding frame number. This is combined with the offset portion of the
virtual address to produce the desired real address. Typically, the page number field
is longer than the frame number field (n � m).

 In most systems, there is one page table per process. But each process can occupy
huge amounts of virtual memory. For example, in the VAX architecture, each process
can have up to 2 31 � 2 Gbytes of virtual memory. Using 2 9 � 512-byte pages means
that as many as 2 22 page table entries are required per process . Clearly, the amount
of memory devoted to page tables alone could be unacceptably high. To overcome
this problem, most virtual memory schemes store page tables in virtual memory rather
than real memory. This means that page tables are subject to paging just as other pages
are. When a process is running, at least a part of its page table must be in main mem-
ory, including the page table entry of the currently executing page. Some processors
make use of a two-level scheme to organize large page tables. In this scheme, there is
a page directory, in which each entry points to a page table. Thus, if the length of the
page directory is X , and if the maximum length of a page table is Y , then a process can

Page # Offset Frame #

Virtual address Physical address

Offset

Offset

Program Paging mechanism Main memory

Pa
ge

#

Page table ptrn bits

m bits

Register

Page table

Frame #

�

Page
frame

Figure 8.3 Address Translation in a Paging System

348 CHAPTER 8 / VIRTUAL MEMORY

10 bits10 bits 12 bits

Root page
table ptr

Frame # Offset

Virtual address

4-Kbyte page
table (contains

1024 PTEs)
Root page table

(contains 1024 PTEs)

�
�

Program Paging mechanism Main memory

Page
frame

Figure 8.5 Address Translation in a Two-Level Paging System

 consist of up to X × Y pages. Typically, the maximum length of a page table is restricted
to be equal to one page. For example, the Pentium processor uses this approach.

 Figure 8.4 shows an example of a two-level scheme typical for use with a
32-bit address. If we assume byte-level addressing and 4-Kbyte (2 12) pages, then the
4-Gbyte (2 32) virtual address space is composed of 2 20 pages. If each of these pages
is mapped by a 4-byte page table entry, we can create a user page table composed of
220 PTEs requiring 4 Mbytes (2 22). This huge user page table, occupying 2 10 pages,
can be kept in virtual memory and mapped by a root page table with 2 10 PTEs occu-
pying 4 Kbytes (2 12) of main memory. Figure 8.5 shows the steps involved in address

4-Kbyte root
page table

4-Mbyte user
page table

4-Gbyte user
address space

Figure 8.4 A Two-Level Hierarchical Page Table

8.1 / HARDWARE AND CONTROL STRUCTURES 349

translation for this scheme. The root page always remains in main memory. The
first 10 bits of a virtual address are used to index into the root page to find a PTE
for a page of the user page table. If that page is not in main memory, a page fault
occurs. If that page is in main memory, then the next 10 bits of the virtual address
index into the user PTE page to find the PTE for the page that is referenced by the
virtual address.

INVERTED PAGE TABLE A drawback of the type of page tables that we have been
discussing is that their size is proportional to that of the virtual address space.

 An alternative approach to the use of one or multiple-level page tables is the
use of an inverted page table structure. Variations on this approach are used on
the PowerPC, UltraSPARC, and the IA-64 architecture. An implementation of the
Mach operating system on the RT-PC also uses this technique.

 In this approach, the page number portion of a virtual address is mapped into a
hash value using a simple hashing function. 1 The hash value is a pointer to the inverted
page table, which contains the page table entries. There is one entry in the inverted
page table for each real memory page frame rather than one per virtual page. Thus,
a fixed proportion of real memory is required for the tables regardless of the number
of processes or virtual pages supported. Because more than one virtual address may
map into the same hash table entry, a chaining technique is used for managing the
overflow. The hashing technique results in chains that are typically short—between
one and two entries. The page table’s structure is called inverted because it indexes
page table entries by frame number rather than by virtual page number.

 Figure 8.6 shows a typical implementation of the inverted page table approach.
For a physical memory size of 2 m frames, the inverted page table contains 2 m entries,
so that the i th entry refers to frame i . Each entry in the page table includes the
 following:

 • Page number: This is the page number portion of the virtual address.

 • Process identifier: The process that owns this page. The combination of page
number and process identifier identify a page within the virtual address space
of a particular process.

 • Control bits: This field includes flags, such as valid, referenced, and modified;
and protection and locking information.

 • Chain pointer: This field is null (perhaps indicated by a separate bit) if there
are no chained entries for this entry. Otherwise, the field contains the index
value (number between 0 and 2 m – 1) of the next entry in the chain.

 In this example, the virtual address includes an n -bit page number, with n > m .
The hash function maps the n -bit page number into an m -bit quantity, which is used
to index into the inverted page table.

TRANSLATION LOOKASIDE BUFFER In principle, every virtual memory reference
can cause two physical memory accesses: one to fetch the appropriate page table
entry and one to fetch the desired data. Thus, a straightforward virtual memory

1 See Appendix F for a discussion of hashing.

350 CHAPTER 8 / VIRTUAL MEMORY

scheme would have the effect of doubling the memory access time. To overcome
this problem, most virtual memory schemes make use of a special high-speed cache
for page table entries, usually called a translation lookaside buffer (TLB) . This
cache functions in the same way as a memory cache (see Chapter 1) and contains
those page table entries that have been most recently used. The organization of
the resulting paging hardware is illustrated in Figure 8.7 . Given a virtual address,
the processor will first examine the TLB. If the desired page table entry is present
(TLB hit), then the frame number is retrieved and the real address is formed. If
the desired page table entry is not found (TLB miss), then the processor uses the
page number to index the process page table and examine the corresponding page
table entry. If the “present bit” is set, then the page is in main memory, and the
processor can retrieve the frame number from the page table entry to form the real
address. The processor also updates the TLB to include this new page table entry.
Finally, if the present bit is not set, then the desired page is not in main memory
and a memory access fault, called a page fault , is issued. At this point, we leave the
realm of hardware and invoke the OS, which loads the needed page and updates
the page table.

 Figure 8.8 is a flowchart that shows the use of the TLB. The flowchart shows
that if the desired page is not in main memory, a page fault interrupt causes the
page fault handling routine to be invoked. To keep the flowchart simple, the fact
that the OS may dispatch another process while disk I/O is underway is not shown.
By the principle of locality, most virtual memory references will be to locations in

Page # Offset

OffsetFrame #

m bits

m bits

n bits

n bits

Virtual address

Hash
function

Page #
Process

ID

Control
bits

Chain

Inverted page table
(one entry for each

physical memory frame)
Real address

i

0

j

2m � 1

Figure 8.6 Inverted Page Table Structure

8.1 / HARDWARE AND CONTROL STRUCTURES 351

recently used pages. Therefore, most references will involve page table entries in
the cache. Studies of the VAX TLB have shown that this scheme can significantly
improve performance [CLAR85, SATY81].

 There are a number of additional details concerning the actual organization
of the TLB. Because the TLB contains only some of the entries in a full page table,
we cannot simply index into the TLB based on page number. Instead, each entry
in the TLB must include the page number as well as the complete page table entry.
The processor is equipped with hardware that allows it to interrogate simultane-
ously a number of TLB entries to determine if there is a match on page number.
This technique is referred to as associative mapping and is contrasted with the direct
mapping, or indexing, used for lookup in the page table in Figure 8.9 . The design of
the TLB also must consider the way in which entries are organized in the TLB and
which entry to replace when a new entry is brought in. These issues must be consid-
ered in any hardware cache design. This topic is not pursued here; the reader may
consult a treatment of cache design for further details (e.g., [STAL10]).

 Finally, the virtual memory mechanism must interact with the cache system
(not the TLB cache, but the main memory cache). This is illustrated in Figure 8.10 .
A virtual address will generally be in the form of a page number, offset. First, the
memory system consults the TLB to see if the matching page table entry is present.
If it is, the real (physical) address is generated by combining the frame number with
the offset. If not, the entry is accessed from a page table. Once the real address is

Page # Offset

Frame #

Virtual address

Offset

Offset

Load
pagePage table

Main memory
Secondary
memory

Real address

Translation
lookaside buffer

TLB hit

TLB miss

Page fault

Figure 8.7 Use of a Translation Lookaside Buffer

352 CHAPTER 8 / VIRTUAL MEMORY

generated, which is in the form of a tag 2 and a remainder, the cache is consulted to
see if the block containing that word is present. If so, it is returned to the CPU. If
not, the word is retrieved from main memory.

 The reader should be able to appreciate the complexity of the CPU hardware
involved in a single memory reference. The virtual address is translated into a real
address. This involves reference to a page table entry, which may be in the TLB, in
main memory, or on disk. The referenced word may be in cache, main memory, or
on disk. If the referenced word is only on disk, the page containing the word must

2 See Figure 1.17 . Typically, a tag is just the leftmost bits of the real address. Again, for a more detailed
discussion of caches, see [STAL10].

Start

CPU checks the TLB

Page table
entry in
TLB?

Access page table

Update TLB

Yes

Yes

No

No

No

Yes

CPU generates
physical address

OS instructs CPU
to read the page

from disk

CPU activates
I/O hardware

Page fault
handling routine

Return to
faulted instruction

Page tables
updated

Perform page
replacement

Page transferred
from disk to

main memory

Page
in main

memory?

Memory
full?

Figure 8.8 Operation of Paging and Translation Lookaside Buffer (TLB)

8.1 / HARDWARE AND CONTROL STRUCTURES 353

(b) Associative mapping(a) Direct mapping

Page table

Page #

5 502

Offset

Virtual address

37

37

19
511
37
27
14

5
211
1

90

PT entries

Translation lookaside buffer

Page #

5 502

Offset

Virtual address

Frame #
37 502

Offset

Real address

Frame #
37 502

Offset

Real address

Page #

Figure 8.9 Direct versus Associative Lookup for Page Table Entries

Page # Offset

Virtual address

TLB operation

Page table

Main
memory

TLB miss

Miss

Hit Value

TLB
hit

TLB

Tag Remainder

Real address

Cache operation

Cache
�

Value

Figure 8.10 Translation Lookaside Buffer and Cache Operation

354 CHAPTER 8 / VIRTUAL MEMORY

be loaded into main memory and its block loaded into the cache. In addition, the
page table entry for that page must be updated.

PAGE SIZE An important hardware design decision is the size of page to be used.
There are several factors to consider. One is internal fragmentation. Clearly, the
smaller the page size, the lesser is the amount of internal fragmentation. To optimize
the use of main memory, we would like to reduce internal fragmentation. On the
other hand, the smaller the page, the greater is the number of pages required per
process. More pages per process means larger page tables. For large programs in
a heavily multiprogrammed environment, this may mean that some portion of the
page tables of active processes must be in virtual memory, not in main memory.
Thus, there may be a double page fault for a single reference to memory: first to
bring in the needed portion of the page table and second to bring in the process page.
Another factor is that the physical characteristics of most secondary-memory devices,
which are rotational, favor a larger page size for more efficient block transfer of data.

 Complicating these matters is the effect of page size on the rate at which page
faults occur. This behavior, in general terms, is depicted in Figure 8.11a and is based
on the principle of locality. If the page size is very small, then ordinarily a relatively
large number of pages will be available in main memory for a process. After a time,
the pages in memory will all contain portions of the process near recent references.
Thus, the page fault rate should be low. As the size of the page is increased, each
individual page will contain locations further and further from any particular recent
reference. Thus the effect of the principle of locality is weakened and the page fault
rate begins to rise. Eventually, however, the page fault rate will begin to fall as the
size of a page approaches the size of the entire process (point P in the diagram).
When a single page encompasses the entire process, there will be no page faults.

 A further complication is that the page fault rate is also determined by the
number of frames allocated to a process. Figure 8.11b shows that, for a fixed page

P NW

(a) Page size

Pa
ge

 f
au

lt
ra

te

Pa
ge

 f
au

lt
ra

te

(b) Number of page frames allocated

P � size of entire process
W � working set size
N � total number of pages in process

Figure 8.11 Typical Paging Behavior of a Program

8.1 / HARDWARE AND CONTROL STRUCTURES 355

size, the fault rate drops as the number of pages maintained in main memory grows. 3

Thus, a software policy (the amount of memory to allocate to each process) inter-
acts with a hardware design decision (page size).

 Table 8.3 lists the page sizes used on some machines.
 Finally, the design issue of page size is related to the size of physical main memory

and program size. At the same time that main memory is getting larger, the address
space used by applications is also growing. The trend is most obvious on personal
computers and workstations, where applications are becoming increasingly complex.
Furthermore, contemporary programming techniques used in large programs tend to
decrease the locality of references within a process [HUCK93]. For example,

 • Object-oriented techniques encourage the use of many small program and
data modules with references scattered over a relatively large number of ob-
jects over a relatively short period of time.

 • Multithreaded applications may result in abrupt changes in the instruction
stream and in scattered memory references.

 For a given size of TLB, as the memory size of processes grows and as locality
decreases, the hit ratio on TLB accesses declines. Under these circumstances, the
TLB can become a performance bottleneck (e.g., see [CHEN92]).

 One way to improve TLB performance is to use a larger TLB with more
entries. However, TLB size interacts with other aspects of the hardware design,
such as the main memory cache and the number of memory accesses per instruction
cycle [TALL92]. The upshot is that TLB size is unlikely to grow as rapidly as main
memory size. An alternative is to use larger page sizes so that each page table entry
in the TLB refers to a larger block of memory. But we have just seen that the use of
large page sizes can lead to performance degradation.

Table 8.3 Example Page Sizes

 Computer Page Size

 Atlas 512 48-bit words

 Honeywell-Multics 1,024 36-bit words

 IBM 370/XA and 370/ESA 4 Kbytes

 VAX family 512 bytes

 IBM AS/400 512 bytes

 DEC Alpha 8 Kbytes

 MIPS 4 Kbytes to 16 Mbytes

 UltraSPARC 8 Kbytes to 4 Mbytes

 Pentium 4 Kbytes or 4 Mbytes

 Intel Itanium 4 Kbytes to 256 Mbytes

 Intel core i7 4 Kbytes to 1 Gbyte

3 The parameter W represents working set size, a concept discussed in Section 8.2 .

356 CHAPTER 8 / VIRTUAL MEMORY

 Accordingly, a number of designers have investigated the use of multiple
page sizes [TALL92, KHAL93], and several microprocessor architectures support
multiple pages sizes, including MIPS R4000, Alpha, UltraSPARC, Pentium, and
IA-64. Multiple page sizes provide the flexibility needed to use a TLB effectively.
For example, large contiguous regions in the address space of a process, such as pro-
gram instructions, may be mapped using a small number of large pages rather than
a large number of small pages, while thread stacks may be mapped using the small
page size. However, most commercial operating systems still support only one page
size, regardless of the capability of the underlying hardware. The reason for this is
that page size affects many aspects of the OS; thus, a change to multiple page sizes
is a complex undertaking (see [GANA98] for a discussion).

Segmentation

VIRTUAL MEMORY IMPLICATIONS Segmentation allows the programmer to view
memory as consisting of multiple address spaces or segments. Segments may be of
unequal, indeed dynamic, size. Memory references consist of a (segment number,
offset) form of address.

 This organization has a number of advantages to the programmer over a non-
segmented address space:

 1. It simplifies the handling of growing data structures. If the programmer does
not know ahead of time how large a particular data structure will become, it is
necessary to guess unless dynamic segment sizes are allowed. With segmented
virtual memory, the data structure can be assigned its own segment, and the
OS will expand or shrink the segment as needed. If a segment that needs to be
expanded is in main memory and there is insufficient room, the OS may move
the segment to a larger area of main memory, if available, or swap it out. In
the latter case, the enlarged segment would be swapped back in at the next
 opportunity.

 2. It allows programs to be altered and recompiled independently, without
requiring the entire set of programs to be relinked and reloaded. Again, this is
accomplished using multiple segments.

 3. It lends itself to sharing among processes. A programmer can place a utility
program or a useful table of data in a segment that can be referenced by other
processes.

 4. It lends itself to protection. Because a segment can be constructed to contain a
well-defined set of programs or data, the programmer or system administrator
can assign access privileges in a convenient fashion.

ORGANIZATION In the discussion of simple segmentation, we indicated that each
process has its own segment table, and when all of its segments are loaded into main
memory, the segment table for a process is created and loaded into main memory.
Each segment table entry contains the starting address of the corresponding segment
in main memory, as well as the length of the segment. The same device, a segment
table, is needed when we consider a virtual memory scheme based on segmentation.
Again, it is typical to associate a unique segment table with each process. In this

8.1 / HARDWARE AND CONTROL STRUCTURES 357

case, however, the segment table entries become more complex (Figure 8.2b).
Because only some of the segments of a process may be in main memory, a bit is
needed in each segment table entry to indicate whether the corresponding segment
is present in main memory or not. If the bit indicates that the segment is in memory,
then the entry also includes the starting address and length of that segment.

 Another control bit in the segmentation table entry is a modify bit, indicating
whether the contents of the corresponding segment have been altered since the seg-
ment was last loaded into main memory. If there has been no change, then it is not
necessary to write the segment out when it comes time to replace the segment in the
frame that it currently occupies. Other control bits may also be present. For example,
if protection or sharing is managed at the segment level, then bits for that purpose
will be required.

 The basic mechanism for reading a word from memory involves the translation
of a virtual, or logical, address, consisting of segment number and offset, into a physi-
cal address, using a segment table. Because the segment table is of variable length,
depending on the size of the process, we cannot expect to hold it in registers. Instead,
it must be in main memory to be accessed. Figure 8.12 suggests a hardware imple-
mentation of this scheme (note similarity to Figure 8.3). When a particular process
is running, a register holds the starting address of the segment table for that process.
The segment number of a virtual address is used to index that table and look up the
corresponding main memory address for the start of the segment. This is added to
the offset portion of the virtual address to produce the desired real address.

Combined Paging and Segmentation

 Both paging and segmentation have their strengths. Paging, which is transparent
to the programmer, eliminates external fragmentation and thus provides efficient
use of main memory. In addition, because the pieces that are moved in and out of

Seg #

Se
g

#

Offset = d

Seg Table Ptr

Virtual address

Register

Segment table

Physical address

Length Base

Se
gm

en
t

Base + d

d

+

+

Program Segmentation mechanism Main memory

Figure 8.12 Address Translation in a Segmentation System

358 CHAPTER 8 / VIRTUAL MEMORY

main memory are of fixed, equal size, it is possible to develop sophisticated mem-
ory management algorithms that exploit the behavior of programs, as we shall see.
Segmentation, which is visible to the programmer, has the strengths listed earlier,
including the ability to handle growing data structures, modularity, and support
for sharing and protection. To combine the advantages of both, some systems are
equipped with processor hardware and OS software to provide both.

 In a combined paging/segmentation system, a user’s address space is broken
up into a number of segments, at the discretion of the programmer. Each segment
is, in turn, broken up into a number of fixed-size pages, which are equal in length to
a main memory frame. If a segment has length less than that of a page, the segment
occupies just one page. From the programmer’s point of view, a logical address still
consists of a segment number and a segment offset. From the system’s point of view,
the segment offset is viewed as a page number and page offset for a page within the
specified segment.

 Figure 8.13 suggests a structure to support combined paging/segmentation
(note similarity to Figure 8.5). Associated with each process is a segment table and
a number of page tables, one per process segment. When a particular process is
running, a register holds the starting address of the segment table for that process.
Presented with a virtual address, the processor uses the segment number portion to
index into the process segment table to find the page table for that segment. Then
the page number portion of the virtual address is used to index the page table and
look up the corresponding frame number. This is combined with the offset portion
of the virtual address to produce the desired real address.

 Figure 8.2c suggests the segment table entry and page table entry formats. As
before, the segment table entry contains the length of the segment. It also contains

Page #Seg #

Se
g

#

Offset

Seg table ptr

Frame #

Virtual address

Segment
table

Page
table

Offset

Offset

�
�

Pa
ge

 #

Program Segmentation
mechanism

Paging
mechanism

Main memory

Page
frame

Figure 8.13 Address Translation in a Segmentation/Paging System

8.1 / HARDWARE AND CONTROL STRUCTURES 359

a base field, which now refers to a page table. The present and modified bits are not
needed because these matters are handled at the page level. Other control bits may
be used, for purposes of sharing and protection. The page table entry is essentially
the same as is used in a pure paging system. Each page number is mapped into a cor-
responding frame number if the page is present in main memory. The modified bit
indicates whether this page needs to be written back out when the frame is allocated
to another page. There may be other control bits dealing with protection or other
aspects of memory management.

Protection and Sharing

 Segmentation lends itself to the implementation of protection and sharing policies.
Because each segment table entry includes a length as well as a base address, a pro-
gram cannot inadvertently access a main memory location beyond the limits of a
segment. To achieve sharing, it is possible for a segment to be referenced in the seg-
ment tables of more than one process. The same mechanisms are, of course, avail-
able in a paging system. However, in this case the page structure of programs and
data is not visible to the programmer, making the specification of protection and
sharing requirements more awkward. Figure 8.14 illustrates the types of protection
relationships that can be enforced in such a system.

Main memoryAddress

Dispatcher

Process A

Process B

Process C

0

20K

No access
allowed

Branch instruction
(not allowed)

Reference to
data (allowed)

Reference to
data (not allowed)

35K

50K

80K

90K

140K

190K

Figure 8.14 Protection Relationships between Segments

360 CHAPTER 8 / VIRTUAL MEMORY

 More sophisticated mechanisms can also be provided. A common scheme
is to use a ring-protection structure, of the type we referred to in Chapter 3
(Figure 3.18). In this scheme, lower-numbered, or inner, rings enjoy greater
privilege than higher-numbered, or outer, rings. Typically, ring 0 is reserved
for kernel functions of the OS, with applications at a higher level. Some utili-
ties or OS services may occupy an intermediate ring. Basic principles of the ring
system are as follows:

 1. A program may access only data that reside on the same ring or a less privi-
leged ring.

 2. A program may call services residing on the same or a more privileged ring.

8.2 OPERATING SYSTEM SOFTWARE

 The design of the memory management portion of an OS depends on three funda-
mental areas of choice:

 • Whether or not to use virtual memory techniques

 • The use of paging or segmentation or both

 • The algorithms employed for various aspects of memory management

 The choices made in the first two areas depend on the hardware platform available.
Thus, earlier UNIX implementations did not provide virtual memory because the
processors on which the system ran did not support paging or segmentation. Neither
of these techniques is practical without hardware support for address translation
and other basic functions.

 Two additional comments about the first two items in the preceding list: First,
with the exception of operating systems for some of the older personal computers,
such as MS-DOS, and specialized systems, all important operating systems provide
virtual memory. Second, pure segmentation systems are becoming increasingly
rare. When segmentation is combined with paging, most of the memory manage-
ment issues confronting the OS designer are in the area of paging. 4 Thus, we can
concentrate in this section on the issues associated with paging.

 The choices related to the third item are the domain of operating system
 software and are the subject of this section. Table 8.4 lists the key design elements
that we examine. In each case, the key issue is one of performance: We would like to
minimize the rate at which page faults occur, because page faults cause considerable
software overhead. At a minimum, the overhead includes deciding which resident
page or pages to replace, and the I/O of exchanging pages. Also, the OS must schedule
another process to run during the page I/O, causing a process switch. Accordingly,
we would like to arrange matters so that, during the time that a process is execut-
ing, the probability of referencing a word on a missing page is minimized. In all of
the areas referred to in Table 8.4 , there is no definitive policy that works best.

4 Protection and sharing are usually dealt with at the segment level in a combined segmentation/paging
system. We will deal with these issues in later chapters.

8.2 / OPERATING SYSTEM SOFTWARE 361

As we shall see, the task of memory management in a paging environment is fiend-
ishly complex. Furthermore, the performance of any particular set of policies depends
on main memory size, the relative speed of main and secondary memory, the size and
number of processes competing for resources, and the execution behavior of indi-
vidual programs. This latter characteristic depends on the nature of the application,
the programming language and compiler employed, the style of the programmer who
wrote it, and, for an interactive program, the dynamic behavior of the user. Thus, the
reader must expect no final answers here or anywhere. For smaller systems, the OS
designer should attempt to choose a set of policies that seems “good” over a wide
range of conditions, based on the current state of knowledge. For larger systems, par-
ticularly mainframes, the operating system should be equipped with monitoring and
control tools that allow the site manager to tune the operating system to get “good”
results based on site conditions.

Fetch Policy

 The fetch policy determines when a page should be brought into main memory. The
two common alternatives are demand paging and prepaging. With demand paging ,
a page is brought into main memory only when a reference is made to a location
on that page. If the other elements of memory management policy are good, the
 following should happen. When a process is first started, there will be a flurry of
page faults. As more and more pages are brought in, the principle of locality suggests
that most future references will be to pages that have recently been brought in.
Thus, after a time, matters should settle down and the number of page faults should
drop to a very low level.

 With prepaging, pages other than the one demanded by a page fault are
brought in. Prepaging exploits the characteristics of most secondary memory
devices, such as disks, which have seek times and rotational latency. If the pages of
a process are stored contiguously in secondary memory, then it is more efficient to
bring in a number of contiguous pages at one time rather than bringing them in one
at a time over an extended period. Of course, this policy is ineffective if most of the
extra pages that are brought in are not referenced.

Table 8.4 Operating System Policies for Virtual Memory

Fetch Policy Resident Set Management
 Demand paging Resident set size
 Prepaging Fixed

 Variable
Placement Policy Replacement Scope

 Global
Replacement Policy Local
 Basic Algorithms
 Optimal Cleaning Policy
 Least recently used (LRU) Demand
 First-in-first-out (FIFO) Precleaning
 Clock
 Page Buffering Load Control

 Degree of multiprogramming

362 CHAPTER 8 / VIRTUAL MEMORY

 The prepaging policy could be employed either when a process first starts up,
in which case the programmer would somehow have to designate desired pages, or
every time a page fault occurs. This latter course would seem preferable because
it is invisible to the programmer. However, the utility of prepaging has not been
established [MAEK87].

 Prepaging should not be confused with swapping. When a process is swapped
out of memory and put in a suspended state, all of its resident pages are moved out.
When the process is resumed, all of the pages that were previously in main memory
are returned to main memory.

Placement Policy

 The placement policy determines where in real memory a process piece is to reside.
In a pure segmentation system, the placement policy is an important design issue;
policies such as best-fit, first-fit, and so on, which were discussed in Chapter 7 , are
possible alternatives. However, for a system that uses either pure paging or paging
combined with segmentation, placement is usually irrelevant because the address
translation hardware and the main memory access hardware can perform their
functions for any page-frame combination with equal efficiency.

 There is one area in which placement does become a concern, and this is a
subject of research and development. On a so-called nonuniform memory access
(NUMA) multiprocessor, the distributed, shared memory of the machine can be
referenced by any processor on the machine, but the time for accessing a particular
physical location varies with the distance between the processor and the memory
module. Thus, performance depends heavily on the extent to which data reside
close to the processors that use them [LARO92, BOLO89, COX89]. For NUMA
systems, an automatic placement strategy is desirable to assign pages to the memory
module that provides the best performance.

Replacement Policy

 In most operating system texts, the treatment of memory management includes a
section entitled “replacement policy,” which deals with the selection of a page in
main memory to be replaced when a new page must be brought in. This topic is
sometimes difficult to explain because several interrelated concepts are involved:

 • How many page frames are to be allocated to each active process

 • Whether the set of pages to be considered for replacement should be limited
to those of the process that caused the page fault or encompass all the page
frames in main memory

 • Among the set of pages considered, which particular page should be selected
for replacement

 We shall refer to the first two concepts as resident set management , which is dealt
with in the next subsection, and reserve the term replacement policy for the third
concept, which is discussed in this subsection.

 The area of replacement policy is probably the most studied of any area of
memory management. When all of the frames in main memory are occupied and
it is necessary to bring in a new page to satisfy a page fault, the replacement policy

8.2 / OPERATING SYSTEM SOFTWARE 363

determines which page currently in memory is to be replaced. All of the policies
have as their objective that the page that is removed should be the page least likely
to be referenced in the near future. Because of the principle of locality, there is
often a high correlation between recent referencing history and near-future refer-
encing patterns. Thus, most policies try to predict future behavior on the basis of
past behavior. One trade-off that must be considered is that the more elaborate and
sophisticated the replacement policy, the greater will be the hardware and software
overhead to implement it.

FRAME LOCKING One restriction on replacement policy needs to be mentioned
before looking at various algorithms: Some of the frames in main memory may be
locked. When a frame is locked, the page currently stored in that frame may not be
replaced. Much of the kernel of the OS, as well as key control structures, are held in
locked frames. In addition, I/O buffers and other time-critical areas may be locked
into main memory frames. Locking is achieved by associating a lock bit with each
frame. This bit may be kept in a frame table as well as being included in the current
page table.

BASIC ALGORITHMS Regardless of the resident set management strategy (discussed
in the next subsection), there are certain basic algorithms that are used for the
selection of a page to replace. Replacement algorithms that have been discussed in
the literature include

 • Optimal

 • Least recently used (LRU)

 • First-in-first-out (FIFO)

 • Clock

 The optimal policy selects for replacement that page for which the time to the
next reference is the longest. It can be shown that this policy results in the fewest
number of page faults [BELA66]. Clearly, this policy is impossible to implement,
because it would require the OS to have perfect knowledge of future events. However,
it does serve as a standard against which to judge real-world algorithms.

 Figure 8.15 gives an example of the optimal policy. The example assumes a
fixed frame allocation (fixed resident set size) for this process of three frames. The
execution of the process requires reference to five distinct pages. The page address
stream formed by executing the program is

 2 3 2 1 5 2 4 5 3 2 5 2

 which means that the first page referenced is 2, the second page referenced is 3, and
so on. The optimal policy produces three page faults after the frame allocation has
been filled.

 The least recently used (LRU) policy replaces the page in memory that has
not been referenced for the longest time. By the principle of locality, this should
be the page least likely to be referenced in the near future. And, in fact, the LRU
policy does nearly as well as the optimal policy. The problem with this approach is
the difficulty in implementation. One approach would be to tag each page with the

364 CHAPTER 8 / VIRTUAL MEMORY

time of its last reference; this would have to be done at each memory reference,
both instruction and data. Even if the hardware would support such a scheme, the
overhead would be tremendous. Alternatively, one could maintain a stack of page
references, again an expensive prospect.

 Figure 8.15 shows an example of the behavior of LRU, using the same page
address stream as for the optimal policy example. In this example, there are four
page faults.

 The first-in-first-out (FIFO) policy treats the page frames allocated to a proc-
ess as a circular buffer, and pages are removed in round-robin style. All that is
required is a pointer that circles through the page frames of the process. This is
therefore one of the simplest page replacement policies to implement. The logic
behind this choice, other than its simplicity, is that one is replacing the page that
has been in memory the longest: A page fetched into memory a long time ago may
have now fallen out of use. This reasoning will often be wrong, because there will
often be regions of program or data that are heavily used throughout the life of a
program. Those pages will be repeatedly paged in and out by the FIFO algorithm.

 Continuing our example in Figure 8.15 , the FIFO policy results in six page
faults. Note that LRU recognizes that pages 2 and 5 are referenced more frequently
than other pages, whereas FIFO does not.

 Although the LRU policy does nearly as well as an optimal policy, it is dif-
ficult to implement and imposes significant overhead. On the other hand, the FIFO

2

2 3 2 1 5 2 4 5 3 2 5 2

2
3

2
3

2
3
1

F

F

F F F F F F

F F F

F F

2
3
5

2
3
5

4
3
5

4
3
5

4
3
5

2
3
5

2
3
5

2
3
5

2 2
3

2
3

2
3
1

2
5
1

2
5
1

2
5
4

2
5
4

3
5
4

3
5
2

3
5
2

3
5
2

2 2
3

2
3

2
3
1

5
3
1

5
2
1

5
2
4

5
2
4

3
2
4

3
2
4

3
5
4

3
5
2

2* 2*
3*

2*
3*

2*
3*
1*

5*
3
1
F

F = page fault occurring after the frame allocation is initially filled

F F F F

5*
2*
1

5*
2*
4*

5*
2*
4*

3*
2
4

3*
2*
4

3*
2
5*

3*
2*
5*

OPT

Page address
stream

LRU

FIFO

CLOCK

Figure 8.15 Behavior of Four Page Replacement Algorithms

8.2 / OPERATING SYSTEM SOFTWARE 365

policy is very simple to implement but performs relatively poorly. Over the years,
OS designers have tried a number of other algorithms to approximate the perform-
ance of LRU while imposing little overhead. Many of these algorithms are variants
of a scheme referred to as the clock policy .

 The simplest form of clock policy requires the association of an additional
bit with each frame, referred to as the use bit. When a page is first loaded into
a frame in memory, the use bit for that frame is set to 1. Whenever the page is
subsequently referenced (after the reference that generated the page fault), its
use bit is set to 1. For the page replacement algorithm, the set of frames that are
candidates for replacement (this process: local scope; all of main memory: global
scope5) is considered to be a circular buffer, with which a pointer is associated.
When a page is replaced, the pointer is set to indicate the next frame in the buffer
after the one just updated. When it comes time to replace a page, the OS scans
the buffer to find a frame with a use bit set to 0. Each time it encounters a frame
with a use bit of 1, it resets that bit to 0 and continues on. If any of the frames in
the buffer have a use bit of 0 at the beginning of this process, the first such frame
encountered is chosen for replacement. If all of the frames have a use bit of 1,
then the pointer will make one complete cycle through the buffer, setting all the
use bits to 0, and stop at its original position, replacing the page in that frame.
We can see that this policy is similar to FIFO, except that, in the clock policy, any
frame with a use bit of 1 is passed over by the algorithm. The policy is referred
to as a clock policy because we can visualize the page frames as laid out in a circle.
A number of operating systems have employed some variation of this simple clock
policy (e.g., Multics [CORB68]).

 Figure 8.16 provides an example of the simple clock policy mechanism. A cir-
cular buffer of n main memory frames is available for page replacement. Just prior
to the replacement of a page from the buffer with incoming page 727 , the next frame
pointer points at frame 2, which contains page 45 . The clock policy is now executed.
Because the use bit for page 45 in frame 2 is equal to 1, this page is not replaced.
Instead, the use bit is set to 0 and the pointer advances. Similarly, page 191 in frame
3 is not replaced; its use bit is set to 0 and the pointer advances. In the next frame,
frame 4, the use bit is set to 0. Therefore, page 556 is replaced with page 727 . The
use bit is set to 1 for this frame and the pointer advances to frame 5, completing the
page replacement procedure.

 The behavior of the clock policy is illustrated in Figure 8.15 . The presence
of an asterisk indicates that the corresponding use bit is equal to 1, and the arrow
indicates the current position of the pointer. Note that the clock policy is adept at
protecting frames 2 and 5 from replacement.

 Figure 8.17 shows the results of an experiment reported in [BAER80], which
compares the four algorithms that we have been discussing; it is assumed that the
number of page frames assigned to a process is fixed. The results are based on the
execution of 0.25 × 106 references in a FORTRAN program, using a page size of 256
words. Baer ran the experiment with frame allocations of 6, 8, 10, 12, and 14 frames.
The differences among the four policies are most striking at small allocations, with

5 The concept of scope is discussed in the subsection “Replacement Scope,” subsequently.

366 CHAPTER 8 / VIRTUAL MEMORY

FIFO being over a factor of 2 worse than optimal. All four curves have the same shape
as the idealized behavior shown in Figure 8.11b . In order to run efficiently, we would
like to be to the right of the knee of the curve (with a small page fault rate) while
keeping a small frame allocation (to the left of the knee of the curve). These two con-
straints indicate that a desirable mode of operation would be at the knee of the curve.

 Almost identical results have been reported in [FINK88], again showing a max-
imum spread of about a factor of 2. Finkel’s approach was to simulate the effects of
various policies on a synthesized page-reference string of 10,000 references selected

0

6

1

2

3

4

5

7

8

n � 1

n � 1

Page 19
Use � 1

Page 1
Use � 1

Next frame
pointer

Page 45
Use � 1

Page 191
Use � 1

Page 556
Use � 0

Page 13
Use � 0

Page 67
Use � 1

Page 33
Use � 1

Page 222
Use � 0

Page 9
Use � 1

(a) State of buffer just prior to a page replacement

0

6

1

2

3

4

5

7

8

Page 19
Use � 1

Page 1
Use � 1

Page 45
Use � 0

Page 191
Use � 0

Page 727
Use � 1

Page 13
Use � 0

Page 67
Use � 1

Page 33
Use � 1

Page 222
Use � 0

Page 9
Use � 1

(b) State of buffer just after the next page replacement

First frame in
circular buffer of
frames that are
candidates for replacement

Figure 8.16 Example of Clock Policy Operation

8.2 / OPERATING SYSTEM SOFTWARE 367

from a virtual space of 100 pages. To approximate the effects of the principle of
locality, an exponential distribution for the probability of referencing a particular
page was imposed. Finkel observes that some might be led to conclude that there
is little point in elaborate page replacement algorithms when only a factor of 2 is at
stake. But he notes that this difference will have a noticeable effect either on main
memory requirements (to avoid degrading operating system performance) or oper-
ating system performance (to avoid enlarging main memory).

 The clock algorithm has also been compared to these other algorithms when
a variable allocation and either global or local replacement scope (see the follow-
ing discussion of replacement policy) is used [CARR81, CARR84]. The clock algo-
rithm was found to approximate closely the performance of LRU.

 The clock algorithm can be made more powerful by increasing the number
of bits that it employs. 6 In all processors that support paging, a modify bit is associ-
ated with every page in main memory and hence with every frame of main memory.
This bit is needed so that, when a page has been modified, it is not replaced until it
has been written back into secondary memory. We can exploit this bit in the clock
algorithm in the following way. If we take the use and modify bits into account, each
frame falls into one of four categories:

 • Not accessed recently, not modified (u � 0; m � 0)

 • Accessed recently, not modified (u � 1; m � 0)

 • Not accessed recently, modified (u � 0; m � 1)

 • Accessed recently, modified (u � 1; m � 1)

 With this classification, the clock algorithm performs as follows:

 1. Beginning at the current position of the pointer, scan the frame buffer. During
this scan, make no changes to the use bit. The first frame encountered with
(u � 0; m � 0) is selected for replacement.

0
6 8

Number of frames allocated

Pa
ge

 f
au

lts
 p

er
 1

00
0

re
fe

re
nc

es

10 12 14

5

10

15

20

25

30

35
FIFO

CLOCK

LRU

OPT

40

Figure 8.17 Comparison of Fixed-Allocation, Local Page
Replacement Algorithms

6 On the other hand, if we reduce the number of bits employed to zero, the clock algorithm degenerates
to FIFO.

368 CHAPTER 8 / VIRTUAL MEMORY

 2. If step 1 fails, scan again, looking for the frame with (u � 0; m � 1). The first
such frame encountered is selected for replacement. During this scan, set the
use bit to 0 on each frame that is bypassed.

 3. If step 2 fails, the pointer should have returned to its original position and all
of the frames in the set will have a use bit of 0. Repeat step 1 and, if necessary,
step 2. This time, a frame will be found for the replacement.

 In summary, the page replacement algorithm cycles through all of the pages
in the buffer looking for one that has not been modified since being brought in and
has not been accessed recently. Such a page is a good bet for replacement and has
the advantage that, because it is unmodified, it does not need to be written back
out to secondary memory. If no candidate page is found in the first sweep, the algo-
rithm cycles through the buffer again, looking for a modified page that has not been
accessed recently. Even though such a page must be written out to be replaced,
because of the principle of locality, it may not be needed again anytime soon. If
this second pass fails, all of the frames in the buffer are marked as having not been
accessed recently and a third sweep is performed.

 This strategy was used on an earlier version of the Macintosh virtual memory
scheme [GOLD89], illustrated in Figure 8.18 . The advantage of this algorithm over

Page 9
not accessed
recently;
modified

First frame in
circular buffer
for this process

Last
replaced

Next
replaced

Page 7
not accessed
recently;
modified

Page 97
not accessed
recently;
modified

Page 46
not accessed
recently;
modified

Page 94
not accessed
recently;
not modified

Page 47
not accessed
recently;
not modified

Page 13
not accessed
recently;
not modified

Page 95
accessed
recently;
not modified

Page 45
accessed
recently;
not modified

Page 121
accessed
recently;
not modified

Page 96
accessed
recently;
not modified

0

1

2

3

4

56

7

8

9

n � 1

Figure 8.18 The Clock Page Replacement Algorithm [GOLD89]

8.2 / OPERATING SYSTEM SOFTWARE 369

the simple clock algorithm is that pages that are unchanged are given preference
for replacement. Because a page that has been modified must be written out before
being replaced, there is an immediate saving of time.

PAGE BUFFERING Although LRU and the clock policies are superior to FIFO,
they both involve complexity and overhead not suffered with FIFO. In addition,
there is the related issue that the cost of replacing a page that has been modified is
greater than for one that has not, because the former must be written back out to
secondary memory.

 An interesting strategy that can improve paging performance and allow
the use of a simpler page replacement policy is page buffering. The VAX VMS
approach is representative. The page replacement algorithm is simple FIFO. To
improve performance, a replaced page is not lost but rather is assigned to one of
two lists: the free page list if the page has not been modified, or the modified page
list if it has. Note that the page is not physically moved about in main memory;
instead, the entry in the page table for this page is removed and placed in either the
free or modified page list.

 The free page list is a list of page frames available for reading in pages. VMS
tries to keep some small number of frames free at all times. When a page is to be
read in, the page frame at the head of the list is used, destroying the page that was
there. When an unmodified page is to be replaced, it remains in memory and its
page frame is added to the tail of the free page list. Similarly, when a modified page
is to be written out and replaced, its page frame is added to the tail of the modified
page list.

 The important aspect of these maneuvers is that the page to be replaced
remains in memory. Thus if the process references that page, it is returned to the
resident set of that process at little cost. In effect, the free and modified page lists act
as a cache of pages. The modified page list serves another useful function: Modified
pages are written out in clusters rather than one at a time. This significantly reduces
the number of I/O operations and therefore the amount of disk access time.

 A simpler version of page buffering is implemented in the Mach operat-
ing system [RASH88]. In this case, no distinction is made between modified and
unmodified pages.

REPLACEMENT POLICY AND CACHE SIZE As discussed earlier, main memory size
is getting larger and the locality of applications is decreasing. In compensation,
cache sizes have been increasing. Large cache sizes, even multimegabyte ones, are
now feasible design alternatives [BORG90]. With a large cache, the replacement of
virtual memory pages can have a performance impact. If the page frame selected
for replacement is in the cache, then that cache block is lost as well as the page that
it holds.

 In systems that use some form of page buffering, it is possible to improve
cache performance by supplementing the page replacement policy with a policy for
page placement in the page buffer. Most operating systems place pages by selecting
an arbitrary page frame from the page buffer; typically a first-in-first-out discipline
is used. A study reported in [KESS92] shows that a careful page placement strategy
can result in 10–20% fewer cache misses than naive placement.

370 CHAPTER 8 / VIRTUAL MEMORY

 Several page placement algorithms are examined in [KESS92]. The details
are beyond the scope of this book, as they depend on the details of cache structure
and policies. The essence of these strategies is to bring consecutive pages into main
memory in such a way as to minimize the number of page frames that are mapped
into the same cache slots.

Resident Set Management

RESIDENT SET SIZE With paged virtual memory, it is not necessary and indeed
may not be possible to bring all of the pages of a process into main memory to
prepare it for execution. Thus, the OS must decide how many pages to bring in, that
is, how much main memory to allocate to a particular process. Several factors come
into play:

 • The smaller the amount of memory allocated to a process, the more processes
that can reside in main memory at any one time. This increases the probability
that the OS will find at least one ready process at any given time and hence
reduces the time lost due to swapping.

 • If a relatively small number of pages of a process are in main memory, then,
despite the principle of locality, the rate of page faults will be rather high (see
 Figure 8.11b).

 • Beyond a certain size, additional allocation of main memory to a particular
process will have no noticeable effect on the page fault rate for that process
because of the principle of locality.

 With these factors in mind, two sorts of policies are to be found in contempo-
rary operating systems. A fixed-allocation policy gives a process a fixed number of
frames in main memory within which to execute. That number is decided at initial
load time (process creation time) and may be determined based on the type of proc-
ess (interactive, batch, type of application) or may be based on guidance from the
programmer or system manager. With a fixed-allocation policy, whenever a page
fault occurs in the execution of a process, one of the pages of that process must be
replaced by the needed page.

 A variable-allocation policy allows the number of page frames allocated to a
process to be varied over the lifetime of the process. Ideally, a process that is suf-
fering persistently high levels of page faults, indicating that the principle of local-
ity only holds in a weak form for that process, will be given additional page frames
to reduce the page fault rate; whereas a process with an exceptionally low page
fault rate, indicating that the process is quite well behaved from a locality point of
view, will be given a reduced allocation, with the hope that this will not noticeably
increase the page fault rate. The use of a variable-allocation policy relates to the
concept of replacement scope, as explained in the next subsection.

 The variable-allocation policy would appear to be the more powerful one.
However, the difficulty with this approach is that it requires the OS to assess
the behavior of active processes. This inevitably requires software overhead in
the OS and is dependent on hardware mechanisms provided by the processor
platform.

8.2 / OPERATING SYSTEM SOFTWARE 371

REPLACEMENT SCOPE The scope of a replacement strategy can be categorized as
global or local. Both types of policies are activated by a page fault when there are no
free page frames. A local replacement policy chooses only among the resident pages
of the process that generated the page fault in selecting a page to replace. A global
replacement policy considers all unlocked pages in main memory as candidates for
replacement, regardless of which process owns a particular page. While it happens
that local policies are easier to analyze, there is no convincing evidence that they
perform better than global policies, which are attractive because of their simplicity
of implementation and minimal overhead [CARR84, MAEK87].

 There is a correlation between replacement scope and resident set size
(Table 8.5). A fixed resident set implies a local replacement policy: To hold the size
of a resident set fixed, a page that is removed from main memory must be replaced
by another page from the same process. A variable-allocation policy can clearly
employ a global replacement policy: The replacement of a page from one process in
main memory with that of another causes the allocation of one process to grow by
one page and that of the other to shrink by one page. We shall also see that variable
allocation and local replacement is a valid combination. We now examine these
three combinations.

FIXED ALLOCATION, LOCAL SCOPE For this case, we have a process that is running
in main memory with a fixed number of frames. When a page fault occurs, the OS
must choose which page from among the currently resident pages for this process
is to be replaced. Replacement algorithms such as those discussed in the preceding
subsection can be used.

 With a fixed-allocation policy, it is necessary to decide ahead of time the amount
of allocation to give to a process. This could be decided on the basis of the type
of application and the amount requested by the program. The drawback to this
approach is twofold: If allocations tend to be too small, then there will be a high page
fault rate, causing the entire multiprogramming system to run slowly. If allocations
tend to be unnecessarily large, then there will be too few programs in main memory
and there will be either considerable processor idle time or considerable time spent
in swapping.

Table 8.5 Resident Set Management

 Local Replacement Global Replacement

Fixed Allocation • Number of frames allocated to a
 process is fixed.

• Page to be replaced is chosen from
among the frames allocated to that
 process.

• Not possible.

Variable Allocation • The number of frames allocated to a
process may be changed from time to
time to maintain the working set of the
process.

• Page to be replaced is chosen from
among the frames allocated to that
 process.

• Page to be replaced is chosen from all
available frames in main memory; this
causes the size of the resident set of
processes to vary.

372 CHAPTER 8 / VIRTUAL MEMORY

VARIABLE ALLOCATION, GLOBAL SCOPE This combination is perhaps the easiest
to implement and has been adopted in a number of operating systems. At any given
time, there are a number of processes in main memory, each with a certain number
of frames allocated to it. Typically, the OS also maintains a list of free frames. When
a page fault occurs, a free frame is added to the resident set of a process and the
page is brought in. Thus, a process experiencing page faults will gradually grow in
size, which should help reduce overall page faults in the system.

 The difficulty with this approach is in the replacement choice. When there
are no free frames available, the OS must choose a page currently in memory to
replace. The selection is made from among all of the frames in memory, except
for locked frames such as those of the kernel. Using any of the policies discussed
in the preceding subsection, the page selected for replacement can belong to any
of the resident processes; there is no discipline to determine which process should
lose a page from its resident set. Therefore, the process that suffers the reduction in
 resident set size may not be optimum.

 One way to counter the potential performance problems of a variable-allocation,
global-scope policy is to use page buffering. In this way, the choice of which page to
replace becomes less significant, because the page may be reclaimed if it is referenced
before the next time that a block of pages are overwritten.

VARIABLE ALLOCATION, LOCAL SCOPE The variable-allocation, local-scope
strategy attempts to overcome the problems with a global-scope strategy. It can be
summarized as follows:

 1. When a new process is loaded into main memory, allocate to it a certain
number of page frames as its resident set, based on application type, program
request, or other criteria. Use either prepaging or demand paging to fill up the
allocation.

 2. When a page fault occurs, select the page to replace from among the resident
set of the process that suffers the fault.

 3. From time to time, reevaluate the allocation provided to the process, and
increase or decrease it to improve overall performance.

 With this strategy, the decision to increase or decrease a resident set size is a
deliberate one and is based on an assessment of the likely future demands of active
processes. Because of this evaluation, such a strategy is more complex than a simple
global replacement policy. However, it may yield better performance.

 The key elements of the variable-allocation, local-scope strategy are the cri-
teria used to determine resident set size and the timing of changes. One specific
strategy that has received much attention in the literature is known as the working
set strategy. Although a true working set strategy would be difficult to implement, it
is useful to examine it as a baseline for comparison.

 The working set is a concept introduced and popularized by Denning
[DENN68, DENN70, DENN80b]; it has had a profound impact on virtual memory
management design. The working set with parameter � for a process at virtual
time t , which we designate as W(t , �), is the set of pages of that process that have
been referenced in the last � virtual time units.

8.2 / OPERATING SYSTEM SOFTWARE 373

 Virtual time is defined as follows. Consider a sequence of memory references,
r (1), r (2),, in which r (i) is the page that contains the i th virtual address gener-
ated by a given process. Time is measured in memory references; thus t � 1, 2, 3,
measures the process’s internal virtual time.

 Let us consider each of the two variables of W. The variable � is a window
of virtual time over which the process is observed. The working set size will be a
nondecreasing function of the window size. The result is illustrated in Figure 8.19
(based on [BACH86]), which shows a sequence of page references for a process.
The dots indicate time units in which the working set does not change. Note that the
larger the window size, the larger is the working set. This can be expressed in the
following relationship:

 W(t,� + 1) � W(t,�)

 The working set is also a function of time. If a process executes over � time
units and uses only a single page, then |W(t,�)| = 1 . A working set can also grow
as large as the number of pages N of the process if many different pages are rapidly
addressed and if the window size allows. Thus,

 1 … |W(t,�)| … min(�,N)

 Figure 8.20 indicates the way in which the working set size can vary over time
for a fixed value of Δ. For many programs, periods of relatively stable working set

Figure 8.19 Working Set of Process as Defi ned by Window Size

 Sequence of
Page

References Window Size, �
W 2 3 4 5

 24 24 24 24 24

 15 24 15 24 15 24 15 24 15

 18 15 18 24 15 18 24 15 18 24 15 18

 23 18 23 15 18 23 24 15 18 23 24 15 18 23

 24 23 24 18 23 24 • •

 17 24 17 23 24 17 18 23 24 17 15 18 23 24 17

 18 17 18 24 17 18 • 18 23 24 17

 24 18 24 • 24 17 18 •

 18 • 18 24 • 24 17 18

 17 18 17 24 18 17 • •

 17 17 18 17 • •

 15 17 15 17 15 18 17 15 24 18 17 15

 24 15 24 17 15 24 17 15 24 •

 17 24 17 • • 17 15 24

 24 • 24 17 • •

 18 24 18 17 24 18 17 24 18 15 17 24 18

374 CHAPTER 8 / VIRTUAL MEMORY

sizes alternate with periods of rapid change. When a process first begins execut-
ing, it gradually builds up to a working set as it references new pages. Eventually,
by the principle of locality, the process should stabilize on a certain set of pages.
Subsequent transient periods reflect a shift of the program to a new locality. During
the transition phase, some of the pages from the old locality remain within the win-
dow, �, causing a surge in the size of the working set as new pages are referenced.
As the window slides past these page references, the working set size declines until
it contains only those pages from the new locality.

 This concept of a working set can be used to guide a strategy for resident
set size:

 1. Monitor the working set of each process.

 2. Periodically remove from the resident set of a process those pages that are not
in its working set. This is essentially an LRU policy.

 3. A process may execute only if its working set is in main memory (i.e., if its
resident set includes its working set).

 This strategy is appealing because it takes an accepted principle, the principle
of locality, and exploits it to achieve a memory management strategy that should
minimize page faults. Unfortunately, there are a number of problems with the work-
ing set strategy:

 1. The past does not always predict the future. Both the size and the membership
of the working set will change over time (e.g., see Figure 8.20).

 2. A true measurement of working set for each process is impractical. It would
be necessary to time-stamp every page reference for every process using the

Transient Transient Transient Transient

Stable

�

Stable Stable Stable

W
or

ki
ng

 s
et

 s
iz

e

Time

Figure 8.20 Typical Graph of Working Set Size [MAEK87]

8.2 / OPERATING SYSTEM SOFTWARE 375

virtual time of that process and then maintain a time-ordered queue of pages
for each process.

 3. The optimal value of � is unknown and in any case would vary.

 Nevertheless, the spirit of this strategy is valid, and a number of operating
systems attempt to approximate a working set strategy. One way to do this is to
focus not on the exact page references but on the page fault rate of a process. As
 Figure 8.11b illustrates, the page fault rate falls as we increase the resident set size of
a process. The working set size should fall at a point on this curve such as indicated
by W in the figure. Therefore, rather than monitor the working set size directly, we
can achieve comparable results by monitoring the page fault rate. The line of reason-
ing is as follows: If the page fault rate for a process is below some minimum thresh-
old, the system as a whole can benefit by assigning a smaller resident set size to this
process (because more page frames are available for other processes) without harm-
ing the process (by causing it to incur increased page faults). If the page fault rate
for a process is above some maximum threshold, the process can benefit from an
increased resident set size (by incurring fewer faults) without degrading the system.

 An algorithm that follows this strategy is the page fault frequency (PFF) algo-
rithm [CHU72, GUPT78]. It requires a use bit to be associated with each page in
memory. The bit is set to 1 when that page is accessed. When a page fault occurs,
the OS notes the virtual time since the last page fault for that process; this could
be done by maintaining a counter of page references. A threshold F is defined. If
the amount of time since the last page fault is less than F , then a page is added to the
resident set of the process. Otherwise, discard all pages with a use bit of 0, and
shrink the resident set accordingly. At the same time, reset the use bit on the remain-
ing pages of the process to 0. The strategy can be refined by using two thresholds: an
upper threshold that is used to trigger a growth in the resident set size, and a lower
threshold that is used to trigger a contraction in the resident set size.

 The time between page faults is the reciprocal of the page fault rate. Although
it would seem to be better to maintain a running average of the page fault rate, the
use of a single time measurement is a reasonable compromise that allows decisions
about resident set size to be based on the page fault rate. If such a strategy is sup-
plemented with page buffering, the resulting performance should be quite good.

 Nevertheless, there is a major flaw in the PFF approach, which is that it does
not perform well during the transient periods when there is a shift to a new locality.
With PFF, no page ever drops out of the resident set before F virtual time units have
elapsed since it was last referenced. During interlocality transitions, the rapid suc-
cession of page faults causes the resident set of a process to swell before the pages
of the old locality are expelled; the sudden peaks of memory demand may produce
unnecessary process deactivations and reactivations, with the corresponding unde-
sirable switching and swapping overheads.

 An approach that attempts to deal with the phenomenon of interlocality tran-
sition with a similar relatively low overhead to that of PFF is the variable-interval
sampled working set (VSWS) policy [FERR83]. The VSWS policy evaluates the
working set of a process at sampling instances based on elapsed virtual time. At the
beginning of a sampling interval, the use bits of all the resident pages for the process
are reset; at the end, only the pages that have been referenced during the interval

376 CHAPTER 8 / VIRTUAL MEMORY

will have their use bit set; these pages are retained in the resident set of the process
throughout the next interval, while the others are discarded. Thus the resident set
size can only decrease at the end of an interval. During each interval, any faulted
pages are added to the resident set; thus the resident set remains fixed or grows
 during the interval.

 The VSWS policy is driven by three parameters:

M : The minimum duration of the sampling interval

L : The maximum duration of the sampling interval

Q : The number of page faults that are allowed to occur between sampling instances

 The VSWS policy is as follows:

 1. If the virtual time since the last sampling instance reaches L , then suspend the
process and scan the use bits.

 2. If, prior to an elapsed virtual time of L , Q page faults occur,

a. If the virtual time since the last sampling instance is less than M , then wait
until the elapsed virtual time reaches M to suspend the process and scan the
use bits.

b. If the virtual time since the last sampling instance is greater than or equal to
M , suspend the process and scan the use bits.

 The parameter values are to be selected so that the sampling will normally
be triggered by the occurrence of the Q th page fault after the last scan (case 2b).
The other two parameters (M and L) provide boundary protection for exceptional
conditions. The VSWS policy tries to reduce the peak memory demands caused by
abrupt interlocality transitions by increasing the sampling frequency, and hence the
rate at which unused pages drop out of the resident set, when the page fault rate
increases. Experience with this technique in the Bull mainframe operating system,
GCOS 8, indicates that this approach is as simple to implement as PFF and more
effective [PIZZ89].

Cleaning Policy

 A cleaning policy is the opposite of a fetch policy; it is concerned with determining
when a modified page should be written out to secondary memory. Two common
alternatives are demand cleaning and precleaning. With demand cleaning , a page is
written out to secondary memory only when it has been selected for replacement.
A precleaning policy writes modified pages before their page frames are needed so
that pages can be written out in batches.

 There is a danger in following either policy to the full. With precleaning, a
page is written out but remains in main memory until the page replacement algo-
rithm dictates that it be removed. Precleaning allows the writing of pages in batches,
but it makes little sense to write out hundreds or thousands of pages only to find
that the majority of them have been modified again before they are replaced. The
transfer capacity of secondary memory is limited and should not be wasted with
unnecessary cleaning operations.

8.2 / OPERATING SYSTEM SOFTWARE 377

 On the other hand, with demand cleaning, the writing of a dirty page is coupled
to, and precedes, the reading in of a new page. This technique may minimize page
writes, but it means that a process that suffers a page fault may have to wait for two
page transfers before it can be unblocked. This may decrease processor utilization.

 A better approach incorporates page buffering. This allows the adoption
of the following policy: Clean only pages that are replaceable, but decouple the
cleaning and replacement operations. With page buffering, replaced pages can be
placed on two lists: modified and unmodified. The pages on the modified list can
periodically be written out in batches and moved to the unmodified list. A page on
the unmodified list is either reclaimed if it is referenced or lost when its frame is
assigned to another page.

Load Control

 Load control is concerned with determining the number of processes that will be resi-
dent in main memory, which has been referred to as the multiprogramming level. The
load control policy is critical in effective memory management. If too few processes
are resident at any one time, then there will be many occasions when all processes
are blocked, and much time will be spent in swapping. On the other hand, if too
many processes are resident, then, on average, the size of the resident set of each
process will be inadequate and frequent faulting will occur. The result is thrashing.

MULTIPROGRAMMING LEVEL Thrashing is illustrated in Figure 8.21 . As the
multiprogramming level increases from a small value, one would expect to see
processor utilization rise, because there is less chance that all resident processes
are blocked. However, a point is reached at which the average resident set is
inadequate. At this point, the number of page faults rises dramatically, and
processor utilization collapses.

 There are a number of ways to approach this problem. A working set or PFF
algorithm implicitly incorporates load control. Only those processes whose resident
set is sufficiently large are allowed to execute. In providing the required resident set

Multiprogramming level

Pr
oc

es
so

r
ut

ili
za

tio
n

Figure 8.21 Multiprogramming Effects

378 CHAPTER 8 / VIRTUAL MEMORY

size for each active process, the policy automatically and dynamically determines
the number of active programs.

 Another approach, suggested by Denning and his colleagues [DENN80b], is
known as the L � S criterion , which adjusts the multiprogramming level so that the
mean time between faults equals the mean time required to process a page fault.
Performance studies indicate that this is the point at which processor utilization
attained a maximum. A policy with a similar effect, proposed in [LERO76], is the
50% criterion , which attempts to keep utilization of the paging device at approxi-
mately 50%. Again, performance studies indicate that this is a point of maximum
processor utilization.

 Another approach is to adapt the clock page replacement algorithm described
earlier (Figure 8.16). [CARR84] describes a technique, using a global scope,
that involves monitoring the rate at which the pointer scans the circular buffer
of frames. If the rate is below a given lower threshold, this indicates one or both of
two circumstances:

 1. Few page faults are occurring, resulting in few requests to advance the pointer.

 2. For each request, the average number of frames scanned by the pointer is
small, indicating that there are many resident pages not being referenced and
are readily replaceable.

 In both cases, the multiprogramming level can safely be increased. On the
other hand, if the pointer scan rate exceeds an upper threshold, this indicates either
a high fault rate or difficulty in locating replaceable pages, which implies that the
multiprogramming level is too high.

PROCESS SUSPENSION If the degree of multiprogramming is to be reduced, one
or more of the currently resident processes must be suspended (swapped out).
[CARR84] lists six possibilities:

 • Lowest-priority process: This implements a scheduling policy decision and is
unrelated to performance issues.

 • Faulting process: The reasoning is that there is a greater probability that the
faulting task does not have its working set resident, and performance would
suffer least by suspending it. In addition, this choice has an immediate payoff
because it blocks a process that is about to be blocked anyway and it elimi-
nates the overhead of a page replacement and I/O operation.

 • Last process activated: This is the process least likely to have its working set
resident.

 • Process with the smallest resident set: This will require the least future effort
to reload. However, it penalizes programs with strong locality.

 • Largest process: This obtains the most free frames in an overcommitted
 memory, making additional deactivations unlikely soon.

 • Process with the largest remaining execution window: In most process sched-
uling schemes, a process may only run for a certain quantum of time before
being interrupted and placed at the end of the Ready queue. This approxi-
mates a shortest-processing-time-first scheduling discipline.

8.3 / UNIX AND SOLARIS MEMORY MANAGEMENT 379

 As in so many other areas of OS design, which policy to choose is a matter of
judgment and depends on many other design factors in the OS as well as the charac-
teristics of the programs being executed.

8.3 UNIX AND SOLARIS MEMORY MANAGEMENT

 Because UNIX is intended to be machine independent, its memory management
scheme will vary from one system to the next. Earlier versions of UNIX simply used
variable partitioning with no virtual memory scheme. Current implementations of
UNIX and Solaris make use of paged virtual memory.

 In SVR4 and Solaris, there are actually two separate memory management
schemes. The paging system provides a virtual memory capability that allocates
page frames in main memory to processes and also allocates page frames to disk
block buffers. Although this is an effective memory management scheme for user
processes and disk I/O, a paged virtual memory scheme is less suited to manag-
ing the memory allocation for the kernel. For this latter purpose, a kernel memory
 allocator is used. We examine these two mechanisms in turn.

Paging System

DATA STRUCTURES For paged virtual memory, UNIX makes use of a number of
data structures that, with minor adjustment, are machine independent (Figure 8.22
and Table 8.6):

(a) Page table entry

(b) Disk block descriptor

(c) Page frame data table entry

(d) Swap-use table entry

Reference
count

Page/storage
unit number

Page state
Reference

count
Logical
device

Block
number

Pfdata
pointer

Swap device number Device block number Type of storage

Page frame number Age
Pro-
tect

Valid
Refe-
rence

Mod-
ify

Copy
on

write

Figure 8.22 UNIX SVR4 Memory Management Formats

380 CHAPTER 8 / VIRTUAL MEMORY

Table 8.6 UNIX SVR4 Memory Management Parameters

Page Table Entry

Page frame number
 Refers to frame in real memory.

Age
 Indicates how long the page has been in memory without being referenced. The length and contents of
this field are processor dependent.

Copy on write
 Set when more than one process shares a page. If one of the processes writes into the page, a separate
copy of the page must first be made for all other processes that share the page. This feature allows the
copy operation to be deferred until necessary and avoided in cases where it turns out not to be necessary.

Modify
 Indicates page has been modified.

Reference
 Indicates page has been referenced. This bit is set to 0 when the page is first loaded and may be periodi-
cally reset by the page replacement algorithm.

Valid
 Indicates page is in main memory.

Protect
 Indicates whether write operation is allowed.

Disk Block Descriptor

Swap device number
 Logical device number of the secondary device that holds the corresponding page. This allows more
than one device to be used for swapping.

Device block number
 Block location of page on swap device.

Type of storage
 Storage may be swap unit or executable file. In the latter case, there is an indication as to whether the
virtual memory to be allocated should be cleared first.

Page Frame Data Table Entry

Page state
 Indicates whether this frame is available or has an associated page. In the latter case, the status of the
page is specified: on swap device, in executable file, or DMA in progress.

Reference count
 Number of processes that reference the page.

Logical device
 Logical device that contains a copy of the page.

Block number
 Block location of the page copy on the logical device.

Pfdata pointer
 Pointer to other pfdata table entries on a list of free pages and on a hash queue of pages.

Swap-Use Table Entry

Reference count
 Number of page table entries that point to a page on the swap device.

Page/storage unit number
 Page identifier on storage unit.

8.3 / UNIX AND SOLARIS MEMORY MANAGEMENT 381

 • Page table: Typically, there will be one page table per process, with one entry
for each page in virtual memory for that process.

 • Disk block descriptor: Associated with each page of a process is an entry in
this table that describes the disk copy of the virtual page.

 • Page frame data table: Describes each frame of real memory and is indexed by
frame number. This table is used by the replacement algorithm.

 • Swap-use table: There is one swap-use table for each swap device, with one
entry for each page on the device.

 Most of the fields defined in Table 8.6 are self-explanatory. A few warrant
further comment. The Age field in the page table entry is an indication of how long
it has been since a program referenced this frame. However, the number of bits
and the frequency of update of this field are implementation dependent. Therefore,
there is no universal UNIX use of this field for page replacement policy.

 The Type of Storage field in the disk block descriptor is needed for the
 following reason: When an executable file is first used to create a new process, only
a portion of the program and data for that file may be loaded into real memory.
Later, as page faults occur, new portions of the program and data are loaded. It is
only at the time of first loading that virtual memory pages are created and assigned
to locations on one of the devices to be used for swapping. At that time, the OS is
told whether it needs to clear (set to 0) the locations in the page frame before the
first loading of a block of the program or data.

PAGE REPLACEMENT The page frame data table is used for page replacement.
Several pointers are used to create lists within this table. All of the available frames
are linked together in a list of free frames available for bringing in pages. When the
number of available frames drops below a certain threshold, the kernel will steal a
number of frames to compensate.

 The page replacement algorithm used in SVR4 is a refinement of the
clock policy algorithm (Figure 8.16) known as the two-handed clock algorithm
(Figure 8.23). The algorithm uses the reference bit in the page table entry for each
page in memory that is eligible (not locked) to be swapped out. This bit is set to 0
when the page is first brought in and set to 1 when the page is referenced for a read
or write. One hand in the clock algorithm, the fronthand, sweeps through the pages
on the list of eligible pages and sets the reference bit to 0 on each page. Sometime
later, the backhand sweeps through the same list and checks the reference bit. If
the bit is set to 1, then that page has been referenced since the fronthand swept by;
these frames are ignored. If the bit is still set to 0, then the page has not been refer-
enced in the time interval between the visit by fronthand and backhand; these pages
are placed on a list to be paged out.

 Two parameters determine the operation of the algorithm:

 • Scanrate: The rate at which the two hands scan through the page list, in pages
per second

 • Handspread: The gap between fronthand and backhand

 These two parameters have default values set at boot time based on the
amount of physical memory. The scanrate parameter can be altered to meet changing

382 CHAPTER 8 / VIRTUAL MEMORY

conditions. The parameter varies linearly between the values slowscan and fastscan
(set at configuration time) as the amount of free memory varies between the values
lotsfree and minfree . In other words, as the amount of free memory shrinks, the
clock hands move more rapidly to free up more pages. The handspread parameter
determines the gap between the fronthand and the backhand and therefore, together
with scanrate, determines the window of opportunity to use a page before it is
swapped out due to lack of use.

Kernel Memory Allocator

 The kernel generates and destroys small tables and buffers frequently during the
course of execution, each of which requires dynamic memory allocation. [VAHA96]
lists the following examples:

 • The pathname translation routing may allocate a buffer to copy a pathname
from user space.

 • The allocb() routine allocates STREAMS buffers of arbitrary size.

 • Many UNIX implementations allocate zombie structures to retain exit status
and resource usage information about deceased processes.

 • In SVR4 and Solaris, the kernel allocates many objects (such as proc struc-
tures, vnodes, and file descriptor blocks) dynamically when needed.

 Most of these blocks are significantly smaller than the typical machine page size, and
therefore the paging mechanism would be inefficient for dynamic kernel memory
allocation. For SVR4, a modification of the buddy system, described in Section 7.2 ,
is used.

Beginning
of page list

End of
page list

H
an

ds
pr

ea
d

Fronthand

Back
hand

Figure 8.23 Two-Handed Clock Page Replacement
Algorithm

8.3 / UNIX AND SOLARIS MEMORY MANAGEMENT 383

 In buddy systems, the cost to allocate and free a block of memory is low
 compared to that of best-fit or first-fit policies [KNUT97]. However, in the case of
kernel memory management, the allocation and free operations must be made as
fast as possible. The drawback of the buddy system is the time required to fragment
and coalesce blocks.

 Barkley and Lee at AT&T proposed a variation known as a lazy buddy system
[BARK89], and this is the technique adopted for SVR4. The authors observed that
UNIX often exhibits steady-state behavior in kernel memory demand; that is, the
amount of demand for blocks of a particular size varies slowly in time. Therefore, if
a block of size 2 i is released and is immediately coalesced with its buddy into a block
of size 2 i�1 , the kernel may next request a block of size 2 i , which may necessitate
splitting the larger block again. To avoid this unnecessary coalescing and splitting,
the lazy buddy system defers coalescing until it seems likely that it is needed, and
then coalesces as many blocks as possible.

 The lazy buddy system uses the following parameters:

Ni � current number of blocks of size 2 i .

Ai � current number of blocks of size 2 i that are allocated (occupied).

Gi � current number of blocks of size 2 i that are globally free; these are blocks
that are eligible for coalescing; if the buddy of such a block becomes
globally free, then the two blocks will be coalesced into a globally free
block of size 2 i�1 . All free blocks (holes) in the standard buddy system
could be considered globally free.

Li � current number of blocks of size 2 i that are locally free; these are blocks that
are not eligible for coalescing. Even if the buddy of such a block becomes
free, the two blocks are not coalesced. Rather, the locally free blocks are
retained in anticipation of future demand for a block of that size.

 The following relationship holds:

Ni = Ai + Gi + Li

 In general, the lazy buddy system tries to maintain a pool of locally free blocks
and only invokes coalescing if the number of locally free blocks exceeds a thresh-
old. If there are too many locally free blocks, then there is a chance that there will
be a lack of free blocks at the next level to satisfy demand. Most of the time, when
a block is freed, coalescing does not occur, so there is minimal bookkeeping and
operational costs. When a block is to be allocated, no distinction is made between
locally and globally free blocks; again, this minimizes bookkeeping.

 The criterion used for coalescing is that the number of locally free blocks
of a given size should not exceed the number of allocated blocks of that size (i.e.,
we must have Li 	 Ai). This is a reasonable guideline for restricting the growth of
locally free blocks, and experiments in [BARK89] confirm that this scheme results
in noticeable savings.

 To implement the scheme, the authors define a delay variable as follows:

Di = Ai - Li = Ni - 2Li - Gi

 Figure 8.24 shows the algorithm.

384 CHAPTER 8 / VIRTUAL MEMORY

8.4 LINUX MEMORY MANAGEMENT

 Linux shares many of the characteristics of the memory management schemes of
other UNIX implementations but has its own unique features. Overall, the Linux
memory management scheme is quite complex [DUBE98]. In this section, we give
a brief overview of the two main aspects of Linux memory management: process
virtual memory and kernel memory allocation.

Linux Virtual Memory

VIRTUAL MEMORY ADDRESSING Linux makes use of a three-level page table
structure, consisting of the following types of tables (each individual table is the size
of one page):

 • Page directory: An active process has a single page directory that is the size
of one page. Each entry in the page directory points to one page of the page
middle directory. The page directory must be in main memory for an active
process.

Figure 8.24 Lazy Buddy System Algorithm

 Initial value of Di is 0
 After an operation, the value of Di is updated as follows

(I) if the next operation is a block allocate request:
 if there is any free block, select one to allocate
 if the selected block is locally free
 then Di :� Di � 2
 else Di :� Di � 1
 otherwise
 first get two blocks by splitting a larger one into two (recursive operation)
 allocate one and mark the other locally free
 Di remains unchanged (but D may change for other block sizes because

 of the recursive call)

 (II) if the next operation is a block free request
 Case Di
 2
 mark it locally free and free it locally
 Di � 2
 Case Di � 1
 mark it globally free and free it globally; coalesce if possible
 Di � 0
 Case Di � 0
 mark it globally free and free it globally; coalesce if possible
 select one locally free block of size 2i and free it globally; coalesce if possible
 Di :� 0

8.4 / LINUX MEMORY MANAGEMENT 385

 • Page middle directory: The page middle directory may span multiple pages.
Each entry in the page middle directory points to one page in the page table.

 • Page table: The page table may also span multiple pages. Each page table
 entry refers to one virtual page of the process.

 To use this three-level page table structure, a virtual address in Linux is viewed
as consisting of four fields (Figure 8.25). The leftmost (most significant) field is used
as an index into the page directory. The next field serves as an index into the page
middle directory. The third field serves as an index into the page table. The fourth
field gives the offset within the selected page of memory.

 The Linux page table structure is platform independent and was designed to
accommodate the 64-bit Alpha processor, which provides hardware support for
three levels of paging. With 64-bit addresses, the use of only two levels of pages on
the Alpha would result in very large page tables and directories. The 32-bit Pentium/
x86 architecture has a two-level hardware paging mechanism. The Linux software
accommodates the two-level scheme by defining the size of the page middle direc-
tory as one. Note that all references to an extra level of indirection are optimized
away at compile time, not at run time. Therefore, there is no performance overhead
for using generic three-level design on platforms which support only two levels in
hardware.

PAGE ALLOCATION To enhance the efficiency of reading in and writing out pages
to and from main memory, Linux defines a mechanism for dealing with contiguous
blocks of pages mapped into contiguous blocks of page frames. For this purpose,
the buddy system is used. The kernel maintains a list of contiguous page frame
groups of fixed size; a group may consist of 1, 2, 4, 8, 16, or 32 page frames. As pages

Global directory

cr3
register

Page
directory

Page middle
directory

Page table

Page frame
in physical

memory

Virtual address

Middle directory Page table Offset

�

�

�

�

Figure 8.25 Address Translation in Linux Virtual Memory Scheme

386 CHAPTER 8 / VIRTUAL MEMORY

are allocated and deallocated in main memory, the available groups are split and
merged using the buddy algorithm.

PAGE REPLACEMENT ALGORITHM The Linux page replacement algorithm is
based on the clock algorithm described in Section 8.2 (see Figure 8.16). In the
simple clock algorithm, a use bit and a modify bit are associated with each page
in main memory. In the Linux scheme, the use bit is replaced with an 8-bit age
variable. Each time that a page is accessed, the age variable is incremented. In
the background, Linux periodically sweeps through the global page pool and
decrements the age variable for each page as it rotates through all the pages
in main memory. A page with an age of 0 is an “old” page that has not been
referenced in some time and is the best candidate for replacement. The larger
the value of age, the more frequently a page has been used in recent times and
the less eligible it is for replacement. Thus, the Linux algorithm is a form of least
frequently used policy.

Kernel Memory Allocation

 The Linux kernel memory capability manages physical main memory page frames.
Its primary function is to allocate and deallocate frames for particular uses. Possible
owners of a frame include user-space processes (i.e., the frame is part of the virtual
memory of a process that is currently resident in real memory), dynamically allo-
cated kernel data, static kernel code, and the page cache. 7

 The foundation of kernel memory allocation for Linux is the page allocation
mechanism used for user virtual memory management. As in the virtual memory
scheme, a buddy algorithm is used so that memory for the kernel can be allocated
and deallocated in units of one or more pages. Because the minimum amount of
memory that can be allocated in this fashion is one page, the page allocator alone
would be inefficient because the kernel requires small short-term memory chunks
in odd sizes. To accommodate these small chunks, Linux uses a scheme known as
slab allocation [BONW94] within an allocated page. On a Pentium/x86 machine, the
page size is 4 Kbytes, and chunks within a page may be allocated of sizes 32, 64, 128,
252, 508, 2,040, and 4,080 bytes.

 The slab allocator is relatively complex and is not examined in detail here; a
good description can be found in [VAHA96]. In essence, Linux maintains a set of
linked lists, one for each size of chunk. Chunks may be split and aggregated in a
manner similar to the buddy algorithm and moved between lists accordingly.

8.5 WINDOWS MEMORY MANAGEMENT

 The Windows virtual memory manager controls how memory is allocated and how
paging is performed. The memory manager is designed to operate over a vari-
ety of platforms and to use page sizes ranging from 4 Kbytes to 64 Kbytes. Intel

7 The page cache has properties similar to a disk buffer, described in this chapter, as well as a disk cache,
described in Chapter 11 . We defer a discussion of the Linux page cache to Chapter 11 .

8.5 / WINDOWS MEMORY MANAGEMENT 387

and AMD64 platforms have 4 Kbytes per page and Intel Itanium platforms have
8 Kbytes per page.

Windows Virtual Address Map

 On 32-bit platforms, each Windows user process sees a separate 32-bit address space,
allowing 4 Gbytes of virtual memory per process. By default, half of this memory is
reserved for the OS, so each user actually has 2 Gbytes of available virtual address
space and all processes share most of the upper 2 Gbytes of system space when
running in kernel-mode. Large memory intensive applications, on both clients and
servers, can run more effectively using 64-bit Windows. Other than netbooks, most
modern PCs use the AMD64 processor architecture which is capable of running as
either a 32-bit or 64-bit system.

 Figure 8.26 shows the default virtual address space seen by a normal 32-bit
user process. It consists of four regions:

 • 0x00000000 to 0x0000FFFF: Set aside to help programmers catch NULL-
pointer assignments.

 • 0x00010000 to 0x7FFEFFFF: Available user address space. This space is
divided into pages that may be loaded into main memory.

0
64-Kbyte region for
NULL-pointer assignments
(inaccessible)

64-Kbyte region for
bad-pointer assignments
(inaccessible)

2-Gbyte region for
the operating system
(inaccessible)

2-Gbyte user
address space
(unreserved, usable)

0xFFFFFFFF

Figure 8.26 Windows Default 32-Bit Virtual Address Space

388 CHAPTER 8 / VIRTUAL MEMORY

 • 0x7FFF0000 to 0x7FFFFFFF: A guard page inaccessible to the user.
This page makes it easier for the OS to check on out-of-bounds pointer
 references.

 • 0x80000000 to 0xFFFFFFFF: System address space. This 2-Gbyte process is
used for the Windows Executive, Kernel, HAL, and device drivers.

 • On 64-bit platforms, 8 Tbytes of user address space is available in Windows 7.

Windows Paging

 When a process is created, it can in principle make use of the entire user space of
almost 2 Gbytes (or 8 Tbytes on 64-bit Windows). This space is divided into fixed-
size pages, any of which can be brought into main memory, but the OS manages the
addresses in contiguous regions allocated on 64-Kbyte boundaries. A region can be
in one of three states:

 • Available: addresses not currently used by this process.

 • Reserved: addresses that the virtual memory manager has set aside for a proc-
ess so they cannot be allocated to another use (e.g., saving contiguous space
for a stack to grow).

 • Committed: addresses that the virtual memory manager has initialized for use
by the process to access virtual memory pages. These pages can reside either
on disk or in physical memory. When on disk they can be either kept in files
(mapped pages) or occupy space in the paging file (i.e., the disk file to which it
writes pages when removing them from main memory).

 The distinction between reserved and committed memory is useful because
it (1) reduces the amount of total virtual memory space needed by the system,
allowing the page file to be smaller; and (2) allows programs to reserve addresses
 without making them accessible to the program or having them charged against
their resource quotas.

 The resident set management scheme used by Windows is variable allocation,
local scope (see Table 8.5). When a process is first activated, it is assigned data struc-
tures to manage its working set. As the pages needed by the process are brought
into physical memory the memory manager uses the data structures to keep track
of the pages assigned to the process. Working sets of active processes are adjusted
using the following general conventions:

 • When main memory is plentiful, the virtual memory manager allows the resi-
dent sets of active processes to grow. To do this, when a page fault occurs, a
new physical page is added to the process but no older page is swapped out,
resulting in an increase of the resident set of that process by one page.

 • When memory becomes scarce, the virtual memory manager recovers mem-
ory for the system by removing less recently used pages out of the working sets
of active processes, reducing the size of those resident sets.

 • Even when memory is plentiful, Windows watches for large processes that
are rapidly increasing their memory usage. The system begins to remove

8.6 / SUMMARY 389

pages that have not been recently used from the process. This policy makes
the system more responsive because a new program will not suddenly cause a
scarcity of memory and make the user wait while the system tries to reduce the
resident sets of the processes that are already running.

8.6 SUMMARY

 To use the processor and the I/O facilities efficiently, it is desirable to maintain as
many processes in main memory as possible. In addition, it is desirable to free pro-
grammers from size restrictions in program development.

 The way to address both of these concerns is virtual memory. With virtual
memory, all address references are logical references that are translated at run time
to real addresses. This allows a process to be located anywhere in main memory
and for that location to change over time. Virtual memory also allows a process to
be broken up into pieces. These pieces need not be contiguously located in main
memory during execution and, indeed, it is not even necessary for all of the pieces
of the process to be in main memory during execution.

 Two basic approaches to providing virtual memory are paging and segmen-
tation. With paging, each process is divided into relatively small, fixed-size pages.
Segmentation provides for the use of pieces of varying size. It is also possible to
combine segmentation and paging in a single memory management scheme.

 A virtual memory management scheme requires both hardware and software
support. The hardware support is provided by the processor. The support includes
dynamic translation of virtual addresses to physical addresses and the generation
of an interrupt when a referenced page or segment is not in main memory. Such an
interrupt triggers the memory management software in the OS.

 A number of design issues relate to OS support for memory management:

 • Fetch policy: Process pages can be brought in on demand, or a prepaging pol-
icy can be used, which clusters the input activity by bringing in a number of
pages at once.

 • Placement policy: With a pure segmentation system, an incoming segment
must be fit into an available space in memory.

 • Replacement policy: When memory is full, a decision must be made as to
which page or pages are to be replaced.

 • Resident set management: The OS must decide how much main memory to
allocate to a particular process when that process is swapped in. This can be a
static allocation made at process creation time, or it can change dynamically.

 • Cleaning policy: Modified process pages can be written out at the time of
replacement, or a precleaning policy can be used, which clusters the output
activity by writing out a number of pages at once.

 • Load control: Load control is concerned with determining the number of
processes that will be resident in main memory at any given time.

390 CHAPTER 8 / VIRTUAL MEMORY

8.7 RECOMMENDED READING AND WEB SITES

 As might be expected, virtual memory receives good coverage in most books on
operating systems. [MILE92] provides a good summary of various research areas.
[CARR84] provides an excellent in-depth examination of performance issues. The
classic paper [DENN70] is still well worth a read. [DOWD93] provides an instruc-
tive performance analysis of various page replacement algorithms. [JACO98a] is a
good survey of issues in virtual memory design; it includes a discussion of inverted
page tables. [JACO98b] looks at virtual memory hardware organizations in various
microprocessors.

 It is a sobering experience to read [IBM86], which gives a detailed account of
the tools and options available to a site manager in optimizing the virtual memory
policies of MVS. The document illustrates the complexity of the problem.

 [VAHA96] is one of the best treatments of the memory management schemes
used in the various flavors of UNIX. [GORM04] is a thorough treatment of Linux
memory management.

CARR84 Carr, R. Virtual Memory Management. Ann Arbor, MI: UMI Research
Press, 1984.

DENN70 Denning, P. “Virtual Memory.” Computing Surveys , September 1970.
DOWD93 Dowdy, L., and Lowery, C. P.S. to Operating Systems. Upper Saddle River,

NJ: Prentice Hall, 1993.
GORM04 Gorman, M. Understanding the Linux Virtual Memory Manager. Upper

Saddle River, NJ: Prentice Hall, 2004.
IBM86 IBM National Technical Support, Large Systems. Multiple Virtual Storage

(MVS) Virtual Storage Tuning Cookbook. Dallas Systems Center Technical
Bulletin G320-0597, June 1986.

JACO98a Jacob, B., and Mudge, T. “Virtual Memory: Issues of Implementation.”
Computer , June 1998.

JACO98b Jacob, B., and Mudge, T. “Virtual Memory in Contemporary Microprocessors.”
IEEE Micro , August 1998.

MILE92 Milenkovic, M. Operating Systems: Concepts and Design. New York:
McGraw-Hill, 1992.

VAHA96 Vahalia, U. UNIX Internals: The New Frontiers. Upper Saddle River, NJ:
Prentice Hall, 1996.

Recommended Web site:

 • The Memory Management Reference: A good source of documents and links on all
aspects of memory management.

8.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 391

8.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 associative mapping
 demand paging
 external fragmentation
 fetch policy
 frame
 hash table
 hashing
 internal fragmentation
 locality

 page
 page fault
 page placement policy
 page replacement policy
 page table
 paging
 prepaging
 real memory
 resident set

 resident set management
 segment
 segment table
 segmentation
 slab allocation
 thrashing
 translation lookaside buffer
 virtual memory
 working set

Review Questions

 8.1 What is the difference between simple paging and virtual memory paging?
 8.2 Explain thrashing.
 8.3 Why is the principle of locality crucial to the use of virtual memory?
 8.4 What elements are typically found in a page table entry? Briefly define each element.
 8.5 What is the purpose of a translation lookaside buffer?
 8.6 Briefly define the alternative page fetch policies.
 8.7 What is the difference between resident set management and page replacement policy?
 8.8 What is the relationship between FIFO and clock page replacement algorithms?
 8.9 What is accomplished by page buffering?
 8.10 Why is it not possible to combine a global replacement policy and a fixed allocation

policy?
 8.11 What is the difference between a resident set and a working set?
 8.12 What is the difference between demand cleaning and precleaning?

Problems

 8.1 Suppose the page table for the process currently executing on the processor looks like
the following. All numbers are decimal, everything is numbered starting from zero,
and all addresses are memory byte addresses. The page size is 1,024 bytes.

 Virtual page
number Valid bit Reference bit Modify bit

 Page frame
number

 0 1 1 0 4
 1 1 1 1 7
 2 0 0 0 —
 3 1 0 0 2
 4 0 0 0 —
 5 1 0 1 0

392 CHAPTER 8 / VIRTUAL MEMORY

a. Describe exactly how, in general, a virtual address generated by the CPU is trans-
lated into a physical main memory address.

b. What physical address, if any, would each of the following virtual addresses cor-
respond to? (Do not try to handle any page faults, if any.)
 (i) 1,052
 (ii) 2,221
 (iii) 5,499

 8.2 Consider the following program.

#define Size 64

int A[Size; Size], B[Size; Size], C[Size; Size];

int register i, j;

for (j = 0; j< Size; j ++)

for (i = 0; i< Size; i++)

C[i; j] = A[i; j] + B[i; j];

 Assume that the program is running on a system using demand paging and the
page size is 1 Kilobyte. Each integer is 4 bytes long. It is clear that each array requires
a 16-page space. As an example, A[0, 0]-A[0, 63], A[1, 0]-A[1, 63], A[2, 0]-A[2, 63],
and A[3, 0]-A[3, 63] will be stored in the first data page. A similar storage pattern
can be derived for the rest of array A and for arrays B and C. Assume that the sys-
tem allocates a 4-page working set for this process. One of the pages will be used by
the program and three pages can be used for the data. Also, two index registers are
assigned for i and j (so, no memory accesses are needed for references to these two
variables).
a. Discuss how frequently the page fault would occur (in terms of number of times

C[i, j] � A[i, j] � B[i, j] are executed).
b. Can you modify the program to minimize the page fault frequency?
c. What will be the frequency of page faults after your modification?

 8.3 a. How much memory space is needed for the user page table of Figure 8.4 ?
b. Assume you want to implement a hashed inverted page table for the same

 addressing scheme as depicted in Figure 8.4 , using a hash function that maps the
20-bit page number into a 6-bit hash value. The table entry contains the page num-
ber, the frame number, and a chain pointer. If the page table allocates space for up
to 3 overflow entries per hashed entry, how much memory space does the hashed
inverted page table take?

 8.4 Consider the following string of page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2.
 Complete a figure similar to Figure 8.15 , showing the frame allocation for:
a. FIFO (first-in-first-out)
b. LRU (least recently used)
c. Clock
d. Optimal (assume the page reference string continues with 1, 2, 0, 1, 7, 0, 1)
e. List the total number of page faults and the miss rate for each policy. Count page

faults only after all frames have been initialized.
 8.5 A process references five pages, A, B, C, D, and E, in the following order:

 A; B; C; D; A; B; E; A; B; C; D; E

 Assume that the replacement algorithm is first-in-first-out and find the number of
page transfers during this sequence of references starting with an empty main memory
with three page frames. Repeat for four page frames.

 8.6 A process contains eight virtual pages on disk and is assigned a fixed allocation of four
page frames in main memory. The following page trace occurs:

 1, 0, 2, 2, 1, 7, 6, 7, 0, 1, 2, 0, 3, 0, 4, 5, 1, 5, 2, 4, 5, 6, 7, 6, 7, 2, 4, 2, 7, 3, 3, 2, 3

8.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 393

a. Show the successive pages residing in the four frames using the LRU replacement
policy. Compute the hit ratio in main memory. Assume that the frames are initially
empty.

b. Repeat part (a) for the FIFO replacement policy.
c. Compare the two hit ratios and comment on the effectiveness of using FIFO to

approximate LRU with respect to this particular trace.
 8.7 In the VAX, user page tables are located at virtual addresses in the system space. What

is the advantage of having user page tables in virtual rather than main memory? What
is the disadvantage?

 8.8 Suppose the program statement

for (i = 1; i 6 = n; i + +)
 a[i] = b[i] + c[i];

 is executed in a memory with page size of 1,000 words. Let n � 1,000. Using a machine
that has a full range of register-to-register instructions and employs index registers,
write a hypothetical program to implement the foregoing statement. Then show the
sequence of page references during execution.

 8.9 The IBM System/370 architecture uses a two-level memory structure and refers to the
two levels as segments and pages, although the segmentation approach lacks many
of the features described earlier in this chapter. For the basic 370 architecture, the
page size may be either 2 Kbytes or 4 Kbytes, and the segment size is fixed at either
64 Kbytes or 1 Mbyte. For the 370/XA and 370/ESA architectures, the page size is
4 Kbytes and the segment size is 1 Mbyte. Which advantages of segmentation does this
scheme lack? What is the benefit of segmentation for the 370?

 8.10 Assuming a page size of 4 Kbytes and that a page table entry takes 4 bytes, how many
levels of page tables would be required to map a 64-bit address space, if the top level
page table fits into a single page?

 8.11 Consider a system with memory mapping done on a page basis and using a single-
level page table. Assume that the necessary page table is always in memory.
a. If a memory reference takes 200 ns, how long does a paged memory reference take?
b. Now we add an MMU that imposes an overhead of 20 ns on a hit or a miss. If

we assume that 85% of all memory references hit in the MMU TLB, what is the
 Effective Memory Access Time (EMAT)?

c. Explain how the TLB hit rate affects the EMAT.
 8.12 Consider a page reference string for a process with a working set of M frames, initially

all empty. The page reference string is of length P with N distinct page numbers in it.
For any page replacement algorithm,
a. What is a lower bound on the number of page faults?
b. What is an upper bound on the number of page faults?

 8.13 In discussing a page replacement algorithm, one author makes an analogy with a
snowplow moving around a circular track. Snow is falling uniformly on the track and a
lone snowplow continually circles the track at constant speed. The snow that is plowed
w the track disappears from the system.
a. For which of the page replacement algorithms discussed in Section 8.2 is this a

useful analogy?
b. What does this analogy suggest about the behavior of the page replacement algo-

rithm in question?
 8.14 In the S/370 architecture, a storage key is a control field associated with each page-

sized frame of real memory. Two bits of that key that are relevant for page replacement
are the reference bit and the change bit. The reference bit is set to 1 when any address
within the frame is accessed for read or write, and is set to 0 when a new page is loaded
into the frame. The change bit is set to 1 when a write operation is performed on any
location within the frame. Suggest an approach for determining which page frames are
least-recently-used, making use of only the reference bit.

394 CHAPTER 8 / VIRTUAL MEMORY

 8.15 Consider the following sequence of page references (each element in the sequence
represents a page number):

 1 2 3 4 5 2 1 3 3 2 3 4 5 4 5 1 1 3 2 5

 Define the mean working set size after the k th reference as sk(�) =
1
k a

k

t=1
0W(t,�) 0

 and define the missing page probability after the k th reference as mk(�) =
1
k a

k

t=1
F(t,�)

 where F (t , �) � 1 if a page fault occurs at virtual time t and 0 otherwise.
a. Draw a diagram similar to that of Figure 8.19 for the reference sequence just

 defined for the values � � 1, 2, 3, 4, 5, 6.
b. Plot s20 (�) as a function of �.
c. Plot m20 (�) as a function of �.

 8.16 A key to the performance of the VSWS resident set management policy is the value
of Q . Experience has shown that, with a fixed value of Q for a process, there are
considerable differences in page fault frequencies at various stages of execution. Fur-
thermore, if a single value of Q is used for different processes, dramatically different
frequencies of page faults occur. These differences strongly indicate that a mechanism
that would dynamically adjust the value of Q during the lifetime of a process would
improve the behavior of the algorithm. Suggest a simple mechanism for this purpose.

 8.17 Assume that a task is divided into four equal-sized segments and that the system
builds an eight-entry page descriptor table for each segment. Thus, the system has a
combination of segmentation and paging. Assume also that the page size is 2 Kbytes.
a. What is the maximum size of each segment?
b. What is the maximum logical address space for the task?
c. Assume that an element in physical location 00021ABC is accessed by this task.

What is the format of the logical address that the task generates for it? What is the
maximum physical address space for the system?

 8.18 Consider a paged logical address space (composed of 32 pages of 2 Kbytes each)
mapped into a 1-Mbyte physical memory space.
a. What is the format of the processor’s logical address?
b. What is the length and width of the page table (disregarding the “access rights”

bits)?
c. What is the effect on the page table if the physical memory space is reduced by

half?
 8.19 The UNIX kernel will dynamically grow a process’s stack in virtual memory as need-

ed, but it will never try to shrink it. Consider the case in which a program calls a C
subroutine that allocates a local array on the stack that consumes 10 K. The kernel
will expand the stack segment to accommodate it. When the subroutine returns, the
stack pointer is adjusted and this space could be released by the kernel, but it is not
released. Explain why it would be possible to shrink the stack at this point and why
the UNIX kernel does not shrink it.

395

 9.1 Types of Processor Scheduling
 Long-Term Scheduling
 Medium-Term Scheduling
 Short-Term Scheduling

 9.2 Scheduling Algorithms
 Short-Term Scheduling Criteria
 The Use of Priorities
 Alternative Scheduling Policies
 Performance Comparison
 Fair-Share Scheduling

 9.3 Traditional UNIX Scheduling

 9.4 Summary

 9.5 Recommended Reading

 9.6 Key Terms, Review Questions, and Problems

UNIPROCESSOR SCHEDULING

CHAPTER

SchedulingPART 4

396 CHAPTER 9 / UNIPROCESSOR SCHEDULING

 I take a two hour nap, from one o’clock to four.
 — Yogi Berra

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

• Explain the differences among long-, medium-, and short-term scheduling.
• Assess the performance of different scheduling policies.
• Understand the scheduling technique used in traditional UNIX.

 In a multiprogramming system, multiple processes exist concurrently in main
 memory. Each process alternates between using a processor and waiting for
some event to occur, such as the completion of an I/O operation. The processor
or processors are kept busy by executing one process while the others wait.

 The key to multiprogramming is scheduling. In fact, four types of schedul-
ing are typically involved (Table 9.1). One of these, I/O scheduling, is more conven-
iently addressed in Chapter 11 , where I/O is discussed. The remaining three types of
 scheduling, which are types of processor scheduling, are addressed in this chapter and
the next.

 This chapter begins with an examination of the three types of processor
scheduling, showing how they are related. We see that long-term scheduling and
medium-term scheduling are driven primarily by performance concerns related
to the degree of multiprogramming. These issues are dealt with to some extent
in Chapter 3 and in more detail in Chapters 7 and 8 . Thus, the remainder of this
chapter concentrates on short-term scheduling and is limited to a consideration of
scheduling on a uniprocessor system. Because the use of multiple processors adds
additional complexity, it is best to focus on the uniprocessor case first, so that the
differences among scheduling algorithms can be clearly seen.

 Section 9.2 looks at the various algorithms that may be used to make short-
term scheduling decisions. A set of animations that illustrate concepts in this chap-
ter is available online. Click on the rotating globe at WilliamStallings.com/OS/OS7e.
html for access.

Table 9.1 Types of Scheduling

Long-term scheduling The decision to add to the pool of processes to be executed

Medium-term scheduling The decision to add to the number of processes that are partially or fully in
main memory

Short-term scheduling The decision as to which available process will be executed by the processor

I/O scheduling The decision as to which process’s pending I/O request shall be handled by
an available I/O device

9.1 / TYPES OF PROCESSOR SCHEDULING 397

9.1 TYPES OF PROCESSOR SCHEDULING

 The aim of processor scheduling is to assign processes to be executed by the proces-
sor or processors over time, in a way that meets system objectives, such as response
time, throughput, and processor efficiency. In many systems, this scheduling activity is
 broken down into three separate functions: long-, medium-, and short-term scheduling.
The names suggest the relative time scales with which these functions are performed.

 Figure 9.1 relates the scheduling functions to the process state transition diagram
(first shown in Figure 3.9b). Long-term scheduling is performed when a new process
is created. This is a decision whether to add a new process to the set of processes that
are currently active. Medium-term scheduling is a part of the swapping function. This
is a decision whether to add a process to those that are at least partially in main mem-
ory and therefore available for execution. Short-term scheduling is the actual decision
of which ready process to execute next. Figure 9.2 reorganizes the state transition
 diagram of Figure 3.9b to suggest the nesting of scheduling functions.

 Scheduling affects the performance of the system because it determines
which processes will wait and which will progress. This point of view is presented in
 Figure 9.3 , which shows the queues involved in the state transitions of a process. 1

Fundamentally, scheduling is a matter of managing queues to minimize queueing
delay and to optimize performance in a queueing environment.

Long-Term Scheduling

 The long-term scheduler determines which programs are admitted to the system for
processing. Thus, it controls the degree of multiprogramming. Once admitted, a job

New

Ready/
suspend

Ready Running Exit

Long-term
scheduling

Long-term
scheduling

Medium-term
scheduling

Blocked/
suspend

Blocked
Medium-term

scheduling

Short-term
scheduling

Figure 9.1 Scheduling and Process State Transitions

1 For simplicity, Figure 9.3 shows new processes going directly to the Ready state, whereas Figures 9.1 and
 9.2 show the option of either the Ready state or the Ready/Suspend state.

398 CHAPTER 9 / UNIPROCESSOR SCHEDULING

or user program becomes a process and is added to the queue for the short-term
scheduler. In some systems, a newly created process begins in a swapped-out condi-
tion, in which case it is added to a queue for the medium-term scheduler.

 In a batch system, or for the batch portion of an OS, newly submitted jobs are
routed to disk and held in a batch queue. The long-term scheduler creates processes
from the queue when it can. There are two decisions involved. The scheduler must
decide when the OS can take on one or more additional processes. And the scheduler
must decide which job or jobs to accept and turn into processes. We briefly consider
these two decisions.

 The decision as to when to create a new process is generally driven by the
desired degree of multiprogramming. The more processes that are created, the
smaller is the percentage of time that each process can be executed (i.e., more proc-
esses are competing for the same amount of processor time). Thus, the long-term
scheduler may limit the degree of multiprogramming to provide satisfactory service

Running

Ready

Blocked

Blocked,
suspend

Ready,
suspend

Short term

Medium term

Long term

New Exit

Figure 9.2 Levels of Scheduling

9.1 / TYPES OF PROCESSOR SCHEDULING 399

to the current set of processes. Each time a job terminates, the scheduler may decide
to add one or more new jobs. Additionally, if the fraction of time that the processor
is idle exceeds a certain threshold, the long-term scheduler may be invoked.

 The decision as to which job to admit next can be on a simple first-come-
first-served (FCFS) basis, or it can be a tool to manage system performance. The
 criteria used may include priority, expected execution time, and I/O requirements.
For example, if the information is available, the scheduler may attempt to keep a
mix of processor-bound and I/O-bound processes. 2 Also, the decision can depend
on which I/O resources are to be requested, in an attempt to balance I/O usage.

 For interactive programs in a time-sharing system, a process creation request can
be generated by the act of a user attempting to connect to the system. Time-sharing
users are not simply queued up and kept waiting until the system can accept them.
Rather, the OS will accept all authorized comers until the system is saturated, using
some predefined measure of saturation. At that point, a connection request is met
with a message indicating that the system is full and the user should try again later.

Medium-Term Scheduling

 Medium-term scheduling is part of the swapping function. The issues involved are
discussed in Chapters 3 , 7 , and 8 . Typically, the swapping-in decision is based on
the need to manage the degree of multiprogramming. On a system that does not

Event wait

Timeout

ReleaseReady queue Short-term
scheduling

Medium-term
scheduling

Medium-term
scheduling

Interactive
users

Batch
jobs

Processor

Ready, suspend queue

Event
occurs

Blocked, suspend queue

Blocked queue

Long-term
scheduling

Figure 9.3 Queueing Diagram for Scheduling

2 A process is regarded as processor bound if it mainly performs computational work and occasionally
uses I/O devices. A process is regarded as I/O bound if the time it takes to execute the process depends
primarily on the time spent waiting for I/O operations.

400 CHAPTER 9 / UNIPROCESSOR SCHEDULING

use virtual memory, memory management is also an issue. Thus, the swapping-in
 decision will consider the memory requirements of the swapped-out processes.

Short-Term Scheduling

 In terms of frequency of execution, the long-term scheduler executes relatively
infrequently and makes the coarse-grained decision of whether or not to take on
a new process and which one to take. The medium-term scheduler is executed
somewhat more frequently to make a swapping decision. The short-term scheduler,
also known as the dispatcher, executes most frequently and makes the fine-grained
 decision of which process to execute next.

 The short-term scheduler is invoked whenever an event occurs that may lead
to the blocking of the current process or that may provide an opportunity to preempt
a currently running process in favor of another. Examples of such events include:

 • Clock interrupts

 • I/O interrupts

 • Operating system calls

 • Signals (e.g., semaphores)

9.2 SCHEDULING ALGORITHMS

Short-Term Scheduling Criteria

 The main objective of short-term scheduling is to allocate processor time in such
a way as to optimize one or more aspects of system behavior. Generally, a set of
criteria is established against which various scheduling policies may be evaluated.

 The commonly used criteria can be categorized along two dimensions. First,
we can make a distinction between user-oriented and system-oriented criteria. User-
oriented criteria relate to the behavior of the system as perceived by the individual
user or process. An example is response time in an interactive system. Response
time is the elapsed time between the submission of a request until the response
begins to appear as output. This quantity is visible to the user and is naturally of
interest to the user. We would like a scheduling policy that provides “good” serv-
ice to various users. In the case of response time, a threshold may be defined, say
two seconds. Then a goal of the scheduling mechanism should be to maximize the
number of users who experience an average response time of two seconds or less.

 Other criteria are system oriented. That is, the focus is on effective and
 efficient utilization of the processor. An example is throughput, which is the rate
at which processes are completed. This is certainly a worthwhile measure of sys-
tem performance and one that we would like to maximize. However, it focuses on
 system performance rather than service provided to the user. Thus, throughput is of
concern to a system administrator but not to the user population.

 Whereas user-oriented criteria are important on virtually all systems, system-
oriented criteria are generally of minor importance on single-user systems. On a
single-user system, it probably is not important to achieve high processor utilization

9.2 / SCHEDULING ALGORITHMS 401

or high throughput as long as the responsiveness of the system to user applications
is acceptable.

 Another dimension along which criteria can be classified is those that are
 performance related and those that are not directly performance related. Performance-
related criteria are quantitative and generally can be readily measured. Examples
include response time and throughput. Criteria that are not performance related are
either qualitative in nature or do not lend themselves readily to measurement and
analysis. An example of such a criterion is predictability. We would like for the service
provided to users to exhibit the same characteristics over time, independent of other
work being performed by the system. To some extent, this criterion can be measured
by calculating variances as a function of workload. However, this is not nearly as
straightforward as measuring throughput or response time as a function of workload.

 Table 9.2 summarizes key scheduling criteria. These are interdependent, and
it is impossible to optimize all of them simultaneously. For example, providing good

Table 9.2 Scheduling Criteria

User Oriented, Performance Related

Turnaround time This is the interval of time between the submission of a process and its completion. Includes
actual execution time plus time spent waiting for resources, including the processor. This is an appropriate
measure for a batch job.

Response time For an interactive process, this is the time from the submission of a request until the response
begins to be received. Often a process can begin producing some output to the user while continuing to process
the request. Thus, this is a better measure than turnaround time from the user’s point of view. The schedul-
ing discipline should attempt to achieve low response time and to maximize the number of interactive users
 receiving acceptable response time.

Deadlines When process completion deadlines can be specified, the scheduling discipline should subordinate
other goals to that of maximizing the percentage of deadlines met.

User Oriented, Other

Predictability A given job should run in about the same amount of time and at about the same cost regardless
of the load on the system. A wide variation in response time or turnaround time is distracting to users. It may
signal a wide swing in system workloads or the need for system tuning to cure instabilities.

System Oriented, Performance Related

Throughput The scheduling policy should attempt to maximize the number of processes completed per unit
of time. This is a measure of how much work is being performed. This clearly depends on the average length
of a process but is also influenced by the scheduling policy, which may affect utilization.

Processor utilization This is the percentage of time that the processor is busy. For an expensive shared system,
this is a significant criterion. In single-user systems and in some other systems, such as real-time systems, this
criterion is less important than some of the others.

System Oriented, Other

Fairness In the absence of guidance from the user or other system-supplied guidance, processes should be
treated the same, and no process should suffer starvation.

Enforcing priorities When processes are assigned priorities, the scheduling policy should favor higher-priority
processes.

Balancing resources The scheduling policy should keep the resources of the system busy. Processes that will
underutilize stressed resources should be favored. This criterion also involves medium-term and long-term
scheduling.

402 CHAPTER 9 / UNIPROCESSOR SCHEDULING

response time may require a scheduling algorithm that switches between processes
frequently. This increases the overhead of the system, reducing throughput. Thus,
the design of a scheduling policy involves compromising among competing require-
ments; the relative weights given the various requirements will depend on the
nature and intended use of the system.

 In most interactive operating systems, whether single user or time shared, ade-
quate response time is the critical requirement. Because of the importance of this
requirement, and because the definition of adequacy will vary from one application
to another, the topic is explored further in Appendix G .

The Use of Priorities

 In many systems, each process is assigned a priority and the scheduler will always
choose a process of higher priority over one of lower priority. Figure 9.4 illustrates the
use of priorities. For clarity, the queueing diagram is simplified, ignoring the existence
of multiple blocked queues and of suspended states (compare Figure 3.8a). Instead
of a single ready queue, we provide a set of queues, in descending order of priority:
RQ0, RQ1, . . . , RQ n , with priority[RQ i] > priority[RQ j] for i > j . 3 When a scheduling
selection is to be made, the scheduler will start at the highest-priority ready queue
(RQ0). If there are one or more processes in the queue, a process is selected using
some scheduling policy. If RQ0 is empty, then RQ1 is examined, and so on.

Event wait

Event
occurs

Preemption

Dispatch
ReleaseRQ0

RQ1

RQn

Admit

Processor

Blocked queue

Figure 9.4 Priority Queueing

3 In UNIX and many other systems, larger priority values represent lower priority processes; unless
 otherwise stated we follow that convention. Some systems, such as Windows, use the opposite convention:
a higher number means a higher priority.

9.2 / SCHEDULING ALGORITHMS 403

 One problem with a pure priority scheduling scheme is that lower-priority
processes may suffer starvation. This will happen if there is always a steady supply
of higher-priority ready processes. If this behavior is not desirable, the priority of a
process can change with its age or execution history. We will give one example of
this subsequently.

Alternative Scheduling Policies

 Table 9.3 presents some summary information about the various scheduling poli-
cies that are examined in this subsection. The selection function determines which
process, among ready processes, is selected next for execution. The function may
be based on priority, resource requirements, or the execution characteristics of the
process. In the latter case, three quantities are significant:

w = time spent in system so far, waiting

e = time spent in execution so far

s = total service time required by the process, including e ; generally, this quantity
must be estimated or supplied by the user

 For example, the selection function max[w] indicates an FCFS discipline.

Table 9.3 Characteristics of Various Scheduling Policies

 FCFS
 Round
Robin

 SPN SRT HRRN Feedback

Selection
Function max[w] constant min[s] min[s – e] maxaw + s

s
b (see text)

Decision
Mode

 Non-
preemptive

 Preemptive
(at time

quantum)

 Non-
preemptive

 Preemptive
(at arrival)

 Non-
preemptive

 Preemptive
(at time

quantum)

Throughput
 Not

emphasized
 May be low
if quantum
is too small

 High High High
 Not

emphasized

Response
Time

 May be high,
especially if

there is
a large

variance
in process
execution

times

 Provides
good

response
time for

short
processes

 Provides
good

response
time for

short
processes

 Provides
good

response
time

 Provides
good

response
time

 Not
emphasized

Overhead Minimum Minimum Can be high Can be high Can be high Can be high

Effect on
Processes

 Penalizes
short

processes;
penalizes

I/O bound
processes

 Fair
treatment

 Penalizes
long

processes

 Penalizes
long

processes
 Good

balance

 May favor
I/O bound
processes

Starvation No No Possible Possible No Possible

404 CHAPTER 9 / UNIPROCESSOR SCHEDULING

 The decision mode specifies the instants in time at which the selection function
is exercised. There are two general categories:

 • Nonpreemptive: In this case, once a process is in the Running state, it contin-
ues to execute until (a) it terminates or (b) it blocks itself to wait for I/O or to
 request some OS service.

 • Preemptive: The currently running process may be interrupted and moved to
the Ready state by the OS. The decision to preempt may be performed when
a new process arrives; when an interrupt occurs that places a blocked proc-
ess in the Ready state; or periodically, based on a clock interrupt.

 Preemptive policies incur greater overhead than nonpreemptive ones but
may provide better service to the total population of processes, because they
 prevent any one process from monopolizing the processor for very long. In
 addition, the cost of preemption may be kept relatively low by using efficient
process-switching mechanisms (as much help from hardware as possible) and by
providing a large main memory to keep a high percentage of programs in main
memory.

 As we describe the various scheduling policies, we will use the set of processes
in Table 9.4 as a running example. We can think of these as batch jobs, with the
service time being the total execution time required. Alternatively, we can consider
these to be ongoing processes that require alternate use of the processor and I/O
in a repetitive fashion. In this latter case, the service times represent the processor
time required in one cycle. In either case, in terms of a queueing model, this quantity
corresponds to the service time. 4

 For the example of Table 9.4 , Figure 9.5 shows the execution pattern for
each policy for one cycle, and Table 9.5 summarizes some key results. First, the
finish time of each process is determined. From this, we can determine the turna-
round time. In terms of the queueing model, turnaround time (TAT) is the resi-
dence time Tr , or total time that the item spends in the system (waiting time plus
service time). A more useful figure is the normalized turnaround time, which
is the ratio of turnaround time to service time. This value indicates the relative

Table 9.4 Process Scheduling Example

 Process Arrival Time Service Time

 A 0 3

 B 2 6

 C 4 4

 D 6 5

 E 8 2

4 See Appendix H for a summary of queueing model terminology, and Chapter 20 for a more detailed
discussion of queueing analysis.

9.2 / SCHEDULING ALGORITHMS 405

delay experienced by a process. Typically, the longer the process execution time,
the greater is the absolute amount of delay that can be tolerated. The minimum
 possible value for this ratio is 1.0; increasing values correspond to a decreasing
level of service.

First-come-first
served (FCFS)

0 5 10 15 20

0 5 10 15 20

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

Round-robin
(RR), q � 1

Round-robin
(RR), q � 4

Shortest process
next (SPN)

Shortest remaining
time (SRT)

Highest response
ratio next (HRRN)

Feedback
q � 1

Feedback
q � 2i

Figure 9.5 A Comparison of Scheduling Policies

406 CHAPTER 9 / UNIPROCESSOR SCHEDULING

Table 9.5 A Comparison of Scheduling Policies

 Process A B C D E

 Arrival Time 0 2 4 6 8

 Service Time (Ts) 3 6 4 5 2 Mean

FCFS

 Finish Time 3 9 13 18 20

 Turnaround Time (Tr) 3 7 9 12 12 8.60

Tr / Ts 1.00 1.17 2.25 2.40 6.00 2.56

RR q = 1

 Finish Time 4 18 17 20 15

 Turnaround Time (Tr) 4 16 13 14 7 10.80

Tr / Ts 1.33 2.67 3.25 2.80 3.50 2.71

RR q = 4

 Finish Time 3 17 11 20 19

 Turnaround Time (Tr) 3 15 7 14 11 10.00

Tr / Ts 1.00 2.5 1.75 2.80 5.50 2.71

SPN

 Finish Time 3 9 15 20 11

 Turnaround Time (Tr) 3 7 11 14 3 7.60

Tr / Ts 1.00 1.17 2.75 2.80 1.50 1.84

SRT

 Finish Time 3 15 8 20 10

 Turnaround Time (Tr) 3 13 4 14 2 7.20

Tr / Ts 1.00 2.17 1.00 2.80 1.00 1.59

HRRN

 Finish Time 3 9 13 20 15

 Turnaround Time (Tr) 3 7 9 14 7 8.00

Tr / Ts 1.00 1.17 2.25 2.80 3.5 2.14

FB q = 1

 Finish Time 4 20 16 19 11

 Turnaround Time (Tr) 4 18 12 13 3 10.00

Tr / Ts 1.33 3.00 3.00 2.60 1.5 2.29

FB q = 2i

 Finish Time 4 17 18 20 14

 Turnaround Time (Tr) 4 15 14 14 6 10.60

Tr / Ts 1.33 2.50 3.50 2.80 3.00 2.63

9.2 / SCHEDULING ALGORITHMS 407

FIRST-COME-FIRST-SERVED The simplest scheduling policy is first-come-first-
served (FCFS), also known as first-in-first-out (FIFO) or a strict queueing scheme.
As each process becomes ready, it joins the ready queue. When the currently
running process ceases to execute, the process that has been in the ready queue the
longest is selected for running.

 FCFS performs much better for long processes than short ones. Consider the
following example, based on one in [FINK88]:

 Process
 Arrival
Time

 Service
Time (Ts) Start Time

 Finish
Time

 Turnaround
Time (Tr) Tr /Ts

W 0 1 0 1 1 1
X 1 100 1 101 100 1
Y 2 1 101 102 100 100
Z 3 100 102 202 199 1.99

Mean 100 26

 The normalized turnaround time for process Y is way out of line compared to
the other processes: the total time that it is in the system is 100 times the required
 processing time. This will happen whenever a short process arrives just after a long
process. On the other hand, even in this extreme example, long processes do not
fare poorly. Process Z has a turnaround time that is almost double that of Y, but its
normalized residence time is under 2.0.

 Another difficulty with FCFS is that it tends to favor processor-bound processes
over I/O-bound processes. Consider that there is a collection of processes, one of
which mostly uses the processor (processor bound) and a number of which favor I/O
(I/O bound). When a processor-bound process is running, all of the I/O bound proc-
esses must wait. Some of these may be in I/O queues (blocked state) but may move
back to the ready queue while the processor-bound process is executing. At this point,
most or all of the I/O devices may be idle, even though there is potentially work for
them to do. When the currently running process leaves the Running state, the ready
I/O-bound processes quickly move through the Running state and become blocked on
I/O events. If the processor-bound process is also blocked, the processor becomes idle.
Thus, FCFS may result in inefficient use of both the processor and the I/O devices.

 FCFS is not an attractive alternative on its own for a uniprocessor system.
However, it is often combined with a priority scheme to provide an effective sched-
uler. Thus, the scheduler may maintain a number of queues, one for each priority
level, and dispatch within each queue on a first-come-first-served basis. We see one
example of such a system later, in our discussion of feedback scheduling.

ROUND ROBIN A straightforward way to reduce the penalty that short jobs suffer
with FCFS is to use preemption based on a clock. The simplest such policy is round
robin. A clock interrupt is generated at periodic intervals. When the interrupt
occurs, the currently running process is placed in the ready queue, and the next
ready job is selected on a FCFS basis. This technique is also known as time slicing ,
because each process is given a slice of time before being preempted.

408 CHAPTER 9 / UNIPROCESSOR SCHEDULING

 With round robin, the principal design issue is the length of the time quantum,
or slice, to be used. If the quantum is very short, then short processes will move
through the system relatively quickly. On the other hand, there is processing over-
head involved in handling the clock interrupt and performing the scheduling and
dispatching function. Thus, very short time quanta should be avoided. One useful
guide is that the time quantum should be slightly greater than the time required for
a typical interaction or process function. If it is less, then most processes will require
at least two time quanta. Figure 9.6 illustrates the effect this has on response time.
Note that in the limiting case of a time quantum that is longer than the longest-
running process, round robin degenerates to FCFS.

 Figure 9.5 and Table 9.5 show the results for our example using time quanta q
of 1 and 4 time units. Note that process E, which is the shortest job, enjoys signifi-
cant improvement for a time quantum of 1.

 Round robin is particularly effective in a general-purpose time-sharing system
or transaction processing system. One drawback to round robin is its relative

Process allocated
time quantum

Time

Response time
s

Quantum
q

q � s

Interaction
complete

(a) Time quantum greater than typical interaction

Process allocated
time quantum

s

q

Process allocated
time quantum

Process
preempted

Other processes run

(b) Time quantum less than typical interaction

Interaction
complete

Figure 9.6 Effect of Size of Preemption Time Quantum

9.2 / SCHEDULING ALGORITHMS 409

 treatment of processor-bound and I/O-bound processes. Generally, an I/O-bound
process has a shorter processor burst (amount of time spent executing between I/O
operations) than a processor-bound process. If there is a mix of processor-bound
and I/O-bound processes, then the following will happen: An I/O-bound process
uses a processor for a short period and then is blocked for I/O; it waits for the
I/O operation to complete and then joins the ready queue. On the other hand, a
 processor-bound process generally uses a complete time quantum while execut-
ing and immediately returns to the ready queue. Thus, processor-bound processes
tend to receive an unfair portion of processor time, which results in poor perform-
ance for I/O-bound processes, inefficient use of I/O devices, and an increase in the
 variance of response time.

 [HALD91] suggests a refinement to round robin that he refers to as a virtual
round robin (VRR) and that avoids this unfairness. Figure 9.7 illustrates the scheme.
New processes arrive and join the ready queue, which is managed on an FCFS basis.
When a running process times out, it is returned to the ready queue. When a process
is blocked for I/O, it joins an I/O queue. So far, this is as usual. The new feature is
an FCFS auxiliary queue to which processes are moved after being released from
an I/O block. When a dispatching decision is to be made, processes in the auxil-
iary queue get preference over those in the main ready queue. When a process is
 dispatched from the auxiliary queue, it runs no longer than a time equal to the basic
time quantum minus the total time spent running since it was last selected from the

I/O 1 wait

I/O 2 wait

I/O n wait

Dispatch

Timeout

Release
Ready queue

Admit
Processor

I/O 1 queue

Auxiliary queue

I/O 1
occurs

I/O 2
occurs

I/O n
occurs

I/O 2 queue

I/O n queue

Figure 9.7 Queueing Diagram for Virtual Round-Robin Scheduler

410 CHAPTER 9 / UNIPROCESSOR SCHEDULING

main ready queue. Performance studies by the authors indicate that this approach is
indeed superior to round robin in terms of fairness.

SHORTEST PROCESS NEXT Another approach to reducing the bias in favor of
long processes inherent in FCFS is the shortest process next (SPN) policy. This is
a nonpreemptive policy in which the process with the shortest expected processing
time is selected next. Thus, a short process will jump to the head of the queue past
longer jobs.

 Figure 9.5 and Table 9.5 show the results for our example. Note that process
E receives service much earlier than under FCFS. Overall performance is also sig-
nificantly improved in terms of response time. However, the variability of response
times is increased, especially for longer processes, and thus predictability is reduced.

 One difficulty with the SPN policy is the need to know or at least estimate the
required processing time of each process. For batch jobs, the system may require
the programmer to estimate the value and supply it to the OS. If the programmer’s
 estimate is substantially under the actual running time, the system may abort the job.
In a production environment, the same jobs run frequently, and statistics may be gath-
ered. For interactive processes, the OS may keep a running average of each “burst” for
each process. The simplest calculation would be the following:

Sn+1 =
1
n a

n

i=1
Ti (9.1)

 where

Ti = processor execution time for the i th instance of this process (total execu-
tion time for batch job; processor burst time for interactive job)

Si = predicted value for the i th instance

S1 = predicted value for first instance; not calculated

 To avoid recalculating the entire summation each time, we can rewrite
 Equation (9.1) as

Sn+1 =
1
n

Tn +
n - 1

n
Sn (9.2)

 Note that each term in this summation is given equal weight; that is, each term
is multiplied by the same constant 1/(n). Typically, we would like to give greater
weight to more recent instances, because these are more likely to reflect future
behavior. A common technique for predicting a future value on the basis of a time
series of past values is exponential averaging :

Sn+1 = aTn + (1 - a)Sn (9.3)

 where � is a constant weighting factor (0 > � > 1) that determines the relative weight
given to more recent observations relative to older observations. Compare with
 Equation (9.2). By using a constant value of � , independent of the number of past
observations, Equation (9.3) considers all past values, but the less recent ones have less
weight. To see this more clearly, consider the following expansion of Equation (9.3):

Sn+1 = aTn + (1 - a)aTn-1 + c + (1 - a)iaTn- i + c + (1 - a)nS1 (9.4)

9.2 / SCHEDULING ALGORITHMS 411

 Because both � and (1 – �) are less than 1, each successive term in the preced-
ing equation is smaller. For example, for � = 0.8, Equation (9.4) becomes

Sn+1 = 0.8Tn + 0.16Tn-1 + 0.032Tn-2 + 0.0064Tn-3 + c + (0.2)nS1

 The older the observation, the less it is counted in to the average.
 The size of the coefficient as a function of its position in the expansion is shown

in Figure 9.8 . The larger the value of , the greater is the weight given to the more
recent observations. For � = 0.8, virtually all of the weight is given to the four most
recent observations, whereas for � = 0.2, the averaging is effectively spread out over
the eight or so most recent observations. The advantage of using a value of � close
to 1 is that the average will quickly reflect a rapid change in the observed quantity.
The disadvantage is that if there is a brief surge in the value of the observed quan-
tity and it then settles back to some average value, the use of a large value of � will
result in jerky changes in the average.

 Figure 9.9 compares simple averaging with exponential averaging (for two
different values of �). In Figure 9.9a , the observed value begins at 1, grows gradu-
ally to a value of 10, and then stays there. In Figure 9.9b , the observed value begins
at 20, declines gradually to 10, and then stays there. In both cases, we start out with
an estimate of S1 = 0. This gives greater priority to new processes. Note that expo-
nential averaging tracks changes in process behavior faster than does simple aver-
aging and that the larger value of � results in a more rapid reaction to the change
in the observed value.

 A risk with SPN is the possibility of starvation for longer processes, as long
as there is a steady supply of shorter processes. On the other hand, although SPN
reduces the bias in favor of longer jobs, it still is not desirable for a time-sharing or
transaction processing environment because of the lack of preemption. Looking
back at our worst-case analysis described under FCFS, processes W, X, Y, and Z
will still execute in the same order, heavily penalizing the short process Y.

SHORTEST REMAINING TIME The shortest remaining time (SRT) policy is a
preemptive version of SPN. In this case, the scheduler always chooses the process

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10987654321

Age of observation

C
oe

ff
ic

ie
nt

 v
al

ue a � 0.2
a � 0.5
a � 0.8

Figure 9.8 Exponential Smoothing Coeffi cients

412 CHAPTER 9 / UNIPROCESSOR SCHEDULING

that has the shortest expected remaining processing time. When a new process joins
the ready queue, it may in fact have a shorter remaining time than the currently
running process. Accordingly, the scheduler may preempt the current process when
a new process becomes ready. As with SPN, the scheduler must have an estimate of
processing time to perform the selection function, and there is a risk of starvation of
longer processes.

 SRT does not have the bias in favor of long processes found in FCFS. Unlike
round robin, no additional interrupts are generated, reducing overhead. On the

0

2

4

6

8

10

� = 0.8

� = 0.5

Simple average

Observed value

2019181716151413121110987654321

0

5

10

15

20

� = 0.8

� = 0.5

Simple average
Observed value

2019181716151413121110987654321

(a) Increasing function

(b) Decreasing function

Time

Time

O
bs

er
ve

d
or

 a
ve

ra
ge

 v
al

ue
O

bs
er

ve
d

or
 a

ve
ra

ge
 v

al
ue

Figure 9.9 Use of Exponential Averaging

9.2 / SCHEDULING ALGORITHMS 413

other hand, elapsed service times must be recorded, contributing to overhead. SRT
should also give superior turnaround time performance to SPN, because a short job
is given immediate preference to a running longer job.

 Note that in our example (Table 9.5), the three shortest processes all receive
immediate service, yielding a normalized turnaround time for each of 1.0.

HIGHEST RESPONSE RATIO NEXT In Table 9.5 , we have used the normalized
turnaround time, which is the ratio of turnaround time to actual service time, as a
figure of merit. For each individual process, we would like to minimize this ratio,
and we would like to minimize the average value over all processes. In general,
we cannot know ahead of time what the service time is going to be, but we can
approximate it, either based on past history or some input from the user or a
configuration manager. Consider the following ratio:

R =
w + s

s
 where

R � response ratio

w � time spent waiting for the processor

 s � expected service time

 If the process with this value is dispatched immediately, R is equal to the normal-
ized turnaround time. Note that the minimum value of R is 1.0, which occurs when
a process first enters the system.

 Thus, our scheduling rule becomes the following: when the current process
completes or is blocked, choose the ready process with the greatest value of R .
This approach is attractive because it accounts for the age of the process. While
shorter jobs are favored (a smaller denominator yields a larger ratio), aging without
 service increases the ratio so that a longer process will eventually get past compet-
ing shorter jobs.

 As with SRT and SPN, the expected service time must be estimated to use
highest response ratio next (HRRN).

FEEDBACK If we have no indication of the relative length of various processes,
then none of SPN, SRT, and HRRN can be used. Another way of establishing a
preference for shorter jobs is to penalize jobs that have been running longer. In
other words, if we cannot focus on the time remaining to execute, let us focus on the
time spent in execution so far.

 The way to do this is as follows. Scheduling is done on a preemptive (at time
quantum) basis, and a dynamic priority mechanism is used. When a process first
enters the system, it is placed in RQ0 (see Figure 9.4). After its first preemption,
when it returns to the Ready state, it is placed in RQ1. Each subsequent time that
it is preempted, it is demoted to the next lower-priority queue. A short process will
complete quickly, without migrating very far down the hierarchy of ready queues.
A longer process will gradually drift downward. Thus, newer, shorter processes are
favored over older, longer processes. Within each queue, except the lowest-priority
queue, a simple FCFS mechanism is used. Once in the lowest-priority queue, a

414 CHAPTER 9 / UNIPROCESSOR SCHEDULING

 process cannot go lower, but is returned to this queue repeatedly until it completes
execution. Thus, this queue is treated in round-robin fashion.

 Figure 9.10 illustrates the feedback scheduling mechanism by showing the
path that a process will follow through the various queues. 5 This approach is known
as multilevel feedback , meaning that the OS allocates the processor to a process
and, when the process blocks or is preempted, feeds it back into one of several
priority queues.

 There are a number of variations on this scheme. A simple version is to perform
preemption in the same fashion as for round robin: at periodic intervals. Our exam-
ple shows this (Figure 9.5 and Table 9.5) for a quantum of one time unit. Note that in
this case, the behavior is similar to round robin with a time quantum of 1.

 One problem with the simple scheme just outlined is that the turnaround time
of longer processes can stretch out alarmingly. Indeed, it is possible for starvation to
occur if new jobs are entering the system frequently. To compensate for this, we can
vary the preemption times according to the queue: A process scheduled from RQ0
is allowed to execute for one time unit and then is preempted; a process scheduled
from RQ1 is allowed to execute two time units, and so on. In general, a process
scheduled from RQ i is allowed to execute 2i time units before preemption. This
scheme is illustrated for our example in Figure 9.5 and Table 9.5 .

ReleaseRQ0
Admit

Processor

ReleaseRQ1

Processor

ReleaseRQn

Processor

Figure 9.10 Feedback Scheduling

5 Dotted lines are used to emphasize that this is a time sequence diagram rather than a static depiction of
possible transitions, such as Figure 9.4 .

9.2 / SCHEDULING ALGORITHMS 415

 Even with the allowance for greater time allocation at lower priority, a longer
process may still suffer starvation. A possible remedy is to promote a process to a
higher-priority queue after it spends a certain amount of time waiting for service in
its current queue.

Performance Comparison

 Clearly, the performance of various scheduling policies is a critical factor in the
choice of a scheduling policy. However, it is impossible to make definitive com-
parisons because relative performance will depend on a variety of factors, including
the probability distribution of service times of the various processes, the efficiency
of the scheduling and context switching mechanisms, and the nature of the I/O
demand and the performance of the I/O subsystem. Nevertheless, we attempt in
what follows to draw some general conclusions.

QUEUEING ANALYSIS In this section, we make use of basic queueing formulas, with
the common assumptions of Poisson arrivals and exponential service times. 6

 First, we make the observation that any such scheduling discipline that
chooses the next item to be served independent of service time obeys the following
relationship:

Tr

Ts
=

1
1 - r

 where

Tr � turnaround time or residence time; total time in system, waiting plus
 execution

Ts � average service time; average time spent in Running state

r � processor utilization

 In particular, a priority-based scheduler, in which the priority of each process
is assigned independent of expected service time, provides the same average turna-
round time and average normalized turnaround time as a simple FCFS discipline.
Furthermore, the presence or absence of preemption makes no differences in these
averages.

 With the exception of round robin and FCFS, the various scheduling disci-
plines considered so far do make selections on the basis of expected service time.
Unfortunately, it turns out to be quite difficult to develop closed analytic models
of these disciplines. However, we can get an idea of the relative performance of
such scheduling algorithms, compared to FCFS, by considering priority scheduling
in which priority is based on service time.

 If scheduling is done on the basis of priority and if processes are assigned to
a priority class on the basis of service time, then differences do emerge. Table 9.6
shows the formulas that result when we assume two priority classes, with different
service times for each class. In the table, refers to the arrival rate. These results can

6 The queueing terminology used in this chapter is summarized in Appendix H . Poisson arrivals essentially
means random arrivals, as explained in Appendix H .

416 CHAPTER 9 / UNIPROCESSOR SCHEDULING

be generalized to any number of priority classes. Note that the formulas differ for
nonpreemptive versus preemptive scheduling. In the latter case, it is assumed that
a lower-priority process is immediately interrupted when a higher-priority process
becomes ready.

 As an example, let us consider the case of two priority classes, with an equal
number of process arrivals in each class and with the average service time for the
lower-priority class being five times that of the upper priority class. Thus, we wish to
give preference to shorter processes. Figure 9.11 shows the overall result. By giving
preference to shorter jobs, the average normalized turnaround time is improved
at higher levels of utilization. As might be expected, the improvement is greatest
with the use of preemption. Notice, however, that overall performance is not much
affected.

 However, significant differences emerge when we consider the two priority
classes separately. Figure 9.12 shows the results for the higher-priority, shorter
processes. For comparison, the upper line on the graph assumes that priorities are
not used but that we are simply looking at the relative performance of that half of
all processes that have the shorter processing time. The other two lines assume that
these processes are assigned a higher priority. When the system is run using priority
scheduling without preemption, the improvements are significant. They are even
more significant when preemption is used.

Table 9.6 Formulas for Single-Server Queues with Two Priority Categories

 Assumptions: 1. Poisson arrival rate.

 2. Priority 1 items are serviced before priority 2 items.

 3. First-come-first-served dispatching for items of equal priority.

 4. No item is interrupted while being served.

 5. No items leave the queue (lost calls delayed).

(a) General formulas

l = l1 + l2

r1 = l1Ts1; r2 = l2Ts2

r = r1 + r2

Ts =
l1

l
Ts1 +

l2

l
Ts2

Tr =
l1

l
Tr1 +

l2

l
Tr2

(b) No interrupts; exponential service times (c) Preemptive-resume queueing discipline;
exponential service times

Tr1 = Ts1 +
r1Ts1 + r2Ts2

1 + r1
 Tr1 = Ts1 +

r1Ts1

1 - r1

Tr2 = Ts2 +
Tr1 - Ts1

1 - r Tr2 = Ts2 +
1

1 - r1
ar1Ts2 +

rTs

1 - r
b

9.2 / SCHEDULING ALGORITHMS 417

0.1

1

2

3

4

5

6

7

8

9

10

0.2 0.3 0.4 0.5

2 priority classes

1 �
2
ts2 � 5 � ts1

N
or

m
al

iz
ed

 r
es

po
ns

e
ti

m
e

(T
r/

T
s)

0.6 0.7 0.8 0.9 1.0

No priority

Priority

Priority
with preemption

Utilization ()�

 Figure 9.11 Overall Normalized Response Time

0.1

1

2

3

4

5

6

7

8

9

10

0.2 0.3 0.4 0.5

2 priority classes

1 �
2
ts2 � 5 � ts1

N
or

m
al

iz
ed

 r
es

po
ns

e
ti

m
e

(T
r1

/T
s1

)

0.6 0.7 0.8 0.9 1.0

No priority

Priority

Priority
with preemption

Utilization ()�

 Figure 9.12 Normalized Response Time for Shorter Processes

418 CHAPTER 9 / UNIPROCESSOR SCHEDULING

 Figure 9.13 shows the same analysis for the lower-priority, longer processes.
As expected, such processes suffer a performance degradation under priority
scheduling.

SIMULATION MODELING Some of the difficulties of analytic modeling are
overcome by using discrete-event simulation, which allows a wide range of policies
to be modeled. The disadvantage of simulation is that the results for a given “run”
only apply to that particular collection of processes under that particular set of
assumptions. Nevertheless, useful insights can be gained.

 The results of one such study are reported in [FINK88]. The simulation
involved 50,000 processes with an arrival rate of
 � 0.8 and an average service time
of Ts � 1. Thus, the assumption is that the processor utilization is r =
Ts = 0.8.
Note, therefore, that we are only measuring one utilization point.

 To present the results, processes are grouped into service-time percentiles,
each of which has 500 processes. Thus, the 500 processes with the shortest service
time are in the first percentile; with these eliminated, the 500 remaining processes
with the shortest service time are in the second percentile; and so on. This allows
us to view the effect of various policies on processes as a function of the length of
the process.

 Figure 9.14 shows the normalized turnaround time, and Figure 9.15 shows
the average waiting time. Looking at the turnaround time, we can see that the
performance of FCFS is very unfavorable, with one-third of the processes having

0.1

1

2

3

4

5

6

7

8

9

10

0.2 0.3 0.4 0.5

2 priority classes

1 �
2
ts2 � 5 � ts1

N
or

m
al

iz
ed

 r
es

po
ns

e
ti

m
e

(T
r2

/T
s2

)

0.6 0.7 0.8 0.9 1.0

Priority

Priority
with preemption

No priority

Utilization ()�

Figure 9.13 Normalized Response Time for Longer Processes

9.2 / SCHEDULING ALGORITHMS 419

Percentile of time required

N
or

m
al

iz
ed

 t
ur

na
ro

un
d

ti
m

e

FCFS

FCFS

HRRN

HRRN

SPN

RR (q � 1)
RR (q � 1)

FB

FB

SRT

SRT

SPN

0

1

10

100

10 20 30 40 50 60 70 80 90 100

Figure 9.14 Simulation Result for Normalized Turnaround Time

Percentile of time required

W
ai

t
ti

m
e

FCFS
FCFS

HRRN

HRRN

RR
(q � 1)

RR (q � 1)

FB

FB
SRT

SPN

SPN

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

6

7

8

9

10

Figure 9.15 Simulation Result for Waiting Time

420 CHAPTER 9 / UNIPROCESSOR SCHEDULING

a normalized turnaround time greater than 10 times the service time; furthermore,
these are the shortest processes. On the other hand, the absolute waiting time is
uniform, as is to be expected because scheduling is independent of service time.
The figures show round robin using a quantum of one time unit. Except for the
shortest processes, which execute in less than one quantum, round robin yields
a normalized turnaround time of about five for all processes, treating all fairly.
Shortest process next performs better than round robin, except for the shortest
processes. Shortest remaining time, the preemptive version of SPN, performs bet-
ter than SPN except for the longest 7% of all processes. We have seen that, among
nonpreemptive policies, FCFS favors long processes and SPN favors short ones.
Highest response ratio next is intended to be a compromise between these two
effects, and this is indeed confirmed in the figures. Finally, the figure shows feed-
back scheduling with fixed, uniform quanta in each priority queue. As expected,
FB performs quite well for short processes.

Fair-Share Scheduling

 All of the scheduling algorithms discussed so far treat the collection of ready
 processes as a single pool of processes from which to select the next running process.
This pool may be broken down by priority but is otherwise homogeneous.

 However, in a multiuser system, if individual user applications or jobs may be
organized as multiple processes (or threads), then there is a structure to the collec-
tion of processes that is not recognized by a traditional scheduler. From the user’s
point of view, the concern is not how a particular process performs but rather how
his or her set of processes, which constitute a single application, performs. Thus, it
would be attractive to make scheduling decisions on the basis of these process sets.
This approach is generally known as fair-share scheduling. Further, the concept can
be extended to groups of users, even if each user is represented by a single process.
For example, in a time-sharing system, we might wish to consider all of the users
from a given department to be members of the same group. Scheduling decisions
could then be made that attempt to give each group similar service. Thus, if a large
number of people from one department log onto the system, we would like to see
response time degradation primarily affect members of that department rather than
users from other departments.

 The term fair share indicates the philosophy behind such a scheduler. Each
user is assigned a weighting of some sort that defines that user’s share of system
resources as a fraction of the total usage of those resources. In particular, each
user is assigned a share of the processor. Such a scheme should operate in a more
or less linear fashion, so that if user A has twice the weighting of user B, then in
the long run, user A should be able to do twice as much work as user B. The objec-
tive of a fair-share scheduler is to monitor usage to give fewer resources to users
who have had more than their fair share and more to those who have had less than
their fair share.

 A number of proposals have been made for fair-share schedulers [HENR84,
KAY88, WOOD86]. In this section, we describe the scheme proposed in [HENR84]
and implemented on a number of UNIX systems. The scheme is simply referred to
as the fair-share scheduler (FSS). FSS considers the execution history of a related

9.2 / SCHEDULING ALGORITHMS 421

group of processes, along with the individual execution history of each process in
making scheduling decisions. The system divides the user community into a set of
fair-share groups and allocates a fraction of the processor resource to each group.
Thus, there might be four groups, each with 25% of the processor usage. In effect,
each fair-share group is provided with a virtual system that runs proportionally
slower than a full system.

 Scheduling is done on the basis of priority, which takes into account the
underlying priority of the process, its recent processor usage, and the recent proc-
essor usage of the group to which the process belongs. The higher the numerical
value of the priority, the lower is the priority. The following formulas apply for
process j in group k :

CPUj(i) =
CPUj(i - 1)

2

GCPUk(i) =
GCPUk(i - 1)

2

Pj(i) = Basej +
CPUj(i)

2
+

GCPUk(i)

4 * Wk
 where

CPUj (i) � measure of processor utilization by process j through interval i

GCPUk (i) � measure of processor utilization of group k through interval i

Pj (i) � priority of process j at beginning of interval i ; lower values equal
higher priorities

Basej � base priority of process j

Wk � weighting assigned to group k , with the constraint that 0 6 Wk … 1

and a
k

Wk = 1

 Each process is assigned a base priority. The priority of a process drops as the
process uses the processor and as the group to which the process belongs uses the
processor. In the case of the group utilization, the average is normalized by dividing
by the weight of that group. The greater the weight assigned to the group, the less its
utilization will affect its priority.

 Figure 9.16 is an example in which process A is in one group and processes B
and C are in a second group, with each group having a weighting of 0.5. Assume that
all processes are processor bound and are usually ready to run. All processes have
a base priority of 60. Processor utilization is measured as follows: The processor is
interrupted 60 times per second; during each interrupt, the processor usage field of
the currently running process is incremented, as is the corresponding group proces-
sor field. Once per second, priorities are recalculated.

 In the figure, process A is scheduled first. At the end of one second, it is
preempted. Processes B and C now have the higher priority, and process B is sched-
uled. At the end of the second time unit, process A has the highest priority. Note
that the pattern repeats: the kernel schedules the processes in order: A, B, A, C, A,
B, and so on. Thus, 50% of the processor is allocated to process A, which constitutes
one group, and 50% to processes B and C, which constitute another group.

422 CHAPTER 9 / UNIPROCESSOR SCHEDULING

9.3 TRADITIONAL UNIX SCHEDULING

 In this section we examine traditional UNIX scheduling, which is used in both
SVR3 and 4.3 BSD UNIX. These systems are primarily targeted at the time-sharing
interactive environment. The scheduling algorithm is designed to provide good
response time for interactive users while ensuring that low-priority background
jobs do not starve. Although this algorithm has been replaced in modern UNIX
systems, it is worthwhile to examine the approach because it is representative of

Priority

Colored rectangle represents executing process

60 0
1
2

60

0
1
2

60

74 15
16
17

75

15
16
17

75

78 18
19
20

78

18
19
20

78

67 0
1
2

60

15
16
17

75

74 15 15
16
17

75

60 0
1
2

60

60 0

60 0 0

90 30 30

96 37 37

98 39 39 70 3 18 76 15 18

90 30 30

81 7 37 93 30 37

75 0 30

60 0 0

Process
CPU
count

Process A

Group 1 Group 2

Process B Process C
Group
CPU
count

Process
CPU
count

Group
CPU
count

Process
CPU
count

Group
CPU
countPriority Priority

Time

0

1

2

3

4

5

0
1
2

60

0
1
2

60

Figure 9.16 Example of Fair-Share Scheduler—Three Processes, Two Groups

9.3 / TRADITIONAL UNIX SCHEDULING 423

practical time-sharing scheduling algorithms. The scheduling scheme for SVR4
includes an accommodation for real-time requirements, and so its discussion is
deferred to Chapter 10 .

 The traditional UNIX scheduler employs multilevel feedback using round
robin within each of the priority queues. The system makes use of one-second
preemption. That is, if a running process does not block or complete within one
second, it is preempted. Priority is based on process type and execution history. The
following formulas apply:

CPUj(i) =
CPUj(i - 1)

2

Pj(i) = Basej +
CPUj(i)

2
+ nicej

 where

CPUj (i) � measure of processor utilization by process j through interval i

Pj (i) � priority of process j at beginning of interval i ; lower values equal
higher priorities

Basej � base priority of process j

nicej � user-controllable adjustment factor

 The priority of each process is recomputed once per second, at which time a
new scheduling decision is made. The purpose of the base priority is to divide all
processes into fixed bands of priority levels. The CPU and nice components are
restricted to prevent a process from migrating out of its assigned band (assigned by
the base priority level). These bands are used to optimize access to block devices
(e.g., disk) and to allow the OS to respond quickly to system calls. In decreasing
order of priority, the bands are:

 • Swapper

 • Block I/O device control

 • File manipulation

 • Character I/O device control

 • User processes

 This hierarchy should provide the most efficient use of the I/O devices.
Within the user process band, the use of execution history tends to penalize proc-
essor-bound processes at the expense of I/O-bound processes. Again, this should
improve efficiency. Coupled with the round-robin preemption scheme, the sched-
uling strategy is well equipped to satisfy the requirements for general-purpose
time sharing.

 An example of process scheduling is shown in Figure 9.17 . Processes A, B,
and C are created at the same time with base priorities of 60 (we will ignore the
nice value). The clock interrupts the system 60 times per second and increments
a counter for the running process. The example assumes that none of the proc-
esses block themselves and that no other processes are ready to run. Compare
this with Figure 9.16 .

424 CHAPTER 9 / UNIPROCESSOR SCHEDULING

9.4 SUMMARY

 The OS must make three types of scheduling decisions with respect to the execu-
tion of processes. Long-term scheduling determines when new processes are admit-
ted to the system. Medium-term scheduling is part of the swapping function and
determines when a program is brought partially or fully into main memory so that
it may be executed. Short-term scheduling determines which ready process will
be executed next by the processor. This chapter focuses on the issues relating to
 short-term scheduling.

Priority Priority

Colored rectangle represents executing process

60 0
1
2

60 0

60 075 30

67 15 75 30

67 15

68 16

76 33

76 33

67 15

75 30

060
CPU count CPU count

Process A
Priority CPU count

Process CProcess B
Time

0

1

2

3

4

5

60
60 0

1
2

60
60 0

1
2

60
63 7

8
9

67
63 7

8
9

63 7
67

Figure 9.17 Example of a Traditional UNIX Process Scheduling

9.5 / RECOMMENDED READING 425

 A variety of criteria are used in designing the short-term scheduler. Some of
these criteria relate to the behavior of the system as perceived by the individual user
(user oriented), while others view the total effectiveness of the system in meeting
the needs of all users (system oriented). Some of the criteria relate specifically to
quantitative measures of performance, while others are more qualitative in nature.
From a user’s point of view, response time is generally the most important char-
acteristic of a system, while from a system point of view, throughput or processor
utilization is important.

 A variety of algorithms have been developed for making the short-term sched-
uling decision among all ready processes:

 • First-come-first-served: Select the process that has been waiting the longest
for service.

 • Round robin: Use time slicing to limit any running process to a short burst of
processor time, and rotate among all ready processes.

 • Shortest process next: Select the process with the shortest expected processing
time, and do not preempt the process.

 • Shortest remaining time: Select the process with the shortest expected remain-
ing process time. A process may be preempted when another process becomes
ready.

 • Highest response ratio next: Base the scheduling decision on an estimate of
normalized turnaround time.

 • Feedback: Establish a set of scheduling queues and allocate processes to
queues based on execution history and other criteria.

 The choice of scheduling algorithm will depend on expected performance and
on implementation complexity.

9.5 RECOMMENDED READING

 Virtually every textbook on operating systems covers scheduling. Rigorous
queueing analyses of various scheduling policies are presented in [KLEI04] and
[CONW67]. [DOWD93] provides an instructive performance analysis of various
scheduling algorithms.

CONW67 Conway, R., Maxwell, W., and Miller, L. Theory of Scheduling. Reading,
MA: Addison-Wesley, 1967. Reprinted by Dover Publications, 2003.

DOWD93 Dowdy, L., and Lowery, C. P.S. to Operating Systems. Upper Saddle River,
NJ: Prentice Hall, 1993.

KLEI04 Kleinrock, L. Queuing Systems, Volume Three: Computer Applications. New
York: Wiley, 2004.

426 CHAPTER 9 / UNIPROCESSOR SCHEDULING

9.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 arrival rate
 dispatcher
 exponential averaging
 fair-share scheduling
 fairness
 first-come-first-served
 first-in-first-out
 long-term scheduler

 medium-term scheduler
 multilevel feedback
 predictability
 residence time
 response time
 round robin
 scheduling priority
 service time

 short-term scheduler
 throughput
 time slicing
 turnaround time
 utilization
 waiting time

Review Questions

 9.1 Briefly describe the three types of processor scheduling.
 9.2 What is usually the critical performance requirement in an interactive operating

system?
 9.3 What is the difference between turnaround time and response time?
 9.4 For process scheduling, does a low-priority value represent a low priority or a high

priority?
 9.5 What is the difference between preemptive and nonpreemptive scheduling?
 9.6 Briefly define FCFS scheduling.
 9.7 Briefly define round-robin scheduling.
 9.8 Briefly define shortest-process-next scheduling.
 9.9 Briefly define shortest-remaining-time scheduling.
 9.10 Briefly define highest-response-ratio-next scheduling.
 9.11 Briefly define feedback scheduling.

Problems

 9.1 Consider the following workload:

 Process Burst Time Priority Arrival Time
 P1 50 ms 4 0 ms
 P2 20 ms 1 20 ms
 P3 100 ms 3 40 ms
 P4 40 ms 2 60 ms

a. Show the schedule using shortest remaining time, nonpreemptive priority (a
smaller priority number implies higher priority) and round robin with quantum
30 ms. Use time scale diagram as shown below for the FCFS example to show the
schedule for each requested scheduling policy.

9.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 427

 Example for FCFS (1 unit = 10 ms):

 P1 P1 P1 P1 P1 P2 P2 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P4 P4 P4 P4
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

b. What is the average waiting time of the above scheduling policies?
 9.2 Consider the following set of processes:

 Process Arrival Time Processing Time

 A 0 3
 B 1 5
 C 3 2
 D 9 5
 E 12 5

 Perform the same analysis as depicted in Table 9.5 and Figure 9.5 for this set.
 9.3 Prove that, among nonpreemptive scheduling algorithms, SPN provides the minimum

average waiting time for a batch of jobs that arrive at the same time. Assume that the
scheduler must always execute a task if one is available.

 9.4 Assume the following burst-time pattern for a process: 6, 4, 6, 4, 13, 13, 13, and assume
that the initial guess is 10. Produce a plot similar to those of Figure 9.9 .

 9.5 Consider the following pair of equations as an alternative to Equation (9.3):
Sn+1 = aTn + (1 - a)Sn

Xn+1 = min[Ubound, max[Lbound, (bSn+1)]]

 where Ubound and Lbound are prechosen upper and lower bounds on the estimated
value of T . The value of Xn + 1 is used in the shortest-process-next algorithm, instead of
the value of Sn + 1 . What functions do a and b perform, and what is the effect of higher
and lower values on each?

 9.6 In the bottom example in Figure 9.5 , process A runs for two time units before control
is passed to process B. Another plausible scenario would be that A runs for three time
units before control is passed to process B. What policy differences in the feedback-
scheduling algorithm would account for the two different scenarios?

 9.7 In a nonpreemptive uniprocessor system, the ready queue contains three jobs at time
t immediately after the completion of a job. These jobs arrived at times t1 , t2 , and t3
with estimated execution times of r1, r2 , and r3 , respectively. Figure 9.18 shows the
linear increase of their response ratios over time. Use this example to find a variant
of response ratio scheduling, known as minimax response ratio scheduling, that mini-
mizes the maximum response ratio for a given batch of jobs ignoring further arrivals.
(Hint: Decide, first, which job to schedule as the last one.)

 9.8 Prove that the minimax response ratio algorithm of the preceding problem minimizes
the maximum response ratio for a given batch of jobs. (Hint : Focus attention on the
job that will achieve the highest response ratio and all jobs executed before it. Con-
sider the same subset of jobs scheduled in any other order and observe the response
ratio of the job that is executed as the last one among them. Notice that this subset
may now be mixed with other jobs from the total set.)

 9.9 Define residence time Tr as the average total time a process spends waiting and being
served. Show that for FIFO, with mean service time Ts , we have Tr = Ts /(1 – r), where
r is utilization.

428 CHAPTER 9 / UNIPROCESSOR SCHEDULING

 9.10 A processor is multiplexed at infinite speed among all processes present in a ready
queue with no overhead. (This is an idealized model of round-robin scheduling
among ready processes using time slices that are very small compared to the mean
service time.) Show that for Poisson input from an infinite source with exponential
service times, the mean response time Rx of a process with service time x is given by
Rx = x /(1 – r). (Hint: Review the basic queueing equations in Appendix H or Chapter
 20 . Then consider the number of items waiting, w , in the system upon arrival of the
given process.)

 9.11 Consider a variant of the RR scheduling algorithm where the entries in the ready
queue are pointers to the PCBs.
a. What would be the effect of putting two pointers to the same process in the ready

queue?
b. What would be the major advantage of this scheme?
c. How could you modify the basic RR algorithm to achieve the same effect without

the duplicate pointers?
 9.12 In a queueing system, new jobs must wait for a while before being served. While a job

waits, its priority increases linearly with time from zero at a rate a . A job waits until its
priority reaches the priority of the jobs in service; then, it begins to share the proces-
sor equally with other jobs in service using round robin while its priority continues to
increase at a slower rate b . The algorithm is referred to as selfish round robin, because
the jobs in service try (in vain) to monopolize the processor by increasing their prior-
ity continuously. Use Figure 9.19 to show that the mean response time Rx for a job of
service time x is given by:

Rx �
s

1 - r
+

x - s
1 - r�

 where

r � ls r� � ra1 -
b

a
b 0 … b 6 a

 assuming that arrival and service times are exponentially distributed with means
1/
 and s , respectively. (Hint: Consider the total system and the two subsystems
 separately.)

 9.13 An interactive system using round-robin scheduling and swapping tries to give guar-
anteed response to trivial requests as follows: After completing a round-robin cycle
among all ready processes, the system determines the time slice to allocate to each

t1 t2

r1

t3 t4

Time

1

1

R
es

po
ns

e
ra

ti
o

r2
1

r3
1

Figure 9.18 Response Ratio as a Function of Time

9.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 429

ready process for the next cycle by dividing a maximum response time by the number
of processes requiring service. Is this a reasonable policy?

 9.14 Which type of process is generally favored by a multilevel feedback queueing
 scheduler—a processor-bound process or an I/O-bound process? Briefly explain why.

 9.15 In priority-based process scheduling, the scheduler only gives control to a particular
process if no other process of higher priority is currently in the Ready state. Assume
that no other information is used in making the process scheduling decision. Also
assume that process priorities are established at process creation time and do not
change. In a system operating with such assumptions, why would using Dekker’s solu-
tion (see Section A.1) to the mutual exclusion problem be “dangerous”? Explain this
by telling what undesired event could occur and how it could occur.

 9.16 Five batch jobs, A through E, arrive at a computer center at essentially the same time.
They have an estimated running time of 15, 9, 3, 6, and 12 minutes, respectively. Their
(externally defined) priorities are 6, 3, 7, 9, and 4, respectively, with a lower value
corresponding to a higher priority. For each of the following scheduling algorithms,
 determine the turnaround time for each process and the average turnaround for all
jobs. Ignore process switching overhead. Explain how you arrived at your answers. In
the last three cases, assume that only one job at a time runs until it finishes and that all
jobs are completely processor bound.
a. round robin with a time quantum of 1 minute
b. priority scheduling
c. FCFS (run in order 15, 9, 3, 6, and 12)
d. shortest job first

Waiting jobs

a
l l�

b

1/l

1/l�

a a

b

Served jobs

Time

In
cr

ea
si

ng
 p

ri
or

it
y

Departures

Figure 9.19 Selfi sh Round Robin

430

CHAPTER

MULTIPROCESSOR AND
REAL-TIME SCHEDULING

 10.1 Multiprocessor Scheduling
 Granularity
 Design Issues
 Process Scheduling
 Thread Scheduling

 10.2 Real-Time Scheduling
 Background
 Characteristics of Real-Time Operating Systems
 Real-Time Scheduling
 Deadline Scheduling
 Rate Monotonic Scheduling
 Priority Inversion

 10.3 Linux Scheduling

 10.4 UNIX SVR4 Scheduling

 10.5 UNIX FreeBSD Scheduling

 10.6 Windows Scheduling

 10.7 Linux Virtual Machine Process Scheduling

 10.8 Summary

 10.9 Recommended Reading

 10.10 Key Terms, Review Questions, and Problems

430

10.1 / MULTIPROCESSOR SCHEDULING 431

 Bear in mind, Sir Henry, one of the phrases in that queer old legend
which Dr. Mortimer has read to us, and avoid the moor in those hours
of darkness when the powers of evil are exalted.

 — THE HOUND OF THE BASKERVILLES , Arthur Conan Doyle

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

• Understand the concept of thread granularity.
• Discuss the key design issues in multiprocessor thread scheduling and some

of the key approaches to scheduling.
• Understand the requirements imposed by real-time scheduling.
• Explain the scheduling methods used in Linux, UNIX SVR4, and Windows 7.

 This chapter continues our survey of process and thread scheduling. We begin with
an examination of issues raised by the availability of more than one processor. A
number of design issues are explored. This is followed by a look at the scheduling of
processes on a multiprocessor system. Then the somewhat different design consid-
erations for multiprocessor thread scheduling are examined. The second section of
this chapter covers real-time scheduling. The section begins with a discussion of the
characteristics of real-time processes and then looks at the nature of the schedul-
ing process. Two approaches to real-time scheduling, deadline scheduling and rate
monotonic scheduling, are examined.

10.1 MULTIPROCESSOR SCHEDULING

 When a computer system contains more than a single processor, several new issues
are introduced into the design of the scheduling function. We begin with a brief
overview of multiprocessors and then look at the rather different considerations
when scheduling is done at the process level and at the thread level.

 We can classify multiprocessor systems as follows:

 • Loosely coupled or distributed multiprocessor, or cluster: Consists of a col-
lection of relatively autonomous systems, each processor having its own main
memory and I/O channels. We address this type of configuration in Chapter 16 .

 • Functionally specialized processors: An example is an I/O processor. In this
case, there is a master, general-purpose processor; specialized processors are
controlled by the master processor and provide services to it. Issues relating to
I/O processors are addressed in Chapter 11 .

 • Tightly coupled multiprocessor: Consists of a set of processors that share a
common main memory and are under the integrated control of an operating
system.

432 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

 Our concern in this section is with the last category, and specifically with issues
relating to scheduling.

Granularity

 A good way of characterizing multiprocessors and placing them in context with
other architectures is to consider the synchronization granularity, or frequency of
synchronization, between processes in a system. We can distinguish five catego-
ries of parallelism that differ in the degree of granularity. These are summarized in
 Table 10.1 , which is adapted from [GEHR87] and [WOOD89].

INDEPENDENT PARALLELISM With independent parallelism, there is no explicit
synchronization among processes. Each represents a separate, independent
application or job. A typical use of this type of parallelism is in a time-sharing system.
Each user is performing a particular application such as word processing or using a
spreadsheet. The multiprocessor provides the same service as a multiprogrammed
uniprocessor. Because more than one processor is available, average response time
to the users will be less.

 It is possible to achieve a similar performance gain by providing each user with
a personal computer or workstation. If any files or information are to be shared,
then the individual systems must be hooked together into a distributed system sup-
ported by a network. This approach is examined in Chapter 16 . On the other hand,
a single, multiprocessor shared system in many instances is more cost-effective than
a distributed system, allowing economies of scale in disks and other peripherals.

COARSE AND VERY COARSE-GRAINED PARALLELISM With coarse and very coarse-
grained parallelism, there is synchronization among processes, but at a very gross
level. This kind of situation is easily handled as a set of concurrent processes running
on a multiprogrammed uniprocessor and can be supported on a multiprocessor with
little or no change to user software.

 A simple example of an application that can exploit the existence of a multi-
processor is given in [WOOD89]. The authors have developed a program that takes
a specification of files needing recompilation to rebuild a piece of software and
determines which of these compiles (usually all of them) can be run simultaneously.

Table 10.1 Synchronization Granularity and Processes

 Grain Size Description
 Synchronization

Interval (Instructions)

 Fine Parallelism inherent in a single instruction stream 6 20

 Medium Parallel processing or multitasking within a single application 20–200

 Coarse Multiprocessing of concurrent processes in a
multiprogramming environment

 200–2,000

 Very Coarse Distributed processing across network nodes to form a single
computing environment

 2,000–1M

 Independent Multiple unrelated processes Not applicable

10.1 / MULTIPROCESSOR SCHEDULING 433

The program then spawns one process for each parallel compile. The authors report
that the speedup on a multiprocessor actually exceeds what would be expected
by simply adding up the number of processors in use, due to synergies in the disk
buffer caches (a topic explored in Chapter 11) and sharing of compiler code, which
is loaded into memory only once.

 In general, any collection of concurrent processes that need to communicate or
synchronize can benefit from the use of a multiprocessor architecture. In the case of
very infrequent interaction among processes, a distributed system can provide good
support. However, if the interaction is somewhat more frequent, then the overhead
of communication across the network may negate some of the potential speedup. In
that case, the multiprocessor organization provides the most effective support.

MEDIUM-GRAINED PARALLELISM We saw in Chapter 4 that a single application
can be effectively implemented as a collection of threads within a single process.
In this case, the programmer must explicitly specify the potential parallelism of an
application. Typically, there will need to be rather a high degree of coordination
and interaction among the threads of an application, leading to a medium-grain
level of synchronization.

 Whereas independent, very coarse, and coarse-grained parallelism can be sup-
ported on either a multiprogrammed uniprocessor or a multiprocessor with little or
no impact on the scheduling function, we need to reexamine scheduling when deal-
ing with the scheduling of threads. Because the various threads of an application
interact so frequently, scheduling decisions concerning one thread may affect the
performance of the entire application. We return to this issue later in this section.

FINE-GRAINED PARALLELISM Fine-grained parallelism represents a much more
complex use of parallelism than is found in the use of threads. Although much
work has been done on highly parallel applications, this is so far a specialized and
fragmented area, with many different approaches.

 Chapter 4 provides an example of the use of granularity for the Valve game
software.

Design Issues

 Scheduling on a multiprocessor involves three interrelated issues:

 • The assignment of processes to processors

 • The use of multiprogramming on individual processors

 • The actual dispatching of a process

 In looking at these three issues, it is important to keep in mind that the
approach taken will depend, in general, on the degree of granularity of the applica-
tions and on the number of processors available.

ASSIGNMENT OF PROCESSES TO PROCESSORS If we assume that the architecture
of the multiprocessor is uniform, in the sense that no processor has a particular
physical advantage with respect to access to main memory or to I/O devices, then
the simplest scheduling approach is to treat the processors as a pooled resource and

434 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

assign processes to processors on demand. The question then arises as to whether
the assignment should be static or dynamic.

 If a process is permanently assigned to one processor from activation until its
completion, then a dedicated short-term queue is maintained for each processor.
An advantage of this approach is that there may be less overhead in the scheduling
function, because the processor assignment is made once and for all. Also, the use
of dedicated processors allows a strategy known as group or gang scheduling, as
discussed later.

 A disadvantage of static assignment is that one processor can be idle, with an
empty queue, while another processor has a backlog. To prevent this situation, a
common queue can be used. All processes go into one global queue and are sched-
uled to any available processor. Thus, over the life of a process, the process may
be executed on different processors at different times. In a tightly coupled shared-
memory architecture, the context information for all processes will be available to
all processors, and therefore the cost of scheduling a process will be independent of
the identity of the processor on which it is scheduled. Yet another option is dynamic
load balancing, in which threads are moved for a queue for one processor to a queue
for another processor; Linux uses this approach.

 Regardless of whether processes are dedicated to processors, some means is
needed to assign processes to processors. Two approaches have been used: master/
slave and peer. With a master/slave architecture, key kernel functions of the oper-
ating system always run on a particular processor. The other processors may only
execute user programs. The master is responsible for scheduling jobs. Once a proc-
ess is active, if the slave needs service (e.g., an I/O call), it must send a request to the
master and wait for the service to be performed. This approach is quite simple and
requires little enhancement to a uniprocessor multiprogramming operating system.
Conflict resolution is simplified because one processor has control of all memory
and I/O resources. There are two disadvantages to this approach: (1) A failure of
the master brings down the whole system, and (2) the master can become a per-
formance bottleneck.

 In a peer architecture, the kernel can execute on any processor, and each
processor does self-scheduling from the pool of available processes. This approach
complicates the operating system. The operating system must ensure that two proc-
essors do not choose the same process and that the processes are not somehow lost
from the queue. Techniques must be employed to resolve and synchronize compet-
ing claims to resources.

 There is, of course, a spectrum of approaches between these two extremes. One
approach is to provide a subset of processors dedicated to kernel processing instead
of just one. Another approach is simply to manage the difference between the needs
of kernel processes and other processes on the basis of priority and execution history.

THE USE OF MULTIPROGRAMMING ON INDIVIDUAL PROCESSORS When each process
is statically assigned to a processor for the duration of its lifetime, a new question
arises: Should that processor be multiprogrammed? The reader’s first reaction may
be to wonder why the question needs to be asked; it would appear particularly
wasteful to tie up a processor with a single process when that process may frequently
be blocked waiting for I/O or because of concurrency/synchronization considerations.

10.1 / MULTIPROCESSOR SCHEDULING 435

 In the traditional multiprocessor, which is dealing with coarse-grained or
 independent synchronization granularity (see Table 10.1), it is clear that each individ-
ual processor should be able to switch among a number of processes to achieve high
utilization and therefore better performance. However, for medium-grained applica-
tions running on a multiprocessor with many processors, the situation is less clear.
When many processors are available, it is no longer paramount that every single proc-
essor be busy as much as possible. Rather, we are concerned to provide the best per-
formance, on average, for the applications. An application that consists of a number
of threads may run poorly unless all of its threads are available to run simultaneously.

PROCESS DISPATCHING The final design issue related to multiprocessor scheduling
is the actual selection of a process to run. We have seen that, on a multiprogrammed
uniprocessor, the use of priorities or of sophisticated scheduling algorithms based
on past usage may improve performance over a simple-minded first-come-first-
served strategy. When we consider multiprocessors, these complexities may be
unnecessary or even counterproductive, and a simpler approach may be more
effective with less overhead. In the case of thread scheduling, new issues come into
play that may be more important than priorities or execution histories. We address
each of these topics in turn.

Process Scheduling

 In most traditional multiprocessor systems, processes are not dedicated to proces-
sors. Rather there is a single queue for all processors, or if some sort of priority
scheme is used, there are multiple queues based on priority, all feeding into the
common pool of processors. In any case, we can view the system as being a multi-
server queueing architecture.

 Consider the case of a dual-processor system in which each processor of the
 dual-processor system has half the processing rate of a processor in the single-processor
system. [SAUE81] reports a queueing analysis that compares FCFS scheduling to round
robin and to shortest remaining time. The study is concerned with process service time,
which measures the amount of processor time a process needs, either for a total job or
the amount of time needed each time the process is ready to use the processor. In the
case of round robin, it is assumed that the time quantum is large compared to context-
switching overhead and small compared to mean service time. The results depend on
the variability that is seen in service times. A common measure of variability is the
coefficient of variation, Cs .

1 A value of Cs � 0 corresponds to the case where there is
no variability: the service times of all processes are equal. Increasing values of Cs corre-
spond to increasing variability among the service times. That is, the larger the value of
Cs , the more widely do the values of the service times vary. Values of Cs of 5 or more
are not unusual for processor service time distributions.

 Figure 10.1a compares round-robin throughput to FCFS throughput as a func-
tion of Cs s. Note that the difference in scheduling algorithms is much smaller in the
dual-processor case. With two processors, a single process with long service time is

1 The value of Cs is calculated as �s / Ts , where �s is the standard deviation of service time and Ts is the
mean service time. For a further explanation of Cs , see the discussion in Chapter 20.

436 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

much less disruptive in the FCFS case; other processes can use the other processor.
Similar results are shown in Figure 10.1b .

 The study in [SAUE81] repeated this analysis under a number of assumptions
about degree of multiprogramming, mix of I/O-bound versus CPU-bound proc-
esses, and the use of priorities. The general conclusion is that the specific scheduling
discipline is much less important with two processors than with one. It should be
evident that this conclusion is even stronger as the number of processors increases.
Thus, a simple FCFS discipline or the use of FCFS within a static priority scheme
may suffice for a multiple-processor system.

Single
processor

Dual
processorSR

T
 t

o
F

C
F

S
th

ro
ug

hp
ut

 r
at

io

0
1.00

1.05

1.10

1.15

1.20

1.25

1 2 3 4 5

Coefficient of variation

(a) Comparison of RR and FCFS

Coefficient of variation

(b) Comparison of SRT and FCFS

0 1 2

Single
processor

Dual
processor

0.98

R
R

 t
o

F
C

F
S

th
ro

ug
hp

ut
 r

at
io

3 4 5

1.00

1.05

1.10

1.15

Figure 10.1 Comparison of Scheduling Performance for One
and Two Processors

10.1 / MULTIPROCESSOR SCHEDULING 437

Thread Scheduling

 As we have seen, with threads, the concept of execution is separated from the rest
of the definition of a process. An application can be implemented as a set of threads
that cooperate and execute concurrently in the same address space.

 On a uniprocessor, threads can be used as a program structuring aid and to
overlap I/O with processing. Because of the minimal penalty in doing a thread
switch compared to a process switch, these benefits are realized with little cost.
However, the full power of threads becomes evident in a multiprocessor system. In
this environment, threads can be used to exploit true parallelism in an application.
If the various threads of an application are simultaneously run on separate proces-
sors, dramatic gains in performance are possible. However, it can be shown that
for applications that require significant interaction among threads (medium-grain
parallelism), small differences in thread management and scheduling can have a
significant performance impact [ANDE89].

 Among the many proposals for multiprocessor thread scheduling and proces-
sor assignment, four general approaches stand out:

 • Load sharing: Processes are not assigned to a particular processor. A global
queue of ready threads is maintained, and each processor, when idle, selects a
thread from the queue. The term load sharing is used to distinguish this strat-
egy from load-balancing schemes in which work is allocated on a more perma-
nent basis (e.g., see [FEIT90a]). 2

 • Gang scheduling: A set of related threads is scheduled to run on a set of proc-
essors at the same time, on a one-to-one basis.

 • Dedicated processor assignment: This is the opposite of the load-sharing
approach and provides implicit scheduling defined by the assignment of
threads to processors. Each program, for the duration of its execution, is allo-
cated a number of processors equal to the number of threads in the program.
When the program terminates, the processors return to the general pool for
possible allocation to another program.

 • Dynamic scheduling: The number of threads in a process can be altered during
the course of execution.

LOAD SHARING Load sharing is perhaps the simplest approach and the one that
carries over most directly from a uniprocessor environment. It has several advantages:

 • The load is distributed evenly across the processors, assuring that no processor
is idle while work is available to do.

 • No centralized scheduler is required; when a processor is available, the
scheduling routine of the operating system is run on that processor to select
the next thread.

2 Some of the literature on this topic refers to this approach as self-scheduling , because each processor
schedules itself without regard to other processors. However, this term is also used in the literature to
refer to programs written in a language that allows the programmer to specify the scheduling (e.g., see
[FOST91]).

438 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

 • The global queue can be organized and accessed using any of the schemes dis-
cussed in Chapter 9 , including priority-based schemes and schemes that con-
sider execution history or anticipated processing demands.

 [LEUT90] analyzes three different versions of load sharing:

 • First-come-first-served (FCFS): When a job arrives, each of its threads is
placed consecutively at the end of the shared queue. When a processor be-
comes idle, it picks the next ready thread, which it executes until completion
or blocking.

 • Smallest number of threads first: The shared ready queue is organized as a pri-
ority queue, with highest priority given to threads from jobs with the smallest
number of unscheduled threads. Jobs of equal priority are ordered according
to which job arrives first. As with FCFS, a scheduled thread is run to comple-
tion or blocking.

 • Preemptive smallest number of threads first: Highest priority is given to jobs
with the smallest number of unscheduled threads. An arriving job with a
smaller number of threads than an executing job will preempt threads belong-
ing to the scheduled job.

 Using simulation models, the authors report that, over a wide range of job charac-
teristics, FCFS is superior to the other two policies in the preceding list. Further, the
authors find that some form of gang scheduling, discussed in the next subsection, is
generally superior to load sharing.

 There are several disadvantages of load sharing:

 • The central queue occupies a region of memory that must be accessed in a
manner that enforces mutual exclusion. Thus, it may become a bottleneck if
many processors look for work at the same time. When there is only a small
number of processors, this is unlikely to be a noticeable problem. However,
when the multiprocessor consists of dozens or even hundreds of processors,
the potential for bottleneck is real.

 • Preempted threads are unlikely to resume execution on the same processor. If
each processor is equipped with a local cache, caching becomes less efficient.

 • If all threads are treated as a common pool of threads, it is unlikely that all of
the threads of a program will gain access to processors at the same time. If a
high degree of coordination is required between the threads of a program, the
process switches involved may seriously compromise performance.

 Despite the potential disadvantages, load sharing is one of the most commonly
used schemes in current multiprocessors.

 A refinement of the load-sharing technique is used in the Mach operating
system [BLAC90, WEND89]. The operating system maintains a local run queue
for each processor and a shared global run queue. The local run queue is used by
threads that have been temporarily bound to a specific processor. A processor
examines the local run queue first to give bound threads absolute preference over
unbound threads. As an example of the use of bound threads, one or more proces-
sors could be dedicated to running processes that are part of the operating system.

10.1 / MULTIPROCESSOR SCHEDULING 439

Another example is that the threads of a particular application could be distributed
among a number of processors; with the proper additional software, this provides
support for gang scheduling, discussed next.

GANG SCHEDULING The concept of scheduling a set of processes simultaneously
on a set of processors predates the use of threads. [JONE80] refers to the concept as
group scheduling and cites the following benefits:

 • If closely related processes execute in parallel, synchronization blocking may
be reduced, less process switching may be necessary, and performance will
increase.

 • Scheduling overhead may be reduced because a single decision affects a
number of processors and processes at one time.

 On the Cm * multiprocessor, the term coscheduling is used [GEHR87].
Coscheduling is based on the concept of scheduling a related set of tasks, called a
task force. The individual elements of a task force tend to be quite small and are
hence close to the idea of a thread.

 The term gang scheduling has been applied to the simultaneous scheduling of
the threads that make up a single process [FEIT90b]. Gang scheduling is useful for
medium-grained to fine-grained parallel applications whose performance severely
degrades when any part of the application is not running while other parts are ready
to run. It is also beneficial for any parallel application, even one that is not quite
so performance sensitive. The need for gang scheduling is widely recognized, and
implementations exist on a variety of multiprocessor operating systems.

 One obvious way in which gang scheduling improves the performance of a
single application is that process switches are minimized. Suppose one thread of a
process is executing and reaches a point at which it must synchronize with another
thread of the same process. If that other thread is not running, but is in a ready
queue, the first thread is hung up until a process switch can be done on some other
processor to bring in the needed thread. In an application with tight coordination
among threads, such switches will dramatically reduce performance. The simultane-
ous scheduling of cooperating threads can also save time in resource allocation. For
example, multiple gang-scheduled threads can access a file without the additional
overhead of locking during a seek, read/write operation.

 The use of gang scheduling creates a requirement for processor allocation.
One possibility is the following. Suppose that we have N processors and M applica-
tions, each of which has N or fewer threads. Then each application could be given
1/M of the available time on the N processors, using time slicing. [FEIT90a] notes
that this strategy can be inefficient. Consider an example in which there are two
applications, one with four threads and one with one thread. Using uniform time
allocation wastes 37.5% of the processing resource, because when the single-thread
application runs, three processors are left idle (see Figure 10.2). If there are several
one-thread applications, these could all be fit together to increase processor utiliza-
tion. If that option is not available, an alternative to uniform scheduling is schedul-
ing that is weighted by the number of threads. Thus, the four-thread application
could be given four-fifths of the time and the one-thread application given only one-
fifth of the time, reducing the processor waste to 15%.

440 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

DEDICATED PROCESSOR ASSIGNMENT An extreme form of gang scheduling,
suggested in [TUCK89], is to dedicate a group of processors to an application for
the duration of the application. That is, when an application is scheduled, each of
its threads is assigned a processor that remains dedicated to that thread until the
application runs to completion.

 This approach would appear to be extremely wasteful of processor time. If
a thread of an application is blocked waiting for I/O or for synchronization with
another thread, then that thread’s processor remains idle: there is no multiprogram-
ming of processors. Two observations can be made in defense of this strategy:

 1. In a highly parallel system, with tens or hundreds of processors, each of which
represents a small fraction of the cost of the system, processor utilization is no
longer so important as a metric for effectiveness or performance.

 2. The total avoidance of process switching during the lifetime of a program
should result in a substantial speedup of that program.

 Both [TUCK89] and [ZAHO90] report analyses that support statement 2.
 Figure 10.3 shows the results of one experiment [TUCK89]. The authors ran two
applications simultaneously (executing concurrently), a matrix multiplication and a
fast Fourier transform (FFT) calculation, on a system with 16 processors. Each appli-
cation breaks its problem into a number of tasks, which are mapped onto the threads
executing that application. The programs are written in such a way as to allow the
number of threads to be used to vary. In essence, a number of tasks are defined
and queued by an application. Tasks are taken from the queue and mapped onto
the available threads by the application. If there are fewer threads than tasks, then
leftover tasks remain queued and are picked up by threads as they complete their
assigned tasks. Clearly, not all applications can be structured in this way, but many
numerical problems and some other applications can be dealt with in this fashion.

 Figure 10.3 shows the speedup for the applications as the number of threads
executing the tasks in each application is varied from 1 to 24. For example, we see
that when both applications are started simultaneously with 24 threads each, the
speedup obtained, compared to using a single thread for each application, is 2.8 for
matrix multiplication and 2.4 for FFT. The figure shows that the performance of
both applications worsens considerably when the number of threads in each applica-
tion exceeds eight and thus the total number of processes in the system exceeds the
number of processors. Furthermore, the larger the number of threads, the worse the

1/21/2Time

Group 1 Group 2

Uniform division

PE1

PE2

PE3

PE4

15% Waste37.5% Waste

4/5

Group 1

Division by weights

PE1

PE2

PE3

PE4

Idle

Idle

Idle

1/5

Group 2

Idle

Idle

Idle

Figure 10.2 Example of Scheduling Groups with Four and One Threads [FEIT90b]

10.1 / MULTIPROCESSOR SCHEDULING 441

performance gets, because there is a greater frequency of thread preemption and
rescheduling. This excessive preemption results in inefficiency from many sources,
including time spent waiting for a suspended thread to leave a critical section, time
wasted in process switching, and inefficient cache behavior.

 The authors conclude that an effective strategy is to limit the number of active
threads to the number of processors in the system. If most of the applications are
either single thread or can use the task-queue structure, this will provide an effec-
tive and reasonably efficient use of the processor resources.

 Both dedicated processor assignment and gang scheduling attack the schedul-
ing problem by addressing the issue of processor allocation. One can observe that
the processor allocation problem on a multiprocessor more closely resembles the
memory allocation problem on a uniprocessor than the scheduling problem on a
uniprocessor. The issue is how many processors to assign to a program at any given
time, which is analogous to how many page frames to assign to a given process at
any time. [GEHR87] proposes the term activity working set , analogous to a virtual
memory working set, as the minimum number of activities (threads) that must be
scheduled simultaneously on processors for the application to make acceptable
progress. As with memory management schemes, the failure to schedule all of the
elements of an activity working set can lead to processor thrashing. This occurs when
the scheduling of threads whose services are required induces the descheduling of
other threads whose services will soon be needed. Similarly, processor fragmenta-
tion refers to a situation in which some processors are left over when others are
allocated, and the leftover processors are either insufficient in number or unsuitably
organized to support the requirements of waiting applications. Gang scheduling and
dedicated processor allocation are meant to avoid these problems.

40
0

1

2

3

4

5

6

7

8 12

Number of threads per application

Sp
ee

du
p

Matrix multiplication

FFT

16 20 24

 Figure 10.3 Application Speedup as a Function of Number of Threads [TUCK89]

442 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

DYNAMIC SCHEDULING For some applications, it is possible to provide language
and system tools that permit the number of threads in the process to be altered
dynamically. This would allow the operating system to adjust the load to improve
utilization.

 [ZAHO90] proposes an approach in which both the operating system and the
application are involved in making scheduling decisions. The operating system is
responsible for partitioning the processors among the jobs. Each job uses the proc-
essors currently in its partition to execute some subset of its runnable tasks by map-
ping these tasks to threads. An appropriate decision about which subset to run, as
well as which thread to suspend when a process is preempted, is left to the individ-
ual applications (perhaps through a set of run-time library routines). This approach
may not be suitable for all applications. However, some applications could default
to a single thread while others could be programmed to take advantage of this par-
ticular feature of the operating system.

 In this approach, the scheduling responsibility of the operating system is pri-
marily limited to processor allocation and proceeds according to the following pol-
icy. When a job requests one or more processors (either when the job arrives for the
first time or because its requirements change),

 1. If there are idle processors, use them to satisfy the request.

 2. Otherwise, if the job making the request is a new arrival, allocate it a single
processor by taking one away from any job currently allocated more than one
processor.

 3. If any portion of the request cannot be satisfied, it remains outstanding until
either a processor becomes available for it or the job rescinds the request (e.g.,
if there is no longer a need for the extra processors).

 Upon release of one or more processors (including job departure),

 4. Scan the current queue of unsatisfied requests for processors. Assign a single
processor to each job in the list that currently has no processors (i.e., to all
waiting new arrivals). Then scan the list again, allocating the rest of the proc-
essors on an FCFS basis.

 Analyses reported in [ZAHO90] and [MAJU88] suggest that for applica-
tions that can take advantage of dynamic scheduling, this approach is superior to
gang scheduling or dedicated processor assignment. However, the overhead of this
approach may negate this apparent performance advantage. Experience with actual
systems is needed to prove the worth of dynamic scheduling.

10.2 REAL-TIME SCHEDULING

Background

 Real-time computing is becoming an increasingly important discipline. The operat-
ing system, and in particular the scheduler, is perhaps the most important compo-
nent of a real-time system. Examples of current applications of real-time systems

10.2 / REAL-TIME SCHEDULING 443

include control of laboratory experiments, process control in industrial plants,
robotics, air traffic control, telecommunications, and military command and con-
trol systems. Next-generation systems will include the autonomous land rover,
 controllers of robots with elastic joints, systems found in intelligent manufacturing,
the space station, and undersea exploration.

 Real-time computing may be defined as that type of computing in which the
correctness of the system depends not only on the logical result of the computation
but also on the time at which the results are produced. We can define a real-time
 system by defining what is meant by a real-time process, or task. 3 In general, in a
real-time system, some of the tasks are real-time tasks, and these have a certain
degree of urgency to them. Such tasks are attempting to control or react to events
that take place in the outside world. Because these events occur in “real time,” a
real-time task must be able to keep up with the events with which it is concerned.
Thus, it is usually possible to associate a deadline with a particular task, where
the deadline specifies either a start time or a completion time. Such a task may be
classified as hard or soft. A hard real-time task is one that must meet its deadline;
otherwise it will cause unacceptable damage or a fatal error to the system. A soft
real-time task has an associated deadline that is desirable but not mandatory; it still
makes sense to schedule and complete the task even if it has passed its deadline.

 Another characteristic of real-time tasks is whether they are periodic or aperi-
odic. An aperiodic task has a deadline by which it must finish or start, or it may have
a constraint on both start and finish time. In the case of a periodic task , the require-
ment may be stated as “once per period T ” or “exactly T units apart.”

Characteristics of Real-Time Operating Systems

 Real-time operating systems can be characterized as having unique requirements in
five general areas [MORG92]:

 • Determinism

 • Responsiveness

 • User control

 • Reliability

 • Fail-soft operation

 An operating system is deterministic to the extent that it performs operations
at fixed, predetermined times or within predetermined time intervals. When mul-
tiple processes are competing for resources and processor time, no system will be
fully deterministic. In a real-time operating system, process requests for service are
dictated by external events and timings. The extent to which an operating system
can deterministically satisfy requests depends first on the speed with which it can

3 As usual, terminology poses a problem, because various words are used in the literature with varying
meanings. It is common for a particular process to operate under real-time constraints of a repetitive
nature. That is, the process lasts for a long time and, during that time, performs some repetitive function
in response to real-time events. Let us, for this section, refer to an individual function as a task. Thus,
the process can be viewed as progressing through a sequence of tasks. At any given time, the process is
 engaged in a single task, and it is the process/task that must be scheduled.

444 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

respond to interrupts and, second, on whether the system has sufficient capacity to
handle all requests within the required time.

 One useful measure of the ability of an operating system to function deterministi-
cally is the maximum delay from the arrival of a high-priority device interrupt to when
servicing begins. In non-real-time operating systems, this delay may be in the range of
tens to hundreds of milliseconds, while in real-time operating systems that delay may
have an upper bound of anywhere from a few microseconds to a millisecond.

 A related but distinct characteristic is responsiveness . Determinism is con-
cerned with how long an operating system delays before acknowledging an interrupt.
Responsiveness is concerned with how long, after acknowledgment, it takes an oper-
ating system to service the interrupt. Aspects of responsiveness include the following:

 1. The amount of time required to initially handle the interrupt and begin execu-
tion of the interrupt service routine (ISR). If execution of the ISR requires a
process switch, then the delay will be longer than if the ISR can be executed
within the context of the current process.

 2. The amount of time required to perform the ISR. This generally is dependent
on the hardware platform.

 3. The effect of interrupt nesting. If an ISR can be interrupted by the arrival of
another interrupt, then the service will be delayed.

 Determinism and responsiveness together make up the response time to external
events. Response time requirements are critical for real-time systems, because such
systems must meet timing requirements imposed by individuals, devices, and data
flows external to the system.

User control is generally much broader in a real-time operating system than
in ordinary operating systems. In a typical non-real-time operating system, the user
either has no control over the scheduling function of the operating system or can
only provide broad guidance, such as grouping users into more than one priority
class. In a real-time system, however, it is essential to allow the user fine-grained
control over task priority. The user should be able to distinguish between hard and
soft tasks and to specify relative priorities within each class. A real-time system may
also allow the user to specify such characteristics as the use of paging or process
swapping, what processes must always be resident in main memory, what disk trans-
fer algorithms are to be used, what rights the processes in various priority bands
have, and so on.

Reliability is typically far more important for real-time systems than non-real-
time systems. A transient failure in a non-real-time system may be solved by simply
rebooting the system. A processor failure in a multiprocessor non-real-time system
may result in a reduced level of service until the failed processor is repaired or
replaced. But a real-time system is responding to and controlling events in real time.
Loss or degradation of performance may have catastrophic consequences, ranging
from financial loss to major equipment damage and even loss of life.

 As in other areas, the difference between a real-time and a non-real-time oper-
ating system is one of degree. Even a real-time system must be designed to respond
to various failure modes. Fail-soft operation is a characteristic that refers to the
ability of a system to fail in such a way as to preserve as much capability and data as

10.2 / REAL-TIME SCHEDULING 445

possible. For example, a typical traditional UNIX system, when it detects a corrup-
tion of data within the kernel, issues a failure message on the system console, dumps
the memory contents to disk for later failure analysis, and terminates execution of
the system. In contrast, a real-time system will attempt either to correct the problem
or minimize its effects while continuing to run. Typically, the system notifies a user
or user process that it should attempt corrective action and then continues opera-
tion perhaps at a reduced level of service. In the event a shutdown is necessary, an
attempt is made to maintain file and data consistency.

 An important aspect of fail-soft operation is referred to as stability. A real-
time system is stable if, in cases where it is impossible to meet all task deadlines,
the system will meet the deadlines of its most critical, highest-priority tasks, even if
some less critical task deadlines are not always met.

 To meet the foregoing requirements, real-time operating systems typically
include the following features [STAN89]:

 • Fast process or thread switch

 • Small size (with its associated minimal functionality)

 • Ability to respond to external interrupts quickly

 • Multitasking with interprocess communication tools such as semaphores,
 signals, and events

 • Use of special sequential files that can accumulate data at a fast rate

 • Preemptive scheduling based on priority

 • Minimization of intervals during which interrupts are disabled

 • Primitives to delay tasks for a fixed amount of time and to pause/resume tasks

 • Special alarms and timeouts

 The heart of a real-time system is the short-term task scheduler. In design-
ing such a scheduler, fairness and minimizing average response time are not para-
mount. What is important is that all hard real-time tasks complete (or start) by their
deadline and that as many as possible soft real-time tasks also complete (or start)
by their deadline.

 Most contemporary real-time operating systems are unable to deal directly
with deadlines. Instead, they are designed to be as responsive as possible to real-time
tasks so that, when a deadline approaches, a task can be quickly scheduled. From
this point of view, real-time applications typically require deterministic response
times in the several-millisecond to submillisecond span under a broad set of condi-
tions; leading-edge applications—in simulators for military aircraft, for example—
often have constraints in the range of 10–100 μs [ATLA89].

 Figure 10.4 illustrates a spectrum of possibilities. In a preemptive scheduler that
uses simple round-robin scheduling, a real-time task would be added to the ready
queue to await its next timeslice, as illustrated in Figure 10.4a . In this case, the sched-
uling time will generally be unacceptable for real-time applications. Alternatively,
in a nonpreemptive scheduler, we could use a priority scheduling mechanism, giv-
ing real-time tasks higher priority. In this case, a real-time task that is ready would
be scheduled as soon as the current process blocks or runs to completion (Figure
 10.4b). This could lead to a delay of several seconds if a slow, low-priority task were

446 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

Process 1

Request from a
real-time process

(a) Round-robin preemptive scheduler

Clock
tick

Process 2 Process n
Real-time
process

Scheduling time

Real-time process added to
run queue to await its next slice

Request from a
real-time process

Request from a
real-time process

Current process

Current process
blocked or completed

(b) Priority-driven nonpreemptive scheduler

Real-time
process

Scheduling time

Real-time process added
to head of run queue

Preemption
point

Request from a
real-time process

Current process

(c) Priority-driven preemptive scheduler on preemption points

Real-time
process

Scheduling time

Wait for next
preemption point

Current process

(d) Immediate preemptive scheduler

Real-time
process

Scheduling time

Real-time process preempts current
process and executes immediately

Figure 10.4 Scheduling of Real-Time Process

10.2 / REAL-TIME SCHEDULING 447

executing at a critical time. Again, this approach is not acceptable. A more promis-
ing approach is to combine priorities with clock-based interrupts. Preemption points
occur at regular intervals. When a preemption point occurs, the currently running
task is preempted if a higher-priority task is waiting. This would include the preemp-
tion of tasks that are part of the operating system kernel. Such a delay may be on the
order of several milliseconds (Figure 10.4c). While this last approach may be ade-
quate for some real-time applications, it will not suffice for more demanding applica-
tions. In those cases, the approach that has been taken is sometimes referred to as
immediate preemption. In this case, the operating system responds to an interrupt
almost immediately, unless the system is in a critical-code lockout section. Scheduling
delays for a real-time task can then be reduced to 100 μs or less.

Real-Time Scheduling

 Real-time scheduling is one of the most active areas of research in computer science.
In this subsection, we provide an overview of the various approaches to real-time
scheduling and look at two popular classes of scheduling algorithms.

 In a survey of real-time scheduling algorithms, [RAMA94] observes that the
various scheduling approaches depend on (1) whether a system performs sched-
ulability analysis, (2) if it does, whether it is done statically or dynamically, and
(3) whether the result of the analysis itself produces a schedule or plan according to
which tasks are dispatched at run time. Based on these considerations, the authors
identify the following classes of algorithms:

 • Static table-driven approaches: These perform a static analysis of feasible
schedules of dispatching. The result of the analysis is a schedule that deter-
mines, at run time, when a task must begin execution.

 • Static priority-driven preemptive approaches: Again, a static analysis is per-
formed, but no schedule is drawn up. Rather, the analysis is used to assign
priorities to tasks, so that a traditional priority-driven preemptive scheduler
can be used.

 • Dynamic planning-based approaches: Feasibility is determined at run time
(dynamically) rather than offline prior to the start of execution (statically).
An arriving task is accepted for execution only if it is feasible to meet its time
constraints. One of the results of the feasibility analysis is a schedule or plan
that is used to decide when to dispatch this task.

 • Dynamic best effort approaches: No feasibility analysis is performed. The sys-
tem tries to meet all deadlines and aborts any started process whose deadline
is missed.

Static table-driven scheduling is applicable to tasks that are periodic. Input
to the analysis consists of the periodic arrival time, execution time, periodic end-
ing deadline, and relative priority of each task. The scheduler attempts to develop
a schedule that enables it to meet the requirements of all periodic tasks. This is
a predictable approach but one that is inflexible, because any change to any task
requirements requires that the schedule be redone. Earliest-deadline-first or other
periodic deadline techniques (discussed subsequently) are typical of this category of
scheduling algorithms.

448 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

Static priority-driven preemptive scheduling makes use of the priority-driven
preemptive scheduling mechanism common to most non-real-time multiprogram-
ming systems. In a non-real-time system, a variety of factors might be used to
determine priority. For example, in a time-sharing system, the priority of a process
changes depending on whether it is processor bound or I/O bound. In a real-time
system, priority assignment is related to the time constraints associated with each
task. One example of this approach is the rate monotonic algorithm (discussed
subsequently), which assigns static priorities to tasks based on the length of their
periods.

 With dynamic planning-based scheduling , after a task arrives, but before its
execution begins, an attempt is made to create a schedule that contains the previ-
ously scheduled tasks as well as the new arrival. If the new arrival can be scheduled
in such a way that its deadlines are satisfied and that no currently scheduled task
misses a deadline, then the schedule is revised to accommodate the new task.

Dynamic best effort scheduling is the approach used by many real-time sys-
tems that are currently commercially available. When a task arrives, the system
assigns a priority based on the characteristics of the task. Some form of deadline
scheduling, such as earliest-deadline scheduling, is typically used. Typically, the
tasks are aperiodic and so no static scheduling analysis is possible. With this type
of scheduling, until a deadline arrives or until the task completes, we do not know
whether a timing constraint will be met. This is the major disadvantage of this form
of scheduling. Its advantage is that it is easy to implement.

Deadline Scheduling

 Most contemporary real-time operating systems are designed with the objective of
starting real-time tasks as rapidly as possible, and hence emphasize rapid interrupt
handling and task dispatching. In fact, this is not a particularly useful metric in eval-
uating real-time operating systems. Real-time applications are generally not con-
cerned with sheer speed but rather with completing (or starting) tasks at the most
valuable times, neither too early nor too late, despite dynamic resource demands
and conflicts, processing overloads, and hardware or software faults. It follows that
priorities provide a crude tool and do not capture the requirement of completion
(or initiation) at the most valuable time.

 There have been a number of proposals for more powerful and appropriate
approaches to real-time task scheduling. All of these are based on having additional
information about each task. In its most general form, the following information
about each task might be used:

 • Ready time: Time at which task becomes ready for execution. In the case of a
repetitive or periodic task, this is actually a sequence of times that is known in
advance. In the case of an aperiodic task, this time may be known in advance,
or the operating system may only be aware when the task is actually ready.

 • Starting deadline: Time by which a task must begin.

 • Completion deadline: Time by which a task must be completed. The typical
real-time application will either have starting deadlines or completion dead-
lines, but not both.

10.2 / REAL-TIME SCHEDULING 449

 • Processing time: Time required to execute the task to completion. In some
cases, this is supplied. In others, the operating system measures an exponen-
tial average (as defined in Chapter 9). For still other scheduling systems, this
information is not used.

 • Resource requirements: Set of resources (other than the processor) required
by the task while it is executing.

 • Priority: Measures relative importance of the task. Hard real-time tasks may
have an “absolute” priority, with the system failing if a deadline is missed. If
the system is to continue to run no matter what, then both hard and soft real-
time tasks may be assigned relative priorities as a guide to the scheduler.

 • Subtask structure: A task may be decomposed into a mandatory subtask and
an optional subtask. Only the mandatory subtask possesses a hard deadline.

 There are several dimensions to the real-time scheduling function when dead-
lines are taken into account: which task to schedule next, and what sort of preemp-
tion is allowed. It can be shown, for a given preemption strategy and using either
starting or completion deadlines, that a policy of scheduling the task with the ear-
liest deadline minimizes the fraction of tasks that miss their deadlines [BUTT99,
HONG89, PANW88]. This conclusion holds for both single-processor and multi-
processor configurations.

 The other critical design issue is that of preemption. When starting deadlines
are specified, then a nonpreemptive scheduler makes sense. In this case, it would be
the responsibility of the real-time task to block itself after completing the manda-
tory or critical portion of its execution, allowing other real-time starting deadlines
to be satisfied. This fits the pattern of Figure 10.4b . For a system with completion
deadlines, a preemptive strategy (Figure 10.4c or 10.4d) is most appropriate. For
example, if task X is running and task Y is ready, there may be circumstances in
which the only way to allow both X and Y to meet their completion deadlines is to
preempt X, execute Y to completion, and then resume X to completion.

 As an example of scheduling periodic tasks with completion deadlines, consider
a system that collects and processes data from two sensors, A and B. The deadline for
collecting data from sensor A must be met every 20 ms, and that for B every 50 ms.
It takes 10 ms, including operating system overhead, to process each sample of data
from A and 25 ms to process each sample of data from B. Table 10.2 summarizes the
execution profile of the two tasks. Figure 10.5 compares three scheduling techniques
using the execution profile of Table 10.2 . The first row of Figure 10.5 repeats the infor-
mation in Table 10.2 ; the remaining three rows illustrate three scheduling techniques.

 The computer is capable of making a scheduling decision every 10 ms. 4 Suppose
that, under these circumstances, we attempted to use a priority scheduling scheme.
The first two timing diagrams in Figure 10.5 show the result. If A has higher prior-
ity, the first instance of task B is given only 20 ms of processing time, in two 10-ms
chunks, by the time its deadline is reached, and thus fails. If B is given higher priority,
then A will miss its first deadline. The final timing diagram shows the use of earli-
est-deadline scheduling. At time t = 0 , both A1 and B1 arrive. Because A1 has the

4 This need not be on a 10-ms boundary if more than 10 ms has elapsed since the last scheduling decision.

450 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

9070402010 30 50 60 80 1000 Time (ms)

B1 B2
A1 A2 A3 A4 A5Arrival times, execution

times, and deadlines

A1
deadline

A2
deadline

A3
deadline

A4
deadline

A5
deadline

B2
deadline

B1
deadline

A3 A4 A5A1 B1 A2 B1 B2 B2 B2

A1 A2 A3 A4 A5, B2B1

(missed)

A1

(missed)

A2 A3 A4

(missed)

A5, B2

B1 B2A2 A3 A5

A1 A2 A3 A4 A5, B2B1

A1 B1 A2 B1 A3 B2 A4 B2 A5

Fixed-priority scheduling;
A has priority

Fixed-priority scheduling;
B has priority

Earliest-deadline scheduling
using completion deadlines

B1

Figure 10.5 Scheduling of Periodic Real-Time Tasks with Completion Deadlines
(Based on Table 10.2)

Table 10.2 Execution Profile of Two Periodic Tasks

 Process Arrival Time Execution Time Ending Deadline

 A(1) 0 10 20

 A(2) 20 10 40

 A(3) 40 10 60

 A(4) 60 10 80

 A(5) 80 10 100

 • • • •

 • • • •

 • • • •

 B(1) 0 25 50

 B(2) 50 25 100

 • • • •

 • • • •

 • • • •

10.2 / REAL-TIME SCHEDULING 451

earliest deadline, it is scheduled first. When A1 completes, B1 is given the processor.
At t = 20 , A2 arrives. Because A2 has an earlier deadline than B1, B1 is interrupted
so that A2 can execute to completion. Then B1 is resumed at t = 30 . At t = 40 , A3
arrives. However, B1 has an earlier ending deadline and is allowed to execute to
completion at t = 45 . A3 is then given the processor and finishes at t = 55 .

 In this example, by scheduling to give priority at any preemption point to the
task with the nearest deadline, all system requirements can be met. Because the
tasks are periodic and predictable, a static table-driven scheduling approach is used.

 Now consider a scheme for dealing with aperiodic tasks with starting dead-
lines. The top part of Figure 10.6 shows the arrival times and starting deadlines for
an example consisting of five tasks each of which has an execution time of 20 ms.
 Table 10.3 summarizes the execution profile of the five tasks.

9070402010 30 50 60 80 100 1100 120

B C ADE

B C ADE

B (missed) C ADE

B (missed) C ADE (missed)

A B C D E

A B C D E

A B C D E

A B C D E

A C E D

B C E D A

A C D

Requirements

Arrival times

Starting deadline

Earliest
deadline

Arrival times

Starting deadline

Service

Earliest
deadline

with unforced
idle times

Arrival times

Starting deadline

Service

First-come
first-served

(FCFS)

Arrival times

Starting deadline

Service

Figure 10.6 Scheduling of Aperiodic Real-Time Tasks with Starting Deadlines

Table 10.3 Execution Profile of Five Aperiodic Tasks

 Process Arrival Time Execution Time Starting Deadline

 A 10 20 110

 B 20 20 20

 C 40 20 50

 D 50 20 90

 E 60 20 70

452 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

 A straightforward scheme is to always schedule the ready task with the earli-
est deadline and let that task run to completion. When this approach is used in the
example of Figure 10.6 , note that although task B requires immediate service, the
service is denied. This is the risk in dealing with aperiodic tasks, especially with
starting deadlines. A refinement of the policy will improve performance if deadlines
can be known in advance of the time that a task is ready. This policy, referred to as
earliest deadline with unforced idle times, operates as follows: Always schedule the
eligible task with the earliest deadline and let that task run to completion. An eligi-
ble task may not be ready, and this may result in the processor remaining idle even
though there are ready tasks. Note that in our example the system refrains from
scheduling task A even though that is the only ready task. The result is that, even
though the processor is not used to maximum efficiency, all scheduling require-
ments are met. Finally, for comparison, the FCFS policy is shown. In this case, tasks
B and E do not meet their deadlines.

Rate Monotonic Scheduling

 One of the more promising methods of resolving multitask scheduling conflicts for
periodic tasks is rate monotonic scheduling (RMS). The scheme was first proposed
in [LIU73] but has only recently gained popularity [BRIA99, SHA94]. RMS assigns
priorities to tasks on the basis of their periods.

 For RMS, the highest-priority task is the one with the shortest period, the
second highest-priority task is the one with the second shortest period, and so on.
When more than one task is available for execution, the one with the shortest period
is serviced first. If we plot the priority of tasks as a function of their rate, the result is
a monotonically increasing function (Figure 10.7); hence the name “rate monotonic
scheduling.”

P
ri

or
it

y

High

Low Rate (Hz)

Highest rate and
highest-priority task

Lowest rate and
lowest-priority task

Figure 10.7 A Task Set with RMS [WARR91]

10.2 / REAL-TIME SCHEDULING 453

 Figure 10.8 illustrates the relevant parameters for periodic tasks. The task’s
period, T , is the amount of time between the arrival of one instance of the task
and the arrival of the next instance of the task. A task’s rate (in hertz) is simply
the inverse of its period (in seconds). For example, a task with a period of 50 ms
occurs at a rate of 20 Hz. Typically, the end of a task’s period is also the task’s hard
deadline, although some tasks may have earlier deadlines. The execution (or com-
putation) time, C , is the amount of processing time required for each occurrence of
the task. It should be clear that in a uniprocessor system, the execution time must
be no greater than the period (must have C … T). If a periodic task is always run to
completion, that is, if no instance of the task is ever denied service because of insuf-
ficient resources, then the utilization of the processor by this task is U = C/T . For
example, if a task has a period of 80 ms and an execution time of 55 ms, its processor
utilization is 55/80 = 0.6875 .

 One measure of the effectiveness of a periodic scheduling algorithm is whether
or not it guarantees that all hard deadlines are met. Suppose that we have n tasks,
each with a fixed period and execution time. Then for it to be possible to meet all
deadlines, the following inequality must hold:

C1

T1
+

C2

T2
+ g +

Cn

Tn
… 1 (10.1)

 The sum of the processor utilizations of the individual tasks cannot exceed a value
of 1, which corresponds to total utilization of the processor. Equation (10.1)
 provides a bound on the number of tasks that a perfect scheduling algorithm can
successfully schedule. For any particular algorithm, the bound may be lower. For
RMS, it can be shown that the following inequality holds:

C1

T1
+

C2

T2
+ g +

Cn

Tn
… n(21/n - 1) (10.2)

 Table 10.4 gives some values for this upper bound. As the number of tasks increases,
the scheduling bound converges to ln 2 � 0.693 .

 As an example, consider the case of three periodic tasks, where Ui = Ci/Ti :

 • Task P 1 : C1 = 20 ; T1 = 100 ; U1 = 0.2

 • Task P 2 : C2 = 40 ; T2 = 150 ; U2 = 0.267

 • Task P 3 : C3 = 100 ; T3 = 350 ; U3 = 0.286

Processing ProcessingIdleP

Task P execution time C

Cycle 1

Task P period T

Cycle 2

Time

Figure 10.8 Periodic Task Timing Diagram

454 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

 The total utilization of these three tasks is 0.2 + 0.267 + 0.286 = 0.753 . The
upper bound for the schedulability of these three tasks using RMS is

C1

T1
+

C2

T2
+

C3

T3
… n(21/3 - 1) = 0.779

 Because the total utilization required for the three tasks is less than the upper bound
for RMS (0.753 6 0.779) , we know that if RMS is used, all tasks will be successfully
scheduled.

 It can also be shown that the upper bound of Equation (10.1) holds for
 earliest deadline scheduling. Thus, it is possible to achieve greater overall processor
utilization and therefore accommodate more periodic tasks with earliest deadline
scheduling. Nevertheless, RMS has been widely adopted for use in industrial appli-
cations. [SHA91] offers the following explanation:

 1. The performance difference is small in practice. The upper bound of Equation
(10.2) is a conservative one and, in practice, utilization as high as 90% is often
achieved.

 2. Most hard real-time systems also have soft real-time components, such as
 certain noncritical displays and built-in self tests that can execute at lower
 priority levels to absorb the processor time that is not used with RMS schedul-
ing of hard real-time tasks.

 3. Stability is easier to achieve with RMS. When a system cannot meet all dead-
lines because of overload or transient errors, the deadlines of essential tasks
need to be guaranteed provided that this subset of tasks is schedulable. In a
static priority assignment approach, one only needs to ensure that essential
tasks have relatively high priorities. This can be done in RMS by structuring
essential tasks to have short periods or by modifying the RMS priorities to
account for essential tasks. With earliest deadline scheduling, a periodic task’s
priority changes from one period to another. This makes it more difficult to
ensure that essential tasks meet their deadlines.

Table 10.4 Value of the RMS Upper Bound

n n(21/n - 1)

 1 1.0

 2 0.828

 3 0.779

 4 0.756

 5 0.743

 6 0.734

 • •

 • •

 • •

 ∞ ln 2 � 0.693

10.2 / REAL-TIME SCHEDULING 455

Priority Inversion

 Priority inversion is a phenomenon that can occur in any priority-based preemptive
scheduling scheme but is particularly relevant in the context of real-time schedul-
ing. The best-known instance of priority inversion involved the Mars Pathfinder
mission. This rover robot landed on Mars on July 4, 1997 and began gathering and
transmitting voluminous data back to Earth. But a few days into the mission, the
lander software began experiencing total system resets, each resulting in losses of
data. After much effort by the Jet Propulsion Laboratory (JPL) team that built the
Pathfinder, the problem was traced to priority inversion [JONE97].

 In any priority scheduling scheme, the system should always be executing the
task with the highest priority. Priority inversion occurs when circumstances within
the system force a higher-priority task to wait for a lower-priority task. A simple
example of priority inversion occurs if a lower-priority task has locked a resource
(such as a device or a binary semaphore) and a higher-priority task attempts to lock
that same resource. The higher-priority task will be put in a blocked state until the
resource is available. If the lower-priority task soon finishes with the resource and
releases it, the higher-priority task may quickly resume and it is possible that no
real-time constraints are violated.

 A more serious condition is referred to as an unbounded priority inversion , in
which the duration of a priority inversion depends not only on the time required to
handle a shared resource but also on the unpredictable actions of other unrelated
tasks. The priority inversion experienced in the Pathfinder software was unbounded
and serves as a good example of the phenomenon. Our discussion follows that of
[TIME02]. The Pathfinder software included the following three tasks, in decreas-
ing order of priority:

 T 1 : Periodically checks the health of the spacecraft systems and software
 T 2 : Processes image data
 T 3 : Performs an occasional test on equipment status

 After T 1 executes, it reinitializes a timer to its maximum value. If this timer
ever expires, it is assumed that the integrity of the lander software has somehow
been compromised. The processor is halted, all devices are reset, the software is
completely reloaded, the spacecraft systems are tested, and the system starts over.
This recovery sequence does not complete until the next day. T 1 and T 3 share a
common data structure, protected by a binary semaphore s . Figure 10.9a shows the
sequence that caused the priority inversion:

t1 : T 3 begins executing.
t2 : T 3 locks semaphore s and enters its critical section.
t3 : T 1 , which has a higher priority than T 3 , preempts T 3 and begins executing.
t4 : T 1 attempts to enter its critical section but is blocked because the semaphore

is locked by T 3 ; T 3 resumes execution in its critical section.
t5 : T 2 , which has a higher priority than T 3 , preempts T 3 and begins executing.
t6 : T 2 is suspended for some reason unrelated to T 1 and T 3 ; T 3 resumes.
t7 : T 3 leaves its critical section and unlocks the semaphore. T 1 preempts T 3 ,

locks the semaphore, and enters its critical section.

456 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

 In this set of circumstances, T 1 must wait for both T 3 and T 2 to complete and fails to
reset the timer before it expires.

 In practical systems, two alternative approaches are used to avoid unbounded
priority inversion: priority inheritance protocol and priority ceiling protocol.

 The basic idea of priority inheritance is that a lower-priority task inherits
the priority of any higher-priority task pending on a resource they share. This
priority change takes place as soon as the higher-priority task blocks on the

T1

T2

T3

s locked

(a) Unbounded priority inversion

Preempted
by T1

Preempted
by T2

s unlocked

Time

Normal execution Execution in critical section

s locked
Blocked by T3

(attempt to lock s)

t1 t2 t3 t4 t5 t6 t7 t8

T1

T2

T3

s locked
by T3

(b) Use of priority inheritance

Preempted
by T1

s unlocked

s unlocked

s locked
by T1

Blocked by T3
(attempt to lock s)

t1 t2 t3 t4 t5 t6 t7

Figure 10.9 Priority Inversion

10.3 / LINUX SCHEDULING 457

resource; it should end when the resource is released by the lower-priority task.
 Figure 10.9b shows that priority inheritance resolves the problem of unbounded
priority inversion illustrated in Figure 10.9a . The relevant sequence of events is
as follows:

 t 1 : T 3 begins executing.

 t 2 : T 3 locks semaphore s and enters its critical section.

 t 3 : T 1 , which has a higher priority than T 3 , preempts T 3 and begins executing.

 t 4 : T 1 attempts to enter its critical section but is blocked because the sema-
phore is locked by T 3 . T 3 is immediately and temporarily assigned the same
priority as T 1 . T 3 resumes execution in its critical section.

 t 5 : T 2 is ready to execute but, because T 3 now has a higher priority, T 2 is unable
to preempt T 3 .

 t 6 : T 3 leaves its critical section and unlocks the semaphore: its priority level is
downgraded to its previous default level. T 1 preempts T 3 , locks the sema-
phore, and enters its critical section.

 t 7 : T 1 is suspended for some reason unrelated to T 2 , and T 2 begins executing.

 This was the approach taken to solving the Pathfinder problem.
 In the priority ceiling approach, a priority is associated with each resource.

The priority assigned to a resource is one level higher than the priority of its highest-
priority user. The scheduler then dynamically assigns this priority to any task that
accesses the resource. Once the task finishes with the resource, its priority returns
to normal.

10.3 LINUX SCHEDULING

 For Linux 2.4 and earlier, Linux provided a real-time scheduling capability
 coupled with a scheduler for non-real-time processes that made use of the tra-
ditional UNIX scheduling algorithm described in Section 9.3 . Linux 2.6 includes
essentially the same real-time scheduling capability as previous releases and a sub-
stantially revised scheduler for non-real-time processes. We examine these two
areas in turn.

Real-Time Scheduling

 The three Linux scheduling classes are

 • SCHED_FIFO: First-in-first-out real-time threads

 • SCHED_RR: Round-robin real-time threads

 • SCHED_OTHER: Other, non-real-time threads

 Within each class, multiple priorities may be used, with priorities in the real-time
classes higher than the priorities for the SCHED_OTHER class. The default values are as
follows: Real-time priority classes range from 0 to 99 inclusively, and SCHED_OTHER
classes range from 100 to 139. A lower number equals a higher priority.

458 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

 For FIFO threads, the following rules apply:

 1. The system will not interrupt an executing FIFO thread except in the following
cases:

a. Another FIFO thread of higher priority becomes ready.

b. The executing FIFO thread becomes blocked waiting for an event, such as I/O.

c. The executing FIFO thread voluntarily gives up the processor following a
call to the primitive sched_yield .

 2. When an executing FIFO thread is interrupted, it is placed in the queue asso-
ciated with its priority.

 3. When a FIFO thread becomes ready and if that thread has a higher priority than
the currently executing thread, then the currently executing thread is preempted
and the highest-priority ready FIFO thread is executed. If more than one thread
has that highest priority, the thread that has been waiting the longest is chosen.

 The SCHED_RR policy is similar to the SCHED_FIFO policy, except for the
addition of a timeslice associated with each thread. When a SCHED_RR thread has
executed for its timeslice, it is suspended and a real-time thread of equal or higher
priority is selected for running.

 Figure 10.10 is an example that illustrates the distinction between FIFO and RR
scheduling. Assume a process has four threads with three relative priorities assigned
as shown in Figure 10.10a . Assume that all waiting threads are ready to execute when
the current thread waits or terminates and that no higher-priority thread is awakened
while a thread is executing. Figure 10.10b shows a flow in which all of the threads
are in the SCHED_FIFO class. Thread D executes until it waits or terminates. Next,
although threads B and C have the same priority, thread B starts because it has been
waiting longer than thread C. Thread B executes until it waits or terminates, then
thread C executes until it waits or terminates. Finally, thread A executes.

 Figure 10.10c shows a sample flow if all of the threads are in the SCHED_RR
class. Thread D executes until it waits or terminates. Next, threads B and C are time
sliced, because they both have the same priority. Finally, thread A executes.

 The final scheduling class is SCHED_OTHER . A thread in this class can only
execute if there are no real-time threads ready to execute.

Maximum

(a) Relative thread priorities (b) Flow with FIFO scheduling

D

D B C A
MiddleC

MiddleB

MinimumA

(c) Flow with RR scheduling

D B C B C A

Figure 10.10 Example of Linux Real-Time Scheduling

10.3 / LINUX SCHEDULING 459

Non-Real-Time Scheduling

 The Linux 2.4 scheduler for the SCHED_OTHER class did not scale well with increas-
ing number of processors and increasing number of processes. The drawbacks of
this scheduler include the following:

 • The Linux 2.4 scheduler uses a single runqueue for all processors in a symmet-
ric multiprocessing system (SMP). This means a task can be scheduled on any
processor, which can be good for load balancing but bad for memory caches.
For example, suppose a task executed on CPU-1, and its data were in that pro-
cessor’s cache. If the task got rescheduled to CPU-2, its data would need to be
invalidated in CPU-1 and brought into CPU-2.

 • The Linux 2.4 scheduler uses a single runqueue lock. Thus, in an SMP sys-
tem, the act of choosing a task to execute locks out any other processor from
manipulating the runqueues. The result is idle processors awaiting release of
the runqueue lock and decreased efficiency.

 • Preemption is not possible in the Linux 2.4 scheduler; this means that a lower-
priority task can execute while a higher-priority task waited for it to complete.

 To correct these problems, Linux 2.6 uses a completely new priority scheduler
known as the O(1) scheduler. 5 The scheduler is designed so that the time to select
the appropriate process and assign it to a processor is constant, regardless of the
load on the system or the number of processors.

 The kernel maintains two scheduling data structure for each processor in the
system, of the following form (Figure 10.11):

struct prio_array {

int nr_active; /* number of tasks in this array*/

unsigned long bitmap[BITMAP_SIZE]; /* priority bitmap */

struct list_head queue[MAX_PRIO]; /* priority queues */

 A separate queue is maintained for each priority level. The total number of
queues in the structure is MAX_PRIO , which has a default value of 140. The struc-
ture also includes a bitmap array of sufficient size to provide one bit per priority
level. Thus, with 140 priority levels and 32-bit words, BITMAP_SIZE has a value of
5. This creates a bitmap of 160 bits, of which 20 bits are ignored. The bitmap indi-
cates which queues are not empty. Finally, nr_active indicates the total number
of tasks present on all queues. Two structures are maintained: an active queues
structure and an expired queues structure.

 Initially, both bitmaps are set to all zeroes and all queues are empty. As a
process becomes ready, it is assigned to the appropriate priority queue in the active
queues structure and is assigned the appropriate timeslice. If a task is preempted
before it completes its timeslice, it is returned to an active queue. When a task com-
pletes its timeslice, it goes into the appropriate queue in the expired queues structure
and is assigned a new timeslice. All scheduling is done from among tasks in the active

5 The term O (1) is an example of the “big-O” notation, used for characterizing the time complexity of
algorithms. Appendix I explains this notation.

460 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

queues structure. When the active queues structure is empty, a simple pointer assign-
ment results in a switch of the active and expired queues, and scheduling continues.

 Scheduling is simple and efficient. On a given processor, the scheduler picks
the highest-priority nonempty queue. If multiple tasks are in that queue, the tasks
are scheduled in round-robin fashion.

 Linux also includes a mechanism for moving tasks from the queue lists of one
processor to that of another. Periodically, the scheduler checks to see if there is a sub-
stantial imbalance among the number of tasks assigned to each processor. To balance
the load, the schedule can transfer some tasks. The highest-priority active tasks are
selected for transfer, because it is more important to distribute high-priority tasks fairly.

CALCULATING PRIORITIES AND TIMESLICES Each non-real-time task is assigned
an initial priority in the range of 100–139, with a default of 120. This is the task’s
static priority and is specified by the user. As the task executes, a dynamic priority is
calculated as a function of the task’s static priority and its execution behavior. The
Linux scheduler is designed to favor I/O-bound tasks over processor-bound tasks.
This preference tends to provide good interactive response. The technique used by
Linux to determine the dynamic priority is to keep a running tab on how much time
a process sleeps (waiting for an event) versus how much time the process runs. In
essence, a task that spends most of its time sleeping is given a higher priority.

140-bit priority array for active queues

140-bit priority array for expired queues

Bit 0
(priority 0)

Highest-priority
nonempty

active queue

Bit 139
(priority 139)

Active queues:
140 queues by priority;
each queue contains ready
tasks for that priority

Expired queues:
140 queues by priority;
each queue contains ready
tasks with expired timeslices
for that priority

Figure 10.11 Linux Scheduling Data Structures for Each Processor

10.4 / UNIX SVR4 SCHEDULING 461

 Timeslices are assigned in the range of 10–200 ms. In general, higher-priority
tasks are assigned larger timeslices.

RELATIONSHIP TO REAL-TIME TASKS Real-time tasks are handled in a
different manner from non-real-time tasks in the priority queues. The following
considerations apply:

 1. All real-time tasks have only a static priority; no dynamic priority changes
are made.

 2. SCHED_FIFO tasks do not have assigned timeslices. Such tasks are scheduled
in FIFO discipline. If a SHED_FIFO task is blocked, it returns to the same pri-
ority queue in the active queue list when it becomes unblocked.

 3. Although SCHED_RR tasks do have assigned timeslices, they also are never
moved to the expired queue list. When a SCHED_RR task exhausts its timeslice,
it is returned to its priority queue with the same timeslice value. Timeslice val-
ues are never changed.

 The effect of these rules is that the switch between the active queue list and
the expired queue list only happens when there are no ready real-time tasks waiting
to execute.

10.4 UNIX SVR4 SCHEDULING

 The scheduling algorithm used in UNIX SVR4 is a complete overhaul of the sched-
uling algorithm used in earlier UNIX systems (described in Section 9.3). The new
algorithm is designed to give highest preference to real-time processes, next-highest
preference to kernel-mode processes, and lowest preference to other user-mode
processes, referred to as time-shared processes. 6

 The two major modifications implemented in SVR4 are as follows:

 1. The addition of a preemptable static priority scheduler and the introduction of
a set of 160 priority levels divided into three priority classes.

 2. The insertion of preemption points. Because the basic kernel is not preemp-
tive, it can only be split into processing steps that must run to completion
without interruption. In between the processing steps, safe places known as
preemption points have been identified where the kernel can safely interrupt
processing and schedule a new process. A safe place is defined as a region
of code where all kernel data structures are either updated and consistent or
locked via a semaphore.

 Figure 10.12 illustrates the 160 priority levels defined in SVR4. Each process
is defined to belong to one of three priority classes and is assigned a priority level
within that class. The classes are as follows:

 • Real time (159-100): Processes at these priority levels are guaranteed to be
 selected to run before any kernel or time-sharing process. In addition, real-time

6 Time-shared processes are the processes that correspond to users in a traditional time-sharing system.

462 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

processes can make use of preemption points to preempt kernel processes and
user processes.

 • Kernel (99-60): Processes at these priority levels are guaranteed to be selected
to run before any time-sharing process but must defer to real-time processes.

 • Time-shared (59-0): The lowest-priority processes, intended for user applica-
tions other than real-time applications.

 Figure 10.13 indicates how scheduling is implemented in SVR4. A dispatch
queue is associated with each priority level, and processes at a given priority level
are executed in round-robin fashion. A bit-map vector, dqactmap , contains one bit
for each priority level; the bit is set to one for any priority level with a nonempty
queue. Whenever a running process leaves the Running state, due to a block, times-
lice expiration, or preemption, the dispatcher checks dqactmap and dispatches a
ready process from the highest-priority nonempty queue. In addition, whenever a
defined preemption point is reached, the kernel checks a flag called kprunrun . If
set, this indicates that at least one real-time process is in the Ready state, and the
kernel preempts the current process if it is of lower priority than the highest-priority
real-time ready process.

 Within the time-sharing class, the priority of a process is variable. The scheduler
reduces the priority of a process each time it uses up a time quantum, and it raises its

Priority
class

Real time

Kernel

Time shared

Global
value

Scheduling
sequence

159

100

First

Last

99

60
59

0

Figure 10.12 SVR4 Priority Classses

0 0111

159 012n

dqactmap

dispq

PP

P

P

P

P

P

P

Figure 10.13 SVR4 Dispatch Queues

10.5 / UNIX FREEBSD SCHEDULING 463

priority if it blocks on an event or resource. The time quantum allocated to a time-
sharing process depends on its priority, ranging from 100 ms for priority 0 to 10 ms
for priority 59. Each real-time process has a fixed priority and a fixed time quantum.

10.5 UNIX FREEBSD SCHEDULING

 The UNIX FreeBSD scheduler is designed to provide a more efficient operation
than previous UNIX schedulers under heavy load and when used on a multiproces-
sor or multicore platform. The scheduler is quite complex and here we present an
overview of the most significant design features; for more detail, see [MCKU05]
and [ROBE03].

Priority Classes

 The underlying priority mechanism in the FreeBSD 5.1 scheduler is similar to that
of UNIX SVR4. For FreeBSD, five priority classes are defined (Table 10.5); the
first two classes are for kernel-mode thread and the remaining classes for user-mode
threads. Kernel threads execute code that is complied into the kernel’s load image
and operate with the kernel’s privileged execution code.

 The highest-priority threads are referred to as bottom-half kernel. Threads in
this class run in the kernel are scheduled based on interrupt priorities. These pri-
orities are set when the corresponding devices are configured and do not change.
Top-half kernel threads also run in the kernel and execute various kernel functions.
These priorities are set based on predefined priorities and never change.

 The next lower priority class is referred to as real-time user. A thread with a
real-time priority is not subject to priority degradation. That is, a real-time thread
maintains the priority it began with and does not drop to a lower priority as a result
of using resources. Next comes the time-sharing user priority class. For threads in
this class, priority is periodically recalculated based on a number of parameters,
including the amount of processor time used, the amount of memory resources
held, and other resource consumption parameters. The lowest range of priorities is
referred to as the idle user class. This class is intended for applications that will only
consume processor time when no other threads are ready to execute.

Table 10.5 FreeBSD Thread Scheduling Classes

 Priority Class Thread Type Description

 0–63 Bottom-half kernel Scheduled by interrupts. Can block to await a resource.

 64–127 Top-half kernel Runs until blocked or done. Can block to await a resource.

 128–159 Real-time user Allowed to run until blocked or until a higher-priority
thread becomes available. Preemptive scheduling.

 160–223 Time-sharing user Adjusts priorities based on processor usage.

 224–255 Idle user Only run when there are no time sharing or real-time
threads to run.

Note : Lower number corresponds to higher priority.

464 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

SMP and Multicore Support

 The latest version of the FreeBSD scheduler, introduced with FreeBSD 5.0, was
designed to provide effective scheduling for a SMP or multicore system. The new
scheduler meets three design goals:

 • Address the need for processor affinity in SMP and multicore systems. The term
processor affinity refers to a scheduler that only migrates a thread (moves thread
from one processor to another) when necessary to avoid having an idle processor.

 • Provide better support for multithreading on multicore systems.

 • Improve the performance of the scheduling algorithm, so that it is no longer a
function of the number of threads in the system.

 In this subsection, we look at three key features of the new scheduler: queue
structure, interactivity scoring, and thread migration.

QUEUE STRUCTURE The previous version of the FreeBSD schedule used a single
global scheduling queue for all processors that it traverses once per second to
recalculate their priorities. The use of a single list for all threads means that the
performance of the scheduler is dependent on the number of tasks in the system, and
as the number of tasks grows, more processor time must be spent in the scheduler
maintaining the list.

 The new scheduler performs scheduling independently for each processor. For
each processor, three queues are maintained. Each of the queues has the structure
shown in Figure 10.14 for SVR4. Two runqueues implement the kernel, real-time,
and time-sharing scheduling classes (priorities 0 through 223). The third queue is
only for the idle class (priorities 224 through 255).

 The two runqueues are designated current and next. Every thread that is granted
a timeslice (place in the Ready state) is placed in either the current queue or the next
queue, as explained subsequently, at the appropriate priority for that thread. The
scheduler for a processor selects threads from the current queue in priority order until
the current queue is empty. When the current queue is empty, the scheduler swaps the
current and next queue and begins to schedule threads from the new current queue.
The use of two runqueues guarantees that each thread will be granted processor time
at least once every two queue switches regardless of priority, avoiding starvation.

 Several rules determine the assignment of a thread to either the current queue
or the next queue:

 1. Kernel and real-time threads are always inserted onto the current queue.

 2. A time-sharing thread is assigned to the current queue if it is interactive
(explained in the next subsection) or to the next queue otherwise. Inserting
interactive threads onto the current queue results in a low interactive response
time for such threads, compared to other time-sharing threads that do not
exhibit a high degree of interactivity.

INTERACTIVITY SCORING A thread is considered to be interactive if the ratio of
its voluntary sleep time versus its run time is below a certain threshold. Interactive
threads typically have high sleep times as they wait for user input. These sleep intervals
are followed by bursts of processor activity as the thread processes the user’s request.

10.5 / UNIX FREEBSD SCHEDULING 465

 The interactivity threshold is defined in the scheduler code and is not config-
urable. The scheduler uses two equations to compute the interactivity score of a
thread. First, we define a scaling factor:

 Scaling factor =
Maximum interactivity score

2

 For threads whose sleep time exceeds their run time, the following equation
is used:

 Interactivity score = Scaling factora run
sleep

b
 When a thread’s run time exceeds its sleep time, the following equation is used

instead:

 Interactivity score = Scaling factora1 +
sleep
run

b

Highest (31)

Lowest (16)

Highest (15)

Lowest (0)

Real-time
priority
classes

Variable
priority
classes

Figure 10.14 Windows Thread Dispatching Priorities

466 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

 The result is that threads whose sleep time exceeds their run time score in the
lower half of the range of interactivity scores, and threads whose run time exceeds
their sleep time score in the upper half of the range.

THREAD MIGRATION In general, it is desirable to schedule a Ready thread onto the
last processor that it ran on; this is called processor affinity . The alternative is to allow
a thread to migrate to another processor for its next execution time slice. Processor
affinity is significant because of local caches dedicated to a single processor. When
a thread is run, it may still have data in the cache of its last processor. Changing to
another processor means that the necessary data must be loaded into caches in the
new processor and cache lines from the preceding processor must be invalidated.
On the other hand, processor migration may allow a better load balancing and may
prevent idle periods on some processors while other processor have more work
than they can handle in a timely fashion.

 The FreeBSD scheduler supports two mechanisms for thread migration to bal-
ance load: pull and push. With the pull mechanism , and idle processor steals a thread
from a nonidle processor. When a processor has no work to do, it sets a bit in a global
bit-mask indicating that it is idle. When an active processor is about to add work to
its own run queue, it first checks for such idle bits and if a set idle bit is found, passes
the thread to the idle processor. It is primarily useful when there is a light or sporadic
load, or in situations where processes are starting and exiting very frequently.

 The pull mechanism is effective in preventing the waste of a processor due
to idleness. But it is not effective, or indeed relevant, in a situation in which every
processor has work to do but the load has developed in an uneven fashion. With
the push mechanism , a periodic scheduler task evaluates the current load situation
and evens it out. Twice per second, this task picks the most-loaded and least-loaded
processors in the system and equalizes their run queues. Push migration ensures
fairness among the runnable threads.

10.6 WINDOWS SCHEDULING

 Windows is designed to be as responsive as possible to the needs of a single user in
a highly interactive environment or in the role of a server. Windows implements a
preemptive scheduler with a flexible system of priority levels that includes round-
robin scheduling within each level and, for some levels, dynamic priority variation
on the basis of their current thread activity. Threads are the unit of scheduling in
Windows rather than processes.

Process and Thread Priorities

 Priorities in Windows are organized into two bands, or classes: real time and vari-
able. Each of these bands consists of 16 priority levels. Threads requiring immediate
attention are in the real-time class, which includes functions such as communica-
tions and real-time tasks.

 Overall, because Windows makes use of a priority-driven preemptive scheduler,
threads with real-time priorities have precedence over other threads. When a thread

10.6 / WINDOWS SCHEDULING 467

becomes ready whose priority is higher than the currently executing thread, the lower-
priority thread is preempted and the processor given to the higher-priority thread.

 Priorities are handled somewhat differently in the two classes (Figure 10.14).
In the real-time priority class , all threads have a fixed priority that never changes.
All of the active threads at a given priority level are in a round-robin queue. In the
variable priority class , a thread’s priority begins an initial priority value and then
may be temporarily boosted (raised) during the thread’s lifetime. There is a FIFO
queue at each priority level; a thread will change queues among the variable priority
classes as its own priority changes. However, a thread at priority level 15 or below is
never boosted to level 16 or any other level in the real-time class.

 The initial priority of a thread in the variable priority class is determined by two
quantities: process base priority and thread base priority. The process base priority
is an attribute of the process object, and can take on any value from 1 through 15
 (priority 0 is reserved for the Executive’s per-processor idle threads). Each thread
object associated with a process object has a thread base priority attribute that
 indicates the thread’s base priority relative to that of the process. The thread’s base
priority can be equal to that of its process or within two levels above or below that of
the process. So, for example, if a process has a base priority of 4 and one of its threads
has a base priority of -1 , then the initial priority of that thread is 3.

 Once a thread in the variable priority class has been created, its actual prior-
ity, referred to as the thread’s current priority, may fluctuate within given bounda-
ries. The current priority may never fall below the thread’s base priority and it may
never exceed 15. Figure 10.15 gives an example. The process object has a base prior-
ity attribute of 4. Each thread object associated with this process object must have
an initial priority of between 2 and 6. Suppose the base priority for thread is 4. Then
the current priority for that thread may fluctuate in the range from 4 through 15
depending on what boosts it has been given. If a thread is interrupted to wait on an
I/O event, the kernel boosts its priority. If a boosted thread is interrupted because

Base priority Normal
Below normal

Lowest

Above normal
Highest

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Process
priority

Thread’s base
priority

Thread’s dynamic
priority

Figure 10.15 Example of Windows Priority Relationship

468 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

it has used up its current time quantum, the kernel lowers its priority. Thus, proces-
sor-bound threads tend toward lower priorities and I/O-bound threads tend toward
higher priorities. In the case of I/O-bound threads, the kernel boosts the priority
more for interactive waits (e.g., wait on keyboard or mouse) than for other types
of I/O (e.g., disk I/O). Thus, interactive threads tend to have the highest priorities
within the variable priority class.

Multiprocessor Scheduling

 When Windows is run on a single processor, the highest-priority thread is always
active unless it is waiting on an event. If there is more than one thread that has
the same highest priority, then the processor is shared, round robin, among all the
threads at that priority level. In a multiprocessor system with N processors, the ker-
nel tries to give the N processors to the N highest-priority threads that are ready
to run. The remaining, lower priority, threads must wait until the other threads
block or have their priority decay. Lower-priority threads may also have their pri-
ority boosted to 15 for a very short time if they are being starved, solely to correct
instances of priority inversion.

 The foregoing scheduling discipline is affected by the processor affinity
attribute of a thread. If a thread is ready to execute but the only available processors
are not in its processor affinity set, then that thread is forced to wait, and the kernel
schedules the next available thread.

10.7 LINUX VIRTUAL MACHINE PROCESS SCHEDULING

 The Linux VServer virtual machine facility, introduced in Chapter 2 , provides a
way of controlling VM use of processor time. VServer overlays a token bucket filter
(TBF) on top of the standard Linux schedule. The purpose of the TBF is to deter-
mine how much of the processor execution time (single processor, multiprocessor,
or multicore) is allocated to each VM. If only the underlying Linux scheduler is
used to globally schedule processes across all VMs, then resource hunger processes
in one VM crowd out processes in other VMs.

 Figure 10.16 illustrates the TBF concept. For each VM, a bucket is defined
with a capacity of S tokens. Tokens are added to the bucket at a rate of R tokens
during every time interval of length T. When the bucket is full, additional incoming
tokens are simply discarded. When a process is executing on this VM, it consumes
one token for each timer clock tick. If the bucket empties, the process is put on
hold and cannot be restarted until the bucket is refilled to a minimum threshold
value of M tokens. At that point, the process is rescheduled. A significant conse-
quence of the TBF approach is that a VM may accumulate tokens during a period of
quiescence, and then later use the tokens in a burst when required.

 Adjusting the values of R and T allows for regulating the percentage of capac-
ity that a VM can claim. For a single processor, we can define capacity allocation
as follows:

R
T

= Fraction of processor allocation

10.8 / SUMMARY 469

 This equation denotes the fraction of a single processor in a system. Thus, for exam-
ple, if a system is multicore with four cores and we wish to provide one VM on
an average of one dedicated processor, then we set R = 1 and T = 4 . The overall
 system is limited as follows. If there are N VMs, then:

a
N

i=1

Ri

Ti
… 1

 The parameters S and M are set so as to penalize a VM after a certain amount
of burst time. The following parameters must be configured or allocated for a VM:
following a burst time of B , the VM suffers a hold time of H. With these parameters,
it is possible to calculate the desired values of S and M as follows:

M = W * H *
R
T

S = W * B * a1 -
R
T
b

 where W is the rate at which the schedule runs (makes decisions). For example, consider
a VM with a limit of 1/2 of processor time, and we wish to say that after using the proces-
sor for 30 seconds, there will be a hold time of 5 seconds. The scheduler runs at 1,000 Hz.
This requirement is met with the following values: M � 1,000 * 5 * 0.5 � 2,500
tokens ; S = 1,000 * 30 * (1 - 0.5) = 15,000 tokens .

10.8 SUMMARY

 With a tightly coupled multiprocessor, multiple processors have access to the same
main memory. In this configuration, the scheduling structure is somewhat more
complex. For example, a given process may be assigned to the same processor for

bucket size =
S tokens

minimum
threshold =
M tokens

running process consumes
1 token/timer tick

token input rate =
R/T tokens per second

current bucket
occupancy

Figure 10.16 Linux VServer Token Bucket Scheme

470 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

its entire life or dispatched to any processor each time it enters the Running state.
Performance studies suggest that the differences among various scheduling algo-
rithms are less significant in a multiprocessor system.

 A real-time process or task is one that is executed in connection with some
process or function or set of events external to the computer system and that must
meet one or more deadlines to interact effectively and correctly with the external
environment. A real-time operating system is one that is capable of managing real-
time processes. In this context, the traditional criteria for a scheduling algorithm
do not apply. Rather, the key factor is the meeting of deadlines. Algorithms that
rely heavily on preemption and on reacting to relative deadlines are appropriate
in this context.

10.9 RECOMMENDED READING

 [WEND89] is an interesting discussion of approaches to multiprocessor scheduling.
A good treatment of real-time scheduling is contained in [LIU00]. The following
collections of papers all contain important articles on real-time operating systems
and scheduling: [KRIS94], [STAN93], [LEE93], and [TILB91]. [SHA90] provides
a good explanation of priority inversion, priority inheritance, and priority ceiling.
[ZEAD97] analyzes the performance of the SVR4 real-time scheduler. [LIND04]
provides an overview of the Linux 2.6 scheduler; [LOVE10] contains a more
detailed discussion.

KRIS94 Krishna, C., and Lee, Y., eds. “Special Issue on Real-Time Systems.”
Proceedings of the IEEE , January 1994.

LEE93 Lee, Y., and Krishna, C., eds. Readings in Real-Time Systems. Los Alamitos,
CA: IEEE Computer Society Press, 1993.

LIND04 Lindsley, R. “What’s New in the 2.6 Scheduler.” Linux Journal , March 2004.
LIU00 Liu, J. Real-Time Systems. Upper Saddle River, NJ: Prentice Hall, 2000.
LOVE10 Love, R. Linux Kernel Development. Upper Saddle River, NJ: Addison-

Wesley, 2010.
SHA90 Sha, L., Rajkumar, R., and Lehoczky, J. “Priority Inheritance Protocols: An

Approach to Real-Time Synchronization.” IEEE Transactions on Computers ,
September 1990.

STAN93 Stankovic, J., and Ramamritham, K., eds. Advances in Real-Time Systems.
Los Alamitos, CA: IEEE Computer Society Press, 1993.

TILB91 Tilborg, A., and Koob, G., eds. Foundations of Real-Time Computing:
Scheduling and Resource Management. Boston: Kluwer Academic Publishers, 1991.

WEND89 Wendorf, J., Wendorf, R., and Tokuda, H. “Scheduling Operating System
Processing on Small-Scale Microprocessors.” Proceedings, 22nd Annual Hawaii
International Conference on System Science , January 1989.

ZEAD97 Zeadally, S. “An Evaluation of the Real-Time Performance of SVR4.0 and
SVR4.2.” Operating Systems Review , January 1977.

10.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 471

10.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 aperiodic task
 deadline scheduling
 deterministic operating system
 fail-soft operation
 gang scheduling
 granularity

 hard real-time task
 load sharing
 periodic task
 priority inversion
 rate monotonic scheduling
 real-time operating system

 real-time scheduling
 responsiveness
 soft real-time task
 thread scheduling
 unbounded priority

inversion

Review Questions

 10.1 List and briefly define five different categories of synchronization granularity.
 10.2 List and briefly define four techniques for thread scheduling.
 10.3 List and briefly define three versions of load sharing.
 10.4 What is the difference between hard and soft real-time tasks?
 10.5 What is the difference between periodic and aperiodic real-time tasks?
 10.6 List and briefly define five general areas of requirements for a real-time operating system.
 10.7 List and briefly define four classes of real-time scheduling algorithms.
 10.8 What items of information about a task might be useful in real-time scheduling?

Problems

 10.1 Consider a set of three periodic tasks with the execution profiles of Table 10.6 .
 Develop scheduling diagrams similar to those of Figure 10.5 for this set of tasks.

Table 10.6 Execution Profile for Problem 10.1

 Process Arrival Time Execution Time Ending Deadline

 A(1) 0 10 20

 A(2) 20 10 40

 • • • •

 • • • •

 • • • •

 B(1) 0 10 50

 B(2) 50 10 100

 • • • •

 • • • •

 • • • •

 C(1) 0 15 50

 C(2) 50 15 100

 • • • •

 • • • •

 • • • •

472 CHAPTER 10 / MULTIPROCESSOR AND REAL-TIME SCHEDULING

 10.2 Consider a set of five aperiodic tasks with the execution profiles of Table 10.7 .
 Develop scheduling diagrams similar to those of Figure 10.6 for this set of tasks.

 10.3 Least laxity first (LLF) is a real-time scheduling algorithm for periodic tasks. Slack
time, or laxity, is the amount of time between when a task would complete if it started
now and its next deadline. This is the size of the available scheduling window. Laxity
can be expressed as

Laxity = (deadline time) - (current time) - (processor time needed)

 LLF selects the task with the minimum laxity to execute next. If two or more tasks
have the same minimum laxity value, they are serviced on a FCFS basis.
a. Suppose a task currently has a laxity of t. By how long may the scheduler delay

starting this task and still meet its deadline?
b. Suppose a task currently has a laxity of 0. What does this mean?
c. What does it mean if a task has negative laxity?
d. Consider a set of three periodic tasks with the execution profiles of Table 10.8a .

Develop scheduling diagrams similar to those of Figure 10.4 for this set of tasks
that compare rate monotonic, earliest deadline first, and LLF. Assume preemption
may occur at 5-ms intervals. Comment on the results.

 10.4 Repeat Problem 10.3d for the execution profiles of Table 10.8b . Comment on the
 results.

 10.5 Maximum urgency first (MUF) is a real-time scheduling algorithm for periodic tasks.
Each task is assigned an urgency that is defined as a combination of two fixed pri-
orities and one dynamic priority. One of the fixed priorities, the criticality, has pre-
cedence over the dynamic priority. Meanwhile, the dynamic priority has precedence
over the other fixed priority, called the user priority. The dynamic priority is inversely

Table 10.7 Execution Profile for Problem 10.2

 Process Arrival Time Execution Time Starting Deadline

 A 10 20 100

 B 20 20 30

 C 40 20 60

 D 50 20 80

 E 60 20 70

Table 10.8 Execution Profiles for Problems 10.3 through 10.6

(a) Light load

Task Period Execution Time

 A 6 2

 B 8 2

 C 12 3

(b) Heavy load

Task Period Execution Time

 A 6 2

 B 8 5

 C 12 3

10.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 473

proportional to the laxity of a task. MUF can be explained as follows. First, tasks are
ordered from shortest to longest period. Define the critical task set as the first N tasks
such that worst-case processor utilization does not exceed 100%. Among critical set
tasks that are ready, the scheduler selects the task with the least laxity. If no critical
set tasks are ready, the schedule chooses among the noncritical tasks the one with
the least laxity. Ties are broken through an optional user priority and then by FCFS.
 Repeat Problem 10.3d, adding MUF to the diagrams. Assume that user-defined priori-
ties are A highest, B next, C lowest. Comment on the results.

 10.6 Repeat Problem 10.4, adding MUF to the diagrams. Comment on the results.
 10.7 This problem demonstrates that although Equation (10.2) for rate monotonic

 scheduling is a sufficient condition for successful scheduling, it is not a necessary
condition (i.e., sometimes successful scheduling is possible even if Equation (10.2) is
not satisfied).
a. Consider a task set with the following independent periodic tasks:

• Task P 1 : C1 = 20 ; T1 = 100
• Task P 2 : C2 = 30 ; T2 = 145
 Can these tasks be successfully scheduled using rate monotonic scheduling?

b. Now add the following task to the set:
• Task P 3 : C3 = 68 ; T3 = 150
 Is Equation (10.2) satisfied?

c. Suppose that the first instance of the preceding three tasks arrives at time t = 0 .
Assume that the first deadline for each task is the following:

D1 = 100; D2 = 145; D3 = 150

 Using rate monotonic scheduling, will all three deadlines be met? What about dead-
lines for future repetitions of each task?

 10.8 Draw a diagram similar to that of Figure 10.9b that shows the sequence events for this
same example using priority ceiling.

474

 11.1 I/O Devices

 11.2 Organization of the I/O Function
 The Evolution of the I/O Function
 Direct Memory Access

 11.3 Operating System Design Issues
 Design Objectives
 Logical Structure of the I/O Function

 11.4 I/O Buffering
 Single Buffer
 Double Buffer
 Circular Buffer
 The Utility of Buffering

 11.5 Disk Scheduling
 Disk Performance Parameters
 Disk Scheduling Policies

 11.6 RAID

 11.7 Disk Cache
 Design Considerations
 Performance Considerations

 11.8 UNIX SVR4 I/O

 11.9 Linux I/O

 11.10 Windows I/O

 11.11 Summary

 11.12 Recommended Reading

 11.13 Key Terms, Review Questions, and Problems

I/O MANAGEMENT AND DISK
SCHEDULING

CHAPTER

Input/Output and Files PART 5

11.1 / I/O DEVICES 475

 An artifact can be thought of as a meeting point—an “interface” in today’s
terms between an “inner” environment, the substance and organization
of the artifact itself, and an “outer” environment, the surroundings in
which it operates. If the inner environment is appropriate to the outer
environment, or vice versa, the artifact will serve its intended purpose.

 — THE SCIENCES OF THE ARTIFICIAL , Herbert Simon

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:
• Summarize key categories of I/O devices on computers.
• Discuss the organization of the I/O function.
• Explain some of the key issues in the design of OS support for I/O.
• Analyze the performance implications of various I/O buffering alternatives.
• Understand the performance issues involved in magnetic disk access.
• Explain the concept of RAID and describe the various levels.
• Understand the performance implications of disk cache.
• Describe the I/O mechanisms in UNIX, Linux, and Windows 7.

 Perhaps the messiest aspect of operating system design is input/output. Because
there is such a wide variety of devices and applications of those devices, it is difficult
to develop a general, consistent solution.

 We begin with a brief discussion of I/O devices and the organization of the I/O
function. These topics, which generally come within the scope of computer architec-
ture, set the stage for an examination of I/O from the point of view of the OS.

 The next section examines operating system design issues, including design
objectives, and the way in which the I/O function can be structured. Then I/O
 buffering is examined; one of the basic I/O services provided by the operating system
is a buffering function, which improves overall performance.

 The next sections of the chapter are devoted to magnetic disk I/O. In contemporary
systems, this form of I/O is the most important and is key to the performance as per-
ceived by the user. We begin by developing a model of disk I/O performance and then
examine several techniques that can be used to enhance performance.

 Appendix J summarizes characteristics of secondary storage devices, includ-
ing magnetic disk and optical memory. A set of animations that illustrate concepts
in this chapter is available online. Click on the rotating globe at WilliamStallings.
com/OS/OS7e.html for access.

11.1 I/O DEVICES

 As was mentioned in Chapter 1 , external devices that engage in I/O with computer
systems can be roughly grouped into three categories:

 • Human readable: Suitable for communicating with the computer user.
Examples include printers and terminals, the latter consisting of video display,
keyboard, and perhaps other devices such as a mouse.

476 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

 • Machine readable: Suitable for communicating with electronic equipment.
Examples are disk drives, USB keys, sensors, controllers, and actuators.

 • Communication: Suitable for communicating with remote devices. Examples
are digital line drivers and modems.

 There are great differences across classes and even substantial differences
within each class. Among the key differences are the following:

 • Data rate: There may be differences of several orders of magnitude between
the data transfer rates. Figure 11.1 gives some examples.

 • Application: The use to which a device is put has an influence on the soft-
ware and policies in the OS and supporting utilities. For example, a disk used
for files requires the support of file management software. A disk used as a
backing store for pages in a virtual memory scheme depends on the use of
virtual memory hardware and software. Furthermore, these applications have
an impact on disk scheduling algorithms (discussed later in this chapter). As
another example, a terminal may be used by an ordinary user or a system
administrator. These uses imply different privilege levels and perhaps differ-
ent priorities in the OS.

 • Complexity of control: A printer requires a relatively simple control interface.
A disk is much more complex. The effect of these differences on the OS is
filtered to some extent by the complexity of the I/O module that controls the
device, as discussed in the next section.

Keyboard

101 102 103 104 105

Data Rate (bps)

106 107 108 109

Mouse

Modem

Ethernet

Hard disk

Graphics display

Gigabit ethernet

Floppy disk

Laser printer

Scanner

Optical disk

Figure 11.1 Typical I/O Device Data Rates

11.2 / ORGANIZATION OF THE I/O FUNCTION 477

 • Unit of transfer: Data may be transferred as a stream of bytes or characters
(e.g., terminal I/O) or in larger blocks (e.g., disk I/O).

 • Data representation: Different data encoding schemes are used by different
devices, including differences in character code and parity conventions.

 • Error conditions: The nature of errors, the way in which they are reported,
their consequences, and the available range of responses differ widely from
one device to another.

 This diversity makes a uniform and consistent approach to I/O, both from the
point of view of the operating system and from the point of view of user processes,
difficult to achieve.

11.2 ORGANIZATION OF THE I/O FUNCTION

 Appendix C summarizes three techniques for performing I/O:

 • Programmed I/O: The processor issues an I/O command, on behalf of a process,
to an I/O module; that process then busy waits for the operation to be completed
before proceeding.

 • Interrupt-driven I/O: The processor issues an I/O command on behalf of
a process. There are then two possibilities. If the I/O instruction from the
 process is nonblocking, then the processor continues to execute instruc-
tions from the process that issued the I/O command. If the I/O instruction
is blocking, then the next instruction that the processor executes is from
the OS, which will put the current process in a blocked state and schedule
another process.

 • Direct memory access (DMA): A DMA module controls the exchange of data
between main memory and an I/O module. The processor sends a request for
the transfer of a block of data to the DMA module and is interrupted only
after the entire block has been transferred.

 Table 11.1 indicates the relationship among these three techniques. In most
computer systems, DMA is the dominant form of transfer that must be supported
by the operating system.

The Evolution of the I/O Function

 As computer systems have evolved, there has been a pattern of increasing
 complexity and sophistication of individual components. Nowhere is this more

Table 11.1 I/O Techniques

 No Interrupts Use of Interrupts

I/O-to-Memory Transfer through
Processor

 Programmed I/O Interrupt-driven I/O

Direct I/O-to-Memory Transfer Direct memory access (DMA)

478 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

evident than in the I/O function. The evolutionary steps can be summarized as
follows:

 1. The processor directly controls a peripheral device. This is seen in simple
 microprocessor-controlled devices.

 2. A controller or I/O module is added. The processor uses programmed I/O
without interrupts. With this step, the processor becomes somewhat divorced
from the specific details of external device interfaces.

 3. The same configuration as step 2 is used, but now interrupts are employed. The
processor need not spend time waiting for an I/O operation to be performed,
thus increasing efficiency.

 4. The I/O module is given direct control of memory via DMA. It can now move
a block of data to or from memory without involving the processor, except at
the beginning and end of the transfer.

 5. The I/O module is enhanced to become a separate processor, with a
 specialized instruction set tailored for I/O. The central processing unit
(CPU) directs the I/O processor to execute an I/O program in main
 memory. The I/O processor fetches and executes these instructions without
processor intervention. This allows the processor to specify a sequence of
I/O activities and to be interrupted only when the entire sequence has been
performed.

 6. The I/O module has a local memory of its own and is, in fact, a computer
in its own right. With this architecture, a large set of I/O devices can be
 controlled, with minimal processor involvement. A common use for such an
architecture has been to control communications with interactive terminals.
The I/O processor takes care of most of the tasks involved in controlling the
terminals.

 As one proceeds along this evolutionary path, more and more of the I/O
function is performed without processor involvement. The central processor is
increasingly relieved of I/O-related tasks, improving performance. With the last
two steps (5 and 6), a major change occurs with the introduction of the concept of
an I/O module capable of executing a program.

 A note about terminology: For all of the modules described in steps 4
through 6, the term direct memory access is appropriate, because all of these
types involve direct control of main memory by the I/O module. Also, the I/O
module in step 5 is often referred to as an I/O channel , and that in step 6 as an
I/O processor ; however, each term is, on occasion, applied to both situations. In
the latter part of this section, we will use the term I/O channel to refer to both
types of I/O modules.

Direct Memory Access

 Figure 11.2 indicates, in general terms, the DMA logic. The DMA unit is capable of
mimicking the processor and, indeed, of taking over control of the system bus just
like a processor. It needs to do this to transfer data to and from memory over the
system bus.

11.2 / ORGANIZATION OF THE I/O FUNCTION 479

 The DMA technique works as follows. When the processor wishes to read or
write a block of data, it issues a command to the DMA module by sending to the
DMA module the following information:

 • Whether a read or write is requested, using the read or write control line
 between the processor and the DMA module

 • The address of the I/O device involved, communicated on the data lines
 • The starting location in memory to read from or write to, communicated on

the data lines and stored by the DMA module in its address register
 • The number of words to be read or written, again communicated via the data

lines and stored in the data count register

 The processor then continues with other work. It has delegated this I/O operation
to the DMA module. The DMA module transfers the entire block of data, one word
at a time, directly to or from memory, without going through the processor. When the
transfer is complete, the DMA module sends an interrupt signal to the processor. Thus,
the processor is involved only at the beginning and end of the transfer (Figure C.4c).

 The DMA mechanism can be configured in a variety of ways. Some possi-
bilities are shown in Figure 11.3 . In the first example, all modules share the same
system bus. The DMA module, acting as a surrogate processor, uses programmed
I/O to exchange data between memory and an I/O module through the DMA mod-
ule. This configuration, while it may be inexpensive, is clearly inefficient: As with
processor-controlled programmed I/O, each transfer of a word consumes two bus
cycles (transfer request followed by transfer).

 The number of required bus cycles can be cut substantially by integrating the
DMA and I/O functions. As Figure 11.3b indicates, this means that there is a path
between the DMA module and one or more I/O modules that does not include the

Address
register

Control
logic

Data
register

Data
count

Data lines

Address lines

Request to DMA
Acknowledge from DMA

 Interrupt
Read
Write

Figure 11.2 Typical DMA Block Diagram

480 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

system bus. The DMA logic may actually be a part of an I/O module, or it may be a
separate module that controls one or more I/O modules. This concept can be taken
one step further by connecting I/O modules to the DMA module using an I/O bus
(Figure 11.3c). This reduces the number of I/O interfaces in the DMA module
to one and provides for an easily expandable configuration. In all of these cases
(Figure 11.3b and 11.3c), the system bus that the DMA module shares with the
processor and main memory is used by the DMA module only to exchange data
with memory and to exchange control signals with the processor. The exchange of
data between the DMA and I/O modules takes place off the system bus.

11.3 OPERATING SYSTEM DESIGN ISSUES

Design Objectives

 Two objectives are paramount in designing the I/O facility: efficiency and gener-
ality. Efficiency is important because I/O operations often form a bottleneck in a
computing system. Looking again at Figure 11.1 , we see that most I/O devices are

Processor DMA

(a) Single-bus, detached DMA

(b) Single-bus, integrated DMA-I/O

(c) I/O bus

I/O bus

System bus

I/O I/O Memory

Processor DMA Memory

I/O I/O I/O

Processor DMA DMA

I/O

I/O I/O

Memory

Figure 11.3 Alternative DMA Confi gurations

11.3 / OPERATING SYSTEM DESIGN ISSUES 481

extremely slow compared with main memory and the processor. One way to tackle
this problem is multiprogramming, which, as we have seen, allows some processes
to be waiting on I/O operations while another process is executing. However, even
with the vast size of main memory in today’s machines, it will still often be the case
that I/O is not keeping up with the activities of the processor. Swapping is used to
bring in additional ready processes to keep the processor busy, but this in itself is an
I/O operation. Thus, a major effort in I/O design has been schemes for improving
the efficiency of the I/O. The area that has received the most attention, because of
its importance, is disk I/O, and much of this chapter will be devoted to a study of
disk I/O efficiency.

 The other major objective is generality . In the interests of simplicity and
 freedom from error, it is desirable to handle all devices in a uniform manner. This
applies both to the way in which processes view I/O devices and to the way in
which the OS manages I/O devices and operations. Because of the diversity of
device characteristics, it is difficult in practice to achieve true generality. What can
be done is to use a hierarchical, modular approach to the design of the I/O func-
tion. This approach hides most of the details of device I/O in lower-level routines
so that user processes and upper levels of the OS see devices in terms of general
functions, such as read, write, open, close, lock, and unlock. We turn now to a
 discussion of this approach.

Logical Structure of the I/O Function

 In Chapter 2 , in the discussion of system structure, we emphasized the hierar-
chical nature of modern operating systems. The hierarchical philosophy is that
the functions of the OS should be separated according to their complexity, their
characteristic time scale, and their level of abstraction. Following this approach
leads to an organization of the OS into a series of layers. Each layer performs
a related subset of the functions required of the OS. It relies on the next lower
layer to perform more primitive functions and to conceal the details of those
functions. It provides services to the next higher layer. Ideally, the layers should
be defined so that changes in one layer do not require changes in other layers.
Thus, we have decomposed one problem into a number of more manageable
subproblems.

 In general, lower layers deal with a far shorter time scale. Some parts of the
OS must interact directly with the computer hardware, where events can have a
time scale as brief as a few billionths of a second. At the other end of the spectrum,
parts of the OS communicate with the user, who issues commands at a much more
leisurely pace, perhaps one every few seconds. The use of a set of layers conforms
nicely to this environment.

 Applying this philosophy specifically to the I/O facility leads to the type
of organization suggested by Figure 11.4 . The details of the organization will
depend on the type of device and the application. The three most important
logical structures are presented in the figure. Of course, a particular operat-
ing system may not conform exactly to these structures. However, the general
 principles are valid, and most operating systems approach I/O in approximately
this way.

482 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

 Let us consider the simplest case first, that of a local peripheral device that
communicates in a simple fashion, such as a stream of bytes or records (Figure 11.4a).
The following layers are involved:

 • Logical I/O: The logical I/O module deals with the device as a logical resource
and is not concerned with the details of actually controlling the device. The
logical I/O module is concerned with managing general I/O functions on behalf
of user processes, allowing them to deal with the device in terms of a device
identifier and simple commands such as open, close, read, and write.

 • Device I/O: The requested operations and data (buffered characters, records,
etc.) are converted into appropriate sequences of I/O instructions, channel
 commands, and controller orders. Buffering techniques may be used to improve
utilization.

 • Scheduling and control: The actual queueing and scheduling of I/O operations
occurs at this layer, as well as the control of the operations. Thus, interrupts

User
processes

Device
I/O

Scheduling
& control

(b) Communications port

Hardware

User
processes

Logical
I/O

Device
I/O

Scheduling
& control

(a) Local peripheral device

Hardware

User
processes

Directory
management

File system

Physical
organization

Device
I/O

Scheduling
& control

(c) File system

Hardware

Communication
architecture

Figure 11.4 A Model of I/O Organization

11.4 / I/O BUFFERING 483

are handled at this layer and I/O status is collected and reported. This is the
layer of software that actually interacts with the I/O module and hence the
device hardware.

 For a communications device, the I/O structure (Figure 11.4b) looks much the
same as that just described. The principal difference is that the logical I/O module is
replaced by a communications architecture, which may itself consist of a number of
layers. An example is TCP/IP, which is discussed in Chapter 17 .

 Figure 11.4c shows a representative structure for managing I/O on a secondary
storage device that supports a file system. The three layers not previously discussed
are as follows:

 • Directory management: At this layer, symbolic file names are converted to
identifiers that either reference the file directly or indirectly through a file
 descriptor or index table. This layer is also concerned with user operations
that affect the directory of files, such as add, delete, and reorganize.

 • File system: This layer deals with the logical structure of files and with the
operations that can be specified by users, such as open, close, read, and write.
Access rights are also managed at this layer.

 • Physical organization: Just as virtual memory addresses must be converted
into physical main memory addresses, taking into account the segmentation
and paging structure, logical references to files and records must be con-
verted to physical secondary storage addresses, taking into account the physi-
cal track and sector structure of the secondary storage device. Allocation of
secondary storage space and main storage buffers is generally treated at this
layer as well.

 Because of the importance of the file system, we will spend some time, in this
chapter and the next, looking at its various components. The discussion in this chap-
ter focuses on the lower three layers, while the upper two layers are examined in
 Chapter 12 .

11.4 I/O BUFFERING

 Suppose that a user process wishes to read blocks of data from a disk one at a time,
with each block having a length of 512 bytes. The data are to be read into a data
area within the address space of the user process at virtual location 1000 to 1511.
The simplest way would be to execute an I/O command (something like Read_
Block[1000, disk]) to the disk unit and then wait for the data to become avail-
able. The waiting could either be busy waiting (continuously test the device status)
or, more practically, process suspension on an interrupt.

 There are two problems with this approach. First, the program is hung up
waiting for the relatively slow I/O to complete. The second problem is that this
approach to I/O interferes with swapping decisions by the OS. Virtual locations
1000 to 1511 must remain in main memory during the course of the block transfer.
Otherwise, some of the data may be lost. If paging is being used, at least the page
containing the target locations must be locked into main memory. Thus, although

484 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

portions of the process may be paged out to disk, it is impossible to swap the proc-
ess out completely, even if this is desired by the operating system. Notice also that
there is a risk of single-process deadlock. If a process issues an I/O command, is
suspended awaiting the result, and then is swapped out prior to the beginning of the
operation, the process is blocked waiting on the I/O event, and the I/O operation is
blocked waiting for the process to be swapped in. To avoid this deadlock, the user
memory involved in the I/O operation must be locked in main memory immediately
before the I/O request is issued, even though the I/O operation is queued and may
not be executed for some time.

 The same considerations apply to an output operation. If a block is being
transferred from a user process area directly to an I/O module, then the process is
blocked during the transfer and the process may not be swapped out.

 To avoid these overheads and inefficiencies, it is sometimes convenient to
perform input transfers in advance of requests being made and to perform output
transfers some time after the request is made. This technique is known as buffer-
ing. In this section, we look at some of the buffering schemes that are supported by
operating systems to improve the performance of the system.

 In discussing the various approaches to buffering, it is sometimes important
to make a distinction between two types of I/O devices: block oriented and stream
oriented. A block-oriented device stores information in blocks that are usually of
fixed size, and transfers are made one block at a time. Generally, it is possible to
reference data by its block number. Disks and USB keys are examples of block-
oriented devices. A stream-oriented device transfers data in and out as a stream of
bytes, with no block structure. Terminals, printers, communications ports, mouse
and other pointing devices, and most other devices that are not secondary storage
are stream oriented.

Single Buffer

 The simplest type of support that the OS can provide is single buffering (Figure 11.5b).
When a user process issues an I/O request, the OS assigns a buffer in the system
 portion of main memory to the operation.

 For block-oriented devices, the single buffering scheme can be described
as follows: Input transfers are made to the system buffer. When the transfer is
complete, the process moves the block into user space and immediately requests
another block. This is called reading ahead, or anticipated input; it is done in the
expectation that the block will eventually be needed. For many types of compu-
tation, this is a reasonable assumption most of the time because data are usually
accessed sequentially. Only at the end of a sequence of processing will a block be
read in unnecessarily.

 This approach will generally provide a speedup compared to the lack of system
buffering. The user process can be processing one block of data while the next block
is being read in. The OS is able to swap the process out because the input operation
is taking place in system memory rather than user process memory. This technique
does, however, complicate the logic in the operating system. The OS must keep
track of the assignment of system buffers to user processes. The swapping logic is
also affected: If the I/O operation involves the same disk that is used for swapping,

11.4 / I/O BUFFERING 485

it hardly makes sense to queue disk writes to the same device for swapping the proc-
ess out. This attempt to swap the process and release main memory will itself not
begin until after the I/O operation finishes, at which time swapping the process to
disk may no longer be appropriate.

 Similar considerations apply to block-oriented output. When data are being
transmitted to a device, they are first copied from the user space into the system
buffer, from which they will ultimately be written. The requesting process is now
free to continue or to be swapped as necessary.

 [KNUT97] suggests a crude but informative performance comparison between
single buffering and no buffering. Suppose that T is the time required to input one
block and that C is the computation time that intervenes between input requests.
Without buffering, the execution time per block is essentially T + C . With a single
buffer, the time is max [C, T] + M , where M is the time required to move the data
from the system buffer to user memory. In most cases, execution time per block is
substantially less with a single buffer compared to no buffer.

 For stream-oriented I/O, the single buffering scheme can be used in a line-
at-a-time fashion or a byte-at-a-time fashion. Line-at-a-time operation is appropri-
ate for scroll-mode terminals (sometimes called dumb terminals). With this form

Operating system

I/O device
In

(a) No buffering

User process

Operating system

I/O device
In Move

(b) Single buffering

User process

Operating system

I/O device
In Move

(c) Double buffering

User process

Operating system

I/O device
In Move

(d) Circular buffering

User process

Figure 11.5 I/O Buffering Schemes (Input)

486 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

of terminal, user input is one line at a time, with a carriage return signaling the end
of a line, and output to the terminal is similarly one line at a time. A line printer is
another example of such a device. Byte-at-a-time operation is used on forms-mode
terminals, when each keystroke is significant, and for many other peripherals, such
as sensors and controllers.

 In the case of line-at-a-time I/O, the buffer can be used to hold a single line.
The user process is suspended during input, awaiting the arrival of the entire line.
For output, the user process can place a line of output in the buffer and continue
processing. It need not be suspended unless it has a second line of output to send
before the buffer is emptied from the first output operation. In the case of byte-at-a-
time I/O, the interaction between the OS and the user process follows the producer/
consumer model discussed in Chapter 5 .

Double Buffer

 An improvement over single buffering can be had by assigning two system buffers to
the operation (Figure 11.5c). A process now transfers data to (or from) one buffer
while the operating system empties (or fills) the other. This technique is known as
double buffering or buffer swapping .

 For block-oriented transfer, we can roughly estimate the execution time as
max [C , T]. It is therefore possible to keep the block-oriented device going at full
speed if C … T . On the other hand, if C 7 T , double buffering ensures that the
process will not have to wait on I/O. In either case, an improvement over single
buffering is achieved. Again, this improvement comes at the cost of increased
 complexity.

 For stream-oriented input, we again are faced with the two alternative modes
of operation. For line-at-a-time I/O, the user process need not be suspended for
input or output, unless the process runs ahead of the double buffers. For byte-at-a-
time operation, the double buffer offers no particular advantage over a single buffer
of twice the length. In both cases, the producer/consumer model is followed.

Circular Buffer

 A double-buffer scheme should smooth out the flow of data between an I/O device
and a process. If the performance of a particular process is the focus of our concern,
then we would like for the I/O operation to be able to keep up with the process.
Double buffering may be inadequate if the process performs rapid bursts of I/O. In
this case, the problem can often be alleviated by using more than two buffers.

 When more than two buffers are used, the collection of buffers is itself referred
to as a circular buffer (Figure 11.5d), with each individual buffer being one unit in
the circular buffer. This is simply the bounded-buffer producer/consumer model
studied in Chapter 5 .

The Utility of Buffering

 Buffering is a technique that smoothes out peaks in I/O demand. However, no
amount of buffering will allow an I/O device to keep pace with a process indefi-
nitely when the average demand of the process is greater than the I/O device can

11.5 / DISK SCHEDULING 487

service. Even with multiple buffers, all of the buffers will eventually fill up and the
process will have to wait after processing each chunk of data. However, in a multi-
programming environment, when there is a variety of I/O activity and a variety of
process activity to service, buffering is one tool that can increase the efficiency of
the OS and the performance of individual processes.

11.5 DISK SCHEDULING

 Over the last 40 years, the increase in the speed of processors and main memory has
far outstripped that for disk access, with processor and main memory speeds increas-
ing by about two orders of magnitude compared to one order of magnitude for disk.
The result is that disks are currently at least four orders of magnitude slower than
main memory. This gap is expected to continue into the foreseeable future. Thus,
the performance of disk storage subsystem is of vital concern, and much research
has gone into schemes for improving that performance. In this section, we highlight
some of the key issues and look at the most important approaches. Because the
 performance of the disk system is tied closely to file system design issues, the discus-
sion continues in Chapter 12 .

Disk Performance Parameters

 The actual details of disk I/O operation depend on the computer system, the oper-
ating system, and the nature of the I/O channel and disk controller hardware. A
general timing diagram of disk I/O transfer is shown in Figure 11.6 .

 When the disk drive is operating, the disk is rotating at constant speed. To
read or write, the head must be positioned at the desired track and at the beginning
of the desired sector on that track. 1 Track selection involves moving the head in a
movable-head system or electronically selecting one head on a fixed-head system.
On a movable-head system, the time it takes to position the head at the track is
known as seek time . In either case, once the track is selected, the disk controller
waits until the appropriate sector rotates to line up with the head. The time it takes
for the beginning of the sector to reach the head is known as rotational delay , or
rotational latency. The sum of the seek time, if any, and the rotational delay equals
the access time , which is the time it takes to get into position to read or write. Once
the head is in position, the read or write operation is then performed as the sector
moves under the head; this is the data transfer portion of the operation; the time
required for the transfer is the transfer time .

Wait for
device

Wait for
channel

Seek Rotational
delay

Data
transfer

Device busy

Figure 11.6 Timing of a Disk I/O Transfer

1 See Appendix J for a discussion of disk organization and formatting.

488 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

 In addition to the access time and transfer time, there are several queueing
delays normally associated with a disk I/O operation. When a process issues an
I/O request, it must first wait in a queue for the device to be available. At that
time, the device is assigned to the process. If the device shares a single I/O channel
or a set of I/O channels with other disk drives, then there may be an additional
wait for the channel to be available. At that point, the seek is performed to begin
disk access.

 In some high-end systems for servers, a technique known as rotational
 positional sensing (RPS) is used. This works as follows: When the seek command
has been issued, the channel is released to handle other I/O operations. When
the seek is completed, the device determines when the data will rotate under
the head. As that sector approaches the head, the device tries to reestablish the
 communication path back to the host. If either the control unit or the channel is
busy with another I/O, then the reconnection attempt fails and the device must
rotate one whole revolution before it can attempt to reconnect, which is called
an RPS miss. This is an extra delay element that must be added to the time line
of Figure 11.6 .

SEEK TIME Seek time is the time required to move the disk arm to the required
track. It turns out that this is a difficult quantity to pin down. The seek time consists
of two key components: the initial startup time and the time taken to traverse the
tracks that have to be crossed once the access arm is up to speed. Unfortunately, the
traversal time is not a linear function of the number of tracks but includes a settling
time (time after positioning the head over the target track until track identification
is confirmed).

 Much improvement comes from smaller and lighter disk components. Some
years ago, a typical disk was 14 inches (36 cm) in diameter, whereas the most common
size today is 3.5 inches (8.9 cm), reducing the distance that the arm has to travel. A
typical average seek time on contemporary hard disks is under 10 ms.

ROTATIONAL DELAY Rotational delay is the time required for the addressed
area of the disk to rotate into a position where it is accessible by the read/write
head. Disks rotate at speeds ranging from 3,600 rpm (for handheld devices such as
digital cameras) up to, as of this writing, 15,000 rpm; at this latter speed, there is one
revolution per 4 ms. Thus, on the average, the rotational delay will be 2 ms.

TRANSFER TIME The transfer time to or from the disk depends on the rotation
speed of the disk in the following fashion:

T =
b

rN
 where

T � transfer time

b � number of bytes to be transferred

N � number of bytes on a track

r � rotation speed, in revolutions per second

11.5 / DISK SCHEDULING 489

 Thus, the total average access time can be expressed as

Ta = Ts +
1
2r

+
b

rN
 where Ts is the average seek time.

A TIMING COMPARISON With the foregoing parameters defined, let us look at
two different I/O operations that illustrate the danger of relying on average values.
Consider a disk with an advertised average seek time of 4 ms, rotation speed of
7,500 rpm, and 512-byte sectors with 500 sectors per track. Suppose that we wish to
read a file consisting of 2,500 sectors for a total of 1.28 Mbytes. We would like to
estimate the total time for the transfer.

 First, let us assume that the file is stored as compactly as possible on
the disk. That is, the file occupies all of the sectors on 5 adjacent tracks
 (5 tracks * 500 sectors/track = 2,500 sectors) . This is known as sequential organiza-
tion. The time to read the first track is as follows:

 Average seek 4 ms
 Rotational delay 4 ms
 Read 500 sectors 8 ms

 16 ms

 Suppose that the remaining tracks can now be read with essentially no seek
time. That is, the I/O operation can keep up with the flow from the disk. Then, at
most, we need to deal with rotational delay for each succeeding track. Thus, each
successive track is read in 4 + 8 = 12 rmms . To read the entire file,

 Total time = 16 + (4 * 12) = 64 ms = 0.064 seconds

 Now let us calculate the time required to read the same data using random
access rather than sequential access; that is, accesses to the sectors are distributed
randomly over the disk. For each sector, we have:

 Average seek 4 ms
 Rotational delay 4 ms
 Read 1 sector 0.016 ms

 8.016 ms

 Total time = 2,500 * 8.016 = 20,040 ms = 20.04 seconds

 It is clear that the order in which sectors are read from the disk has a tremen-
dous effect on I/O performance. In the case of file access in which multiple sectors
are read or written, we have some control over the way in which sectors of data are
deployed, and we shall have something to say on this subject in the next chapter.
However, even in the case of a file access, in a multiprogramming environment,
there will be I/O requests competing for the same disk. Thus, it is worthwhile to
examine ways in which the performance of disk I/O can be improved over that
achieved with purely random access to the disk.

490 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

Disk Scheduling Policies

 In the example just described, the reason for the difference in performance can be
traced to seek time. If sector access requests involve selection of tracks at random,
then the performance of the disk I/O system will be as poor as possible. To improve
matters, we need to reduce the average time spent on seeks.

 Consider the typical situation in a multiprogramming environment, in which
the OS maintains a queue of requests for each I/O device. So, for a single disk, there
will be a number of I/O requests (reads and writes) from various processes in the
queue. If we selected items from the queue in random order, then we can expect that
the tracks to be visited will occur randomly, giving poor performance. This random
scheduling is useful as a benchmark against which to evaluate other techniques.

 Figure 11.7 compares the performance of various scheduling algorithms for an
example sequence of I/O requests. The vertical axis corresponds to the tracks on the
disk. The horizontal axis corresponds to time or, equivalently, the number of tracks
traversed. For this figure, we assume that the disk head is initially located at track 100.
In this example, we assume a disk with 200 tracks and that the disk request queue has
random requests in it. The requested tracks, in the order received by the disk sched-
uler, are 55, 58, 39, 18, 90, 160, 150, 38, 184. Table 11.2a tabulates the results.

FIRST IN FIRST OUT The simplest form of scheduling is first-in-first-out (FIFO)
scheduling, which processes items from the queue in sequential order. This strategy
has the advantage of being fair, because every request is honored and the requests are
honored in the order received. Figure 11.7a illustrates the disk arm movement with
FIFO. This graph is generated directly from the data in Table 11.2a . As can be seen,
the disk accesses are in the same order as the requests were originally received.

 With FIFO, if there are only a few processes that require access and if many
of the requests are to clustered file sectors, then we can hope for good performance.
However, this technique will often approximate random scheduling in performance,
if there are many processes competing for the disk. Thus, it may be profitable to
consider a more sophisticated scheduling policy. A number of these are listed in
 Table 11.3 and will now be considered.

PRIORITY With a system based on priority (PRI), the control of the scheduling is
outside the control of disk management software. Such an approach is not intended
to optimize disk utilization but to meet other objectives within the OS. Often short
batch jobs and interactive jobs are given higher priority than longer jobs that require
longer computation. This allows a lot of short jobs to be flushed through the system
quickly and may provide good interactive response time. However, longer jobs
may have to wait excessively long times. Furthermore, such a policy could lead to
countermeasures on the part of users, who split their jobs into smaller pieces to beat
the system. This type of policy tends to be poor for database systems.

SHORTEST SERVICE TIME FIRST The shortest-service-time-first (SSTF) policy
is to select the disk I/O request that requires the least movement of the disk arm
from its current position. Thus, we always choose to incur the minimum seek time.
Of course, always choosing the minimum seek time does not guarantee that the

11.5 / DISK SCHEDULING 491

199

175

150

125

100

75

T
ra

ck
 n

um
be

r
T

ra
ck

 n
um

be
r

T
ra

ck
 n

um
be

r
T

ra
ck

 n
um

be
r

50

25

0

(a) FIFO

Time

Time

Time

Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

0

(c) SCAN

199

175

150

125

100

75

50

25

(d) C-SCAN

Figure 11.7 Comparison of Disk Scheduling Algorithms (see Table 11.2)

492 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

average seek time over a number of arm movements will be minimum. However,
this should provide better performance than FIFO. Because the arm can move in
two directions, a random tie-breaking algorithm may be used to resolve cases of
equal distances.

Table 11.2 Comparison of Disk Scheduling Algorithms

(a) FIFO (starting
at track 100)

(b) SSTF (starting
at track 100)

(c) SCAN (starting
at track 100, in the

direction of increasing
track number)

(d) C-SCAN (starting
at track 100, in the

direction of increasing
track number)

Next track
accessed

Number
of tracks
traversed

Next track
accessed

Number
of tracks
traversed

Next track
accessed

Number
of tracks
traversed

Next
track

accessed

Number
of tracks
traversed

 55 45 90 10 150 50 150 50

 58 3 58 32 160 10 160 10

 39 19 55 3 184 24 184 24

 18 21 39 16 90 94 18 166

 90 72 38 1 58 32 38 20

 160 70 18 20 55 3 39 1

 150 10 150 132 39 16 55 16

 38 112 160 10 38 1 58 3

 184 146 184 24 18 20 90 32

Average
seek

length

 55.3 Average
seek

length

 27.5 Average
seek

length

 27.8 Average
seek

length

 35.8

Table 11.3 Disk Scheduling Algorithms

 Name Description Remarks

Selection according to requestor

 RSS Random scheduling For analysis and simulation

 FIFO First-in-first-out Fairest of them all

 PRI Priority by process Control outside of disk queue management

 LIFO Last in first out Maximize locality and resource utilization

Selection according to requested item

 SSTF Shortest-service-time first High utilization, small queues

 SCAN Back and forth over disk Better service distribution

 C-SCAN One way with fast return Lower service variability

N-step-SCAN SCAN of N records at a time Service guarantee

 FSCAN N-step-SCAN with N = queue size
at beginning of SCAN cycle

 Load sensitive

11.5 / DISK SCHEDULING 493

 Figure 11.7b and Table 11.2b show the performance of SSTF on the same
example as was used for FIFO. The first track accessed is 90, because this is the
 closest requested track to the starting position. The next track accessed is 58 because
this is the closest of the remaining requested tracks to the current position of 90.
Subsequent tracks are selected accordingly.

SCAN With the exception of FIFO, all of the policies described so far can leave
some request unfulfilled until the entire queue is emptied. That is, there may always
be new requests arriving that will be chosen before an existing request. A simple
alternative that prevents this sort of starvation is the SCAN algorithm, also known
as the elevator algorithm because it operates much the way an elevator does.

 With SCAN, the arm is required to move in one direction only, satisfying all
outstanding requests en route, until it reaches the last track in that direction or until
there are no more requests in that direction. This latter refinement is sometimes
referred to as the LOOK policy. The service direction is then reversed and the scan
proceeds in the opposite direction, again picking up all requests in order.

 Figure 11.7c and Table 11.2c illustrate the SCAN policy. Assuming that the
initial direction is of increasing track number, then the first track selected is 150,
since this is the closest track to the starting track of 100 in the increasing direction.

 As can be seen, the SCAN policy behaves almost identically with the SSTF
policy. Indeed, if we had assumed that the arm was moving in the direction of lower
track numbers at the beginning of the example, then the scheduling pattern would
have been identical for SSTF and SCAN. However, this is a static example in which
no new items are added to the queue. Even when the queue is dynamically chang-
ing, SCAN will be similar to SSTF unless the request pattern is unusual.

 Note that the SCAN policy is biased against the area most recently traversed.
Thus it does not exploit locality as well as SSTF.

 It is not difficult to see that the SCAN policy favors jobs whose requests are
for tracks nearest to both innermost and outermost tracks and favors the latest-
arriving jobs. The first problem can be avoided via the C-SCAN policy, while the
second problem is addressed by the N-step-SCAN policy.

C-SCAN The C-SCAN (circular SCAN) policy restricts scanning to one direction
only. Thus, when the last track has been visited in one direction, the arm is returned
to the opposite end of the disk and the scan begins again. This reduces the maximum
delay experienced by new requests. With SCAN, if the expected time for a scan
from inner track to outer track is t , then the expected service interval for sectors at
the periphery is 2 t. With C-SCAN, the interval is on the order of t + s max , where
smax is the maximum seek time.

 Figure 11.7d and Table 11.2d illustrate C-SCAN behavior. In this case the first
three requested tracks encountered are 150, 160, and 184. Then the scan begins
starting at the lowest track number, and the next requested track encountered is 18.

N-STEP-SCAN AND FSCAN With SSTF, SCAN, and C-SCAN, it is possible that
the arm may not move for a considerable period of time. For example, if one or a
few processes have high access rates to one track, they can monopolize the entire
device by repeated requests to that track. High-density multisurface disks are more

494 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

likely to be affected by this characteristic than lower-density disks and/or disks with
only one or two surfaces. To avoid this “arm stickiness,” the disk request queue
can be segmented, with one segment at a time being processed completely. Two
examples of this approach are N -step-SCAN and FSCAN.

 The N -step-SCAN policy segments the disk request queue into subqueues of
length N. Subqueues are processed one at a time, using SCAN. While a queue is
being processed, new requests must be added to some other queue. If fewer than N
requests are available at the end of a scan, then all of them are processed with the
next scan. With large values of N , the performance of N -step-SCAN approaches
that of SCAN; with a value of N = 1 , the FIFO policy is adopted.

 FSCAN is a policy that uses two subqueues. When a scan begins, all of the
requests are in one of the queues, with the other empty. During the scan, all new
requests are put into the other queue. Thus, service of new requests is deferred until
all of the old requests have been processed.

11.6 RAID

 As discussed earlier, the rate in improvement in secondary storage performance
has been considerably less than the rate for processors and main memory. This
mismatch has made the disk storage system perhaps the main focus of concern in
improving overall computer system performance.

 As in other areas of computer performance, disk storage designers recognize
that if one component can only be pushed so far, additional gains in performance
are to be had by using multiple parallel components. In the case of disk storage,
this leads to the development of arrays of disks that operate independently and
in parallel. With multiple disks, separate I/O requests can be handled in parallel,
as long as the data required reside on separate disks. Further, a single I/O request
can be executed in parallel if the block of data to be accessed is distributed across
multiple disks.

 With the use of multiple disks, there is a wide variety of ways in which the data
can be organized and in which redundancy can be added to improve reliability. This
could make it difficult to develop database schemes that are usable on a number of
platforms and operating systems. Fortunately, industry has agreed on a standard-
ized scheme for multiple-disk database design, known as RAID (redundant array of
independent disks). The RAID scheme consists of seven levels, 2 zero through six.
These levels do not imply a hierarchical relationship but designate different design
architectures that share three common characteristics:

 1. RAID is a set of physical disk drives viewed by the OS as a single logical drive.
 2. Data are distributed across the physical drives of an array in a scheme known

as striping, described subsequently.
 3. Redundant disk capacity is used to store parity information, which guarantees

data recoverability in case of a disk failure.

2 Additional levels have been defined by some researchers and some companies, but the seven levels
described in this section are the ones universally agreed on.

11.6 / RAID 495

 The details of the second and third characteristics differ for the different RAID
levels. RAID 0 and RAID 1 do not support the third characteristic.

 The term RAID was originally coined in a paper by a group of researchers
at the University of California at Berkeley [PATT88]. 3 The paper outlined vari-
ous RAID configurations and applications and introduced the definitions of the
RAID levels that are still used. The RAID strategy employs multiple disk drives
and distributes data in such a way as to enable simultaneous access to data from
multiple drives, thereby improving I/O performance and allowing easier incremen-
tal increases in capacity.

 The unique contribution of the RAID proposal is to address effectively the
need for redundancy. Although allowing multiple heads and actuators to operate
simultaneously achieves higher I/O and transfer rates, the use of multiple devices
increases the probability of failure. To compensate for this decreased reliability,
RAID makes use of stored parity information that enables the recovery of data lost
due to a disk failure.

 We now examine each of the RAID levels. Table 11.4 provides a rough
guide to the seven levels. In the table, I/O performance is shown both in terms of
data transfer capacity, or ability to move data, and I/O request rate, or ability to
satisfy I/O requests, since these RAID levels inherently perform differently rela-
tive to these two metrics. Each RAID level’s strong point is highlighted in color.
 Figure 11.8 is an example that illustrates the use of the seven RAID schemes
to support a data capacity requiring four disks with no redundancy. The figure
highlights the layout of user data and redundant data and indicates the relative
storage requirements of the various levels. We refer to this figure throughout the
following discussion.

 Of the seven RAID levels described, only four are commonly used: RAID
levels 0, 1, 5, and 6.

RAID Level 0

 RAID level 0 is not a true member of the RAID family, because it does not include
redundancy to improve performance or provide data protection. However, there
are a few applications, such as some on supercomputers in which performance
and capacity are primary concerns and low cost is more important than improved
 reliability.

 For RAID 0, the user and system data are distributed across all of the disks
in the array. This has a notable advantage over the use of a single large disk: If two
different I/O requests are pending for two different blocks of data, then there is a
good chance that the requested blocks are on different disks. Thus, the two requests
can be issued in parallel, reducing the I/O queueing time.

 But RAID 0, as with all of the RAID levels, goes further than simply distrib-
uting the data across a disk array: The data are striped across the available disks.

3 In that paper, the acronym RAID stood for Redundant Array of Inexpensive Disks. The term inexpen-
sive was used to contrast the small relatively inexpensive disks in the RAID array to the alternative, a
single large expensive disk (SLED). The SLED is essentially a thing of the past, with similar disk technol-
ogy being used for both RAID and non-RAID configurations. Accordingly, the industry has adopted the
term independent to emphasize that the RAID array creates significant performance and reliability gains.

496

Table 11.4 RAID Levels

 Category Level Description
 Disks
Required Data Availability

 Large I/O Data
Transfer Capacity Small I/O Request Rate

 Striping 0 Nonredundant N Lower than single disk Very high Very high for both read
and write

 Mirroring 1 Mirrored 2 N Higher than RAID 2,
3, 4, or 5; lower than
RAID 6

 Higher than single disk for
read; similar to single disk
for write

 Up to twice that of a single
disk for read; similar to
single disk for write

 Parallel access 2 Redundant via
Hamming code

N�m Much higher than single
disk; comparable to
RAID 3, 4, or 5

 Highest of all listed
 alternatives

 Approximately twice that
of a single disk

 3 Bit-interleaved
parity

N�1 Much higher than single
disk; comparable to
RAID 2, 4, or 5

 Highest of all listed
 alternatives

 Approximately twice that
of a single disk

 Independent
access

 4 Block-interleaved
parity

N�1 Much higher than single
disk; comparable to
RAID 2, 3, or 5

 Similar to RAID 0 for read;
significantly lower than single
disk for write

 Similar to RAID 0 for read;
significantly lower than
single disk for write

 5 Block-interleaved
distributed parity

N�1 Much higher than single
disk; comparable to
RAID 2, 3, or 4

 Similar to RAID 0 for read;
lower than single disk for
write

 Similar to RAID 0 for read;
generally lower than single
disk for write

 6 Block-interleaved
dual distributed
parity

N�2 Highest of all listed
alternatives

 Similar to RAID 0 for read;
lower than RAID 5 for write

 Similar to RAID 0 for read;
significantly lower than
RAID 5 for write

 Note: N , number of data disks; m , proportional to log N.

497

strip 12

(a) RAID 0 (nonredundant)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

(b) RAID 1 (mirrored)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

(c) RAID 2 (redundancy through Hamming code)

b0 b1 b2 b3 f0(b) f1(b) f2(b)

strip 15

strip 11

strip 7

strip 3

Figure 11.8 RAID Levels

block 12

(e) RAID 4 (block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

block 11

498 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

This is best understood by considering Figure 11.8 . All user and system data are
viewed as being stored on a logical disk. The logical disk is divided into strips; these
strips may be physical blocks, sectors, or some other unit. The strips are mapped
round robin to consecutive physical disks in the RAID array. A set of logically
consecutive strips that maps exactly one strip to each array member is referred
to as a stripe . In an n -disk array, the first n logical strips are physically stored as
the first strip on each of the n disks, forming the first stripe; the second n strips
are distributed as the second strips on each disk; and so on. The advantage of this
layout is that if a single I/O request consists of multiple logically contiguous strips,
then up to n strips for that request can be handled in parallel, greatly reducing the
I/O transfer time.

RAID 0 FOR HIGH DATA TRANSFER CAPACITY The performance of any of the
RAID levels depends critically on the request patterns of the host system and
on the layout of the data. These issues can be most clearly addressed in RAID 0,
where the impact of redundancy does not interfere with the analysis. First, let us
consider the use of RAID 0 to achieve a high data transfer rate. For applications to
experience a high transfer rate, two requirements must be met. First, a high transfer
capacity must exist along the entire path between host memory and the individual
disk drives. This includes internal controller buses, host system I/O buses, I/O
adapters, and host memory buses.

 The second requirement is that the application must make I/O requests that
drive the disk array efficiently. This requirement is met if the typical request is for
large amounts of logically contiguous data, compared to the size of a strip. In this

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-level distributed parity)

P(0-3)

block 12

(g) RAID 6 (dual redundancy)

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

Figure 11.8 RAID Levels (Continued)

11.6 / RAID 499

case, a single I/O request involves the parallel transfer of data from multiple disks,
increasing the effective transfer rate compared to a single-disk transfer.

RAID 0 FOR HIGH I/O REQUEST RATE In a transaction-oriented environment,
the user is typically more concerned with response time than with transfer rate. For
an individual I/O request for a small amount of data, the I/O time is dominated by
the motion of the disk heads (seek time) and the movement of the disk (rotational
latency).

 In a transaction environment, there may be hundreds of I/O requests per sec-
ond. A disk array can provide high I/O execution rates by balancing the I/O load
across multiple disks. Effective load balancing is achieved only if there are typi-
cally multiple I/O requests outstanding. This, in turn, implies that there are multiple
independent applications or a single transaction-oriented application that is capable
of multiple asynchronous I/O requests. The performance will also be influenced
by the strip size. If the strip size is relatively large, so that a single I/O request only
involves a single disk access, then multiple waiting I/O requests can be handled in
parallel, reducing the queueing time for each request.

RAID Level 1

 RAID 1 differs from RAID levels 2 through 6 in the way in which redundancy is
achieved. In these other RAID schemes, some form of parity calculation is used
to introduce redundancy, whereas in RAID 1, redundancy is achieved by the sim-
ple expedient of duplicating all the data. Figure 11.8b shows data striping being
used, as in RAID 0. But in this case, each logical strip is mapped to two separate
 physical disks so that every disk in the array has a mirror disk that contains the
same data. RAID 1 can also be implemented without data striping, though this is
less common.

 There are a number of positive aspects to the RAID 1 organization:

 1. A read request can be serviced by either of the two disks that contains the
 requested data, whichever one involves the minimum seek time plus rotational
latency.

 2. A write request requires that both corresponding strips be updated, but this
can be done in parallel. Thus, the write performance is dictated by the slower
of the two writes (i.e., the one that involves the larger seek time plus rotational
latency). However, there is no “write penalty” with RAID 1. RAID levels
2 through 6 involve the use of parity bits. Therefore, when a single strip is
updated, the array management software must first compute and update the
parity bits as well as updating the actual strip in question.

 3. Recovery from a failure is simple. When a drive fails, the data may still be
accessed from the second drive.

 The principal disadvantage of RAID 1 is the cost; it requires twice the disk
space of the logical disk that it supports. Because of that, a RAID 1 configuration
is likely to be limited to drives that store system software and data and other highly
critical files. In these cases, RAID 1 provides real-time backup of all data so that in
the event of a disk failure, all of the critical data is still immediately available.

500 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

 In a transaction-oriented environment, RAID 1 can achieve high I/O request
rates if the bulk of the requests are reads. In this situation, the performance of RAID
1 can approach double of that of RAID 0. However, if a substantial fraction of the I/O
requests are write requests, then there may be no significant performance gain over
RAID 0. RAID 1 may also provide improved performance over RAID 0 for data
transfer-intensive applications with a high percentage of reads. Improvement occurs
if the application can split each read request so that both disk members participate.

RAID Level 2

 RAID levels 2 and 3 make use of a parallel access technique. In a parallel access
array, all member disks participate in the execution of every I/O request. Typically,
the spindles of the individual drives are synchronized so that each disk head is in the
same position on each disk at any given time.

 As in the other RAID schemes, data striping is used. In the case of RAID 2
and 3, the strips are very small, often as small as a single byte or word. With RAID 2,
an error-correcting code is calculated across corresponding bits on each data disk,
and the bits of the code are stored in the corresponding bit positions on multiple
parity disks. Typically, a Hamming code is used, which is able to correct single-bit
errors and detect double-bit errors.

 Although RAID 2 requires fewer disks than RAID 1, it is still rather costly.
The number of redundant disks is proportional to the log of the number of data
disks. On a single read, all disks are simultaneously accessed. The requested data
and the associated error-correcting code are delivered to the array controller. If
there is a single-bit error, the controller can recognize and correct the error instantly,
so that the read access time is not slowed. On a single write, all data disks and parity
disks must be accessed for the write operation.

 RAID 2 would only be an effective choice in an environment in which many
disk errors occur. Given the high reliability of individual disks and disk drives,
RAID 2 is overkill and is not implemented.

RAID Level 3

 RAID 3 is organized in a similar fashion to RAID 2. The difference is that RAID 3
requires only a single redundant disk, no matter how large the disk array. RAID 3
employs parallel access, with data distributed in small strips. Instead of an error-
correcting code, a simple parity bit is computed for the set of individual bits in the
same position on all of the data disks.

REDUNDANCY In the event of a drive failure, the parity drive is accessed and data
is reconstructed from the remaining devices. Once the failed drive is replaced, the
missing data can be restored on the new drive and operation resumed.

 Data reconstruction is simple. Consider an array of five drives in which X0
through X3 contain data and X4 is the parity disk. The parity for the i th bit is
 calculated as follows:

 X4(i) = X3(i) � X2(i) � X1(i) � X0(i)

 where � is exclusive-OR function.

11.6 / RAID 501

 Suppose that drive X1 has failed. If we add X4(i) � X1(i) to both sides of the
preceding equation, we get

 X1(i) = X4(i) � X3(i) � X2(i) � X0(i)

 Thus, the contents of each strip of data on X1 can be regenerated from the contents
of the corresponding strips on the remaining disks in the array. This principle is true
for RAID levels 3 through 6.

 In the event of a disk failure, all of the data are still available in what is referred
to as reduced mode. In this mode, for reads, the missing data are regenerated on the
fly using the exclusive-OR calculation. When data are written to a reduced RAID 3
array, consistency of the parity must be maintained for later regeneration. Return to
full operation requires that the failed disk be replaced and the entire contents of the
failed disk be regenerated on the new disk.

PERFORMANCE Because data are striped in very small strips, RAID 3 can achieve
very high data transfer rates. Any I/O request will involve the parallel transfer of
data from all of the data disks. For large transfers, the performance improvement is
especially noticeable. On the other hand, only one I/O request can be executed at a
time. Thus, in a transaction-oriented environment, performance suffers.

RAID Level 4

 RAID levels 4 through 6 make use of an independent access technique. In an inde-
pendent access array, each member disk operates independently, so that separate
I/O requests can be satisfied in parallel. Because of this, independent access arrays
are more suitable for applications that require high I/O request rates and are rela-
tively less suited for applications that require high data transfer rates.

 As in the other RAID schemes, data striping is used. In the case of RAID
4 through 6, the strips are relatively large. With RAID 4, a bit-by-bit parity strip
is calculated across corresponding strips on each data disk, and the parity bits are
stored in the corresponding strip on the parity disk.

 RAID 4 involves a write penalty when an I/O write request of small size is per-
formed. Each time that a write occurs, the array management software must update
not only the user data but also the corresponding parity bits. Consider an array of
five drives in which X0 through X3 contain data and X4 is the parity disk. Suppose
that a write is performed that only involves a strip on disk X1. Initially, for each bit i ,
we have the following relationship:

 X4(i) = X3(i) � X2(i) � X1(i) � X0(i) (11.1)

 After the update, with potentially altered bits indicated by a prime symbol:

 X4=(i) = X3(i) � X2(i) � X1=(i) � X0(i)

= X3(i) � X2(i) � X1=(i) � X0(i) � X1(i) � X1(i)

= X3(i) � X2(i) � X1 (i) � X0(i) � X1(i) � X1=(i)

= X4(i) � X1(i) � X1=(i)
 The preceding set of equations is derived as follows. The first line shows that

a change in X1 will also affect the parity disk X4. In the second line, we add the

502 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

terms [� X1(i) � X1(i)] . Because the exclusive-OR of any quantity with itself is 0,
this does not affect the equation. However, it is a convenience that is used to create
the third line, by reordering. Finally, Equation (11.1) is used to replace the first
four terms by X4(i).

 To calculate the new parity, the array management software must read the old
user strip and the old parity strip. Then it can update these two strips with the new
data and the newly calculated parity. Thus, each strip write involves two reads and
two writes.

 In the case of a larger size I/O write that involves strips on all disk drives, parity
is easily computed by calculation using only the new data bits. Thus, the parity drive
can be updated in parallel with the data drives and there are no extra reads or writes.

 In any case, every write operation must involve the parity disk, which therefore
can become a bottleneck.

RAID Level 5

 RAID 5 is organized in a similar fashion to RAID 4. The difference is that RAID
5 distributes the parity strips across all disks. A typical allocation is a round-robin
scheme, as illustrated in Figure 11.8f . For an n -disk array, the parity strip is on a
 different disk for the first n stripes, and the pattern then repeats.

 The distribution of parity strips across all drives avoids the potential I/O
 bottleneck of the single parity disk found in RAID 4. Further, RAID 5 has the
 characteristic that the loss of any one disk does not result in data loss.

RAID Level 6

 RAID 6 was introduced in a subsequent paper by the Berkeley researchers
[KATZ89]. In the RAID 6 scheme, two different parity calculations are carried out
and stored in separate blocks on different disks. Thus, a RAID 6 array whose user
data require N disks consists of N + 2 disks.

 Figure 11.8g illustrates the scheme. P and Q are two different data check algo-
rithms. One of the two is the exclusive-OR calculation used in RAID 4 and 5. But
the other is an independent data check algorithm. This makes it possible to regener-
ate data even if two disks containing user data fail.

 The advantage of RAID 6 is that it provides extremely high data availability.
Three disks would have to fail within the MTTR (mean time to repair) interval to
cause data to be lost. On the other hand, RAID 6 incurs a substantial write penalty,
because each write affects two parity blocks. Performance benchmarks [EISC07]
show that a RAID 6 controller can suffer more than a 30% drop in overall write
performance compared with a RAID 5 implementation. RAID 5 and RAID 6 read
performance is comparable.

11.7 DISK CACHE

 In Section 1.6 and Appendix 1A, we summarized the principles of cache memory.
The term cache memory is usually used to apply to a memory that is smaller and
faster than main memory and that is interposed between main memory and the

11.7 / DISK CACHE 503

processor. Such a cache memory reduces average memory access time by exploiting
the principle of locality.

 The same principle can be applied to disk memory. Specifically, a disk cache
is a buffer in main memory for disk sectors. The cache contains a copy of some of
the sectors on the disk. When an I/O request is made for a particular sector, a check
is made to determine if the sector is in the disk cache. If so, the request is satisfied
via the cache. If not, the requested sector is read into the disk cache from the disk.
Because of the phenomenon of locality of reference, when a block of data is fetched
into the cache to satisfy a single I/O request, it is likely that there will be future
 references to that same block.

Design Considerations

 Several design issues are of interest. First, when an I/O request is satisfied from the
disk cache, the data in the disk cache must be delivered to the requesting process. This
can be done either by transferring the block of data within main memory from the disk
cache to memory assigned to the user process, or simply by using a shared memory
capability and passing a pointer to the appropriate slot in the disk cache. The latter
approach saves the time of a memory-to-memory transfer and also allows shared
access by other processes using the readers/writers model described in Chapter 5 .

 A second design issue has to do with the replacement strategy. When a new
sector is brought into the disk cache, one of the existing blocks must be replaced.
This is the identical problem presented in Chapter 8 ; there the requirement was
for a page replacement algorithm. A number of algorithms have been tried. The
most commonly used algorithm is least recently used (LRU): Replace that block
that has been in the cache longest with no reference to it. Logically, the cache
consists of a stack of blocks, with the most recently referenced block on the top
of the stack. When a block in the cache is referenced, it is moved from its exist-
ing position on the stack to the top of the stack. When a block is brought in from
 secondary memory, remove the block that is on the bottom of the stack and push
the incoming block onto the top of the stack. Naturally, it is not necessary actually
to move these blocks around in main memory; a stack of pointers can be associ-
ated with the cache.

 Another possibility is least frequently used (LFU) : Replace that block in the
set that has experienced the fewest references. LFU could be implemented by asso-
ciating a counter with each block. When a block is brought in, it is assigned a count
of 1; with each reference to the block, its count is incremented by 1. When replace-
ment is required, the block with the smallest count is selected. Intuitively, it might
seem that LFU is more appropriate than LRU because LFU makes use of more
pertinent information about each block in the selection process.

 A simple LFU algorithm has the following problem. It may be that certain
blocks are referenced relatively infrequently overall, but when they are referenced,
there are short intervals of repeated references due to locality, thus building up
high reference counts. After such an interval is over, the reference count may be
misleading and not reflect the probability that the block will soon be referenced
again. Thus, the effect of locality may actually cause the LFU algorithm to make
poor replacement choices.

504 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

 To overcome this difficulty with LFU, a technique known as frequency-based
replacement is proposed in [ROBI90]. For clarity, let us first consider a simplified
version, illustrated in Figure 11.9a . The blocks are logically organized in a stack, as
with the LRU algorithm. A certain portion of the top part of the stack is designated
the new section. When there is a cache hit, the referenced block is moved to the top
of the stack. If the block was already in the new section, its reference count is not
incremented; otherwise it is incremented by 1. Given a sufficiently large new sec-
tion, this results in the reference counts for blocks that are repeatedly re-referenced
within a short interval remaining unchanged. On a miss, the block with the smallest
reference count that is not in the new section is chosen for replacement; the least
recently used such block is chosen in the event of a tie.

 The authors report that this strategy achieved only slight improvement over
LRU. The problem is the following:

 1. On a cache miss, a new block is brought into the new section, with a count of 1.

 2. The count remains at 1 as long as the block remains in the new section.

 3. Eventually the block ages out of the new section, with its count still at 1.

 4. If the block is not now re-referenced fairly quickly, it is very likely to be
replaced because it necessarily has the smallest reference count of those blocks
that are not in the new section. In other words, there does not seem to be a
 sufficiently long interval for blocks aging out of the new section to build up
their reference counts even if they were relatively frequently referenced.

 A further refinement addresses this problem: Divide the stack into three
 sections: new, middle, and old (Figure 11.9b). As before, reference counts are not
incremented on blocks in the new section. However, only blocks in the old section
are eligible for replacement. Assuming a sufficiently large middle section, this allows

MRU

Re-reference;
count unchanged

(a) FIFO

New section Old section

Miss (new block brought in)
count :� 1

Re-reference;
count :� count �1

LRU

MRU

(b) Use of three sections

New section

LRU

Middle section Old section

Figure 11.9 Frequency-Based Replacement

11.7 / DISK CACHE 505

relatively frequently referenced blocks a chance to build up their reference counts
before becoming eligible for replacement. Simulation studies by the authors indicate
that this refined policy is significantly better than simple LRU or LFU.

 Regardless of the particular replacement strategy, the replacement can take
place on demand or preplanned. In the former case, a sector is replaced only when
the slot is needed. In the latter case, a number of slots are released at a time. The
reason for this latter approach is related to the need to write back sectors. If a sector
is brought into the cache and only read, then when it is replaced, it is not necessary
to write it back out to the disk. However, if the sector has been updated, then it is
necessary to write it back out before replacing it. In this latter case, it makes sense
to cluster the writing and to order the writing to minimize seek time.

Performance Considerations

 The same performance considerations discussed in Appendix 1A apply here. The
issue of cache performance reduces itself to a question of whether a given miss ratio
can be achieved. This will depend on the locality behavior of the disk references,
the replacement algorithm, and other design factors. Principally, however, the miss
ratio is a function of the size of the disk cache. Figure 11.10 summarizes results from
several studies using LRU, one for a UNIX system running on a VAX [OUST85]
and one for IBM mainframe operating systems [SMIT85]. Figure 11.11 shows results
for simulation studies of the frequency-based replacement algorithm. A comparison
of the two figures points out one of the risks of this sort of performance assessment.

50

Cache size (megabytes)

IBM SVS

IBM MVS

VAX UNIX

D
is

k
ca

ch
e

m
is

s
ra

te
 (

%
)

0

10

20

30

40

50

60

10 15 20 25 30

Figure 11.10 Some Disk Cache Performance Results Using LRU

506 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

The figures appear to show that LRU outperforms the frequency-based replace-
ment algorithm. However, when identical reference patterns using the same cache
structure are compared, the frequency-based replacement algorithm is superior.
Thus, the exact sequence of reference patterns, plus related design issues such as
block size, will have a profound influence on the performance achieved.

11.8 UNIX SVR4 I/O

 In UNIX, each individual I/O device is associated with a special file. These are man-
aged by the file system and are read and written in the same manner as user data
files. This provides a clean, uniform interface to users and processes. To read from
or write to a device, read and write requests are made for the special file associated
with the device.

 Figure 11.12 illustrates the logical structure of the I/O facility. The file subsys-
tem manages files on secondary storage devices. In addition, it serves as the process
interface to devices, because these are treated as files.

 There are two types of I/O in UNIX: buffered and unbuffered. Buffered I/O
passes through system buffers, whereas unbuffered I/O typically involves the DMA

50

Cache size (megabytes)

IBM VM

IBM MVS

VAX UNIX

D
is

k
ca

ch
e

m
is

s
ra

te
 (

%
)

0

10

20

30

40

50

60

70

10 15 20 25 30

Figure 11.11 Disk Cache Performance Using Frequency-Based Replacement

11.8 / UNIX SVR4 I/O 507

facility, with the transfer taking place directly between the I/O module and the
 process I/O area. For buffered I/O, two types of buffers are used: system buffer
caches and character queues.

Buffer Cache

 The buffer cache in UNIX is essentially a disk cache. I/O operations with disk are
handled through the buffer cache. The data transfer between the buffer cache and
the user process space always occurs using DMA. Because both the buffer cache
and the process I/O area are in main memory, the DMA facility is used in this case
to perform a memory-to-memory copy. This does not use up any processor cycles,
but it does consume bus cycles.

 To manage the buffer cache, three lists are maintained:

 • Free list: List of all slots in the cache (a slot is referred to as a buffer in UNIX;
each slot holds one disk sector) that are available for allocation

 • Device list: List of all buffers currently associated with each disk

 • Driver I/O queue: List of buffers that are actually undergoing or waiting for
I/O on a particular device

 All buffers should be on the free list or on the driver I/O queue list. A buffer,
once associated with a device, remains associated with the device even if it is on the
free list, until is actually reused and becomes associated with another device. These
lists are maintained as pointers associated with each buffer rather than physically
separate lists.

 When a reference is made to a physical block number on a particular device, the
OS first checks to see if the block is in the buffer cache. To minimize the search time,
the device list is organized as a hash table, using a technique similar to the overflow
with chaining technique discussed in Appendix F (Figure F.1b). Figure 11.13 depicts
the general organization of the buffer cache. There is a hash table of fixed length
that contains pointers into the buffer cache. Each reference to a (device#, block#)
maps into a particular entry in the hash table. The pointer in that entry points to
the first buffer in the chain. A hash pointer associated with each buffer points to
the next buffer in the chain for that hash table entry. Thus, for all (device#, block#)

Character Block

Buffer cache

File subsystem

Device drivers

Figure 11.12 UNIX I/O Structure

508 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

references that map into the same hash table entry, if the corresponding block is in
the buffer cache, then that buffer will be in the chain for that hash table entry. Thus,
the length of the search of the buffer cache is reduced by a factor on the order of N ,
where N is the length of the hash table.

 For block replacement, a least-recently-used algorithm is used: After a buffer has
been allocated to a disk block, it cannot be used for another block until all other buff-
ers have been used more recently. The free list preserves this least-recently-used order.

Character Queue

 Block-oriented devices, such as disk and USB keys, can be effectively served by the
buffer cache. A different form of buffering is appropriate for character-oriented
devices, such as terminals and printers. A character queue is either written by the
I/O device and read by the process or written by the process and read by the device.
In both cases, the producer/consumer model introduced in Chapter 5 is used. Thus,
character queues may only be read once; as each character is read, it is effectively
destroyed. This is in contrast to the buffer cache, which may be read multiple times
and hence follows the readers/writers model (also discussed in Chapter 5).

Unbuffered I/O

 Unbuffered I/O, which is simply DMA between device and process space,
is always the fastest method for a process to perform I/O. A process that is

Device#, Block#

Hash table Buffer cache

Free list
pointer

Fr
ee

 li
st

 p
oi

nt
er

s

H
as

h
po

in
te

rs

Figure 11.13 UNIX Buffer Cache Organization

11.9 / LINUX I/O 509

 performing unbuffered I/O is locked in main memory and cannot be swapped
out. This reduces the opportunities for swapping by tying up part of main mem-
ory, thus reducing the overall system performance. Also, the I/O device is tied up
with the process for the duration of the transfer, making it unavailable for other
processes.

UNIX Devices

 Among the categories of devices recognized by UNIX are the following:

 • Disk drives

 • Tape drives

 • Terminals

 • Communication lines

 • Printers

 Table 11.5 shows the types of I/O suited to each type of device. Disk drives
are heavily used in UNIX, are block oriented, and have the potential for reason-
able high throughput. Thus, I/O for these devices tends to be unbuffered or via
buffer cache. Tape drives are functionally similar to disk drives and use similar I/O
schemes.

 Because terminals involve relatively slow exchange of characters, terminal I/O
typically makes use of the character queue. Similarly, communication lines require
serial processing of bytes of data for input or output and are best handled by char-
acter queues. Finally, the type of I/O used for a printer will generally depend on its
speed. Slow printers will normally use the character queue, while a fast printer might
employ unbuffered I/O. A buffer cache could be used for a fast printer. However,
because data going to a printer are never reused, the overhead of the buffer cache is
unnecessary.

11.9 LINUX I/O

 In general terms, the Linux I/O kernel facility is very similar to that of other UNIX
implementation, such as SVR4. The Linux kernel associates a special file with each
I/O device driver. Block, character, and network devices are recognized. In this sec-
tion, we look at several features of the Linux I/O facility.

Table 11.5 Device I/O in UNIX

 Unbuffered I/O Buffer Cache Character Queue

 Disk Drive X X

 Tape Drive X X

 Terminals X

 Communication Lines X

 Printers X X

510 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

Disk Scheduling

 The default disk scheduler in Linux 2.4 is known as the Linux Elevator, which is
a variation on the LOOK algorithm discussed in Section 11.5 . For Linux 2.6, the
Elevator algorithm has been augmented by two additional algorithms: the deadline
I/O scheduler and the anticipatory I/O scheduler [LOVE04]. We examine each of
these in turn.

THE ELEVATOR SCHEDULER The elevator scheduler maintains a single queue
for disk read and write requests and performs both sorting and merging functions
on the queue. In general terms, the elevator scheduler keeps the list of requests
sorted by block number. Thus, as the disk requests are handled, the drive moves in
a single direction, satisfying each request as it is encountered. This general strategy
is refined in the following manner. When a new request is added to the queue, four
operations are considered in order:

 1. If the request is to the same on-disk sector or an immediately adjacent sector
to a pending request in the queue, then the existing request and the new re-
quest are merged into one request.

 2. If a request in the queue is sufficiently old, the new request is inserted at the
tail of the queue.

 3. If there is a suitable location, the new request is inserted in sorted order.

 4. If there is no suitable location, the new request is placed at the tail of the
queue.

DEADLINE SCHEDULER Operation 2 in the preceding list is intended to prevent
starvation of a request, but is not very effective [LOVE04]. It does not attempt to
service requests in a given time frame but merely stops insertion-sorting requests
after a suitable delay. Two problems manifest themselves with the elevator scheme.
The first problem is that a distant block request can be delayed for a substantial
time because the queue is dynamically updated. For example, consider the following
stream of requests for disk blocks: 20, 30, 700, 25. The elevator scheduler reorders
these so that the requests are placed in the queue as 20, 25, 30, 700, with 20 being the
head of the queue. If a continuous sequence of low-numbered block requests arrive,
then the request for 700 continues to be delayed.

 An even more serious problem concerns the distinction between read and
write requests. Typically, a write request is issued asynchronously. That is, once
a process issues the write request, it need not wait for the request to actually be
satisfied. When an application issues a write, the kernel copies the data into an
appropriate buffer, to be written out as time permits. Once the data are captured
in the kernel’s buffer, the application can proceed. However, for many read oper-
ations, the process must wait until the requested data are delivered to the appli-
cation before proceeding. Thus, a stream of write requests (e.g., to place a large
file on the disk) can block a read request for a considerable time and thus block a
process.

 To overcome these problems, the deadline I/O scheduler makes use
of three queues (Figure 11.14). Each incoming request is placed in the sorted

11.9 / LINUX I/O 511

 elevator queue, as before. In addition, the same request is placed at the tail of a
read FIFO queue for a read request or a write FIFO queue for a write request.
Thus, the read and write queues maintain a list of requests in the sequence in
which the requests were made. Associated with each request is an expiration
time, with a default value of 0.5 seconds for a read request and 5 seconds for a
write request. Ordinarily, the scheduler dispatches from the sorted queue. When
a request is satisfied, it is removed from the head of the sorted queue and also
from the appropriate FIFO queue. However, when the item at the head of one of
the FIFO queues becomes older than its expiration time, then the scheduler next
dispatches from that FIFO queue, taking the expired request, plus the next few
requests from the queue. As each request is dispatched, it is also removed from
the sorted queue.

 The deadline I/O scheduler scheme overcomes the starvation problem and
also the read versus write problem.

ANTICIPATORY I/O SCHEDULER The original elevator scheduler and the deadline
scheduler both are designed to dispatch a new request as soon as the existing request
is satisfied, thus keeping the disk as busy as possible. This same policy applies to all
of the scheduling algorithms discussed in Section 11.5 . However, such a policy can
be counterproductive if there are numerous synchronous read requests. Typically,
an application will wait until a read request is satisfied and the data available before
issuing the next request. The small delay between receiving the data for the last
read and issuing the next read enables the scheduler to turn elsewhere for a pending
request and dispatch that request.

 Because of the principle of locality, it is likely that successive reads from the
same process will be to disk blocks that are near one another. If the scheduler were
to delay a short period of time after satisfying a read request, to see if a new nearby
read request is made, the overall performance of the system could be enhanced.
This is the philosophy behind the anticipatory scheduler, proposed in [IYER01],
and implemented in Linux 2.6.

Sorted (elevator) queue

Read FIFO queue

Write FIFO queue

Figure 11.14 The Linux Deadline I/O Scheduler

512 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

 In Linux, the anticipatory scheduler is superimposed on the deadline sched-
uler. When a read request is dispatched, the anticipatory scheduler causes the
scheduling system to delay for up to 6 ms, depending on the configuration. During
this small delay, there is a good chance that the application that issued the last
read request will issue another read request to the same region of the disk. If
so, that request will be serviced immediately. If no such read request occurs, the
scheduler resumes using the deadline scheduling algorithm.

 [LOVE04] reports on two tests of the Linux scheduling algorithms. The first
test involved the reading of a 200-MB file while doing a long streaming write in
the background. The second test involved doing a read of a large file in the back-
ground while reading every file in the kernel source tree. The results are listed in
the following table:

 I/O Scheduler and Kernel Test 1 Test 2
 Linux elevator on 2.4 45 seconds 30 minutes, 28 seconds
 Deadline I/O scheduler on 2.6 40 seconds 3 minutes, 30 seconds
 Anticipatory I/O scheduler on 2.6 4.6 seconds 15 seconds

 As can be seen, the performance improvement depends on the nature of
the workload. But in both cases, the anticipatory scheduler provides a dramatic
improvement.

Linux Page Cache

 In Linux 2.2 and earlier releases, the kernel maintained a page cache for reads and
writes from regular file system files and for virtual memory pages, and a separate
buffer cache for block I/O. For Linux 2.4 and later, there is a single unified page
cache that is involved in all traffic between disk and main memory.

 The page cache confers two benefits. First, when it is time to write back dirty
pages to disk, a collection of them can be ordered properly and written out effi-
ciently. Second, because of the principle of temporal locality, pages in the page
cache are likely to be referenced again before they are flushed from the cache, thus
saving a disk I/O operation.

 Dirty pages are written back to disk in two situations:

 • When free memory falls below a specified threshold, the kernel reduces the
size of the page cache to release memory to be added to the free memory pool.

 • When dirty pages grow older than a specified threshold, a number of dirty
pages are written back to disk.

11.10 WINDOWS I/O

 Figure 11.15 shows the key kernel-mode components related to the Windows I/O
manager. The I/O manager is responsible for all I/O for the operating system and
provides a uniform interface that all types of drivers can call.

11.10 / WINDOWS I/O 513

Basic I/O Facilities

 The I/O manager works closely with four types of kernel components:

 • Cache manager: The cache manager handles file caching for all file systems.
It can dynamically increase and decrease the size of the cache devoted to a
particular file as the amount of available physical memory varies. The system
records updates in the cache only and not on disk. A kernel thread, the lazy
writer, periodically batches the updates together to write to disk. Writing the
updates in batches allows the I/O to be more efficient. The cache manager
works by mapping regions of files into kernel virtual memory and then relying
on the virtual memory manager to do most of the work to copy pages to and
from the files on disk.

 • File system drivers: The I/O manager treats a file system driver as just another
device driver and routes I/O requests for file system volumes to the appropri-
ate software driver for that volume. The file system, in turn, sends I/O requests
to the software drivers that manage the hardware device adapter.

 • Network drivers: Windows includes integrated networking capabilities and
support for remote file systems. The facilities are implemented as software
drivers rather than part of the Windows Executive.

 • Hardware device drivers: These software drivers access the hardware regis-
ters of the peripheral devices using entry points in the Hardware Abstraction
Layer. A set of these routines exists for every platform that Windows supports;
because the routine names are the same for all platforms, the source code of
Windows device drivers is portable across different processor types.

Asynchronous and Synchronous I/O

 Windows offers two modes of I/O operation: asynchronous and synchronous. The
asynchronous mode is used whenever possible to optimize application perfor-
mance. With asynchronous I/O, an application initiates an I/O operation and then
can continue processing while the I/O request is fulfilled. With synchronous I/O, the
application is blocked until the I/O operation completes.

 Asynchronous I/O is more efficient, from the point of view of the calling
thread, because it allows the thread to continue execution while the I/O operation is

I/O manager

Cache
manager

File system
drivers

Network
drivers

Hardware
device drivers

Figure 11.15 Windows I/O Manager

514 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

queued by the I/O manager and subsequently performed. However, the application
that invoked the asynchronous I/O operation needs some way to determine when
the operation is complete. Windows provides five different techniques for signaling
I/O completion:

 • Signaling the file object: With this approach, the event associated with a
file object is set when an operation on that object is complete. The thread
that invoked the I/O operation can continue to execute until it reaches a
point where it must stop until the I/O operation is complete. At that point,
the thread can wait until the operation is complete and then continue. This
 technique is simple and easy to use but is not appropriate for handling
 multiple I/O requests. For example, if a thread needs to perform multiple
simultaneous actions on a single file, such as reading from one portion and
writing to another portion of the file, with this technique the thread could
not distinguish between the completion of the read and the completion of
the write. It would simply know that one of the requested I/O operations on
this file had finished.

 • Signaling an event object: This technique allows multiple simultaneous I/O
requests against a single device or file. The thread creates an event for each
request. Later, the thread can wait on a single one of these requests or on an
entire collection of requests.

 • Asynchronous procedure call: This technique makes use of a queue associated
with a thread, known as the asynchronous procedure call (APC) queue. In this
case, the thread makes I/O requests, specifying a user-mode routine to call
when the I/O completes. The I/O manager places the results of each request in
the calling thread’s APC queue. The next time the thread blocks in the kernel,
the APCs will be delivered, each causing the thread to return to user mode
and execute the specified routine.

 • I/O completion ports: This technique is used on a Windows server to optimize
the use of threads. The application creates a pool of threads for handling the
completion of I/O requests. Each thread waits on the completion port, and the
Kernel wakes threads to handle each I/O completion. One of the advantages
of this approach is that the application can specify a limit for how many of
these threads will run at the same time.

 • Polling: Asynchronous I/O requests write a status and transfer count into the
process’ user virtual memory when the operation completes. A thread can just
check these values to see if the operation has completed.

Software RAID

 Windows supports two sorts of RAID configurations, defined in [MS96] as follows:

 • Hardware RAID: Separate physical disks combined into one or more logical
disks by the disk controller or disk storage cabinet hardware.

 • Software RAID: Noncontiguous disk space combined into one or more logical
partitions by the fault-tolerant software disk driver, FTDISK.

11.11 / SUMMARY 515

 In hardware RAID, the controller interface handles the creation and regener-
ation of redundant information. The software RAID, available on Windows Server,
implements the RAID functionality as part of the operating system and can be used
with any set of multiple disks. The software RAID facility implements RAID 1
and RAID 5. In the case of RAID 1 (disk mirroring), the two disks containing the
 primary and mirrored partitions may be on the same disk controller or different
disk controllers. The latter configuration is referred to as disk duplexing.

Volume Shadow Copies

 Shadow copies are an efficient way of making consistent snapshots of volumes
so that they can be backed up. They are also useful for archiving files on a per-
volume basis. If a user deletes a file he or she can retrieve an earlier copy from
any available shadow copy made by the system administrator. Shadow copies are
implemented by a software driver that makes copies of data on the volume before
it is overwritten.

Volume Encryption

 Windows supports the encryption of entire volumes, using a feature called
BitLocker. This is more secure than encrypting individual files, as the entire system
works to be sure that the data is safe. Up to three different methods of supplying the
cryptographic key can be provided, allowing multiple interlocking layers of security.

11.11 SUMMARY

 The computer system’s interface to the outside world is its I/O architecture. This
architecture is designed to provide a systematic means of controlling interaction
with the outside world and to provide the operating system with the information it
needs to manage I/O activity effectively.

 The I/O function is generally broken up into a number of layers, with lower
layers dealing with details that are closer to the physical functions to be performed
and higher layers dealing with I/O in a logical and generic fashion. The result is that
changes in hardware parameters need not affect most of the I/O software.

 A key aspect of I/O is the use of buffers that are controlled by I/O utili-
ties rather than by application processes. Buffering smoothes out the differences
between the internal speeds of the computer system and the speeds of I/O devices.
The use of buffers also decouples the actual I/O transfer from the address space
of the application process. This allows the operating system more flexibility in
performing its memory-management function.

 The aspect of I/O that has the greatest impact on overall system performance
is disk I/O. Accordingly, there has been greater research and design effort in this
area than in any other kind of I/O. Two of the most widely used approaches to
improve disk I/O performance are disk scheduling and the disk cache.

 At any time, there may be a queue of requests for I/O on the same disk. It is
the object of disk scheduling to satisfy these requests in a way that minimizes the

516 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

mechanical seek time of the disk and hence improves performance. The physical
layout of pending requests plus considerations of locality come into play.

 A disk cache is a buffer, usually kept in main memory, that functions as a
cache of disk blocks between disk memory and the rest of main memory. Because
of the principle of locality, the use of a disk cache should substantially reduce the
number of block I/O transfers between main memory and disk.

11.12 RECOMMENDED READING

 General discussions of computer I/O can be found in most books on computer archi-
tecture, such as [STAL10]. [MEE96a] provides a good survey of the underlying
recording technology of disk and tape systems. [MEE96b] focuses on the data stor-
age techniques for disk and tape systems. [WIED87] contains an excellent discussion
of disk performance issues, including those relating to disk scheduling. [NG98] looks
at disk hardware performance issues. [CAO96] analyzes disk caching and disk sched-
uling. Good surveys of disk scheduling algorithms, with a performance analysis, are
[WORT94] and [SELT90].

 [PAI00] is an instructive description of an integrated operating-system scheme
for I/O buffering and caching.

 [DELL00] provides a detailed discussion of Windows NT device drivers plus a
good overview of the entire Windows I/O architecture.

 An excellent survey of RAID technology, written by the inventors of the
RAID concept, is [CHEN94]. [CHEN96] analyzes RAID performance. Another
good paper is [FRIE96]. [DALT96] describes the Windows NT software RAID
facility in detail. [LEVE10] examines the need to move beyond RAID 6 to a triple-
parity configuration. [STAI10] is a good survey of the standard RAID levels plus a
number of common RAID enhancements.

CAO96 Cao, P., Felten, E., Karlin, A., and Li, K. “Implementation and Performance
of Integrated Application-Controlled File Caching, Prefetching, and Disk
Scheduling.” ACM Transactions on Computer Systems , November 1996.

CHEN94 Chen, P., Lee, E., Gibson, G., Katz, R., and Patterson, D. “RAID: High-
Performance, Reliable Secondary Storage.” ACM Computing Surveys , June 1994.

CHEN96 Chen, S., and Towsley, D. “A Performance Evaluation of RAID
Architectures.” IEEE Transactions on Computers , October 1996.

DALT96 Dalton, W., et al. Windows NT Server 4: Security, Troubleshooting, and
Optimization. Indianapolis, IN: New Riders Publishing, 1996.

DELL00 Dekker, E., and Newcomer, J. Developing Windows NT Device Drivers: A
Programmer’s Handbook. Reading, MA: Addison Wesley, 2000.

FRIE96 Friedman, M. “RAID Keeps Going and Going and…” IEEE Spectrum ,
April 1996.

LEVE10 Leventhal, A. “Triple-Parity RAID and Beyond.” Communications of the
ACM , January 2010.

MEE96a Mee, C., and Daniel, E. eds. Magnetic Recording Technology. New York:
McGraw Hill, 1996.

11.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 517

11.13 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

MEE96b Mee, C., and Daniel, E. eds. Magnetic Storage Handbook. New York:
McGraw Hill, 1996.

NG98 Ng, S. “Advances in Disk Technology: Performance Issues.” Computer , May 1989.
PAI00 Pai, V., Druschel, P., and Zwaenepoel, W. “IO-Lite: A Unified I/O Buffering

and Caching System.” ACM Transactions on Computer Systems , February 2000.
SELT90 Seltzer, M., Chen, P., and Ousterhout, J. “Disk Scheduling Revisited.”

Proceedings, USENIX Winter Technical Conference , January 1990.
STAI10 Staimer, M. “Alternatives to RAID.” Storage Magazine , May 2010.
STAL10 Stallings, W. Computer Organization and Architecture , 8th ed. Upper Saddle

River, NJ: Prentice Hall, 2010.
WIED87 Wiederhold, G. File Organization for Database Design. New York:

McGraw-Hill, 1987.
WORT94 Worthington, B., Ganger, G., and Patt, Y. “Scheduling Algorithms for

Modern Disk Drives.” ACM SiGMETRICS , May 1994.

 block
 block-oriented device
 circular buffer
 device I/O
 direct memory access
 disk access time
 disk cache
 gap
 hard disk
 interrupt-driven I/O

 input/output (I/O)
 I/O buffer
 I/O channel
 I/O processor
 logical I/O
 magnetic disk
 nonremovable disk
 programmed I/O
 read/write head

 redundant array of
independent disks

 removable disk
 rotational delay
 sector
 seek time
 stream-oriented device
 track
 transfer time

Review Questions

 11.1 List and briefly define three techniques for performing I/O.
 11.2 What is the difference between logical I/O and device I/O?
 11.3 What is the difference between block-oriented devices and stream-oriented devices?

Give a few examples of each.
 11.4 Why would you expect improved performance using a double buffer rather than a

single buffer for I/O?
 11.5 What delay elements are involved in a disk read or write?
 11.6 Briefly define the disk scheduling policies illustrated in Figure 11.7 .
 11.7 Briefly define the seven RAID levels.
 11.8 What is the typical disk sector size?

518 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

Problems

 11.1 Consider a program that accesses a single I/O device and compare unbuffered I/O to
the use of a buffer. Show that the use of the buffer can reduce the running time by at
most a factor of two.

 11.2 Generalize the result of Problem 11.1 to the case in which a program refers to n devices.
 11.3 a. Perform the same type of analysis as that of Table 11.2 for the following sequence

of disk track requests: 27, 129, 110, 186, 147, 41, 10, 64, 120. Assume that the
disk head is initially positioned over track 100 and is moving in the direction of
 decreasing track number.

b. Do the same analysis, but now assume that the disk head is moving in the direction
of increasing track number.

 11.4 Consider a disk with N tracks numbered from 0 to (N - 1) and assume that requested
sectors are distributed randomly and evenly over the disk. We want to calculate the
average number of tracks traversed by a seek.
a. Calculate the probability of a seek of length j when the head is currently posi-

tioned over track t. (Hint: This is a matter of determining the total number of
combinations, recognizing that all track positions for the destination of the seek
are equally likely.)

b. Calculate the probability of a seek of length K , for an arbitrary current position
of the head. (Hint: This involves the summing over all possible combinations of
movements of K tracks.)

c. Calculate the average number of tracks traversed by a seek, using the formula for
expected value

 E[x] = a
N-1

i=0
i * Pr [x = i]

Hint: Use the equalities a
n

i=1
=

n(n + 1)

2
 ; a

n

i=1
i2 =

n(n + 1)(2n + 1)

6
 .

d. Show that for large values of N , the average number of tracks traversed by a seek
approaches N /3.

 11.5 The following equation was suggested both for cache memory and disk cache memory:

TS = TC + M * TD

 Generalize this equation to a memory hierarchy with N levels instead of just 2.
 11.6 For the frequency-based replacement algorithm (Figure 11.9), define Fnew , Fmiddle ,

and Fold as the fraction of the cache that comprises the new, middle, and old sections,
 respectively. Clearly, Fnew + Fmiddle + Fold = 1 . Characterize the policy when
a. Fold = 1 - Fnew
b. Fold = 1/(cache size)

 11.7 Calculate how much disk space (in sectors, tracks, and surfaces) will be required to
store 300,000 120-byte logical records if the disk is fixed sector with 512 bytes/
sector, with 96 sectors/track, 110 tracks per surface, and 8 usable surfaces. Ignore
any file header record(s) and track indexes, and assume that records cannot span
two sectors.

 11.8 Consider the disk system described in Problem 11.7, and assume that the disk rotates
at 360 rpm. A processor reads one sector from the disk using interrupt-driven I/O,
with one interrupt per byte. If it takes 2.5 μs to process each interrupt, what percent-
age of the time will the processor spend handling I/O (disregard seek time)?

 11.9 Repeat the preceding problem using DMA, and assume one interrupt per sector.
 11.10 A 32-bit computer has two selector channels and one multiplexor channel. Each selec-

tor channel supports two magnetic disk and two magnetic tape units. The multiplexor

11.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 519

channel has two line printers, two card readers, and ten VDT terminals connected to
it. Assume the following transfer rates:

 Disk drive 800 Kbytes/s
 Magnetic tape drive 200 Kbytes/s
 Line printer 6.6 Kbytes/s
 Card reader 1.2 Kbytes/s
 VDT 1 Kbyte/s

 Estimate the maximum aggregate I/O transfer rate in this system.
 11.11 It should be clear that disk striping can improve the data transfer rate when the strip

size is small compared to the I/O request size. It should also be clear that RAID 0
provides improved performance relative to a single large disk, because multiple I/O
requests can be handled in parallel. However, in this latter case, is disk striping neces-
sary? That is, does disk striping improve I/O request rate performance compared to a
comparable disk array without striping?

 11.12 Consider a 4-drive, 200 GB-per-drive RAID array. What is the available data storage
capacity for each of the RAID levels, 0, 1, 3, 4, 5, and 6?

 12.1 Overview
 Files and File Systems
 File Structure
 File Management Systems

 12.2 File Organization and Access
 The Pile
 The Sequential File
 The Indexed Sequential File
 The Indexed File
 The Direct or Hashed File

 12.3 B-Trees

 12.4 File Directories
 Contents
 Structure
 Naming

 12.5 File Sharing
 Access Rights
 Simultaneous Access

 12.6 Record Blocking

 12.7 Secondary Storage Management
 File Allocation
 Free Space Management
 Volumes
 Reliability

 12.8 File System Security

 12.9 UNIX File Management

 12.10 Linux Virtual File System

 12.11 Windows File System

 12.12 Summary

 12.13 Recommended Reading

 12.14 Key Terms, Review Questions, and Problems

FILE MANAGEMENT

CHAPTER

520

CHAPTER 12 / FILE MANAGEMENT 521

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

• Describe the basic concepts of files and file systems.
• Understand the principal techniques for file organization and access.
• Define B-trees.
• Explain file directories.
• Understand the requirements for file sharing.
• Understand the concept of record blocking.
• Describe the principal design issues for secondary storage management.
• Understand the design issues for file system security.
• Explain the OS file systems used in Linux, UNIX, and Windows 7.

 If there is one singular characteristic that makes squirrels unique
among small mammals it is their natural instinct to hoard food.
Squirrels have developed sophisticated capabilities in their hoarding.
Different types of food are stored in different ways to maintain quality.
Mushrooms, for instance, are usually dried before storing. This is done
by impaling them on branches or leaving them in the forks of trees for
later retrieval. Pine cones, on the other hand, are often harvested while
green and cached in damp conditions that keep seeds from ripening.
Gray squirrels usually strip outer husks from walnuts before storing.

 — SQUIRRELS: A WILDLIFE HANDBOOK , Kim Long

 In most applications, the file is the central element. With the exception of real-time
applications and some other specialized applications, the input to the application is
by means of a file; and in virtually all applications, output is saved in a file for long-
term storage and for later access by the user and by other programs.

 Files have a life outside of any individual application that uses them for input
and/or output. Users wish to be able to access files, save them, and maintain the
integrity of their contents. To aid in these objectives, virtually all operating systems
provide file management systems. Typically, a file management system consists of
system utility programs that run as privileged applications. However, at the very
least, a file management system needs special services from the operating system;
at the most, the entire file management system is considered part of the operating
system. Thus, it is appropriate to consider the basic elements of file management in
this book.

 We begin with an overview, followed by a look at various file organization
schemes. Although file organization is generally beyond the scope of the operating
system, it is essential to have a general understanding of the common alternatives to
appreciate some of the design trade-offs involved in file management. The remain-
der of this chapter looks at other topics in file management.

522 CHAPTER 12 / FILE MANAGEMENT

12.1 OVERVIEW

Files and File Systems

 From the user’s point of view, one of the most important parts of an operating
 system is the file system. The file system provides the resource abstractions typi-
cally associated with secondary storage. The file system permits users to create data
 collections, called files, with desirable properties, such as:

 • Long-term existence: Files are stored on disk or other secondary storage and
do not disappear when a user logs off.

 • Sharable between processes: Files have names and can have associated access
permissions that permit controlled sharing.

 • Structure: Depending on the file system, a file can have an internal structure
that is convenient for particular applications. In addition, files can be organ-
ized into hierarchical or more complex structure to reflect the relationships
among files.

 Any file system provides not only a means to store data organized as files, but
a collection of functions that can be performed on files. Typical operations include
the following:

 • Create: A new file is defined and positioned within the structure of files.

 • Delete: A file is removed from the file structure and destroyed.

 • Open: An existing file is declared to be “opened” by a process, allowing the
process to perform functions on the file.

 • Close: The file is closed with respect to a process, so that the process no longer
may perform functions on the file, until the process opens the file again.

 • Read: A process reads all or a portion of the data in a file.

 • Write: A process updates a file, either by adding new data that expands the
size of the file or by changing the values of existing data items in the file.

 Typically, a file system maintains a set of attributes associated with the file.
These include owner, creation time, time last modified, access privileges, and so on.

File Structure

 Four terms are in common use when discussing files:

 • Field

 • Record

 • File

 • Database

 A field is the basic element of data. An individual field contains a single value,
such as an employee’s last name, a date, or the value of a sensor reading. It is char-
acterized by its length and data type (e.g., ASCII string, decimal). Depending on the

12.1 / OVERVIEW 523

file design, fields may be fixed length or variable length. In the latter case, the field
often consists of two or three subfields: the actual value to be stored, the name of
the field, and, in some cases, the length of the field. In other cases of variable-length
fields, the length of the field is indicated by the use of special demarcation symbols
between fields.

 A record is a collection of related fields that can be treated as a unit by some
application program. For example, an employee record would contain such fields
as name, social security number, job classification, date of hire, and so on. Again,
depending on design, records may be of fixed length or variable length. A record
will be of variable length if some of its fields are of variable length or if the number
of fields may vary. In the latter case, each field is usually accompanied by a field
name. In either case, the entire record usually includes a length field.

 A file is a collection of similar records. The file is treated as a single entity by
users and applications and may be referenced by name. Files have file names and
may be created and deleted. Access control restrictions usually apply at the file
level. That is, in a shared system, users and programs are granted or denied access
to entire files. In some more sophisticated systems, such controls are enforced at the
record or even the field level.

 Some file systems are structured only in terms of fields, not records. In that
case, a file is a collection of fields.

 A database is a collection of related data. The essential aspects of a database
are that the relationships that exist among elements of data are explicit and that the
database is designed for use by a number of different applications. A database may
contain all of the information related to an organization or project, such as a business
or a scientific study. The database itself consists of one or more types of files. Usually,
there is a separate database management system that is independent of the operat-
ing system, although that system may make use of some file management programs.

 Users and applications wish to make use of files. Typical operations that must
be supported include the following:

 • Retrieve_All : Retrieve all the records of a file. This will be required for
an application that must process all of the information in the file at one time.
For example, an application that produces a summary of the information in
the file would need to retrieve all records. This operation is often equated
with the term sequential processing , because all of the records are accessed in
sequence.

 • Retrieve_One : This requires the retrieval of just a single record. Interactive,
transaction-oriented applications need this operation.

 • Retrieve_Next : This requires the retrieval of the record that is “next” in
some logical sequence to the most recently retrieved record. Some interactive
applications, such as filling in forms, may require such an operation. A pro-
gram that is performing a search may also use this operation.

 • Retrieve_Previous : Similar to Retrieve_Next , but in this case the
record that is “previous” to the currently accessed record is retrieved.

 • Insert_One : Insert a new record into the file. It may be necessary that the
new record fit into a particular position to preserve a sequencing of the file.

524 CHAPTER 12 / FILE MANAGEMENT

 • Delete_One : Delete an existing record. Certain linkages or other data struc-
tures may need to be updated to preserve the sequencing of the file.

 • Update_One : Retrieve a record, update one or more of its fields, and rewrite
the updated record back into the file. Again, it may be necessary to pre-
serve sequencing with this operation. If the length of the record has changed,
the update operation is generally more difficult than if the length is preserved.

 • Retrieve_Few : Retrieve a number of records. For example, an application
or user may wish to retrieve all records that satisfy a certain set of criteria.

 The nature of the operations that are most commonly performed on a file will
influence the way the file is organized, as discussed in Section 12.2 .

 It should be noted that not all file systems exhibit the sort of structure dis-
cussed in this subsection. On UNIX and UNIX-like systems, the basic file structure
is just a stream of bytes. For example, a C program is stored as a file but does not
have physical fields, records, and so on.

File Management Systems

 A file management system is that set of system software that provides services to
users and applications in the use of files. Typically, the only way that a user or appli-
cation may access files is through the file management system. This relieves the user
or programmer of the necessity of developing special-purpose software for each
application and provides the system with a consistent, well-defined means of con-
trolling its most important asset. [GROS86] suggests the following objectives for a
file management system:

 • To meet the data management needs and requirements of the user, which include
storage of data and the ability to perform the aforementioned operations

 • To guarantee, to the extent possible, that the data in the file are valid

 • To optimize performance, both from the system point of view in terms of
overall throughput and from the user’s point of view in terms of response time

 • To provide I/O support for a variety of storage device types

 • To minimize or eliminate the potential for lost or destroyed data

 • To provide a standardized set of I/O interface routines to user processes

 • To provide I/O support for multiple users, in the case of multiple-user systems

 With respect to the first point, meeting user requirements, the extent of such
requirements depends on the variety of applications and the environment in which
the computer system will be used. For an interactive, general-purpose system, the
following constitute a minimal set of requirements:

 1. Each user should be able to create, delete, read, write, and modify files.

 2. Each user may have controlled access to other users’ files.

 3. Each user may control what types of accesses are allowed to the user’s files.

 4. Each user should be able to restructure the user’s files in a form appropriate to
the problem.

12.1 / OVERVIEW 525

 5. Each user should be able to move data between files.

 6. Each user should be able to back up and recover the user’s files in case of
damage.

 7. Each user should be able to access his or her files by name rather than by
 numeric identifier.

 These objectives and requirements should be kept in mind throughout our discus-
sion of file management systems.

FILE SYSTEM ARCHITECTURE One way of getting a feel for the scope of file
management is to look at a depiction of a typical software organization, as suggested
in Figure 12.1 . Of course, different systems will be organized differently, but this
organization is reasonably representative. At the lowest level, device drivers
communicate directly with peripheral devices or their controllers or channels. A
device driver is responsible for starting I/O operations on a device and processing
the completion of an I/O request. For file operations, the typical devices controlled
are disk and tape drives. Device drivers are usually considered to be part of the
operating system.

 The next level is referred to as the basic file system , or the physical I/O level.
This is the primary interface with the environment outside of the computer system.
It deals with blocks of data that are exchanged with disk or tape systems. Thus, it is
concerned with the placement of those blocks on the secondary storage device and
on the buffering of those blocks in main memory. It does not understand the con-
tent of the data or the structure of the files involved. The basic file system is often
considered part of the operating system.

 The basic I/O supervisor is responsible for all file I/O initiation and termi-
nation. At this level, control structures are maintained that deal with device I/O,
scheduling, and file status. The basic I/O supervisor selects the device on which file
I/O is to be performed, based on the particular file selected. It is also concerned
with scheduling disk and tape accesses to optimize performance. I/O buffers are

Logical I/O

Basic I/O supervisor

Basic file system

Disk device driver Tape device driver

Indexed
sequential

Pile Sequential Indexed Hashed

User program

Figure 12.1 File System Software Architecture

526 CHAPTER 12 / FILE MANAGEMENT

assigned and secondary memory is allocated at this level. The basic I/O supervisor is
part of the operating system.

Logical I/O enables users and applications to access records. Thus, whereas
the basic file system deals with blocks of data, the logical I/O module deals with file
records. Logical I/O provides a general-purpose record I/O capability and maintains
basic data about files.

 The level of the file system closest to the user is often termed the access
method. It provides a standard interface between applications and the file systems
and devices that hold the data. Different access methods reflect different file struc-
tures and different ways of accessing and processing the data. Some of the most
common access methods are shown in Figure 12.1 , and these are briefly described
in Section 12.2 .

FILE MANAGEMENT FUNCTIONS Another way of viewing the functions of a file
system is shown in Figure 12.2 . Let us follow this diagram from left to right. Users
and application programs interact with the file system by means of commands for
creating and deleting files and for performing operations on files. Before performing
any operation, the file system must identify and locate the selected file. This requires
the use of some sort of directory that serves to describe the location of all files, plus
their attributes. In addition, most shared systems enforce user access control: Only
authorized users are allowed to access particular files in particular ways. The basic
operations that a user or application may perform on a file are performed at the
record level. The user or application views the file as having some structure that
organizes the records, such as a sequential structure (e.g., personnel records are
stored alphabetically by last name). Thus, to translate user commands into specific

Directory
management

Access
method

Blocking
Disk

scheduling

File
allocation

File
structure

Records

File management concerns

Operating system concerns

Physical blocks
in main memory

buffers

Physical blocks
in secondary
storage (disk)

User access
control

User & program
commands Operation,

file name
Free storage
management

File
manipulation

functions

I/O

Figure 12.2 Elements of File Management

12.2 / FILE ORGANIZATION AND ACCESS 527

file manipulation commands, the access method appropriate to this file structure
must be employed.

 Whereas users and applications are concerned with records or fields, I/O is
done on a block basis. Thus, the records or fields of a file must be organized as a
sequence of blocks for output and unblocked after input. To support block I/O of
files, several functions are needed. The secondary storage must be managed. This
involves allocating files to free blocks on secondary storage and managing free stor-
age so as to know what blocks are available for new files and growth in existing files.
In addition, individual block I/O requests must be scheduled; this issue was dealt with
in Chapter 11 . Both disk scheduling and file allocation are concerned with optimizing
performance. As might be expected, these functions therefore need to be considered
together. Furthermore, the optimization will depend on the structure of the files and
the access patterns. Accordingly, developing an optimum file management system
from the point of view of performance is an exceedingly complicated task.

 Figure 12.2 suggests a division between what might be considered the con-
cerns of the file management system as a separate system utility and the concerns
of the operating system, with the point of intersection being record processing. This
division is arbitrary; various approaches are taken in various systems.

 In the remainder of this chapter, we look at some of the design issues sug-
gested in Figure 12.2 . We begin with a discussion of file organizations and access
methods. Although this topic is beyond the scope of what is usually considered the
concerns of the operating system, it is impossible to assess the other file-related
design issues without an appreciation of file organization and access. Next, we look
at the concept of file directories. These are often managed by the operating system
on behalf of the file management system. The remaining topics deal with the physi-
cal I/O aspects of file management and are properly treated as aspects of OS design.
One such issue is the way in which logical records are organized into physical blocks.
Finally, there are the related issues of file allocation on secondary storage and the
management of free secondary storage.

12.2 FILE ORGANIZATION AND ACCESS

 In this section, we use the term file organization to refer to the logical structuring
of the records as determined by the way in which they are accessed. The physical
organization of the file on secondary storage depends on the blocking strategy and
the file allocation strategy, issues dealt with later in this chapter.

 In choosing a file organization, several criteria are important:

 • Short access time

 • Ease of update

 • Economy of storage

 • Simple maintenance

 • Reliability

 The relative priority of these criteria will depend on the applications that will
use the file. For example, if a file is only to be processed in batch mode, with all of

528 CHAPTER 12 / FILE MANAGEMENT

the records accessed every time, then rapid access for retrieval of a single record is
of minimal concern. A file stored on CD-ROM will never be updated, and so ease
of update is not an issue.

 These criteria may conflict. For example, for economy of storage, there should be
minimum redundancy in the data. On the other hand, redundancy is a primary means
of increasing the speed of access to data. An example of this is the use of indexes.

 The number of alternative file organizations that have been implemented or
just proposed is unmanageably large, even for a book devoted to file systems. In this
brief survey, we will outline five fundamental organizations. Most structures used in
actual systems either fall into one of these categories or can be implemented with a
combination of these organizations. The five organizations, the first four of which
are depicted in Figure 12.3 , are as follows:

(a) Pile file

(c) Indexed sequential file

(d) Indexed file

Variable-length records
Variable set of fields
Chronological order

(b) Sequential file

Fixed-length records
Fixed set of fields in fixed order
Sequential order based on key field

Main file

Overflow
file

Index
levels

Exhaustive
index

Exhaustive
index

Partial
index

Primary file
(variable-length records)

Index

1
2

n

Figure 12.3 Common File Organizations

12.2 / FILE ORGANIZATION AND ACCESS 52912.2 / FILE ORGANIZATION AND ACCESS 529

 • The pile

 • The sequential file

 • The indexed sequential file

 • The indexed file

 • The direct, or hashed, file

 Table 12.1 summarizes relative performance aspects of these five organizations. 1

The Pile

 The least-complicated form of file organization may be termed the pile . Data are
collected in the order in which they arrive. Each record consists of one burst of
data. The purpose of the pile is simply to accumulate the mass of data and save it.
Records may have different fields, or similar fields in different orders. Thus, each
field should be self-describing, including a field name as well as a value. The length
of each field must be implicitly indicated by delimiters, explicitly included as a sub-
field, or known as default for that field type.

 Because there is no structure to the pile file, record access is by exhaustive
search. That is, if we wish to find a record that contains a particular field with a
particular value, it is necessary to examine each record in the pile until the desired

Table 12.1 Grades of Performance for Five Basic File Organizations [WIED87]

 Space
Attributes

 Update
Record Size

 Retrieval

 File
Method Variable Fixed Equal Greater

 Single
record Subset Exhaustive

 Pile A B A E E D B

 Sequential F A D F F D A

 Indexed
sequential

 F B B D B D B

 Indexed B C C C A B D

 Hashed F B B F B F E

 A � Excellent, well suited to this purpose � O(r)
 B � Good � O(o � r)
 C � Adequate � O(r log n)
 D � Requires some extra effort � O(n)
 E � Possible with extreme effort � O(r � n)
 F � Not reasonable for this purpose � O(n� 1)

 where
r � size of the result
o � number of records that overflow
n � number of records in file

1 The table employs the “big-O” notation, used for characterizing the time complexity of algorithms.
 Appendix I explains this notation.

530 CHAPTER 12 / FILE MANAGEMENT

record is found or the entire file has been searched. If we wish to find all records
that contain a particular field or contain that field with a particular value, then the
entire file must be searched.

 Pile files are encountered when data are collected and stored prior to process-
ing or when data are not easy to organize. This type of file uses space well when the
stored data vary in size and structure, is perfectly adequate for exhaustive searches,
and is easy to update. However, beyond these limited uses, this type of file is unsuit-
able for most applications.

The Sequential File

 The most common form of file structure is the sequential file. In this type of file,
a fixed format is used for records. All records are of the same length, consisting of
the same number of fixed-length fields in a particular order. Because the length and
position of each field are known, only the values of fields need to be stored; the field
name and length for each field are attributes of the file structure.

 One particular field, usually the first field in each record, is referred to as the
key field . The key field uniquely identifies the record; thus key values for different
records are always different. Further, the records are stored in key sequence: alpha-
betical order for a text key, and numerical order for a numerical key.

 Sequential files are typically used in batch applications and are generally
 optimum for such applications if they involve the processing of all the records (e.g.,
a billing or payroll application). The sequential file organization is the only one that
is easily stored on tape as well as disk.

 For interactive applications that involve queries and/or updates of individual
records, the sequential file provides poor performance. Access requires the sequen-
tial search of the file for a key match. If the entire file, or a large portion of the
file, can be brought into main memory at one time, more efficient search techniques
are possible. Nevertheless, considerable processing and delay are encountered to
access a record in a large sequential file. Additions to the file also present problems.
Typically, a sequential file is stored in simple sequential ordering of the records within
blocks. That is, the physical organization of the file on tape or disk directly matches
the logical organization of the file. In this case, the usual procedure is to place new
records in a separate pile file, called a log file or transaction file. Periodically, a batch
update is performed that merges the log file with the master file to produce a new file
in correct key sequence.

 An alternative is to organize the sequential file physically as a linked list. One
or more records are stored in each physical block. Each block on disk contains a
pointer to the next block. The insertion of new records involves pointer manipula-
tion but does not require that the new records occupy a particular physical block
position. Thus, some added convenience is obtained at the cost of additional
processing and overhead.

The Indexed Sequential File

 A popular approach to overcoming the disadvantages of the sequential file is the
indexed sequential file. The indexed sequential file maintains the key characteristic
of the sequential file: Records are organized in sequence based on a key field. Two

12.2 / FILE ORGANIZATION AND ACCESS 531

features are added: an index to the file to support random access, and an overflow
file. The index provides a lookup capability to reach quickly the vicinity of a desired
record. The overflow file is similar to the log file used with a sequential file but is
integrated so that a record in the overflow file is located by following a pointer from
its predecessor record.

 In the simplest indexed sequential structure, a single level of indexing is
used. The index in this case is a simple sequential file. Each record in the index file
 consists of two fields: a key field, which is the same as the key field in the main file,
and a pointer into the main file. To find a specific field, the index is searched to find
the highest key value that is equal to or precedes the desired key value. The search
continues in the main file at the location indicated by the pointer.

 To see the effectiveness of this approach, consider a sequential file with
1 million records. To search for a particular key value will require on average one-
half million record accesses. Now suppose that an index containing 1,000 entries
is constructed, with the keys in the index more or less evenly distributed over
the main file. Now it will take on average 500 accesses to the index file followed
by 500 accesses to the main file to find the record. The average search length is
reduced from 500,000 to 1,000.

 Additions to the file are handled in the following manner: Each record in
the main file contains an additional field not visible to the application, which is a
pointer to the overflow file. When a new record is to be inserted into the file, it is
added to the overflow file. The record in the main file that immediately precedes
the new record in logical sequence is updated to contain a pointer to the new record
in the overflow file. If the immediately preceding record is itself in the overflow file,
then the pointer in that record is updated. As with the sequential file, the indexed
sequential file is occasionally merged with the overflow file in batch mode.

 The indexed sequential file greatly reduces the time required to access a single
record, without sacrificing the sequential nature of the file. To process the entire file
sequentially, the records of the main file are processed in sequence until a pointer
to the overflow file is found, then accessing continues in the overflow file until a null
pointer is encountered, at which time accessing of the main file is resumed where it
left off.

 To provide even greater efficiency in access, multiple levels of indexing can be
used. Thus the lowest level of index file is treated as a sequential file and a higher-
level index file is created for that file. Consider again a file with 1 million records.
A lower-level index with 10,000 entries is constructed. A higher-level index into
the lower-level index of 100 entries can then be constructed. The search begins at
the higher-level index (average length = 50 accesses) to find an entry point into the
lower-level index. This index is then searched (average length = 50) to find an entry
point into the main file, which is then searched (average length = 50). Thus the aver-
age length of search has been reduced from 500,000 to 1,000 to 150.

The Indexed File

 The indexed sequential file retains one limitation of the sequential file: Effective
processing is limited to that which is based on a single field of the file. For example,
when it is necessary to search for a record on the basis of some other attribute than

532 CHAPTER 12 / FILE MANAGEMENT

the key field, both forms of sequential file are inadequate. In some applications, the
flexibility of efficiently searching by various attributes is desirable.

 To achieve this flexibility, a structure is needed that employs multiple indexes,
one for each type of field that may be the subject of a search. In the general indexed
file, the concept of sequentiality and a single key are abandoned. Records are
accessed only through their indexes. The result is that there is now no restriction
on the placement of records as long as a pointer in at least one index refers to that
record. Furthermore, variable-length records can be employed.

 Two types of indexes are used. An exhaustive index contains one entry for
every record in the main file. The index itself is organized as a sequential file for
ease of searching. A partial index contains entries to records where the field of
interest exists. With variable-length records, some records will not contain all fields.
When a new record is added to the main file, all of the index files must be updated.

 Indexed files are used mostly in applications where timeliness of information
is critical and where data are rarely processed exhaustively. Examples are airline
reservation systems and inventory control systems.

The Direct or Hashed File

 The direct, or hashed, file exploits the capability found on disks to access directly any
block of a known address. As with sequential and indexed sequential files, a key field
is required in each record. However, there is no concept of sequential ordering here.

 The direct file makes use of hashing on the key value. This function is explained
in Appendix F . Figure F.1b shows the type of hashing organization with an overflow
file that is typically used in a hash file.

 Direct files are often used where very rapid access is required, where fixed-
length records are used, and where records are always accessed one at a time.
Examples are directories, pricing tables, schedules, and name lists.

12.3 B-TREES

 The preceding section referred to the use of an index file to access individual records
in a file or database. For a large file or database, a single sequential file of indexes on
the primary key does not provide for rapid access. To provide more efficient access,
a structured index file is typically used. The simplest such structure is a two-level
organization in which the original file is broken into sections and the upper level
consists of a sequenced set of pointers to the lower-level sections. This structure can
then be extended to more than two levels, resulting in a tree structure. Unless some
discipline is imposed on the construction of the tree index, it is likely to end up with
an uneven structure, with some short branches and some long branches, so that the
time to search the index is uneven. Therefore, a balanced tree structure, with all
branches of equal length, would appear to give the best average performance. Such a
structure is the B-tree, which has become the standard method of organizing indexes
for databases and is commonly used in OS file systems, including those supported by
Mac OS X, Windows, and several Linux file systems. The B-tree structure provides
for efficient searching, adding, and deleting of items.

12.3 / B-TREES 533

 Before illustrating the concept of B-tree, let us define a B-tree and its char-
acteristics more precisely. A B-tree is a tree structure (no closed loops) with the
 following characteristics (Figure 12.4).

 1. The tree consists of a number of nodes and leaves.

 2. Each node contains at least one key which uniquely identifies a file record,
and more than one pointer to child nodes or leaves. The number of keys and
pointers contained in a node may vary, within limits explained below.

 3. Each node is limited to the same number of maximum keys.

 4. The keys in a node are stored in nondecreasing order. Each key has an
 associated child that is the root of a subtree containing all nodes with keys
less than or equal to the key but greater than the preceding key. A node also
has an additional rightmost child that is the root for a subtree containing
all keys greater than any keys in the node. Thus, each node has one more
pointer than keys.

 A B-tree is characterized by its minimum degree d and satisfies the following
properties:

 1. Every node has at most 2 d – 1 keys and 2 d children or, equivalently, 2 d pointers. 2

 2. Every node, except for the root, has at least d – 1 keys and d pointers. As a
result, each internal node, except the root, is at least half full and has at least d
children.

 3. The root has at least 1 key and 2 children.

 4. All leaves appear on the same level and contain no information. This is a
logical construct to terminate the tree; the actual implementation may differ.
For example, each bottom-level node may contain keys alternating with null
pointers.

 5. A nonleaf node with k pointers contains k – 1 keys.

 Typically, a B-tree has a relatively large branching factor (large number of
children) resulting in a tree of low height.

 Figure 12.4 illustrates two levels of a B-tree. The upper level has (k – 1) keys
and k pointers and satisfies the following relationship:

 Key1 6 Key3 6 c 6 Keyk-1

Key1

Subtree1 Subtree2 Subtree3 Subtreek–1 Subtreek

Key2 Keyk–1

Figure 12.4 A B-tree Node with k Children

2 Some treatments require, as stated here, that the maximum number of keys in a node is odd
(e.g., [CORM09]); others specify even [COME79]; still others allow odd or even [KNUT98]. The choice
does not fundamentally affect the performance of B-trees.

534 CHAPTER 12 / FILE MANAGEMENT

 Each pointer points to a node that is the top level of a subtree of this upper-
level node. Each of these subtree nodes contains some number of keys and pointers,
unless it is a leaf node. The following relationships hold:

 All the keys in Subtree 1 are less than Key 1
 All the keys in Subtree 2 are greater than Key 1 and are less than Key 2
 All the keys in Subtree 3 are greater than Key 2 and are less than Key 3

 • • •
 • • •
 • • •

 All the keys in Subtree k –1 are greater than Key k –2 and are less than Key k –1
 All the keys in Subtree k are greater than Key k –1

 To search for a key, you start at the root node. If the key you want is in the
node, you’re done. If not, you go down one level. There are three cases:

 1. The key you want is less then the smallest key in this node. Take the leftmost
pointer down to the next level.

 2. The key you want is greater than the largest key in this node. Take the right-
most pointer down to the next level.

 3. The value of the key is between the values of two adjacent keys in this node.
Take the pointer between these keys down to the next level.

 For example, consider the tree in Figure 12.5d and the desired key is 84. At the
root level, 84 � 51, so you take the rightmost branch down to the next level. Here, we
have 61 � 84 � 71, so you take the pointer between 61 and 71 down to the next level,
where the key 84 is found. Associated with this key is a pointer to the desired record.
An advantage of this tree structure over other tree structures is that it is broad and
shallow, so that the search terminates quickly. Furthermore, because it is balanced
(all branches from root to leaf are of equal length), there are no long searches com-
pared to other searches.

 The rules for inserting a new key into the B-tree must maintain a balanced
tree. This is done as follows:

 1. Search the tree for the key. If the key is not in the tree, then you have reached
a node at the lowest level.

 2. If this node has fewer than 2 d – 1 keys, then insert the key into this node in the
proper sequence.

 3. If the node is full (having 2 d – 1 keys), then split this node around its median
key into two new nodes with d – 1 keys each and promote the median key to
the next higher level, as described in step 4. If the new key has a value less
than the median key, insert it into the left–hand new node; otherwise insert
it into the right–hand new node. The result is that the original node has been
split into two nodes, one with d – 1 keys and one with d keys.

 4. The promoted node is inserted into the parent node following the rules of step
3. Therefore, if the parent node is already full, it must be split and its median
key promoted to the next highest layer.

 5. If the process of promotion reaches the root node and the root node is already
full, then insertion again follows the rules of step 3. However, in this case the
median key becomes a new root node and the height of the tree increases by 1.

12.4 / FILE DIRECTORIES 535

(b) Key = 90 inserted. This is a simple insertion into a node.

(c) Key = 45 inserted. This requires splitting a node into two parts and promoting one key to the root node.

(d) Key = 84 inserted. This requires splitting a node into two parts and promoting one key to the root node.
This then requires the root node to be split and a new root created.

(a) B-tree of minimum degree d = 3.

2 30 52 59 60

60

60

67 68 73 85 88 9632 39 43 44

23 51 61 71

10

2 30 52 59 67 68 73 85 88 90 9632 39 43 44

23 51 61 71

10

2 30 52 59 67 68 73 85 88 90 9632 43 44 45

23 39 51 61 71

10

2 30 52 59 60 67 68 73 84 85 90 9632 43 44 45

23 39

51

61 71 88

10

Figure 12.5 Inserting Nodes into a B-tree

 Figure 12.5 illustrates the insertion process on a B-tree of degree d = 3. In each
part of the figure, the nodes affected by the insertion process are unshaded.

12.4 FILE DIRECTORIES

Contents

 Associated with any file management system and collection of files is a file directory.
The directory contains information about the files, including attributes, location,
and ownership. Much of this information, especially that concerned with storage,

536 CHAPTER 12 / FILE MANAGEMENT

is managed by the operating system. The directory is itself a file, accessible by vari-
ous file management routines. Although some of the information in directories is
available to users and applications, this is generally provided indirectly by system
routines.

 Table 12.2 suggests the information typically stored in the directory for each
file in the system. From the user’s point of view, the directory provides a mapping
between file names, known to users and applications, and the files themselves. Thus,
each file entry includes the name of the file. Virtually all systems deal with different
types of files and different file organizations, and this information is also provided.
An important category of information about each file concerns its storage, including
its location and size. In shared systems, it is also important to provide information
that is used to control access to the file. Typically, one user is the owner of the file
and may grant certain access privileges to other users. Finally, usage information is
needed to manage the current use of the file and to record the history of its usage.

Table 12.2 Information Elements of a File Directory

Basic Information

File Name Name as chosen by creator (user or program). Must be unique within a specific
directory

File Type For example: text, binary, load module, etc.

File Organization For systems that support different organizations

Address Information

Volume Indicates device on which file is stored

Starting Address Starting physical address on secondary storage (e.g., cylinder, track, and block
number on disk)

Size Used Current size of the file in bytes, words, or blocks

Size Allocated The maximum size of the file

Access Control Information

Owner User who is assigned control of this file. The owner may be able to grant/deny
access to other users and to change these privileges.

Access Information A simple version of this element would include the user’s name and password for
each authorized user.

Permitted Actions Controls reading, writing, executing, and transmitting over a network

Usage Information

Date Created When file was first placed in directory

Identity of Creator Usually but not necessarily the current owner

Date Last Read Access Date of the last time a record was read

Identity of Last Reader User who did the reading

Date Last Modified Date of the last update, insertion, or deletion

Identity of Last Modifier User who did the modifying

Date of Last Backup Date of the last time the file was backed up on another storage medium

Current Usage Information about current activity on the file, such as process or processes that
have the file open, whether it is locked by a process, and whether the file has been
updated in main memory but not yet on disk

12.4 / FILE DIRECTORIES 53712.4 / FILE DIRECTORIES 537

Structure

 The way in which the information of Table 12.2 is stored differs widely among
various systems. Some of the information may be stored in a header record asso-
ciated with the file; this reduces the amount of storage required for the directory,
making it easier to keep all or much of the directory in main memory to improve
speed.

 The simplest form of structure for a directory is that of a list of entries, one for
each file. This structure could be represented by a simple sequential file, with the
name of the file serving as the key. In some earlier single-user systems, this tech-
nique has been used. However, it is inadequate when multiple users share a system
and even for single users with many files.

 To understand the requirements for a file structure, it is helpful to consider
the types of operations that may be performed on the directory:

 • Search: When a user or application references a file, the directory must be
searched to find the entry corresponding to that file.

 • Create file: When a new file is created, an entry must be added to the directory.

 • Delete file: When a file is deleted, an entry must be removed from the directory.

 • List directory: All or a portion of the directory may be requested. Generally,
this request is made by a user and results in a listing of all files owned by that
user, plus some of the attributes of each file (e.g., type, access control informa-
tion, usage information).

 • Update directory: Because some file attributes are stored in the directory, a
change in one of these attributes requires a change in the corresponding direc-
tory entry.

 The simple list is not suited to supporting these operations. Consider the needs
of a single user. The user may have many types of files, including word-processing
text files, graphic files, spreadsheets, and so on. The user may like to have these
organized by project, by type, or in some other convenient way. If the directory is a
simple sequential list, it provides no help in organizing the files and forces the user
to be careful not to use the same name for two different types of files. The prob-
lem is much worse in a shared system. Unique naming becomes a serious problem.
Furthermore, it is difficult to conceal portions of the overall directory from users
when there is no inherent structure in the directory.

 A start in solving these problems would be to go to a two-level scheme. In
this case, there is one directory for each user, and a master directory. The master
directory has an entry for each user directory, providing address and access con-
trol information. Each user directory is a simple list of the files of that user. This
arrangement means that names must be unique only within the collection of files
of a single user and that the file system can easily enforce access restriction on
directories. However, it still provides users with no help in structuring collections
of files.

 A more powerful and flexible approach, and one that is almost universally
adopted, is the hierarchical, or tree-structure, approach (Figure 12.6). As before,
there is a master directory, which has under it a number of user directories. Each of

538 CHAPTER 12 / FILE MANAGEMENT

these user directories, in turn, may have subdirectories and files as entries. This is
true at any level: That is, at any level, a directory may consist of entries for subdirec-
tories and/or entries for files.

 It remains to say how each directory and subdirectory is organized. The simplest
approach, of course, is to store each directory as a sequential file. When directories
may contain a very large number of entries, such an organization may lead to unnec-
essarily long search times. In that case, a hashed structure is to be preferred.

Naming

 Users need to be able to refer to a file by a symbolic name. Clearly, each file in the
system must have a unique name in order that file references be unambiguous. On
the other hand, it is an unacceptable burden on users to require that they provide
unique names, especially in a shared system.

 The use of a tree-structured directory minimizes the difficulty in assigning
unique names. Any file in the system can be located by following a path from the
root or master directory down various branches until the file is reached. The series
of directory names, culminating in the file name itself, constitutes a pathname for
the file. As an example, the file in the lower left-hand corner of Figure 12.7 has the
pathname User_B/Word/Unit_A/ABC . The slash is used to delimit names in the
sequence. The name of the master directory is implicit, because all paths start at
that directory. Note that it is perfectly acceptable to have several files with the same
file name, as long as they have unique pathnames, which is equivalent to saying
that the same file name may be used in different directories. In our example, there
is another file in the system with the file name ABC, but that has the pathname
/User_B/Draw/ABC .

Master directory

Subdirectory

Subdirectory

File

Subdirectory

Subdirectory

File

Subdirectory

File

File

Figure 12.6 Tree-Structured Directory

12.4 / FILE DIRECTORIES 53912.4 / FILE DIRECTORIES 539

 Although the pathname facilitates the selection of file names, it would be awk-
ward for a user to have to spell out the entire pathname every time a reference is
made to a file. Typically, an interactive user or a process has associated with it a
 current directory, often referred to as the working directory . Files are then refer-
enced relative to the working directory. For example, if the working directory for
user B is “Word,” then the pathname Unit_A/ABC is sufficient to identify the file
in the lower left-hand corner of Figure 12.7 . When an interactive user logs on, or
when a process is created, the default for the working directory is the user home
directory. During execution, the user can navigate up or down in the tree to change
to a different working directory.

System

Master directory

User_A
User_B
User_C

Directory
"User_C"

Directory
"User_A"Directory "User_B"

Draw
Word

Directory "Unit_A"

ABC

Directory "Word"

Unit_A

Directory "Draw"

ABC

File
"ABC"

Pathname: /User_B/Word/Unit_A/ABC

Pathname: /User_B/Draw/ABC

File
"ABC"

Figure 12.7 Example of Tree-Structured Directory

540 CHAPTER 12 / FILE MANAGEMENT

12.5 FILE SHARING

 In a multiuser system, there is almost always a requirement for allowing files to be
shared among a number of users. Two issues arise: access rights and the manage-
ment of simultaneous access.

Access Rights

 The file system should provide a flexible tool for allowing extensive file sharing
among users. The file system should provide a number of options so that the way
in which a particular file is accessed can be controlled. Typically, users or groups
of users are granted certain access rights to a file. A wide range of access rights has
been used. The following list is representative of access rights that can be assigned
to a particular user for a particular file:

 • None: The user may not even learn of the existence of the file, much less
 access it. To enforce this restriction, the user would not be allowed to read the
user directory that includes this file.

 • Knowledge: The user can determine that the file exists and who its owner is.
The user is then able to petition the owner for additional access rights.

 • Execution: The user can load and execute a program but cannot copy it.
Proprietary programs are often made accessible with this restriction.

 • Reading: The user can read the file for any purpose, including copying and
execution. Some systems are able to enforce a distinction between viewing
and copying. In the former case, the contents of the file can be displayed to the
user, but the user has no means for making a copy.

 • Appending: The user can add data to the file, often only at the end, but cannot
modify or delete any of the file’s contents. This right is useful in collecting data
from a number of sources.

 • Updating: The user can modify, delete, and add to the file’s data. This normally
includes writing the file initially, rewriting it completely or in part, and remov-
ing all or a portion of the data. Some systems distinguish among different
degrees of updating.

 • Changing protection: The user can change the access rights granted to other
users. Typically, this right is held only by the owner of the file. In some systems,
the owner can extend this right to others. To prevent abuse of this mechanism,
the file owner will typically be able to specify which rights can be changed by
the holder of this right.

 • Deletion: The user can delete the file from the file system.

 These rights can be considered to constitute a hierarchy, with each right imply-
ing those that precede it. Thus, if a particular user is granted the updating right for a
particular file, then that user is also granted the following rights: knowledge, execu-
tion, reading, and appending.

12.6 / RECORD BLOCKING 54112.6 / RECORD BLOCKING 541

 One user is designated as owner of a given file, usually the person who initially
created a file. The owner has all of the access rights listed previously and may grant
rights to others. Access can be provided to different classes of users:

 • Specific user: Individual users who are designated by user ID

 • User groups: A set of users who are not individually defined. The system must
have some way of keeping track of the membership of user groups.

 • All: All users who have access to this system. These are public files.

Simultaneous Access

 When access is granted to append or update a file to more than one user, the oper-
ating system or file management system must enforce discipline. A brute-force
approach is to allow a user to lock the entire file when it is to be updated. A finer
grain of control is to lock individual records during update. Essentially, this is the
readers/writers problem discussed in Chapter 5 . Issues of mutual exclusion and
deadlock must be addressed in designing the shared access capability.

12.6 RECORD BLOCKING

 As indicated in Figure 12.2 , records are the logical unit of access of a structured file, 3

whereas blocks are the unit of I/O with secondary storage. For I/O to be performed,
records must be organized as blocks.

 There are several issues to consider. First, should blocks be of fixed or vari-
able length? On most systems, blocks are of fixed length. This simplifies I/O, buffer
allocation in main memory, and the organization of blocks on secondary storage.
Second, what should the relative size of a block be compared to the average record
size? The trade-off is this: The larger the block, the more records that are passed
in one I/O operation. If a file is being processed or searched sequentially, this is an
advantage, because the number of I/O operations is reduced by using larger blocks,
thus speeding up processing. On the other hand, if records are being accessed ran-
domly and no particular locality of reference is observed, then larger blocks result in
the unnecessary transfer of unused records. However, combining the frequency of
sequential operations with the potential for locality of reference, we can say that the
I/O transfer time is reduced by using larger blocks. The competing concern is that
larger blocks require larger I/O buffers, making buffer management more difficult.

 Given the size of a block, there are three methods of blocking that can be used:

 • Fixed blocking: Fixed-length records are used, and an integral number of
 records are stored in a block. There may be unused space at the end of each
block. This is referred to as internal fragmentation.

 • Variable-length spanned blocking: Variable-length records are used and are
packed into blocks with no unused space. Thus, some records must span two
blocks, with the continuation indicated by a pointer to the successor block.

3 As opposed to a file that is treated only as a stream of bytes, such as in the UNIX file system.

542 CHAPTER 12 / FILE MANAGEMENT

 • Variable-length unspanned blocking: Variable-length records are used, but
spanning is not employed. There is wasted space in most blocks because of the
inability to use the remainder of a block if the next record is larger than the
remaining unused space.

 Figure 12.8 illustrates these methods assuming that a file is stored in sequen-
tial blocks on a disk. The figure assumes that the file is large enough to span two
tracks. 4 The effect would not be changed if some other file allocation scheme were
used (see Section 12.6).

 Fixed blocking is the common mode for sequential files with fixed-length
records. Variable-length spanned blocking is efficient of storage and does not limit

 4 Recall from Appendix J that the organization of data on a disk is in a concentric set of rings, called tracks .
Each track is the same width as the read/write head.

Track 1

Track 2

R1 R2 R3 R4

R5 R6

Fixed blocking

Variable blocking: spanned

R7 R8

Track 1

Track 2

R1 R2 R3 R5 R6

R6

R4R4

R7 R8

R8

R9 R9

R9

R10

R10

R11 R12 R13

Variable blocking: unspanned

Track 1

Track 2

R1 R2 R3 R5

R6

Data

R4

R7

Gaps due to hardware design

Waste due to block fit to track size

Waste due to record fit to blocksize

Waste due to blocksize constraint
from fixed record size

 Figure 12.8 Record Blocking Methods [WIED87]

12.7 / SECONDARY STORAGE MANAGEMENT 54312.7 / SECONDARY STORAGE MANAGEMENT 543

the size of records. However, this technique is difficult to implement. Records that
span two blocks require two I/O operations, and files are difficult to update, regard-
less of the organization. Variable-length unspanned blocking results in wasted space
and limits record size to the size of a block.

 The record-blocking technique may interact with the virtual memory hard-
ware, if such is employed. In a virtual memory environment, it is desirable to make
the page the basic unit of transfer. Pages are generally quite small, so that it is
impractical to treat a page as a block for unspanned blocking. Accordingly, some
systems combine multiple pages to create a larger block for file I/O purposes. This
approach is used for VSAM files on IBM mainframes.

12.7 SECONDARY STORAGE MANAGEMENT

 On secondary storage, a file consists of a collection of blocks. The operating system
or file management system is responsible for allocating blocks to files. This raises
two management issues. First, space on secondary storage must be allocated to files,
and second, it is necessary to keep track of the space available for allocation. We
will see that these two tasks are related; that is, the approach taken for file alloca-
tion may influence the approach taken for free space management. Further, we will
see that there is an interaction between file structure and allocation policy.

 We begin this section by looking at alternatives for file allocation on a single
disk. Then we look at the issue of free space management, and finally we discuss
reliability.

File Allocation

 Several issues are involved in file allocation:

 1. When a new file is created, is the maximum space required for the file allo-
cated at once?

 2. Space is allocated to a file as one or more contiguous units, which we shall
refer to as portions. That is, a portion is a contiguous set of allocated blocks.
The size of a portion can range from a single block to the entire file. What size
of portion should be used for file allocation?

 3. What sort of data structure or table is used to keep track of the portions
 assigned to a file? An example of such a structure is a file allocation table
(FAT), found on DOS and some other systems.

 Let us examine these issues in turn.

PREALLOCATION VERSUS DYNAMIC ALLOCATION A preallocation policy requires
that the maximum size of a file be declared at the time of the file creation request.
In a number of cases, such as program compilations, the production of summary
data files, or the transfer of a file from another system over a communications
network, this value can be reliably estimated. However, for many applications, it
is difficult if not impossible to estimate reliably the maximum potential size of the
file. In those cases, users and application programmers would tend to overestimate

544 CHAPTER 12 / FILE MANAGEMENT

file size so as not to run out of space. This clearly is wasteful from the point of view
of secondary storage allocation. Thus, there are advantages to the use of dynamic
allocation, which allocates space to a file in portions as needed.

PORTION SIZE The second issue listed is that of the size of the portion allocated to a
file. At one extreme, a portion large enough to hold the entire file is allocated. At the
other extreme, space on the disk is allocated one block at a time. In choosing a portion
size, there is a trade-off between efficiency from the point of view of a single file versus
overall system efficiency. [WIED87] lists four items to be considered in the trade-off:

 1. Contiguity of space increases performance, especially for Retrieve_Next
operations, and greatly for transactions running in a transaction-oriented
 operating system.

 2. Having a large number of small portions increases the size of tables needed to
manage the allocation information.

 3. Having fixed-size portions (e.g., blocks) simplifies the reallocation of space.

 4. Having variable-size or small fixed-size portions minimizes waste of unused
storage due to overallocation.

 Of course, these items interact and must be considered together. The result is
that there are two major alternatives:

 • Variable, large contiguous portions: This will provide better performance. The
variable size avoids waste, and the file allocation tables are small. However,
space is hard to reuse.

 • Blocks: Small fixed portions provide greater flexibility. They may require
large tables or complex structures for their allocation. Contiguity has been
abandoned as a primary goal; blocks are allocated as needed.

 Either option is compatible with preallocation or dynamic allocation. In
the case of variable, large contiguous portions, a file is preallocated one contigu-
ous group of blocks. This eliminates the need for a file allocation table; all that is
required is a pointer to the first block and the number of blocks allocated. In the
case of blocks, all of the portions required are allocated at one time. This means that
the file allocation table for the file will remain of fixed size, because the number of
blocks allocated is fixed.

 With variable-size portions, we need to be concerned with the fragmentation
of free space. This issue was faced when we considered partitioned main memory in
 Chapter 7 . The following are possible alternative strategies:

 • First fit: Choose the first unused contiguous group of blocks of sufficient size
from a free block list.

 • Best fit: Choose the smallest unused group that is of sufficient size.

 • Nearest fit: Choose the unused group of sufficient size that is closest to the
previous allocation for the file to increase locality.

 It is not clear which strategy is best. The difficulty in modeling alternative
strategies is that so many factors interact, including types of files, pattern of file

12.7 / SECONDARY STORAGE MANAGEMENT 54512.7 / SECONDARY STORAGE MANAGEMENT 545

access, degree of multiprogramming, other performance factors in the system, disk
caching, disk scheduling, and so on.

 FILE ALLOCATION METHODS Having looked at the issues of preallocation versus
dynamic allocation and portion size, we are in a position to consider specific file
allocation methods. Three methods are in common use: contiguous, chained, and
indexed. summarizes some of the characteristics of each method.

 With contiguous allocation , a single contiguous set of blocks is allocated to a
file at the time of file creation (Figure 12.9). Thus, this is a preallocation strategy,
using variable-size portions. The file allocation table needs just a single entry for
each file, showing the starting block and the length of the file. Contiguous allocation
is the best from the point of view of the individual sequential file. Multiple blocks
can be read in at a time to improve I/O performance for sequential processing. It is
also easy to retrieve a single block. For example, if a file starts at block b , and the
 i th block of the file is wanted, its location on secondary storage is simply b + i – 1.
Contiguous allocation presents some problems. External fragmentation will occur,
making it difficult to find contiguous blocks of space of sufficient length. From time

 Table 12.3 File Allocation Methods

 Contiguous Chained Indexed

 Preallocation? Necessary Possible Possible

 Fixed or Variable Size Portions? Variable Fixed blocks Fixed blocks Variable

 Portion Size Large Small Small Medium

 Allocation Frequency Once Low to high High Low

 Time to Allocate Medium Long Short Medium

 File Allocation Table Size One entry One entry Large Medium

0 1 2 3 4

5 6 7

File A

File allocation table

File B

File C

File E

File D

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File name

File A
File B
File C
File D
File E

2
9
18
30
26

3
5
8
2
3

Start block Length

 Figure 12.9 Contiguous File Allocation

546 CHAPTER 12 / FILE MANAGEMENT

to time, it will be necessary to perform a compaction algorithm to free up additional
space on the disk (Figure 12.10). Also, with preallocation, it is necessary to declare
the size of the file at the time of creation, with the problems mentioned earlier.

 At the opposite extreme from contiguous allocation is chained allocation
(Figure 12.11). Typically, allocation is on an individual block basis. Each block con-
tains a pointer to the next block in the chain. Again, the file allocation table needs
just a single entry for each file, showing the starting block and the length of the
file. Although preallocation is possible, it is more common simply to allocate blocks
as needed. The selection of blocks is now a simple matter: Any free block can be
added to a chain. There is no external fragmentation to worry about because only

0 1 2 3 4

5 6 7

File A

File allocation table

File B

File C

File E File D

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File name

File A
File B
File C
File D
File E

0
3
8
19
16

3
5
8
2
3

Start block Length

 Figure 12.10 Contiguous File Allocation (After Compaction)

0 1 2 3 4

5 6 7

File allocation table

File B

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File B

File name Start block Length

1 5

 Figure 12.11 Chained Allocation

12.7 / SECONDARY STORAGE MANAGEMENT 54712.7 / SECONDARY STORAGE MANAGEMENT 547

one block at a time is needed. This type of physical organization is best suited to
sequential files that are to be processed sequentially. To select an individual block
of a file requires tracing through the chain to the desired block.

 One consequence of chaining, as described so far, is that there is no accommo-
dation of the principle of locality. Thus, if it is necessary to bring in several blocks of
a file at a time, as in sequential processing, then a series of accesses to different parts
of the disk are required. This is perhaps a more significant effect on a single-user
system but may also be of concern on a shared system. To overcome this problem,
some systems periodically consolidate files (Figure 12.12).

Indexed allocation addresses many of the problems of contiguous and chained
allocation. In this case, the file allocation table contains a separate one-level index for
each file; the index has one entry for each portion allocated to the file. Typically, the
file indexes are not physically stored as part of the file allocation table. Rather, the
file index for a file is kept in a separate block, and the entry for the file in the file allo-
cation table points to that block. Allocation may be on the basis of either fixed-size
blocks (Figure 12.13) or variable-size portions (Figure 12.14). Allocation by blocks
eliminates external fragmentation, whereas allocation by variable-size portions
improves locality. In either case, file consolidation may be done from time to time.
File consolidation reduces the size of the index in the case of variable-size portions,
but not in the case of block allocation. Indexed allocation supports both sequential
and direct access to the file and thus is the most popular form of file allocation.

Free Space Management

 Just as the space that is allocated to files must be managed, so the space that is not
currently allocated to any file must be managed. To perform any of the file alloca-
tion techniques described previously, it is necessary to know what blocks on the disk
are available. Thus we need a disk allocation table in addition to a file allocation
table. We discuss here a number of techniques that have been implemented.

0 1 2 3 4

5 6 7

File allocation table

File B

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File B

File name Start block Length

0 5

Figure 12.12 Chained Allocation (After Consolidation)

548 CHAPTER 12 / FILE MANAGEMENT

BIT TABLES This method uses a vector containing one bit for each block on the
disk. Each entry of a 0 corresponds to a free block, and each 1 corresponds to a
block in use. For example, for the disk layout of Figure 12.9 , a vector of length 35 is
needed and would have the following value:

 00111000011111000011111111111011000

 A bit table has the advantage that it is relatively easy to find one or a con-
tiguous group of free blocks. Thus, a bit table works well with any of the file
allocation methods outlined. Another advantage is that it is as small as possible.

0 1 2 3 4

5 6 7

File allocation table

File B

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File B

File name Index block

24

1
8
3

14
28

Figure 12.13 Indexed Allocation with Block Portions

0 1 2 3 4

5 6 7

File B

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

Start block

1
28
14

3
4
1

Length

File allocation table

File B

File name Index block

24

Figure 12.14 Indexed Allocation with Variable-Length Portions

12.7 / SECONDARY STORAGE MANAGEMENT 549

However, it can still be sizable. The amount of memory (in bytes) required for a
block bitmap is

disk size in bytes

8 * file system block size

 Thus, for a 16-Gbyte disk with 512-byte blocks, the bit table occupies about
4 Mbytes. Can we spare 4 Mbytes of main memory for the bit table? If so, then the
bit table can be searched without the need for disk access. But even with today’s
memory sizes, 4 Mbytes is a hefty chunk of main memory to devote to a single func-
tion. The alternative is to put the bit table on disk. But a 4-Mbyte bit table would
require about 8,000 disk blocks. We can’t afford to search that amount of disk space
every time a block is needed, so a bit table resident in memory is indicated.

 Even when the bit table is in main memory, an exhaustive search of the table
can slow file system performance to an unacceptable degree. This is especially true
when the disk is nearly full and there are few free blocks remaining. Accordingly,
most file systems that use bit tables maintain auxiliary data structures that sum-
marize the contents of subranges of the bit table. For example, the table could be
divided logically into a number of equal-size subranges. A summary table could
include, for each subrange, the number of free blocks and the maximum-sized con-
tiguous number of free blocks. When the file system needs a number of contiguous
blocks, it can scan the summary table to find an appropriate subrange and then
search that subrange.

CHAINED FREE PORTIONS The free portions may be chained together by using
a pointer and length value in each free portion. This method has negligible space
overhead because there is no need for a disk allocation table, merely for a pointer to
the beginning of the chain and the length of the first portion. This method is suited
to all of the file allocation methods. If allocation is a block at a time, simply choose
the free block at the head of the chain and adjust the first pointer or length value.
If allocation is by variable-length portion, a first-fit algorithm may be used: The
headers from the portions are fetched one at a time to determine the next suitable
free portion in the chain. Again, pointer and length values are adjusted.

 This method has its own problems. After some use, the disk will become quite
fragmented and many portions will be a single block long. Also note that every
time you allocate a block, you need to read the block first to recover the pointer to
the new first free block before writing data to that block. If many individual blocks
need to be allocated at one time for a file operation, this greatly slows file creation.
Similarly, deleting highly fragmented files is very time consuming.

INDEXING The indexing approach treats free space as a file and uses an index table
as described under file allocation. For efficiency, the index should be on the basis
of variable-size portions rather than blocks. Thus, there is one entry in the table for
every free portion on the disk. This approach provides efficient support for all of
the file allocation methods.

FREE BLOCK LIST In this method, each block is assigned a number sequentially
and the list of the numbers of all free blocks is maintained in a reserved portion of

550 CHAPTER 12 / FILE MANAGEMENT

the disk. Depending on the size of the disk, either 24 or 32 bits will be needed to
store a single block number, so the size of the free block list is 24 or 32 times the size
of the corresponding bit table and thus must be stored on disk rather than in main
memory. However, this is a satisfactory method. Consider the following points:

 1. The space on disk devoted to the free block list is less than 1% of the total disk
space. If a 32-bit block number is used, then the space penalty is 4 bytes for
every 512-byte block.

 2. Although the free block list is too large to store in main memory, there are
two effective techniques for storing a small part of the list in main memory.

a. The list can be treated as a push-down stack (Appendix P) with the first
few thousand elements of the stack kept in main memory. When a new
block is allocated, it is popped from the top of the stack, which is in main
memory. Similarly, when a block is deallocated, it is pushed onto the stack.
There only has to be a transfer between disk and main memory when the
in-memory portion of the stack becomes either full or empty. Thus, this
technique gives almost zero-time access most of the time.

b. The list can be treated as a FIFO queue, with a few thousand entries from
both the head and the tail of the queue in main memory. A block is allo-
cated by taking the first entry from the head of the queue and deallocated
by adding it to the end of the tail of the queue. There only has to be a trans-
fer between disk and main memory when either the in-memory portion of
the head of the queue becomes empty or the in-memory portion of the tail
of the queue becomes full.

 In either of the strategies listed in the preceding point (stack or FIFO queue),
a background thread can slowly sort the in-memory list or lists to facilitate contigu-
ous allocation.

Volumes

 The term volume is used somewhat differently by different operating systems and
file management systems, but in essence a volume is a logical disk. [CARR05]
defines a volume as follows:

Volume: A collection of addressable sectors in secondary memory that an OS or
application can use for data storage. The sectors in a volume need not be con-
secutive on a physical storage device; instead, they need only appear that way to
the OS or application. A volume may be the result of assembling and merging
smaller volumes.

 In the simplest case, a single disk equals one volume. Frequently, a disk is
divided into partitions, with each partition functioning as a separate volume. It is
also common to treat multiple disks as a single volume or partitions on multiple
disks as a single volume.

12.8 / FILE SYSTEM SECURITY 551

Reliability

 Consider the following scenario:

 1. User A requests a file allocation to add to an existing file.

 2. The request is granted and the disk and file allocation tables are updated in
main memory but not yet on disk.

 3. The system crashes and subsequently restarts.

 4. User B requests a file allocation and is allocated space on disk that overlaps
the last allocation to user A.

 5. User A accesses the overlapped portion via a reference that is stored inside
A’s file.

 This difficulty arose because the system maintained a copy of the disk alloca-
tion table and file allocation table in main memory for efficiency. To prevent this type
of error, the following steps could be performed when a file allocation is requested:

 1. Lock the disk allocation table on disk. This prevents another user from causing
alterations to the table until this allocation is completed.

 2. Search the disk allocation table for available space. This assumes that a copy
of the disk allocation table is always kept in main memory. If not, it must first
be read in.

 3. Allocate space, update the disk allocation table, and update the disk. Updating
the disk involves writing the disk allocation table back onto disk. For chained
disk allocation, it also involves updating some pointers on disk.

 4. Update the file allocation table and update the disk.

 5. Unlock the disk allocation table.

 This technique will prevent errors. However, when small portions are allo-
cated frequently, the impact on performance will be substantial. To reduce this
overhead, a batch storage allocation scheme could be used. In this case, a batch of
free portions on the disk is obtained for allocation. The corresponding portions on
disk are marked “in use.” Allocation using this batch may proceed in main memory.
When the batch is exhausted, the disk allocation table is updated on disk and a new
batch may be acquired. If a system crash occurs, portions on the disk marked “in
use” must be cleaned up in some fashion before they can be reallocated. The tech-
nique for cleanup will depend on the file system’s particular characteristics.

12.8 FILE SYSTEM SECURITY

 Following successful log-on, the user has been granted access to one or a set of
hosts and applications. This is generally not sufficient for a system that includes
 sensitive data in its database. Through the user–access control procedure, a user
can be identified to the system. Associated with each user, there can be a profile
that specifies permissible operations and file accesses. The operating system can
then enforce rules based on the user profile. The database management system,

552 CHAPTER 12 / FILE MANAGEMENT

however, must control access to specific records or even portions of records. For
example, it may be permissible for anyone in administration to obtain a list of com-
pany personnel, but only selected individuals may have access to salary information.
The issue is more than just a matter of level of detail. Whereas the operating system
may grant a user permission to access a file or use an application, following which
there are no further security checks, the database management system must make
a decision on each individual access attempt. That decision will depend not only on
the user’s identity but also on the specific parts of the data being accessed and even
on the information already divulged to the user.

 A general model of access control as exercised by a file or database man-
agement system is that of an access matrix (Figure 12.15a , based on a figure in
[SAND94]). The basic elements of the model are as follows:

Own
R
W

R
W

Own
R
W

Own
R
W

AFile 1

R

R

W R

Own
R
W

Own
R
W

Inquiry
credit

Inquiry
credit

Inquiry
debit

Inquiry
debit

User A

User B

User C

File 2File 1

(a) Access matrix

(b) Access control lists for files of part (a)

(c) Capability lists for files of part (a)

File 3 File 4 Account 1 Account 2

R

B

R
W

C

File 1User C

R

File 2

R
W

File 4

File 1User B

R W

File 2 File 3 File 4
Own

R
W

BFile 2

R

C

Own
R
W

Own
R
W

Own
R
W

Own
R
W

File 1User A File 3

Own
R
W

AFile 3

W

B

Own
R
W

B

R

File 4 C

R

Figure 12.15 Example of Access Control Structures

12.9 / UNIX FILE MANAGEMENT 553

 • Subject: An entity capable of accessing objects. Generally, the concept of sub-
ject equates with that of process. Any user or application actually gains access
to an object by means of a process that represents that user or application.

 • Object: Anything to which access is controlled. Examples include files, portions
of files, programs, segments of memory, and software objects (e.g., Java objects).

 • Access right: The way in which an object is accessed by a subject. Examples
are read, write, execute, and functions in software objects.

 One dimension of the matrix consists of identified subjects that may attempt
data access. Typically, this list will consist of individual users or user groups, although
access could be controlled for terminals, hosts, or applications instead of or in addi-
tion to users. The other dimension lists the objects that may be accessed. At the great-
est level of detail, objects may be individual data fields. More aggregate groupings,
such as records, files, or even the entire database, may also be objects in the matrix.
Each entry in the matrix indicates the access rights of that subject for that object.

 In practice, an access matrix is usually sparse and is implemented by decom-
position in one of two ways. The matrix may be decomposed by columns, yielding
access control lists (Figure 12.15b). Thus for each object, an access control list lists
users and their permitted access rights. The access control list may contain a default,
or public, entry. This allows users that are not explicitly listed as having special rights
to have a default set of rights. Elements of the list may include individual users as
well as groups of users.

 Decomposition by rows yields capability tickets (Figure 12.15c). A capabil-
ity ticket specifies authorized objects and operations for a user. Each user has a
number of tickets and may be authorized to loan or give them to others. Because
tickets may be dispersed around the system, they present a greater security problem
than access control lists. In particular, the ticket must be unforgeable. One way to
accomplish this is to have the operating system hold all tickets on behalf of users.
These tickets would have to be held in a region of memory inaccessible to users.

 Network considerations for data–oriented access control parallel those for
user–oriented access control. If only certain users are permitted to access certain
items of data, then encryption may be needed to protect those items during trans-
mission to authorized users. Typically, data access control is decentralized, that is,
controlled by host–based database management systems. If a network database
server exists on a network, then data access control becomes a network function.

12.9 UNIX FILE MANAGEMENT

 In the UNIX file system, six types of files are distinguished:

 • Regular, or ordinary: Contains arbitrary data in zero or more data blocks.
Regular files contain information entered in them by a user, an application
program, or a system utility program. The file system does not impose any
internal structure to a regular file but treats it as a stream of bytes.

 • Directory: Contains a list of file names plus pointers to associated inodes (index
nodes), described later. Directories are hierarchically organized (Figure 12.6).

554 CHAPTER 12 / FILE MANAGEMENT

Directory files are actually ordinary files with special write protection privileges
so that only the file system can write into them, while read access is available to
user programs.

 • Special: Contains no data but provides a mechanism to map physical devices
to file names. The file names are used to access peripheral devices, such as
terminals and printers. Each I/O device is associated with a special file, as
 discussed in Section 11.8 .

 • Named pipes: As discussed in Section 6.7 , a pipe is an interprocess communi-
cations facility. A pipe file buffers data received in its input so that a process
that reads from the pipe’s output receives the data on a first-in-first-out basis.

 • Links: In essence, a link is an alternative file name for an existing file.

 • Symbolic links: This is a data file that contains the name of the file it is linked to.

 In this section, we are concerned with the handling of ordinary files, which
correspond to what most systems treat as files.

Inodes

 Modern UNIX operating systems support multiple file systems but map all of these
into a uniform underlying system for supporting file systems and allocating disk
space to files. All types of UNIX files are administered by the OS by means of
inodes. An inode (index node) is a control structure that contains the key informa-
tion needed by the operating system for a particular file. Several file names may be
associated with a single inode, but an active inode is associated with exactly one file,
and each file is controlled by exactly one inode.

 The attributes of the file as well as its permissions and other control infor-
mation are stored in the inode. The exact inode structure varies from one UNIX
implementation to another. The FreeBSD inode structure, shown in Figure 12.16 ,
includes the following data elements:

 • The type and access mode of the file

 • The file’s owner and group-access identifiers

 • The time that the file was created, when it was most recently read and written,
and when its inode was most recently updated by the system

 • The size of the file in bytes

 • A sequence of block pointers, explained in the next subsection

 • The number of physical blocks used by the file, including blocks used to hold
indirect pointers and attributes

 • The number of directory entries that reference the file

 • The kernel and user-settable flags that describe the characteristics of the file

 • The generation number of the file (a randomly selected number assigned to
the inode each time that the latter is allocated to a new file; the generation
number is used to detect references to deleted files)

 • The blocksize of the data blocks referenced by the inode (typically the same
as, but sometimes larger than, the file system blocksize)

12.9 / UNIX FILE MANAGEMENT 55512.9 / UNIX FILE MANAGEMENT 555

 • The size of the extended attribute information

 • Zero or more extended attribute entries

 The blocksize value is typically the same as, but sometimes larger than, the file
system blocksize. On traditional UNIX systems, a fixed blocksize of 512 bytes was
used. FreeBSD has a minimum blocksize of 4,096 bytes (4 Kbytes); the blocksize
can be any power of 2 greater than or equal to 4,096. For typical file systems, the
blocksize is 8 Kbytes or 16 Kbytes. The default FreeBSD blocksize is 16 Kbytes.

 Extended attribute entries are variable-length entries used to store auxiliary
data that are separate from the contents of the file. The first two extended attributes
defined for FreeBSD deal with security. The first of these support access control

Inode

Mode

Owners (2)

Timestamps (4)

Size

Direct (0)

Direct (1)

Direct (12)

Single indirect

Double indirect

Triple indirect

Block count

Reference count

Flags (2)

Generation number

Blocksize

Extended attr size

Extended
attribute
blocks

Data

Data Data Data

Data Data Data

Data Data

Data Data

Data

Data

Data

Data

Data

Data

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Figure 12.16 Structure of FreeBSD Inode and File

556 CHAPTER 12 / FILE MANAGEMENT

lists; this is described in Chapter 15 . The second defined extended attribute sup-
ports the use of security labels, which are part of what is known as a mandatory
access control scheme, also defined in Chapter 15 .

 On the disk, there is an inode table, or inode list, that contains the inodes of
all the files in the file system. When a file is opened, its inode is brought into main
memory and stored in a memory-resident inode table.

File Allocation

 File allocation is done on a block basis. Allocation is dynamic, as needed, rather
than using preallocation. Hence, the blocks of a file on disk are not necessarily con-
tiguous. An indexed method is used to keep track of each file, with part of the index
stored in the inode for the file. In all UNIX implementations, the inode includes a
number of direct pointers and three indirect pointers (single, double, triple).

 The FreeBSD inode includes 120 bytes of address information that is organ-
ized as fifteen 64-bit addresses, or pointers. The first 12 addresses point to the first
12 data blocks of the file. If the file requires more than 12 data blocks, one or more
levels of indirection is used as follows:

 • The thirteenth address in the inode points to a block on disk that contains the
next portion of the index. This is referred to as the single indirect block. This
block contains the pointers to succeeding blocks in the file.

 • If the file contains more blocks, the fourteenth address in the inode points to
a double indirect block. This block contains a list of addresses of additional
single indirect blocks. Each of single indirect blocks, in turn, contains pointers
to file blocks.

 • If the file contains still more blocks, the fifteenth address in the inode points
to a triple indirect block that is a third level of indexing. This block points to
additional double indirect blocks.

 All of this is illustrated in Figure 12.16 . The total number of data blocks
in a file depends on the capacity of the fixed-size blocks in the system. In
FreeBSD, the minimum block size is 4 Kbytes, and each block can hold a total of
512 block addresses. Thus, the maximum size of a file with this block size is over
500 GB (Table 12.4).

 This scheme has several advantages:

 1. The inode is of fixed size and relatively small and hence may be kept in main
memory for long periods.

Table 12.4 Capacity of a FreeBSD File with 4-Kbyte Block Size

 Level Number of Blocks Number of Bytes

Direct 12 48K

Single Indirect 512 2M

Double Indirect 512 × 512 � 256K 1G

Triple Indirect 512 × 256K � 128M 512G

12.9 / UNIX FILE MANAGEMENT 557

 2. Smaller files may be accessed with little or no indirection, reducing processing
and disk access time.

 3. The theoretical maximum size of a file is large enough to satisfy virtually all
applications.

Directories

 Directories are structured in a hierarchical tree. Each directory can contain files
and/or other directories. A directory that is inside another directory is referred to
as a subdirectory. As was mentioned, a directory is simply a file that contains a
list of file names plus pointers to associated inodes. Figure 12.17 shows the overall
structure. Each directory entry (dentry) contains a name for the associated file or
subdirectory plus an integer called the i-number (index number). When the file or
directory is accessed, its i-number is used as an index into the inode table.

Volume Structure

 A UNIX file system resides on a single logical disk or disk partition and is laid out
with the following elements:

 • Boot block: Contains code required to boot the operating system

 • Superblock: Contains attributes and information about the file system, such as
partition size, and inode table size

 • Inode table: The collection of inodes for each file

 • Data blocks: Storage space available for data files and subdirectories

Inode table Directory

Name1i1

Name2i2

Name3i3

Name4i4

Figure 12.17 UNIX Directories and Inodes

558 CHAPTER 12 / FILE MANAGEMENT

Traditional UNIX File Access Control

 Most UNIX systems depend on, or at least are based on, the file access control
scheme introduced with the early versions of UNIX. Each UNIX user is assigned a
unique user identification number (user ID). A user is also a member of a primary
group, and possibly a number of other groups, each identified by a group ID. When
a file is created, it is designated as owned by a particular user and marked with that
user’s ID. It also belongs to a specific group, which initially is either its creator’s
primary group, or the group of its parent directory if that directory has SetGID
permission set. Associated with each file is a set of 12 protection bits. The owner ID,
group ID, and protection bits are part of the file’s inode.

 Nine of the protection bits specify read, write, and execute permission for the
owner of the file, other members of the group to which this file belongs, and all
other users. These form a hierarchy of owner, group, and all others, with the highest
relevant set of permissions being used. Figure 12.18a shows an example in which the
file owner has read and write access; all other members of the file’s group have read
access, and users outside the group have no access rights to the file. When applied to
a directory, the read and write bits grant the right to list and to create/rename/delete
files in the directory. 5 The execute bit grants the right to search the directory for a
component of a filename.

(a) Traditional UNIX approach (minimal access control list)

rw- r-- ---

Owne
r c

las
s

Gro
up

 cl
as

s

Othe
r c

las
s

:rw-

:r--

:---

(b) Extended access control list

Masked
entries

rw- rw- ---

Owne
r c

las
s

Gro
up

 cl
as

s

Othe
r c

las
s

user: :rw-

user:joe:rw-

group: :r--
mask: :rw-

other: :---

user:

group:

other:

Figure 12.18 UNIX File Access Control

5 Note that the permissions that apply to a directory are distinct from those that apply to any file or direc-
tory it contains. The fact that a user has the right to write to the directory does not give the user the right
to write to a file in that directory. That is governed by the permissions of the specific file. The user would,
however, have the right to rename the file.

12.9 / UNIX FILE MANAGEMENT 55912.9 / UNIX FILE MANAGEMENT 559

 The remaining three bits define special additional behavior for files or direc-
tories. Two of these are the “set user ID” (SetUID) and “set group ID” (SetGID)
permissions. If these are set on an executable file, the operating system functions as
follows. When a user (with execute privileges for this file) executes the file, the sys-
tem temporarily allocates the rights of the user’s ID of the file creator, or the file’s
group, respectively, to those of the user executing the file. These are known as the
“effective user ID” and “effective group ID” and are used in addition to the “real
user ID” and “real group ID” of the executing user when making access control
decisions for this program. This change is only effective while the program is being
executed. This feature enables the creation and use of privileged programs that may
use files normally inaccessible to other users. It enables users to access certain files
in a controlled fashion. Alternatively, when applied to a directory, the SetGID per-
mission indicates that newly created files will inherit the group of this directory. The
SetUID permission is ignored.

 The final permission bit is the “Sticky” bit. When set on a file, this originally
indicated that the system should retain the file contents in memory following execu-
tion. This is no longer used. When applied to a directory, though, it specifies that
only the owner of any file in the directory can rename, move, or delete that file. This
is useful for managing files in shared temporary directories.

 One particular user ID is designated as “superuser.” The superuser is exempt
from the usual file access control constraints and has systemwide access. Any
 program that is owned by, and SetUID to, the “superuser” potentially grants unre-
stricted access to the system to any user executing that program. Hence, great care
is needed when writing such programs.

 This access scheme is adequate when file access requirements align with users
and a modest number of groups of users. For example, suppose a user wants to give
read access for file X to users A and B and read access for file Y to users B and C.
We would need at least two user groups, and user B would need to belong to both
groups in order to access the two files. However, if there are a large number of
 different groupings of users requiring a range of access rights to different files, then
a very large number of groups may be needed to provide this. This rapidly becomes
unwieldy and difficult to manage, even if possible at all. 6 One way to overcome this
problem is to use access control lists, which are provided in most modern UNIX
systems.

 A final point to note is that the traditional UNIX file access control scheme
implements a simple protection domain structure. A domain is associated with the
user, and switching the domain corresponds to changing the user ID temporarily.

Access Control Lists in UNIX

 Many modern UNIX and UNIX-based operating systems support access control
lists, including FreeBSD, OpenBSD, Linux, and Solaris. In this section, we describe
the FreeBSD approach, but other implementations have essentially the same fea-
tures and interface. The feature is referred to as extended access control list, while
the traditional UNIX approach is referred to as minimal access control list.

6 Most UNIX systems impose a limit on the maximum number of groups any user may belong to, as well
as to the total number of groups possible on the system.

560 CHAPTER 12 / FILE MANAGEMENT

 FreeBSD allows the administrator to assign a list of UNIX user IDs and
groups to a file by using the setfacl command. Any number of users and groups
can be associated with a file, each with three protection bits (read, write, execute),
offering a flexible mechanism for assigning access rights. A file need not have an
ACL but may be protected solely by the traditional UNIX file access mechanism.
FreeBSD files include an additional protection bit that indicates whether the file
has an extended ACL.

 FreeBSD and most UNIX implementations that support extended ACLs use
the following strategy (e.g., Figure 12.18b):

 1. The owner class and other class entries in the nine-bit permission field have
the same meaning as in the minimal ACL case.

 2. The group class entry specifies the permissions for the owner group for this
file. These permissions represent the maximum permissions that can be
assigned to named users or named groups, other than the owning user. In this
latter role, the group class entry functions as a mask.

 3. Additional named users and named groups may be associated with the file,
each with a three-bit permission field. The permissions listed for a named
user or named group are compared to the mask field. Any permission
for the named user or named group that is not present in the mask field is
disallowed.

 When a process requests access to a file system object, two steps are performed.
Step 1 selects the ACL entry that most closely matches the requesting process. The
ACL entries are looked at in the following order: owner, named users, (owning or
named) groups, and others. Only a single entry determines access. Step 2 checks
if the matching entry contains sufficient permissions. A process can be a member
in more than one group; so more than one group entry can match. If any of these
matching group entries contain the requested permissions, one that contains the
requested permissions is picked (the result is the same no matter which entry is
picked). If none of the matching group entries contains the requested permissions,
access will be denied no matter which entry is picked.

12.10 LINUX VIRTUAL FILE SYSTEM

 Linux includes a versatile and powerful file-handling facility, designed to support a
wide variety of file management systems and file structures. The approach taken in
Linux is to make use of a virtual file system (VFS) , which presents a single, uniform
file system interface to user processes. The VFS defines a common file model that is
capable of representing any conceivable file system’s general feature and behavior.
The VFS assumes that files are objects in a computer’s mass storage memory that
share basic properties regardless of the target file system or the underlying proces-
sor hardware. Files have symbolic names that allow them to be uniquely identified
within a specific directory within the file system. A file has an owner, protection
against unauthorized access or modification, and a variety of other properties. A
file may be created, read from, written to, or deleted. For any specific file system, a

12.10 / LINUX VIRTUAL FILE SYSTEM 56112.10 / LINUX VIRTUAL FILE SYSTEM 561

mapping module is needed to transform the characteristics of the real file system to
the characteristics expected by the virtual file system.

 Figure 12.19 indicates the key ingredients of the Linux file system strategy. A
user process issues a file system call (e.g., read) using the VFS file scheme. The VFS
converts this into an internal (to the kernel) file system call that is passed to a map-
ping function for a specific file system [e.g., IBM’s Journaling File System (JFS)]. In
most cases, the mapping function is simply a mapping of file system functional calls
from one scheme to another. In some cases, the mapping function is more complex.
For example, some file systems use a file allocation table (FAT), which stores the
position of each file in the directory tree. In these file systems, directories are not
files. For such file systems, the mapping function must be able to construct dynami-
cally, and when needed, the files corresponding to the directories. In any case, the
original user file system call is translated into a call that is native to the target file
system. The target file system software is then invoked to perform the requested
function on a file or directory under its control and secondary storage. The results
of the operation are then communicated back to the user in a similar fashion.

 Figure 12.20 indicates the role that VFS plays within the Linux kernel. When
a process initiates a file-oriented system call (e.g., read), the kernel calls a function
in the VFS. This function handles the file-system-independent manipulations and
initiates a call to a function in the target file system code. This call passes through
a mapping function that converts the call from the VFS into a call to the target file

User process

I/O request

System call

Linux kernel

Hardware

System calls interface

Virtual file
system (VFS)

IBM JFS DOS FS NTFS ext2 FS

Page cache

Device drivers

Disk controller

Figure 12.19 Linux Virtual File System Context

562 CHAPTER 12 / FILE MANAGEMENT

system. The VFS is independent of any file system, so the implementation of a map-
ping function must be part of the implementation of a file system on Linux. The
target file system converts the file system request into device-oriented instructions
that are passed to a device driver by means of page cache functions.

 VFS is an object-oriented scheme. Because it is written in C, rather than a
language that supports object programming (such as C++ or Java), VFS objects are
implemented simply as C data structures. Each object contains both data and point-
ers to file-system-implemented functions that operate on data. The four primary
object types in VFS are as follows:

 • Superblock object: Represents a specific mounted file system

 • Inode object: Represents a specific file

 • Dentry object: Represents a specific directory entry

 • File object: Represents an open file associated with a process

 This scheme is based on the concepts used in UNIX file systems, as described in
 Section 12.7 . The key concepts of UNIX file system to remember are the following. A
file system consists of a hierarchal organization of directories. A directory is the same
as what is known as a folder on many non-UNIX platforms and may contain files and/
or other directories. Because a directory may contain other directories, a tree struc-
ture is formed. A path through the tree structure from the root consists of a sequence
of directory entries, ending in either a directory entry (dentry) or a file name. In
UNIX, a directory is implemented as a file that lists the files and directories contained
within it. Thus, file operations can be performed on either files or directories.

The Superblock Object

 The superblock object stores information describing a specific file system. Typically,
the superblock corresponds to the file system superblock or file system control
block, which is stored in a special sector on disk.

 The superblock object consists of a number of data items. Examples include
the following:

 • The device that this file system is mounted on

 • The basic block size of the file system

User
process

Files on secondary
storage maintained

by file system X

Linux
virtual

file
system

Mapping
function
 to file

system X

File
system X

System calls
using VFS

user interface

System calls
using

filesystem X
interface

Disk I/O
calls

VFS
system
calls

Figure 12.20 Linux Virtual File System Concept

12.10 / LINUX VIRTUAL FILE SYSTEM 563

 • Dirty flag, to indicate that the superblock has been changed but not written
back to disk

 • File system type

 • Flags, such as a read-only flag

 • Pointer to the root of the file system directory

 • List of open files

 • Semaphore for controlling access to the file system

 • List of superblock operations

 The last item on the preceding list refers to an operations object contained
within the superblock object. The operations object defines the object methods
(functions) that the kernel can invoke against the superblock object. The methods
defined for the superblock object include the following:

 • read_inode : Read a specified inode from a mounted file system.

 • write_inode : Write given inode to disk.

 • put_inode : Release inode.

 • delete_inode : Delete inode from disk.

 • notify_change : Called when inode attributes are changed.

 • put_super : Called by the VFS on unmount to release the given superblock.

 • write_super : Called when the VFS decides that the superblock needs to be
written to disk.

 • statfs : Obtain file system statistics.

 • remount_fs : Called by the VFS when the file system is remounted with new
mount options.

 • clear_inode : Release inode and clear any pages containing related data.

The Inode Object

 An inode is associated with each file. The inode object holds all the information
about a named file except its name and the actual data contents of the file. Items
contained in an inode object include owner, group, permissions, access times for a
file, size of data it holds, and number of links.

 The inode object also includes an inode operations object that describes the
file system’s implemented functions that the VFS can invoke on an inode. The
methods defined for the inode object include the following:

 • create : Creates a new inode for a regular file associated with a dentry object
in some directory

 • lookup : Searches a directory for an inode corresponding to a file name

 • mkdir : Creates a new inode for a directory associated with a dentry object in
some directory

564 CHAPTER 12 / FILE MANAGEMENT

The Dentry Object

 A dentry (directory entry) is a specific component in a path. The component may
be either a directory name or a file name. Dentry objects facilitate access to files
and directories and are used in a dentry cache for that purpose. The dentry object
includes a pointer to the inode and superblock. It also includes a pointer to the
 parent dentry and pointers to any subordinate dentrys.

The File Object

 The file object is used to represent a file opened by a process. The object is created
in response to the open() system call and destroyed in response to the close() sys-
tem call. The file object consists of a number of items, including the following:

 • Dentry object associated with the file

 • File system containing the file

 • File objects usage counter

 • User’s user ID

 • User’s group ID

 • File pointer, which is the current position in the file from which the next
operation will take place

 The file object also includes an inode operations object that describes the file
system’s implemented functions that the VFS can invoke on a file object. The methods
defined for the file object include read, write, open, release, and lock.

12.11 WINDOWS FILE SYSTEM

 The developers of Windows NT designed a new file system, the New Technology
File System (NTFS), which is intended to meet high-end requirements for worksta-
tions and servers. Examples of high-end applications include the following:

 • Client/server applications such as file servers, compute servers, and database
servers

 • Resource-intensive engineering and scientific applications

 • Network applications for large corporate systems

 This section provides an overview of NTFS.

Key Features of NTFS

 NTFS is a flexible and powerful file system built, as we shall see, on an elegantly sim-
ple file system model. The most noteworthy features of NTFS include the following:

 • Recoverability: High on the list of requirements for the new Windows file
system was the ability to recover from system crashes and disk failures. In the
event of such failures, NTFS is able to reconstruct disk volumes and return
them to a consistent state. It does this by using a transaction-processing model

12.11 / WINDOWS FILE SYSTEM 565

for changes to the file system; each significant change is treated as an atomic
action that is either entirely performed or not performed at all. Each transac-
tion that was in process at the time of a failure is subsequently backed out or
brought to completion. In addition, NTFS uses redundant storage for critical
file system data, so that failure of a disk sector does not cause the loss of data
describing the structure and status of the file system.

 • Security: NTFS uses the Windows object model to enforce security. An open
file is implemented as a file object with a security descriptor that defines its
security attributes. The security descriptor is persisted as an attribute of each
file on disk.

 • Large disks and large files: NTFS supports very large disks and very large files
more efficiently than other file systems, such as FAT.

 • Multiple data streams: The actual contents of a file are treated as a stream of
bytes. In NTFS, it is possible to define multiple data streams for a single file.
An example of the utility of this feature is that it allows Windows to be used
by remote Macintosh systems to store and retrieve files. On Macintosh, each
file has two components: the file data and a resource fork that contains infor-
mation about the file. NTFS treats these two components as two data streams
within a single file.

 • Journaling: NTFS keeps a log of all changes made to files on the volumes.
Programs, such as desktop search, can read the journal to identify what files
have changed.

 • Compression and encryption: Entire directories and individual files can be
transparently compressed and/or encrypted.

 • Hard and symbolic l inks: In order to support POSIX, Windows has always sup-
ported “hard links,” which allow a single file to be accessible by multiple path
names on the same volume. Starting with Windows Vista, “symbolic links”
are supported which allow a file or directory to be accessible by multiple path
names, even if the names are on different volumes. Windows also supports
“mount points” which allow volumes to appear at junction points on other
volumes, rather than be named by driver letters, such as “D:”.

NTFS Volume and File Structure

 NTFS makes use of the following disk storage concepts:

 • Sector: The smallest physical storage unit on the disk. The data size in bytes is
a power of 2 and is almost always 512 bytes.

 • Cluster: One or more contiguous (next to each other on the disk) sectors. The
cluster size in sectors is a power of 2.

 • Volume: A logical partition on a disk, consisting of one or more clusters and
used by a file system to allocate space. At any time, a volume consists of file
system information, a collection of files, and any additional unallocated space
remaining on the volume that can be allocated to files. A volume can be all or
a portion of a single disk or it can extend across multiple disks. If hardware or

566 CHAPTER 12 / FILE MANAGEMENT

software RAID 5 is employed, a volume consists of stripes spanning multiple
disks. The maximum volume size for NTFS is 264 bytes.

 The cluster is the fundamental unit of allocation in NTFS, which does not
 recognize sectors. For example, suppose each sector is 512 bytes and the system is
configured with two sectors per cluster (one cluster � 1K bytes). If a user creates
a file of 1,600 bytes, two clusters are allocated to the file. Later, if the user updates
the file to 3,200 bytes, another two clusters are allocated. The clusters allocated to a
file need not be contiguous; it is permissible to fragment a file on the disk. Currently,
the maximum file size supported by NTFS is 232 clusters, which is equivalent to a
maximum of 248 bytes. A cluster can have at most 216 bytes.

 The use of clusters for allocation makes NTFS independent of physical sec-
tor size. This enables NTFS to support easily nonstandard disks that do not have a
512-byte sector size and to support efficiently very large disks and very large files
by using a larger cluster size. The efficiency comes from the fact that the file system
must keep track of each cluster allocated to each file; with larger clusters, there are
fewer items to manage.

 Table 12.5 shows the default cluster sizes for NTFS. The defaults depend on
the size of the volume. The cluster size that is used for a particular volume is estab-
lished by NTFS when the user requests that a volume be formatted.

NTFS VOLUME LAYOUT NTFS uses a remarkably simple but powerful approach
to organizing information on a disk volume. Every element on a volume is a file,
and every file consists of a collection of attributes. Even the data contents of a file is
treated as an attribute. With this simple structure, a few general-purpose functions
suffice to organize and manage a file system.

 Figure 12.21 shows the layout of an NTFS volume, which consists of four
regions. The first few sectors on any volume are occupied by the partition boot

Table 12.5 Windows NTFS Partition and Cluster Sizes

 Volume Size Sectors per Cluster Cluster Size

 ≤512 Mbyte 1 512 bytes

 512 Mbyte–1 Gbyte 2 1K

 1 Gbyte–2 Gbyte 4 2K

 2 Gbyte–4 Gbyte 8 4K

 4 Gbyte–8 Gbyte 16 8K

 8 Gbyte–16 Gbyte 32 16K

 16 Gbyte–32 Gbyte 64 32K

 >32 Gbyte 128 64K

Partition
boot

sector
Master file table File area

System
files

Figure 12.21 NTFS Volume Layout

12.11 / WINDOWS FILE SYSTEM 567

sector (although it is called a sector, it can be up to 16 sectors long), which contains
information about the volume layout and the file system structures as well as boot
startup information and code. This is followed by the master file table (MFT) , which
contains information about all of the files and folders (directories) on this NTFS
volume. In essence, the MFT is a list of all files and their attributes on this NTFS
volume, organized as a set of rows in a table structure.

 Following the MFT is a region containing system files . Among the files in this
region are the following:

 • MFT2: A mirror of the first few rows of the MFT, used to guarantee access to
the volume in the case of a single-sector failure in the sectors storing the MFT.

 • Log file: A list of transaction steps used for NTFS recoverability.

 • Cluster bit map: A representation of the space on the volume, showing which
clusters are in use.

 • Attribute definition table: Defines the attribute types supported on this
 volume and indicates whether they can be indexed and whether they can be
recovered during a system recovery operation.

MASTER FILE TABLE The heart of the Windows file system is the MFT. The MFT
is organized as a table of 1,024-byte rows, called records. Each row describes a file
on this volume, including the MFT itself, which is treated as a file. If the contents of
a file are small enough, then the entire file is located in a row of the MFT. Otherwise,
the row for that file contains partial information and the remainder of the file spills
over into other available clusters on the volume, with pointers to those clusters in
the MFT row of that file.

 Each record in the MFT consists of a set of attributes that serve to define the
file (or folder) characteristics and the file contents. Table 12.6 lists the attributes
that may be found in a row, with the required attributes indicated by shading.

Table 12.6 Windows NTFS File and Directory Attribute Types

 Attribute Type Description

 Standard information Includes access attributes (read-only, read/write, etc.); time stamps, including when the
file was created or last modified; and how many directories point to the file (link count)

 Attribute list A list of attributes that make up the file and the file reference of the MFT file record
in which each attribute is located. Used when all attributes do not fit into a single
MFT file record

 File name A file or directory must have one or more names.

 Security descriptor Specifies who owns the file and who can access it

 Data The contents of the file. A file has one default unnamed data attribute and may have
one or more named data attributes.

 Index root Used to implement folders

 Index allocation Used to implement folders

 Volume information Includes volume-related information, such as the version and name of the volume

 Bitmap Provides a map representing records in use on the MFT or folder

Note: Green-colored rows refer to required file attributes; the other attributes are optional.

568 CHAPTER 12 / FILE MANAGEMENT

Recoverability

 NTFS makes it possible to recover the file system to a consistent state following a
system crash or disk failure. The key elements that support recoverability are as
 follows (Figure 12.22):

 • I/O manager: Includes the NTFS driver, which handles the basic open, close,
read, and write functions of NTFS. In addition, the software RAID module
FTDISK can be configured for use.

 • Log file service: Maintains a log of file system metadata changes on disk. The
log file is used to recover an NTFS-formatted volume in the case of a system
failure (i.e., without having to run the file system check utility).

 • Cache manager: Responsible for caching file reads and writes to enhance
 performance. The cache manager optimizes disk I/O.

 • Virtual memory manager: The NTFS accesses cached files by mapping file refer-
ences to virtual memory references and reading and writing virtual memory.

 It is important to note that the recovery procedures used by NTFS are designed
to recover file system metadata, not file contents. Thus, the user should never lose a
volume or the directory/file structure of an application because of a crash. However,
user data are not guaranteed by the file system. Providing full recoverability, includ-
ing user data, would make for a much more elaborate and resource-consuming
recovery facility.

 The essence of the NTFS recovery capability is logging. Each operation that
alters a file system is treated as a transaction. Each suboperation of a transaction

Log file
service

NTFS driver

I/O manager

Fault-tolerant
driver

Disk driver

Cache
manager

Virtual memory
manager

Flush the
log file

Write the
cache

Log the transaction

Read/write a
mirrored or

striped volume

Read/write
the disk

Read/write
the file

Load data from
disk into
memory

Access the mapped
file or flush the cache

Figure 12.22 Windows NTFS Components

12.12 / SUMMARY 569

that alters important file system data structures is recorded in a log file before being
recorded on the disk volume. Using the log, a partially completed transaction at the
time of a crash can later be redone or undone when the system recovers.

 In general terms, these are the steps taken to ensure recoverability, as
described in [RUSS11]:

 1. NTFS first calls the log file system to record in the log file (in the cache) any
transactions that will modify the volume structure.

 2. NTFS modifies the volume (in the cache).

 3. The cache manager calls the log file system to prompt it to flush the log file to
disk.

 4. Once the log file updates are safely on disk, the cache manager flushes the
volume changes to disk.

12.12 SUMMARY

 A file management system is a set of system software that provides services to users
and applications in the use of files, including file access, directory maintenance, and
access control. The file management system is typically viewed as a system service
that itself is served by the operating system, rather than being part of the operating
system itself. However, in any system, at least part of the file management function
is performed by the operating system.

 A file consists of a collection of records. The way in which these records may
be accessed determines its logical organization, and to some extent its physical orga-
nization on disk. If a file is primarily to be processed as a whole, then a sequential
file organization is the simplest and most appropriate. If sequential access is needed
but random access to individual file is also desired, then an indexed sequential file
may give the best performance. If access to the file is principally at random, then an
indexed file or hashed file may be the most appropriate.

 Whatever file structure is chosen, a directory service is also needed. This
allows files to be organized in a hierarchical fashion. This organization is useful to
the user in keeping track of files and is useful to the file management system in pro-
viding access control and other services to users.

 File records, even when of fixed size, generally do not conform to the size of a
physical disk block. Accordingly, some sort of blocking strategy is needed. A trade-
off among complexity, performance, and space utilization determines the blocking
strategy to be used.

 A key function of any file management scheme is the management of disk
space. Part of this function is the strategy for allocating disk blocks to a file. A vari-
ety of methods have been employed, and a variety of data structures have been used
to keep track of the allocation for each file. In addition, the space on disk that has
not been allocated must be managed. This latter function primarily consists of main-
taining a disk allocation table indicating which blocks are free.

570 CHAPTER 12 / FILE MANAGEMENT

12.13 RECOMMENDED READING

 There are a number of good books on file structures and file management. The
following all focus on file management systems but also address related OS issues.
Perhaps the most useful is [WIED87], which takes a quantitative approach to file
management and deals with all of the issues raised in Figure 12.2 , from disk schedul-
ing to file structure. [VENU09] presents an object-oriented design approach toward
file structure implementation. [LIVA90] emphasizes file structures, providing a
good and lengthy survey with comparative performance analyses. [GROS86] pro-
vides a balanced look at issues relating to both file I/O and file access methods. It
also contains general descriptions of all of the control structures needed by a file
system. These provide a useful checklist in assessing a file system design. [FOLK98]
emphasizes the processing of files, addressing such issues as maintenance, searching
and sorting, and sharing.

 [COME79] provides a thorough discussion of B-trees. [CORM09] and
[KNUT98] also include good treatments.

 The Linux file system is examined in detail in [LOVE10] and [BOVE06]. A
good overview is [RUBI97].

 [CUST94] provides a good overview of the NT file system. [NAGA97] covers
the material in more detail.

BOVE06 Bovet, D., and Cesati, M. Understanding the Linux Kernel. Sebastopol, CA:
O’Reilly, 2006.

COME79 Comer, D. “The Ubiquitous B-Tree.” Computing Surveys , June 1979.
CORM09 Cormen, T., et al. Introduction to Algorithms. Cambridge, MA: MIT Press,

2009.
CUST94 Custer, H. Inside the Windows NT File System. Redmond, WA: Microsoft

Press, 1994.
FOLK98 Folk, M., and Zoellick, B. File Structures: An Object-Oriented Approach with

C++. Reading, MA: Addison-Wesley, 1998.
GROS86 Grosshans, D. File Systems: Design and Implementation. Englewood Cliffs,

NJ: Prentice Hall, 1986.
KNUT98 Knuth, D. The Art of Computer Programming, Volume 3: Sorting and

Searching. Reading, MA: Addison-Wesley, 1998.
LIVA90 Livadas, P. File Structures: Theory and Practice. Englewood Cliffs, NJ:

Prentice Hall, 1990.
LOVE10 Love, R. Linux Kernel Development. Upper Saddle River, NJ: Addison-

Wesley, 2010.
NAGA97 Nagar, R. Windows NT File System Internals. Sebastopol, CA: O’Reilly,

1997.
RUBI97 Rubini, A. “The Virtual File System in Linux.” Linux Journal , May 1997.
VENU09 Venugopal, K. Files Structures Using C++ . New York: McGraw-Hill, 2009.
WIED87 Wiederhold, G. File Organization for Database Design. New York: McGraw-

Hill, 1987.

12.14 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 57112.14 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 571

12.14 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 access method
 bit table
 block
 chained file allocation
 contiguous file allocation
 database
 disk allocation table
 field
 file

 file allocation
 file allocation table
 file directory
 file management system
 file name
 hashed file
 indexed file
 indexed file allocation
 indexed sequential file

 inode
 key field
 pathname
 pile
 record
 sequential file
 working directory

Review Questions

 12.1 What is the difference between a field and a record?
 12.2 What is the difference between a file and a database?
 12.3 What is a file management system?
 12.4 What criteria are important in choosing a file organization?
 12.5 List and briefly define five file organizations.
 12.6 Why is the average search time to find a record in a file less for an indexed sequential

file than for a sequential file?
 12.7 What are typical operations that may be performed on a directory?
 12.8 What is the relationship between a pathname and a working directory?
 12.9 What are typical access rights that may be granted or denied to a particular user for

a particular file?
 12.10 List and briefly define three blocking methods.
 12.11 List and briefly define three file allocation methods.

Problems

 12.1 Define:
B � block size
R � record size
P � size of block pointer
F � blocking factor; expected number of records within a block

 Give a formula for F for the three blocking methods depicted in Figure 12.8 .
 12.2 One scheme to avoid the problem of preallocation versus waste or lack of contiguity

is to allocate portions of increasing size as the file grows. For example, begin with a
portion size of one block, and double the portion size for each allocation. Consider a
file of n records with a blocking factor of F , and suppose that a simple one-level index
is used as a file allocation table.
a. Give an upper limit on the number of entries in the file allocation table as a func-

tion of F and n .
b. What is the maximum amount of the allocated file space that is unused at

any time?

572 CHAPTER 12 / FILE MANAGEMENT

 12.3 What file organization would you choose to maximize efficiency in terms of speed of
access, use of storage space, and ease of updating (adding/deleting/modifying) when
the data are
a. updated infrequently and accessed frequently in random order?
b. updated frequently and accessed in its entirety relatively frequently?
c. updated frequently and accessed frequently in random order?

 12.4 For the B-tree in Figure 12.4c , show the result of inserting the key 97.
 12.5 An alternative algorithm for insertion into a B-tree is the following: As the insertion

algorithm travels down the tree, each full node that is encountered is immediately
split, even though it may turn out that the split was unnecessary.
a. What is the advantage of this technique?
b. What are the disadvantages?

 12.6 Both the search and the insertion time for a B-tree are a function of the height of the
tree. We would like to develop a measure of the worst-case search or insertion time.
Consider a B-tree of degree d that contains a total of n keys. Develop an inequality
that shows an upper bound on the height h of the tree as a function of d and n .

 12.7 Ignoring overhead for directories and file descriptors, consider a file system in which
files are stored in blocks of 16K bytes. For each of the following file sizes, calculate
the percentage of wasted file space due to incomplete filling of the last block: 41,600
bytes; 640,000 bytes; 4.064,000 bytes.

 12.8 What are the advantages of using directories?
 12.9 Directories can be implemented either as “special files” that can only be accessed in

limited ways or as ordinary data files. What are the advantages and disadvantages of
each approach?

 12.10 Some operating systems have a tree–structured file system but limit the depth of the
tree to some small number of levels. What effect does this limit have on users? How
does this simplify file system design (if it does)?

 12.11 Consider a hierarchical file system in which free disk space is kept in a free space list.
a. Suppose the pointer to free space is lost. Can the system reconstruct the free

space list?
b. Suggest a scheme to ensure that the pointer is never lost as a result of a single

memory failure.
 12.12 In UNIX System V, the length of a block is 1 Kbyte, and each block can hold a total of

256 block addresses. Using the inode scheme, what is the maximum size of a file?
 12.13 Consider the organization of a UNIX file as represented by the inode (Figure 12.16).

Assume that there are 12 direct block pointers, and a singly, doubly, and triply indirect
pointer in each inode. Further, assume that the system block size and the disk sector
size are both 8K. If the disk block pointer is 32 bits, with 8 bits to identify the physical
disk and 24 bits to identify the physical block, then
a. What is the maximum file size supported by this system?
b. What is the maximum file system partition supported by this system?
c. Assuming no information other than that the file inode is already in main memory,

how many disk accesses are required to access the byte in position 13,423,956?

573

 13.1 Embedded Systems

 13.2 Characteristics of Embedded Operating Systems
 Adapting an Existing Commercial Operating System
 Purpose-Built Embedded Operating System

 13.3 eCos
 Configurability
 eCos Components
 eCos Scheduler
 eCos Thread Synchronization

 13.4 TinyOS
 Wireless Sensor Networks
 TinyOS Goals
 TinyOS Components
 TinyOS Scheduler
 Example Configuration
 TinyOS Resource Interface

 13.5 Recommended Reading and Web Sites

 13.6 Key Terms, Review Questions, and Problems

EMBEDDED OPERATING SYSTEMS

CHAPTER

Embedded Systems PART 6

574 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

 In brief, the conventional arguments that bird brains are too small
or do not have particular structures needed for intelligence are based
on ignorance of brains in general and bird brains in particular. It is
unwarranted to argue that the small brains and small bodies of birds
render them less capable of behaving with intelligent awareness than
animals with large brains and large bodies.

 — THE HUMAN NATURE OF BIRDS , Theodore Barber

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

• Explain the concept of embedded system.
• Understand the characteristics of embedded operating systems.
• Describe the architecture and key features of eCos.
• Describe the architecture and key features of TinyOS.

 In this chapter, we examine one of the most important and widely used catego-
ries of operating systems: embedded operating systems. The embedded system
environment places unique and demanding requirements on the OS and calls for
design strategies quite different than that found in ordinary operating systems.

 We begin with an overview of the concept of embedded systems and then
turn to an examination of the principles of embedded operating systems. Finally,
this chapter surveys two very different approaches to embedded OS design.

13.1 EMBEDDED SYSTEMS

 The term embedded system refers to the use of electronics and software within a
product, as opposed to a general-purpose computer, such as a laptop or desktop
system. The following is a good general definition: 1

Embedded system: A combination of computer hardware and software, and
 perhaps additional mechanical or other parts, designed to perform a dedicated
function. In many cases, embedded systems are part of a larger system or prod-
uct, as in the case of an antilock braking system in a car.

1 Michael Barr, Embedded Systems Glossary . Netrino Technical Library. http://www.netrino.com/Embedded-
Systems/Glossary

 Embedded systems far outnumber general-purpose computer systems, encom-
passing a broad range of applications (Table 13.1). These systems have widely varying
requirements and constraints, such as the following [GRIM05]:

 • Small to large systems, implying very different cost constraints, thus different
needs for optimization and reuse

http://www.netrino.com/Embedded-Systems/Glossary
http://www.netrino.com/Embedded-Systems/Glossary

13.1 / EMBEDDED SYSTEMS 575

 • Relaxed to very strict requirements and combinations of different quality
requirements, for example, with respect to safety, reliability, real-time,
 flexibility, and legislation

 • Short to long lifetimes

 • Different environmental conditions in terms of, for example, radiation, vibra-
tions, and humidity

 • Different application characteristics resulting in static versus dynamic loads,
slow to fast speed, compute versus interface intensive tasks, and/or combinations
thereof

 • Different models of computation ranging from discrete-event systems to those
involving continuous time dynamics (usually referred to as hybrid systems)

 Often, embedded systems are tightly coupled to their environment. This can
give rise to real-time constraints imposed by the need to interact with the environ-
ment. Constraints, such as required speeds of motion, required precision of meas-
urement, and required time durations, dictate the timing of software operations. If
multiple activities must be managed simultaneously, this imposes more complex
real-time constraints.

Table 13.1 Examples of Embedded Systems and Their Markets [NOER05]

 Market Embedded Device

 Automotive Ignition system
 Engine control
 Brake system

 Consumer electronics Cell phones
 mp3 players
 ebook readers
 Digital and analog televisions
 Set-top boxes (DVDs, VCRs, Cable boxes)
 Kitchen appliances (refrigerators, toasters, microwave ovens)
 Automobiles
 Toys/games
 Telephones/cell phones/pagers
 Cameras
 Global positioning systems

 Industrial control Robotics and controls systems for manufacturing
 Sensors

 Medical Infusion pumps
 Dialysis machines
 Prosthetic devices
 Cardiac monitors

 Office automation Fax machine
 Photocopier
 Printers
 Monitors
 Scanners

576 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

 Figure 13.1 , based on [KOOP96], shows in general terms an embedded system
organization. In addition to the processor and memory, there are a number of
 elements that differ from the typical desktop or laptop computer:

 • There may be a variety of interfaces that enable the system to measure,
 manipulate, and otherwise interact with the external environment.

 • The human interface may be as simple as a flashing light or as complicated as
real-time robotic vision.

 • The diagnostic port may be used for diagnosing the system that is being
 controlled—not just for diagnosing the embedded computer.

 • Special-purpose field programmable (FPGA), application specific (ASIC), or
even nondigital hardware may be used to increase performance or safety.

 • Software often has a fixed function and is specific to the application.

13.2 CHARACTERISTICS OF EMBEDDED OPERATING SYSTEMS

 A simple embedded system, with simple functionality, may be controlled by a
 special-purpose program or set of programs with no other software. Typically,
more complex embedded systems include an OS. Although it is possible in
 principle to use a general-purpose OS, such as Linux, for an embedded system,
constraints of memory space, power consumption, and real-time requirements
typically dictate the use of a special-purpose OS designed for the embedded
 system environment.

Auxiliary
systems
(power,
cooling)

MemoryFPGA/
ASIC

Human
interface

Diagnostic
port

D/A
conversion

A/D
conversion

Electromechanical
backup and safety

Sensors Actuators

Processor

Software

External
environment

Figure 13.1 Possible Organization of an Embedded System

13.2 / CHARACTERISTICS OF EMBEDDED OPERATING SYSTEMS 577

 The following are some of the unique characteristics and design requirements
for embedded operating systems:

 • Real-time operation: In many embedded systems, the correctness of a compu-
tation depends, in part, on the time at which it is delivered. Often, real-time
constraints are dictated by external I/O and control stability requirements.

 • Reactive operation: Embedded software may execute in response to external
events. If these events do not occur periodically or at predictable intervals, the
embedded software may need to take into account worst-case conditions and
set priorities for execution of routines.

 • Configurability: Because of the large variety of embedded systems, there is
a large variation in the requirements, both qualitative and quantitative, for
embedded OS functionality. Thus, an embedded OS intended for use on a
variety of embedded systems must lend itself to flexible configuration so that
only the functionality needed for a specific application and hardware suite is
provided. [MARW06] gives the following examples. The linking and load-
ing functions can be used to select only the necessary OS modules to load.
Conditional compilation can be used. If an object-oriented structure is used,
proper subclasses can be defined. However, verification is a potential prob-
lem for designs with a large number of derived tailored operating systems.
Takada cites this as a potential problem for eCos [TAKA01].

 • I/O device flexibility: There is virtually no device that needs to be supported
by all versions of the OS, and the range of I/O devices is large. [MARW06]
suggests that it makes sense to handle relatively slow devices such as disks and
network interfaces by using special tasks instead of integrating their drives into
the OS kernel.

 • Streamlined protection mechanisms: Embedded systems are typically designed
for a limited, well-defined functionality. Untested programs are rarely added
to the software. After the software has been configured and tested, it can be
assumed to be reliable. Thus, apart from security measures, embedded sys-
tems have limited protection mechanisms. For example, I/O instructions need
not be privileged instructions that trap to the OS; tasks can directly perform
their own I/O. Similarly, memory protection mechanisms can be minimized.
[MARW06] provides the following example. Let switch correspond to the
memory-mapped I/O address of a value that needs to be checked as part of an
I/O operation. We can allow the I/O program to use an instruction such as load
register , switch to determine the current value. This approach is prefer-
able to the use of an OS service call, which would generate overhead for saving
and restoring the task context.

 • Direct use of interrupts: General-purpose operating systems typically do not
permit any user process to use interrupts directly. [MARW06] lists three
 reasons why it is possible to let interrupts directly start or stop tasks (e.g., by
storing the task’s start address in the interrupt vector address table) rather than
going through OS interrupt service routines: (1) Embedded systems can be
considered to be thoroughly tested, with infrequent modifications to the OS or

578 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

application code; (2) protection is not necessary, as discussed in the preceding
bullet item; and (3) efficient control over a variety of devices is required.

 There are two general approaches to developing an embedded OS. The
first approach is to take an existing OS and adapt it for the embedded applica-
tion. The other approach is to design and implement an OS intended solely for
 embedded use. 2

Adapting an Existing Commercial Operating System

 An existing commercial OS can be used for an embedded system by adding real-
time capability, streamlining operation, and adding necessary functionality. This
approach typically makes use of Linux, but FreeBSD, Windows, and other general-
purpose operating systems have also been used. Such operating systems are typically
slower and less predictable than a special-purpose embedded OS. An advantage of
this approach is that the embedded OS derived from a commercial general-purpose
OS is based on a set of familiar interfaces, which facilitates portability.

 The disadvantage of using a general-purpose OS is that it is not optimized
for real-time and embedded applications. Thus, considerable modification may be
required to achieve adequate performance. In particular, a typical OS optimizes for
the average case rather than the worst case for scheduling, usually assigns resources
on demand, and ignores most if not all semantic information about an application.

Purpose-Built Embedded Operating System

 A significant number of operating systems have been designed from the ground up
for embedded applications. Two prominent examples of this latter approach are
eCos and TinyOS, both of which are discussed in this chapter.

 Typical characteristics of a specialized embedded OS include the following:

 • Has a fast and lightweight process or thread switch

 • Scheduling policy is real time and dispatcher module is part of scheduler
instead of separate component.

 • Has a small size

 • Responds to external interrupts quickly; typical requirement is response time
of less than 10 μs

 • Minimizes intervals during which interrupts are disabled

 • Provides fixed or variable-sized partitions for memory management as well as
the ability to lock code and data in memory

 • Provides special sequential files that can accumulate data at a fast rate

 To deal with timing constraints, the kernel

 • Provides bounded execution time for most primitives

 • Maintains a real-time clock

2 Much of the discussion in the remainder of Section 13.2 is based on course notes on embedded systems
from Prof. Rajesh Gupta, University of California at San Diego.

13.3 / ECOS 579

 • Provides for special alarms and time-outs

 • Supports real-time queuing disciplines such as earliest deadline first and
 primitives for jamming a message into the front of a queue

 • Provides primitives to delay processing by a fixed amount of time and to
 suspend/resume execution

 The characteristics just listed are common in embedded operating systems with
real-time requirements. However, for complex embedded systems, the requirement
may emphasize predictable operation over fast operation, necessitating different
design decisions, particularly in the area of task scheduling.

13.3 ECOS

 The Embedded Configurable Operating System (eCos) is an open source, royalty-
free, real-time OS intended for embedded applications. The system is targeted at
high-performance small embedded systems. For such systems, an embedded form
of Linux or other commercial OS would not provide the streamlined software
required. The eCos software has been implemented on a wide variety of proces-
sor platforms, including Intel IA32, PowerPC, SPARC, ARM, CalmRISC, MIPS,
and NEC V8xx. It is one of the most widely used embedded operating systems. It is
implemented in C/C++.

Configurability

 An embedded OS that is flexible enough to be used in a wide variety of embed-
ded applications and on a wide variety of embedded platforms must provide more
functionality than will be needed for any particular application and platform. For
example, many real-time operating systems support task switching, concurrency
controls, and a variety of priority scheduling mechanisms. A relatively simple
embedded system would not need all these features.

 The challenge is to provide an efficient, user-friendly mechanism for configur-
ing selected components and for enabling and disabling particular features within
components. The eCos configuration tool, which runs on Windows or Linux, is used
to configure an eCos package to run on a target embedded system. The complete
eCos package is structured hierarchically, making it easy, using the configuration
tool, to assemble a target configuration. At a top level, eCos consists of a number of
components, and the configuration user may select only those components needed
for the target application. For example, a system might have a particular serial I/O
device. The configuration user would select serial I/O for this configuration, then
select one or more specific I/O devices to be supported. The configuration tool
would include the minimum necessary software for that support. The configuration
user can also select specific parameters, such as default data rate and the size of I/O
buffers to be used.

 This configuration process can be extended down to finer levels of detail, even
to the level of individual lines of code. For example, the configuration tool provides
the option of including or omitting a priority inheritance protocol.

580 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

 Figure 13.2 shows the top level of the eCos configuration tool as seen by
the tool user. Each of the items on the list in the left-hand window can be
selected or deselected. When an item is highlighted, the lower right-hand window
 provides a description and the upper right-hand window provides a link to further
 documentation plus additional information about the highlighted item. Items on
the list can be expanded to provide a finer-grained menu of options. Figure 13.3
illustrates an expansion of the eCos kernel option. In this figure, note that excep-
tion handling has been selected for inclusion, but SMP (symmetric multiprocessing)
has been omitted. In general, components and individual options can be selected
or omitted. In some cases, individual values can be set; for example, a minimum
acceptable stack size is an integer value that can be set or left to a default value.

 Figure 13.4 shows a typical example of the overall process of creating the
binary image to execute in the embedded system. This process is run on a source
system, such as a Windows or Linux platform, and the executable image is des-
tined to execute on a target embedded system, such as a sensor in an industrial
environment. At the highest software level is the application source code for the
particular embedded application. This code is independent of eCos but makes use
of application programming interfaces (API) to sit on top of the eCos software.
There may be only one version of the application source code, or there may be
variations for different versions of the target embedded platform. In this example,
the GNU make utility is used to selectively determine which pieces of a program

Figure 13.2 eCos Confi guration Tool—Top Level

13.3 / ECOS 581

Figure 13.3 eCos Confi guration Tool—Kernel Details

GNU make utility

Executable
file

–eCos kernel libraries
–Target architecture
 libraries

GNU cross compiler

GNU linker

Application
source code

Figure 13.4 Loading an eCos Confi guration

582 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

need to be compiled or recompiled (in the case of a modified version of the source
code) and issues the commands to recompile them. The GNU cross compiler,
executing on the source platform, then generates the binary executable code for
the target embedded platform. The GNU linker links the application object code
with the code generated by the eCos configuration tool. This latter set of software
includes selected portions of the eCos kernel plus selected software for the target
embedded system. The result can then be loaded into the target system.

eCos Components

 A key design requirement for eCos is portability to different architectures and plat-
forms with minimal effort. To meet this requirement, eCos consists of a layered set
of components (Figure 13.5).

HARDWARE ABSTRACTION LAYER At the bottom is the hardware abstraction layer
(HAL). The HAL is software that presents a consistent API to the upper layers and
maps upper-layer operations onto a specific hardware platform. Thus, the HAL is
different for each hardware platform. Figure 13.6 is an example that demonstrates
how the HAL abstracts hardware-specific implementations for the same API call
on two different platforms. As this example shows, the call from an upper layer to
enable interrupts is the same on both platforms, but the C code implementation of
the function is specific to each platform.

 The HAL is implemented as three separate modules:

 • Architecture: Defines the processor family type. This module contains the code
necessary for processor startup, interrupt delivery, context switching, and other
functionality specific to the instruction set architecture of that processor family.

 • Variant: Supports the features of the specific processor in the family. An
example of a supported feature is an on-chip module such as a memory man-
agement unit (MMU).

 • Platform: Extends the HAL support to tightly coupled peripherals like
interrupt controllers and timer devices. This module defines the platform
or board that includes the selected processor architecture and variant. It
 includes code for startup, chip selection configuration, interrupt controllers,
and timer devices.

Hardware abstraction layer

Kernel

I/O system (device drivers)

Standard C library

User application code

Figure 13.5 eCos Layered Structure

13.3 / ECOS 583

 Note that the HAL interface can be directly used by any of the upper layers,
promoting efficient code.

ECOS KERNEL The eCos kernel was designed to satisfy four main objectives:

 • Low interrupt latency: The time it takes to respond to an interrupt and begin
executing an ISR.

 • Low task switching latency: The time it takes from when a thread becomes
available to when actual execution begins.

 • Small memory footprint: Memory resources for both program and data are
kept to a minimum by allowing all components to configure memory as needed.

 • Deterministic behavior: Throughout all aspect of execution, the kernels
 performance must be predictable and bounded to meet real-time application
requirements.

 The eCos kernel provides the core functionality needed for developing multi-
threaded applications:

 1. The ability to create new threads in the system, either during startup or when
the system is already running

 2. Control over the various threads in the system: for example, manipulating
their priorities

 3. A choice of schedulers, determining which thread should currently be running

Figure 13.6 Two Implementations of
Hal_Enable_Interrupts() Macro

1 #define HAL_ENABLE_INTERRUPTS() \
2 asm volatile (\
3 “mrs r3, cpsr;” \
4 “bic r3, r3, #0xC0;” \
5 “mrs cpsr, r3;” \
6 : \
7 : \
8 : “r3” \
9); \

1 #define HAL_ENABLE_INTERRUPTS() \
2 CYG_MACRO_START \
3 cyg_uint32 tmp1, tmp2 \
4 asm volatile (\
5 “mfmsr %0;” \
6 “ori %1,%1,0x800;” \
7 “r1wimi %0,%1,0,16,16;” \
8 “mtmsr %0;” \
9 : “=r” (tmp1), “=r” (tmp2)); \
10 CYG_MACRO_END \

(a) ARM architecture

(b) PowerPC architecture

584 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

 4. A range of synchronization primitives, allowing threads to interact and share
data safely

 5. Integration with the system’s support for interrupts and exceptions

 Some functionality that is typically included in the kernel of an OS is not
included in the eCos kernel. For example, memory allocation is handled by a sepa-
rate package. Similarly, each device driver is a separate package. Various packages
are combined and configured using the eCos configuration technology to meet the
requirements of the application. This makes for a lean kernel. Further, the minimal
nature of the kernel means that for some embedded platforms, the eCos kernel is
not used at all. Simple single-threaded applications can be run directly on HAL.
Such configurations can incorporate needed C library functions and device drivers
but avoid the space and time overhead of the kernel.

 There are two different techniques for utilizing kernel functions in eCos. One
way to employ kernel functionality is by using the C API of kernel. Examples of
such functions are cyg_thread_create and cyg_mutex_lock. These functions can be
invoked directly from application code. On the other hand, kernel functions can
also be invoked by using compatibility packages for existing API’s, for example
POSIX threads or μITRON. The compatibility packages allow application code to
call standard functions like pthread_create, and those functions are implemented
using the basic functions provided by the eCos kernel. Code sharing and reusability
of already developed code is easily achieved by use of compatibility packages.

I/O SYSTEM The eCos I/O system is a framework for supporting device drivers. A
variety of drivers for a variety of platforms are provided in the eCos configuration
package. These include drivers for serial devices, Ethernet, flash memory interfaces,
and various I/O interconnects such as PCI (Peripheral Component Interconnect)
and USB (Universal Serial Bus). In addition, users can develop their own device
drivers.

 The principal objective for the I/O system is efficiency, with no unnecessary
software layering or extraneous functionality. Device drivers provide the necessary
functions for input, output, buffering, and device control.

 As mentioned, device drivers and other higher-layer software may be imple-
mented directly on the HAL if this is appropriate. If specialized kernel-type functions
are needed, then the device driver is implemented using kernel APIs. The kernel
provides a three-level interrupt model [ECOS07]:

 • Interrupt service routines (ISRs): Invoked in response to a hardware interrupt.
Hardware interrupts are delivered with minimal intervention to an ISR. The
HAL decodes the hardware source of the interrupt and calls the ISR of the
attached interrupt object. This ISR may manipulate the hardware but is only
allowed to make a restricted set of calls on the driver API. When it returns, an
ISR may request that its DSR should be scheduled to run.

 • Deferred service routines (DSRs): Invoked in response to a request by an ISR.
A DSR will be run when it is safe to do so without interfering with the sched-
uler. Most of the time the DSR will run immediately after the ISR, but if the
current thread is in the scheduler, it will be delayed until the thread is finished.

13.3 / ECOS 585

A DSR is allowed to make a larger set of driver API calls, including, in particu-
lar, being able to call cyg_drv_cond_signal() to wake up waiting threads.

 • Threads: The clients of the driver. Threads are able to make all API calls and
in particular are allowed to wait on mutexes and condition variables.

 Tables 13.2 and 13.3 show the device driver interface to the kernel. These
tables give a good feel for the type of functionality available in the kernel to support

Table 13.2 Device Driver Interface to the eCos Kernel: Concurrency

cyg_drv_spinlock_init Initialize a spinlock in a locked or unlocked state.

cyg_drv_spinlock_destroy Destroy a spinlock that is no longer of use.

cyg_drv_spinlock_spin Claim a spinlock, waiting in a busy loop until it is available.

cyg_drv_spinlock_clear Clear a spinlock. This clears the spinlock and allows another CPU to claim it.
If there is more than one CPU waiting in cyg_drv_spinlock_spin , then just one of them will be allowed
to proceed.

cyg_drv_spinlock_test Inspect the state of the spinlock. If the spinlock is not locked, then the result is
TRUE. If it is locked, then the result will be FALSE.

cyg_drv_spinlock_spin_intsave This function behaves like cyg_drv_spinlock_spin except
that it also disables interrupts before attempting to claim the lock. The current interrupt enable state is saved
in *istate. Interrupts remain disabled once the spinlock has been claimed and must be restored by calling
cyg_drv_spinlock_clear_intsave . Device drivers should use this function to claim and release
 spinlocks rather than the non-_intsave() variants, to ensure proper exclusion with code running on both other
CPUs and this CPU.

cyg_drv_mutex_init Initialize a mutex.

cyg_drv_mutex_destroy Destroy a mutex. The mutex should be unlocked and there should be no
threads waiting to lock it when this call in made.

cyg_drv_mutex_lock Attempt to lock the mutex pointed to by the mutex argument. If the mutex is
already locked by another thread, then this thread will wait until that thread is finished. If the result from this
function is FALSE, then the thread was broken out of its wait by some other thread. In this case, the mutex will
not have been locked.

cyg_drv_mutex_trylock Attempt to lock the mutex pointed to by the mutex argument without waiting.
If the mutex is already locked by some other thread then this function returns FALSE. If the function can
lock the mutex without waiting, then TRUE is returned.

cyg_drv_mutex_unlock Unlock the mutex pointed to by the mutex argument. If there are any threads
waiting to claim the lock, one of them is woken up to try and claim it.

cyg_drv_mutex_release Release all threads waiting on the mutex.

cyg_drv_cond_init Initialize a condition variable associated with a mutex with. A thread may only
wait on this condition variable when it has already locked the associated mutex. Waiting will cause the mutex
to be unlocked, and when the thread is reawakened, it will automatically claim the mutex before continuing.

cyg_drv_cond_destroy Destroy the condition variable.

cyg_drv_cond_wait Wait for a signal on a condition variable.

cyg_drv_cond_signal Signal a condition variable. If there are any threads waiting on this variable, at
least one of them will all be awakened.

cyg_drv_cond_broadcast Signal a condition variable. If there are any threads waiting on this variable,
they will all be awakened.

586 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

device drivers. Note that the device driver interface can be configured for one or
more of the following concurrency mechanisms: spinlocks, condition variables, and
mutexes. These are described in a subsequent portion of this discussion.

STANDARD C LIBRARIES A complete Standard C run-time library is provided. Also
included is a complete math run time library for high-level mathematics functions,
including a complete IEEE-754 floating-point library for those platforms without
hardware floating points.

Table 13.3 Device Driver Interface to the eCos Kernel: Interrupts

cyg_drv_isr_lock Disable delivery of interrupts, preventing all ISRs running. This function maintains a
counter of the number of times it is called.

cyg_drv_isr_unlock Reenable delivery of interrupts, allowing ISRs to run. This function decrements
the counter maintained by cyg_drv_isr_lock , and only reallows interrupts when it goes to zero.

cyg_ISR_t Define ISR.

cyg_drv_dsr_lock Disable scheduling of DSRs. This function maintains a counter of the number of
times it has been called.

cyg_drv_dsr_unlock Reenable scheduling of DSRs. This function decrements the counter incremented
by cyg_drv_dsr_lock . DSRs are only allowed to be delivered when the counter goes to zero.

cyg_DSR_t Define DSR prototype.

cyg_drv_interrupt_create Create an interrupt object and returns a handle to it.

cyg_drv_interrupt_delete Detach the interrupt from the vector and free the memory for reuse.

cyg_drv_interrupt_attach Attach an interrupt to a vector so that interrupts will be delivered to the
ISR when the interrupt occurs.

cyg_drv_interrupt_detach Detach the interrupt from the vector so that interrupts will no longer be
delivered to the ISR.

cyg_drv_interrupt_mask Program the interrupt controller to stop delivery of interrupts on the
given vector.

cyg_drv_interrupt_mask_intunsafe Program the interrupt controller to stop delivery of interrupts
on the given vector. This version differs from cyg_drv_interrupt_mask in not being interrupt safe. So
in situations where, for example, interrupts are already known to be disabled, this may be called to avoid the
extra overhead.

cyg_drv_interrupt_unmask, cyg_drv_interrupt_unmask_intunsafe Program the interrupt
controller to reallow delivery of interrupts on the given vector.

cyg_drv_interrupt_acknowledge Perform any processing required at the interrupt controller and in
the CPU to cancel the current interrupt request.

cyg_drv_interrupt_configure Program the interrupt controller with the characteristics of the
 interrupt source.

cyg_drv_interrupt_level Program the interrupt controller to deliver the given interrupt at the
 supplied priority level.

cyg_drv_interrupt_set_cpu On multiprocessor systems, this function causes all interrupts on the
given vector to be routed to the specified CPU. Subsequently, all such interrupts will be handled by that CPU.

cyg_drv_interrupt_get_cpu On multiprocessor systems, this function returns the ID of the CPU to
which interrupts on the given vector are currently being delivered.

13.3 / ECOS 587

eCos Scheduler

 The eCos kernel can be configured to provide one of two scheduler designs: the
bitmap scheduler and a multilevel queue scheduler. The configuration user selects
the appropriate scheduler for the environment and the application. The bitmap
scheduler provides efficient scheduling for a system with a small number of threads
that may be active at any point in time. The multiqueue scheduler is appropriate
if the number of threads is dynamic or if it is desirable to have multiple threads
at the same priority level. The multilevel scheduler is also needed if time slicing
is desired.

BITMAP SCHEDULER A bitmap scheduler supports multiple priority levels, but only
one thread can exist at each priority level at any given time. Scheduling decisions
are quite simple with this scheduler (Figure 13.7a). When a blocked thread becomes
ready to run, it may preempt a thread of lower priority. When a running thread
suspends, the ready thread with the highest priority is dispatched. A thread can
be suspended because it is blocked on a synchronization primitive, because it is
interrupted, or because it relinquishes control. Because there is only one thread,
at most, at each priority level, the scheduler does not have to make a decision as to
which thread at a given priority level should be dispatched next.

 The bitmap scheduler is configured with 8, 16, or 32 priority levels. A simple
bitmap is kept of the threads that are ready to execute. The scheduler need only
determine the position of the most significant one bit in the bitmap to make a sched-
uling decision.

MULTILEVEL QUEUE SCHEDULER As with the bitmap scheduler, the multilevel
queue scheduler supports up to 32 priority levels. The multilevel queue scheduler
allows for multiple active threads at each priority level, limited only by system
resources.

 Figure 13.7b illustrates the nature of the multilevel queue scheduler. A data
structure represents the number of ready threads at each priority level. When a
blocked thread becomes ready to run, it may preempt a thread of lower priority.
As with the bitmap scheduler, a running thread may be blocked on a synchroniza-
tion primitive, because it is interrupted, or because it relinquishes control. When
a thread is blocked, the scheduler must first determine if one or more threads at
the same priority level as the blocked thread is ready. If so, the scheduler chooses
the one at the front of the queue. Otherwise, the scheduler looks for the next
highest priority level with one or more ready threads and dispatches one of these
threads.

 In addition, the multilevel queue scheduler can be configured for time slicing.
Thus, if a thread is running and there is one or more ready threads at the same
 priority level, the scheduler will suspend the running thread after one time slice
and choose the next thread in the queue at that priority level. This is a round-robin
 policy within one priority level. Not all applications require time slicing. For exam-
ple, an application may contain only threads that block regularly for some other
reason. For these applications, the user can disable time slicing, which reduces the
overhead associated with timer interrupts.

588 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

Multilevel scheduling queue

Thread C

Thread AThread BMinimum priority 0

Maximum priority 31

Thread C

Preemption

Time slice Deschedule

Thread C

Thread A Thread B

(b) Multilevel queue scheduler thread operation

Thread A

Bitmap
scheduling queue

Thread C

Thread A
Thread B

Minimum priority 0

Maximum priority 31

Thread C

Preemption

Deschedule

Deschedule

Thread C

Thread A

Thread B

(a) Bitmap scheduler thread operation

Deschedule

Figure 13.7 eCos Scheduler Options

13.3 / ECOS 589

eCos Thread Synchronization

 The eCos kernel can be configured to include one or more of six different thread
synchronization mechanisms. These include the classic synchronization mecha-
nisms: mutexes, semaphores, and condition variables. In addition, eCos supports
two synchronization/communication mechanisms that are common in real-time
systems, namely event flags and mailboxes. Finally, the eCos kernel supports spin-
locks, which are useful in SMP (symmetric multiprocessing) systems.

MUTEXES The mutex (mutual exclusion lock) was introduced in Chapter 6 . Recall
that a mutex is used to enforce mutually exclusive access to a resource, allowing
only one thread at a time to gain access. The mutex has only two states: locked and
unlocked. This is similar to a binary semaphore: When a mutex is locked by one
thread, any other thread attempting to lock the mutex is blocked; when the mutex is
unlocked, then one of the threads blocked on this mutex is unblocked and allowed
to lock the mutex and gain access to the resource.

 The mutex differs from a binary semaphore in two respects. First, the thread
that locks the mutex must be the one to unlock it. In contrast, it is possible for
one thread to lock a binary semaphore and for another to unlock it. The other
 difference is that a mutex provides protection against priority inversion, whereas a
semaphore does not.

 The eCos kernel can be configured to support either a priority inheritance
protocol or a priority ceiling protocol. These are described in Chapter 10 .

SEMAPHORES The eCos kernel provides support for a counting semaphore. Recall
from Chapter 5 that a counting semaphore is an integer value used for signaling
among threads. The cyg_semaphore_init is used to initialize a semaphore. The
cyg_semaphore_post command increments the semaphore count when an event
occurs. If the new count is less than or equal to zero, then a thread is waiting on
this semaphore and is awakened. The cyg_semaphore_wait function checks the
value of a semaphore count. If the count is zero, the thread calling this function will
wait for the semaphore. If the count is nonzero, the count is decremented and the
thread continues.

 Counting semaphores are suited to enabling threads to wait until an event
has occurred. The event may be generated by a producer thread, or by a DSR in
response to a hardware interrupt. Associated with each semaphore is an integer
counter that keeps track of the number of events that have not yet been processed.
If this counter is zero, an attempt by a consumer thread to wait on the semaphore
will block until some other thread or a DSR posts a new event to the semaphore.
If the counter is greater than zero, then an attempt to wait on the semaphore will
consume one event, in other words decrement the counter, and return immedi-
ately. Posting to a semaphore will wake up the first thread that is currently waiting,
which will then resume inside the semaphore wait operation and decrement the
counter again.

 Another use of semaphores is for certain forms of resource management. The
counter would correspond to how many of a certain type of resource are currently
available, with threads waiting on the semaphore to claim a resource and posting to

590 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

release the resource again. In practice, condition variables are usually much better
suited for operations like this.

CONDITION VARIABLES A condition variable is used to block a thread until a
particular condition is true. Condition variables are used with mutexes to allow
multiple threads to access shared data. They can be used to implement monitors
of the type discussed in Chapter 6 (e.g., Figure 6.14). The basic commands are as
follows:

cyg_cond_wait Causes the current threat to wait on the specified con-
dition variable and simultaneously unlocks the mutex
attached to the condition variable

cyg_cond_signal Wakes up one of the threads waiting on this condition
variable, causing that thread to become the owner of
the mutex

cyg_cond_broadcast Wakes up all the threads waiting on this condition
 variable. Each thread that was waiting on the condi-
tion variable becomes the owner of the mutex when
it runs.

 In eCos, condition variables are typically used in conjunction with mutexes to
implement long-term waits for some condition to become true. We use an example
from [ECOS07] to illustrate. Figure 13.8 defines a set of functions to control access
to a pool of resources using mutexes. The mutex is used to make the allocation
and freeing of resources from a pool atomic. The function res_t res_allocate
checks to see if one or more units of a resource are available and, if so, takes one
unit. This operation is protected by a mutex so that no other thread can check or
alter the resource pool while this thread has control of the mutex. The function
res_free(res_t res) enables a thread to release one unit of a resource that it
had previously acquired. Again, this operation is made atomic by a mutex.

 In this example, if a thread attempts to access a resource and none are
available, the function returns RES_NONE . Suppose, however, that we want the
thread to be blocked and wait for a resource to become available, rather than
returning RES_NONE . Figure 13.9 accomplishes this with the use of a condition
variable associated with the mutex. When res_allocate detects that there are
no resources, it calls cyg_cond_wait . This latter function unlocks the mutex
and puts the calling thread to sleep on the condition variable. When res_free
is eventually called, it puts a resource back into the pool and calls cyg_cond_
signal to wake up any thread waiting on the condition variable. When the wait-
ing thread eventually gets to run again, it will relock the mutex before returning
from cyg_cond_wait .

 [ECOS07] points out two significant features of this example, and of the use
of condition variables in general. First, the mutex unlock and wait in cyg_cond_
wait are atomic: No other thread can run between the unlock and the wait. If this
were not the case, then a call to res_free by some other thread would release
the resource, but the call to cyg_cond_signal would be lost, and the first thread
would end up waiting when there were resources available.

13.3 / ECOS 591

Figure 13.8 Controlling Access to a Pool of Resources Using Mutexes

cyg_mutex_t res_lock;
res_t res_pool[RES_MAX];
int res_count = RES_MAX;
void res_init(void)
{

cyg_mutex_init(&res_lock);
 <fill pool with resources>
}
res_t res_allocate(void)
{

res_t res;

cyg_mutex_lock(&res_lock); // lock the mutex

if(res_count == 0) // check for free resource
 res = RES_NONE; // return RES_NONE if none

else
{

 res_count--; // allocate a resources
 res = res_pool[res_count];

}

 cyg_mutex_unlock(&res_lock); // unlock the mutex

return res;
}

void res_free(res_t res)
{

cyg_mutex_lock(&res_lock); // lock the mutex

res_pool[res_count] = res; // free the resource
res_count++;

cyg_mutex_unlock(&res_lock); // unlock the mutex
}

 The second feature is that the call to cyg_cond_wait is in a while loop
and not a simple if statement. This is because of the need to relock the mutex in
cyg_cond_wait when the signaled thread reawakens. If there are other threads
already queued to claim the lock, then this thread must wait. Depending on the
scheduler and the queue order, many other threads may have entered the critical
section before this one gets to run. So the condition that it was waiting for may have
been rendered false. Using a loop around all condition variable wait operations is the
only way to guarantee that the condition being waited for is still true after waiting.

EVENT FLAGS An event flag is a 32-bit word used as a synchronization mechanism.
Application code may associate a different event with each bit in a flag. A thread
can wait for either a single event or a combination of events by checking one or
multiple bits in the corresponding flag. The thread is blocked until all of the required
bits are set (AND) or until at least one of the bits is set (OR). A signaling thread
can set or reset bits based on specific conditions or events so that the appropriate

592 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

Figure 13.9 Controlling Access to a Pool of Resources Using Mutexes and Condition Variables

cyg_mutex_t res_lock;
cyg_cond_t res_wait;
res_t res_pool[RES_MAX];
int res_count = RES_MAX;

void res_init(void)
{

cyg_mutex_init(&res_lock);
cyg_cond_init(&res_wait, &res_lock);
<fill pool with resources>

}

res_t res_allocate(void)
{

res_t res;

cyg_mutex_lock(&res_lock); // lock the mutex

while(res_count == 0) // wait for a resources
 cyg_cond_wait(&res_wait);

res_count--; // allocate a resource
res = res_pool[res_count];

cyg_mutex_unlock(&res_lock); // unlock the mutex

return res;
}

void res_free(res_t res)
{

cyg_mutex_lock(&res_lock); // lock the mutex

res_pool[res_count] = res; // free the resource
res_count++;

cyg_cond_signal(&res_wait); // wake up any waiting allocators

cyg_mutex_unlock(&res_lock); // unlock the mutex
}

thread is unblocked. For example, bit 0 could represent completion of a specific I/O
operation, making data available, and bit 1 could indicate that the user has pressed
a start button. A producer thread or DSR could set these two bits, and a consumer
thread waiting on these two events will be woken up.

 A thread can wait on one or more events using the cyg_flag_wait com-
mand, which takes three arguments: a particular event flag, a combination of bit
positions in the flag, and a mode parameter. The mode parameter specifies whether
the thread will block until all the bits are set (AND) or until at least one of the bits
is set (OR). The mode parameter may also specify that when the wait succeeds, the
entire event flag is cleared (set to all zeros).

MAILBOXES Mailboxes, also called message boxes, are an eCos synchronization
mechanism that provides a means for two threads to exchange information.

13.3 / ECOS 593

 Section 5.5 provides a general discussion of message-passing synchronization.
Here, we look at the specifics of the eCos version.

 The eCos mailbox mechanism can be configured for blocking or nonblocking
on both the send and receive side. The maximum size of the message queue associ-
ated with a given mailbox can also be configured.

 The send message primitive, called put, includes two arguments: a handle to
the mailbox and a pointer for the message itself. There are three variants to this
primitive:

cyg_mbox_put If there is a spare slot in the mailbox, then the new message is
placed there; if there is a waiting thread, it will be woken up
so that it can receive the message. If the mailbox is currently
full, cyg_mbox_put blocks until there has been a corre-
sponding get operation and a slot ids available.

cyg_mbox_timed_put Same as cyg_mbox_put if there is a spare slot. Otherwise,
the function will wait a specified time limit and place the
message if a slot becomes available. If the time limit expires,
the operation returns false . Thus, cyg_mbox_timed_
put is blocking only for less than or equal to a specified
time interval.

cyg_mbox_tryput This is a nonblocking version, which returns true if the
 message is sent successfully and false if the mailbox is full.

 Similarly, there are three variants to the get primitive.

cyg_mbox_get If there is a pending message in the specified mailbox,
cyg_mbox_get returns with the message that was put into
the mailbox. Otherwise this function blocks until there is a
put operation.

cyg_mbox_timed_get Immediately returns a message if one is available. Otherwise,
the function will wait until either a message is available or
until a number of clock ticks have occurred. If the time limit
expires, the operation returns a null pointer. Thus, cyg_box_
timed_get is blocking only for less than or equal
to a specified time interval.

cyg_mbox_tryget This is a nonblocking version, which returns a message if one
is available and a null pointer if the mailbox is empty.

SPINLOCKS A spinlock is a flag that a thread can check before executing a particular
piece of code. Recall from our discussion of Linux spinlocks in Chapter 6 the basic
operation of the spinlock: Only one thread at a time can acquire a spinlock. Any
other thread attempting to acquire the same lock will keep trying (spinning) until it
can acquire the lock. In essence, a spinlock is built on an integer location in memory
that is checked by each thread before it enters its critical section. If the value is 0,
the thread sets the value to 1 and enters its critical section. If the value is nonzero,
the thread continually checks the value until it is zero.

 A spinlock should not be used on a single-processor system, which is why it
is compiled away on Linux. As an example of the danger, consider a uniprocessor

594 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

system with preemptive scheduling, in which a higher-priority thread attempts to
acquire a spinlock already held by a lower priority thread. The lower-priority thread
cannot execute so as to finish its work and release the spinlock, because the higher-
priority thread preempts it. The higher-priority thread can execute but is stuck
checking the spinlock. As a result, the higher-priority thread will just loop forever
and the lower-priority thread will never get another chance to run and release the
spinlock. On an SMP system, the current owner of a spinlock can continue running
on a different processor.

13.4 TINYOS

 The eCos system provides a more streamlined approach for an embedded OS than
one based on a commercial general-purpose OS, such as an embedded version of
Linux. Thus, eCos and similar systems are better suited for small embedded systems
with tight requirements on memory, processing time, real-time response, power
consumption, and so on. TinyOS takes the process of streamlining to a much further
point, resulting in a very minimal OS for embedded systems. The core OS requires
400 bytes of code and data memory, combined.

 TinyOS represents a significant departure from other embedded operating
systems. One striking difference is that TinyOS is not a real-time OS. The reason for
this is the expected workload, which is in the context of a wireless sensor network,
as described in the next subsection. Because of power consumption, these devices
are off most of the time. Applications tend to be simple, with processor contention
not much of an issue.

 Additionally, in TinyOS there is no kernel, as there is no memory protection
and it is a component-based OS; there are no processes; the OS itself does not have
a memory allocation system (although some rarely used components do introduce
one); interrupt and exception handling is dependent on the peripheral; and it is
completely nonblocking, so there are few explicit synchronization primitives.

 TinyOS has become a popular approach to implementing wireless sensor
 network software. Currently, over 500 organizations are developing and contributing
to an open source standard for Tiny OS.

Wireless Sensor Networks

 TinyOS was developed primarily for use with networks of small wireless sensors. A
number of trends have enabled the development of extremely compact, low-power
sensors. The well-known Moore’s law continues to drive down the size of memory
and processing logic elements. Smaller size in turn reduces power consumption. Low
power and small size trends are also evident in wireless communications hardware,
micro-electromechanical sensors (MEMS), and transducers. As a result, it is possible
to develop an entire sensor complete with logic in a cubic millimeter. The application
and system software must be compact enough that sensing, communication, and com-
putation capabilities can be incorporated into a complete, but tiny, architecture.

 Low–cost, small–size, low-power-consuming wireless sensors can be used in a
host of applications [ROME04]. Figure 13.10 shows a typical configuration. A base

13.4 / TINYOS 595

station connects the sensor network to a host PC and passes on sensor data from the
network to the host PC, which can do data analysis and/or transmit the data over
a corporate network or Internet to an analysis server. Individual sensors collect
data and transmit these to the base station, either directly or through sensors that
act as data relays. Routing functionality is needed to determine how to relay the
data through the sensor network to the base station. [BUON01] points out that, in
many applications, the user will want to be able to quickly deploy a large number of
low-cost devices without having to configure or manage them. This means that they
must be capable of assembling themselves into an ad hoc network. The mobility of
individual sensors and the presence of RF interference means that the network will
have to be capable of reconfiguring itself in a matter of seconds.

TinyOS Goals

 With the tiny, distributed sensor application in mind, a group of researchers from
UC Berkeley [HILL00] set the following goals for TinyOS:

 • Allow high concurrency: In a typical wireless sensor network application, the
devices are concurrency intensive. Several different flows of data must be kept
moving simultaneously. While sensor data are input in a steady stream, pro-
cessed results must be transmitted in a steady stream. In addition, external
controls from remote sensors or base stations must be managed.

 • Operate with limited resources: The target platform for TinyOS will have lim-
ited memory and computational resources and run on batteries or solar power.

Internet

Host PC
Base

station

Sensor
and relay

Sensor
and relay

Sensor
and relay

Sensor
and relay

Sensor

Sensor

Wired link

Wireless link

Sensor

Figure 13.10 Typical Wireless Sensor Network Topology

596 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

A single platform may offer only kilobytes of program memory and hundreds
of bytes of RAM. The software must make efficient use of the available proc-
essor and memory resources while enabling low-power communication.

 • Adapt to hardware evolution: Most hardware is in constant evolution; applica-
tions and most system services must be portable across hardware generations.
Thus, it should be possible to upgrade the hardware with little or no software
change, if the functionality is the same.

 • Support a wide range of applications: Applications exhibit a wide range of
requirements in terms of lifetime, communication, sensing, and so on. A modu-
lar, general-purpose embedded OS is desired so that a standardized approach
leads to economies of scale in developing applications and support software.

 • Support a diverse set of platforms: As with the preceding point, a general-
purpose embedded OS is desirable.

 • Be robust: Once deployed, a sensor network must run unattended for months
or years. Ideally, there should be redundancy both within a single system and
across the network of sensors. However, both types of redundancy require
 additional resources. One software characteristic that can improve robustness
is to use highly modular, standardized software components.

 It is worth elaborating on the concurrency requirement. In a typical appli-
cation, there will be dozens, hundreds, or even thousands of sensors networked
together. Usually, little buffering is done, because of latency issues. For example,
if you are sampling every 5 minutes and want to buffer four samples before send-
ing, the average latency is 10 minutes. Thus, information is typically captured, proc-
essed, and streamed onto the network in a continuous flow. Further, if the sensor
sampling produces a significant amount of data, the limited memory space available
limits the number of samples that could be buffered. Even so, in some applications,
each of the flows may involve a large number of low-level events interleaved with
higher-level processing. Some of the high-level processing will extend over multiple
 real-time events. Further, sensors in a network, because of the low power of trans-
mission available, typically operate over a short physical range. Thus data from outly-
ing sensors must be relayed to one or more base stations by intermediate nodes.

TinyOS Components

 An embedded software system built using TinyOS consists of a set of small modules,
called components, each of which performs a simple task or set of tasks and which
interface with each other and with hardware in limited and well-defined ways. The
only other software module is the scheduler, discussed subsequently. In fact, because
there is no kernel, there is no actual OS. But we can take the following view. The appli-
cation area of interest is the wireless sensor network (WSN). To meet the demand-
ing software requirements of this application, a rigid, simplified software architec-
ture is dictated, consisting of components. The TinyOS development community has
implemented a number of open-source components that provide the basic functions
needed for the WSN application. Examples of such standardized components include
 single-hop networking, ad-hoc routing, power management, timers, and nonvolatile
storage control. For specific configurations and applications, users build additional

13.4 / TINYOS 597

special-purpose components and link and load all of the components needed for the
user’s application. TinyOS, then, consists of a suite of standardized components. Some
but not all of these components are used, together with application-specific user-written
components, for any given implementation. The OS for that implementation is simply
the set of standardized components from the TinyOS suite.

 All components in a TinyOS configuration have the same structure, an exam-
ple of which is shown in Figure 13.11a . The shaded box in the diagram indicates
the component, which is treated as an object that can only be accessed by defined
interfaces, indicated by white boxes. A component may be hardware or software.
Software components are implemented in nesC, which is an extension of C with
two distinguishing features: a programming model where components interact via
interfaces, and an event-based concurrency model with run-to-completion task and
interrupt handlers, explained subsequently.

 The architecture consists of a layered arrangement of components. Each com-
ponent can link to only two other components, one below it in the hierarchy and one
above it. A component issues commands to its lower-level component and receives
event signals from it. Similarly, the component accepts commands from its upper-level

(a) TimerM component

(b) TimerC configuration

TimerM

StdControl

Clock

Timer

TimerM

StdControl

Clock

Clock

HWClock

Timer

StdControl Timer

module TimerM {
 provides {
 interface StdControl;
 interface Timer;
 }
 uses interface Clock as Clk;
} ...

configuration TimerC {
 provides {
 interface StdControl;
 interface Timer;
 }
}

implementation {
 components TimerM, HWClock;
 StdControl = TimerM.StdControl;
 Timer = TimerM.Timer;
 TimerM.Clk -> HWClock.Clock;
}

Figure 13.11 Example Component and Confi guration

598 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

component and issues event signals to it. At the bottom of the hierarchy are hardware
components and at the top of the hierarchy are application components, which may
not be part of the standardized TinyOS suite but which must conform to the TinyOS
component structure.

 A software component implements one or more tasks. Each task in a compo-
nent is similar to a thread in an ordinary OS, with certain limitations. Within a com-
ponent, tasks are atomic: Once a task has started, it runs to completion. It cannot
be preempted by another task in the same component, and there is no time slicing.
However, a task can be preempted by an event. A task cannot block or spin wait.
These limitations greatly simplify the scheduling and management of tasks within
a component. There is only a single stack, assigned to the currently running task.
Tasks can perform computations, call lower-level components (commands) and sig-
nal higher-level events, and schedule other tasks.

Commands are nonblocking requests. That is, a task that issues a command
does not block or spin wait for a reply from the lower-level component. A com-
mand is typically a request for the lower-level component to perform some service,
such as initiating a sensor reading. The effect on the component that receives the
command is specific to the command given and the task required to satisfy the com-
mand. Generally, when a command is received, a task is scheduled for later execu-
tion, because a command cannot preempt the currently running task. The command
returns immediately to the calling component; at a later time, an event will signal
completion to the calling component. Thus, a command does not cause a preemp-
tion in the called component and does not cause blocking in the calling component.

Events in TinyOS may be tied either directly or indirectly to hardware events.
The lowest–level software components interface directly to hardware interrupts,
which may be external interrupts, timer events, or counter events. An event handler in
a lowest-level component may handle the interrupt itself or may propagate event mes-
sages up through the component hierarchy. A command can post a task that will signal
an event in the future. In this case, there is no tie of any kind to a hardware event.

 A task can be viewed as having three phases. A caller posts a command to a
module. The module then runs the requested task. The module then notifies the
caller, via an event, that the task is complete.

 The component depicted in Figure 13.11a , TimerM, is part of the TinyOS timer
service. This component provides the StdControl and Timer interface and uses a
Clock interface. Providers implement commands (i.e., the logic in this component).
Users implement events (i.e., external to the component). Many TinyOS components
use the StdControl interface to be initialized, started, or stopped. TimerM provides
the logic that maps from a hardware clock into TinyOS’s timer abstraction. The timer
abstraction can be used for counting down a given time interval. Figure 13.11a also
shows the formal specification of the TimerM interfaces.

 The interfaces associated with TimerM are specified as follows:

interface StdControl {
command result_t init();
command result_t start();
command result_t stop();

}

13.4 / TINYOS 599

interface Timer {
 command result_t start(char type, uint32_t interval);
 command result_t stop();
 event result_t fired();
}
interface Clock {
 command result_t setRate(char interval, char scale);
 event result_t fire();
}

 Components are organized into configurations by “wiring” them together at
their interfaces and equating the interfaces of the configuration with some of the inter-
faces of the components. A simple example is shown in Figure 13.11b . The uppercase
C stands for Component. It is used to distinguish between an interface (e.g., Timer)
and a component that provides the interface (e.g., TimerC).The uppercase M stands
for Module. This naming convention is used when a single logical component has both
a configuration and a module. The TimerC component, providing the Timer interface,
is a configuration that links its implementation (TimerM) to Clock and LED provid-
ers. Otherwise, any user of TimerC would have to explicitly wire its subcomponents.

TinyOS Scheduler

 The TinyOS scheduler operates across all components. Virtually all embedded sys-
tems using TinyOS will be uniprocessor systems, so that only one task among all
the tasks in all the components may execute at a time. The scheduler is a separate
component. It is the one portion of TinyOS that must be present in any system.

 The default scheduler in TinyOS is a simple FIFO (first-in-first-out) queue. A task
is posted to the scheduler (place in the queue) either as a result of an event, which trig-
gers the posting, or as a result of a specific request by a running task to schedule another
task. The scheduler is power aware. This means that the scheduler puts the processor to
sleep when there are no tasks in the queue. The peripherals remain operating, so that
one of them can wake up the system by means of a hardware event signaled to a lowest-
level component. Once the queue is empty, another task can be scheduled only as a
result of a direct hardware event. This behavior enables efficient battery usage.

 The scheduler has gone through two generations. In TinyOS 1.x, there is a shared
task queue for all tasks, and a component can post a task to the scheduler multiple
times. If the task queue is full, the post operation fails. Experience with networking
stacks showed this to be problematic, as the task might signal completion of a split-
phase operation: If the post fails, the component above might block forever, waiting
for the completion event. In TinyOS 2.x, every task has its own reserved slot in the
task queue, and a task can only be posted once. A post fails if and only if the task has
already been posted. If a component needs to post a task multiple times, it can set
an internal state variable so that when the task executes, it reposts itself. This slight
change in semantics greatly simplifies a lot of component code. Rather than test to
see if a task is posted already before posting it, a component can just post the task.
Components do not have to try to recover from failed posts and retry. The cost is one
byte of state per task.

600 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

 A user can replace the default scheduler with one that uses a different
 dispatching scheme, such as a priority-based scheme or a deadline scheme. However,
preemption and time slicing should not be used because of the overhead such systems
generate. More importantly, they violate the TinyOS concurrency model, which
assumes tasks do not preempt each other.

Example Configuration

 Figure 13.12 shows a configuration assembled from software and hardware compo-
nents. This simplified example, called Surge and described in [GAY03], performs

(a) Simplified view of the Surge Application

(b) Top-level surge configuration

LED � light-emitting diode
ADC � analog-to-digital converter

Photo

HWclock

Queuedsend

Generic
Comm

Timer
Multihop

LEDs

SurgeM

Timer SendMsg

SendMsgClock

ReceiveMsg

LEDs ADC

Main

Photo TimerC Multihop LEDsC

SurgeM

StdControl

StdControl StdControl StdControlADC Timer SndMsg LEDs

ADC Timer SndMsg LEDs

StdControl

Figure 13.12 Examples TinyOS Application

13.4 / TINYOS 601

periodic sensor sampling and uses ad-hoc multihop routing over the wireless net-
work to deliver samples to the base station. The upper part of the figure shows the
components of Surge (represented by boxes) and the interfaces by which they are
wired (represented by arrowed lines). The SurgeM component is the application-
level component that orchestrates the operation of the configuration.

 Figure 13.12b shows a portion of the configuration for the Surge application.
The following is a simplified excerpt from the SurgeM specification.

module SurgeM {
 provides interface StdControl;
 uses interface ADC;
 uses interface Timer;
 uses interface SendMsg;
 uses interface LEDs;
}
implementation {
 uint16_t sensorReading;
 command result_t StdControl.init() {
 return call Timer.start(TIMER_REPEAT, 1000);
 }
 event result_t Timer.fired() {
 call ADC.getData();
 return SUCCESS;
 }
 event result_t ADC.dataReady(uint16_t data) {
 sensorReading = data;
 ...send message with data in it...
 return SUCCESS;
 }
 ...
}

 This example illustrates the strength of the TinyOS approach. The software is
organized as an interconnected set of simple modules, each of which defines one or
a few tasks. Components have simple, standardized interfaces to other components,
be they hardware or software. Thus, components can easily be replaced. Components
can be hardware or software, with a boundary change not visible to the application
programmer.

TinyOS Resource Interface

 TinyOS provides a simple but powerful set of conventions for dealing with resources.
Three abstractions for resources are used in TinyOS:

 • Dedicated: A resource that a subsystem needs exclusive access to at all times. In
this class of resources, no sharing policy is needed since only a single component

602 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

ever requires use of the resource. Examples of dedicated abstractions include
interrupts and counters.

 • Virtualized: Every client of a virtualized resource interacts with it as if it were a
dedicated resource, with all virtualized instances being multiplexed on top of a
single underlying resource. The virtualized abstraction may be used when the
underlying resource need not be protected by mutual exclusion. An example
is a clock or timer.

 • Shared: The shared resource abstraction provides access to a dedicated
 resource through an arbiter component. The arbiter enforces mutual exclusion,
allowing only one user (called a client) at a time to have access to a resource
and enabling the client to lock the resource.

 In the remainder of this subsection, we briefly define the shared resource
facility of TinyOS. The arbiter determines which client has access to the resource
at which time. While a client holds a resource, it has complete and unfettered con-
trol. Arbiters assume that clients are cooperative, only acquiring the resource when
needed and holding on to it no longer than necessary. Clients explicitly release
resources: There is no way for an arbiter to forcibly reclaim it.

 Figure 13.13 shows a simplified view of the shared resource configuration used to
provide access to an underlying resource. Associated with each resource to be shared
is an arbiter component. The arbiter enforces a policy that enables a client to lock

Arbiter

Resource
Resource
requested

Resource
Resource
requested

Resource-specific
interfaces

Resource-specific
interfaces

Resource-specific
interfaces

Resource
configure

Resource
configure

Arbiter
info

Arbiter
Info

Shared resource

Resource-specific
interfaces

Dedicated resource

Figure 13.13 Shared Resource Confi guration

13.5 / RECOMMENDED READING AND WEB SITES 603

the resource, use it, and then release the resource. The shared resource configuration
 provides the following interfaces to a client:

 • Resource: The client issues a request at this interface, requesting access to the
resource. If the resource is currently locked, the arbiter places the request in a
queue. When a client is finished with the resource, it issues a release command
at this interface.

 • Resource requested: This is similar to the Resource interface. In this case, the
client is able to hold on to a resource until the client is notified that someone
else needs the resource.

 • Resource configure: This interface allows a resource to be automatically
 configured just before a client is granted access to it. Components providing
the ResourceConfigure interface use the interfaces provided by an under-
lying dedicated resource to configure it into one of its desired modes of
operation.

 • Resource-specific interfaces: Once a client has access to a resource, it uses
resource-specific interfaces to exchange data and control information with the
resource.

 In addition to the dedicated resource, the shared resource configuration con-
sists of two components. The Arbiter accepts requests for access and configuration
from a client and enforces the lock on the underlying resource. The shared resource
component mediates data exchange between the client and the underlying resource.
Arbiter information passed from the arbiter to the shared resource component con-
trols the access of the client to the underlying resource.

13.5 RECOMMENDED READING AND WEB SITES

 [KOOP96] provides a systematic discussion of the requirements for embedded
 systems. [STAN96] is a useful overview of real-time and embedded systems.

 [MASS03] and [ECOS07] both provide a detailed description of eCos internals.
[THOM01] provides a brief overview with some code examples from the kernel.
[LARM05] gives a more detailed description of the eCos configuration process.

 [HILL00] gives an overview and design rationale for TinyOS. [GAY05] is an
interesting discussion of software design strategies using TinyOS. [BUON01] provides
a good example of the use of TinyOS in building a network or wireless sensors. Two
excellent references for the current version of TinyOS are [GAY03] and [LEVI05].

BUON01 Buonadonna, P. Hill, J. and Culler, D. “Active Message Communication for
Tiny Networked Sensors.” Proceedings, IEEE INFOCOM 2001 , April 2001

ECOS07 eCosCentric Limited, and Red Hat, Inc. eCos Reference Manual , 2007. http://
www.ecoscentric.com/ecospro/doc/html/ref/ecos-ref.html

GAY03 Gay, D., et al. “The nesC Language: A Holistic Approach to Networked
Embedded Systems.” Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation , 2003.

http://www.ecoscentric.com/ecospro/doc/html/ref/ecos-ref.html
http://www.ecoscentric.com/ecospro/doc/html/ref/ecos-ref.html

604 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

GAY05 Gay, D., Levis, P., and Culler, D. “Software Design Patterns for TinyOS.”
Proceedings, Conference on Languages, Compilers, and Tools for Embedded
Systems , 2005.

HILL00 Hill, J., et al. “System Architecture Directions for Networked Sensors.”
Proceedings, Architectural Support for Programming Languages and Operating
Systems , 2000.

KOOP96 Koopman, P. “Embedded System Design Issues (the Rest of the Story).”
Proceedings, 1996 International Conference on Computer Design , 1996.

LARM05 Larmour, J. “How eCos Can Be Shrunk to Fit.” Embedded Systems Europe ,
May 2005. www.embedded.com/europe/esemay05.htm

LEVI05 Levis, P., et al. “T2: A Second Generation OS for Embedded Sensor
Networks.” Technical Report TKN-05-007, Telecommunication Networks Group,
Technische Universitat Berlin, 2005. http://csl.stanford.edu/~pal/pubs.html

MASS03 Massa, A. Embedded Software Development with eCos. Upper Saddle River,
NJ: Prentice Hall, 2003.

STAN96 Stankovic, J., et al. “Strategic Directions in Real-Time and Embedded
Systems.” ACM Computing Surveys , December 1996.

THOM01 Thomas, G. “eCos: An Operating System for Embedded Systems.” Dr.
Dobb’s Journal , January 2001.

 Recommended Web sites:

 • Embedded.com: Wide variety of information on embedded systems

 • eCos: Downloadable software, information, and links on eCos

 • TinyOS Community Forum: Downloadable software, information, and links on TinyOS

13.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 eCos
 embedded operating system

 embedded system
 TinyOS

Review Questions

 13.1 What is an embedded system?
 13.2 What are some typical requirements or constraints on embedded systems?
 13.3 What is an embedded OS?
 13.4 What are some of the key characteristics of an embedded OS?

www.embedded.com/europe/esemay05.htm
http://csl.stanford.edu/~pal/pubs.html

13.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 605

 13.5 Explain the relative advantages and disadvantages of an embedded OS based on an
existing commercial OS compared to a purpose-built embedded OS.

 13.6 What are the principal objectives that guided the design of the eCos kernel?
 13.7 In eCos, what is the difference between an interrupt service routine and a deferred

service routine?
 13.8 What concurrency mechanisms are available in eCos?
 13.9 What is the target application for TinyOS?
 13.10 What are the design goals for TinyOS?
 13.11 What is a TinyOS component?
 13.12 What software comprises the TinyOS operating system?
 13.13 What is the default scheduling discipline for TinyOS?

Problems

 13.1 With reference to the device driver interface to the eCos kernel (Table 13.2), it is
recommended that device drivers should use the _intsave() variants to claim and
release spinlocks rather than the non- _intsave() variants. Explain why.

 13.2 Also in Table 13.2 , it is recommended that cyg_drv_spinlock_spin should be
used sparingly, and in situations where deadlocks/livelocks cannot occur. Explain
why.

 13.3 In Table 13.2 , what should be the limitations on the use of cyg_drv_spinlock_
destroy ? Explain.

 13.4 In Table 13.2 , what limitations should be placed in the use of cyg_drv_mutex_
destroy ?

 13.5 Why does the eCos bitmap scheduler not support time slicing?
 13.6 The implementation of mutexes within the eCos kernel does not support recursive

locks. If a thread has locked a mutex and then attempts to lock the mutex again,
typically as a result of some recursive call in a complicated call graph, then either an
assertion failure will be reported or the thread will deadlock. Suggest a reason for
this policy.

 13.7 Figure 13.14 is a listing of code intended for use on the eCos kernel.
a. Explain the operation of the code. Assume thread B begins execution first and

thread A begins to execute after some event occurs.
b. What would happen if the mutex unlock and wait code execution in the call to

cyg_cond_wait, on line 30, were not atomic?
c. Why is the while loop on line 26 needed?

 13.8 The discussion of eCos spinlocks included an example showing why spinlocks should
not be used on a uniprocessor system if two threads of different priorities can com-
pete for the same spinlock. Explain why the problem still exists even if only threads of
the same priority can claim the same spinlock.

 13.9 TinyOS’s scheduler serves tasks in FIFO order. Many other schedulers for TinyOS
have been proposed, but none have caught on. What characteristics of the sensornet
domain might cause a lack of need for more complex scheduling?

 13.10 a. The TinyOS Resource interface does not allow a component that already has
a request in the queue for a resource to make a second request. Suggest a
reason.

606 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

Figure 13.14 Condition Variable Example Code

1 unsigned char buffer_empty = true;
2 cyg_mutex_t mut_cond_var;
3 cyg_cond-t cond_var;
4
5 void thread_a(cyg_addrword_t index)
6 {
7 while (1) // run this thread forever
8 {
9 // acquire data into the buffer…
10
11 // there is data in the buffer now
12 buffer_empty = false;
13
14 cyg_mutex_lock(&mut_cond_var);
15
16 cyg_cond_signal(&cond_var);
17
18 cyg_mutex_unlock(&mut_cond_var);
19 }
20 }
21
22 void thread_b(cyg_addrword_t index)
23 {
24 while (1) // run this thread forever
25 {
26 cyg_mutex_lock(&mut_cond_var);
27
28 while (buffer_empty == true)
29 {
30 cyg_cond_wait(&cond_var);
31 }
32
33
34 // get the buffer data…
35
36 // set flag to indicate the data in the buffer has been processed
37 buffer_empty = true;
38
39 cyg_mutex_unlock(&mut_cond_var);
40
41 // process the data in the buffer
42 }
43 {

b. However, the TinyOS Resource interface allows a component holding the resource
lock to re-request the lock. This request is enqueued for a later grant. Suggest a
reason for this policy. Hint: What might cause there to be latency between one
component releasing a lock and the next requester being granted it?

607

 14.1 Computer Security Concepts

 14.2 Threats, Attacks, and Assets
 Threats and Attacks
 Threats and Assets

 14.3 Intruders
 Intruder Behavior Patterns
 Intrusion Techniques

 14.4 Malicious Software Overview
 Backdoor
 Logic Bomb
 Trojan Horse
 Mobile Code
 Multiple-Threat Malware

 14.5 Viruses, Worms, and Bots
 Viruses
 Worms
 Bots

 14.6 Rootkits
 Rootkit Installation
 System-Level Call Attacks

 14.6 Recommended Reading and Web Sites

 14.7 Key Terms, Review Questions, and Problems

COMPUTER SECURITY THREATS

CHAPTER

Computer Security PART 7

608 CHAPTER 14 / COMPUTER SECURITY THREATS

 The art of war teaches us to rely not on the likelihood of the enemy’s
not coming, but on our own readiness to receive him; not on the chance
of his not attacking, but rather on the fact that we have made our
position unassailable.

 — THE ART OF WAR, Sun Tzu

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

• List and explain the key concepts that comprise computer security.
• Understand the spectrum of computer security attacks.
• Distinguish among various types of intruder behavior patterns and under-

stand the types of intrusion techniques used to breach computer security.
• Summarize the principal types of malicious software.
• Present an overview of viruses, including typical virus structure and typical

virus behavior.
• Understand the security threat posed by worms.
• Understand the security threat posed by bots.
• Explain key aspects of rootkits.

 This chapter provides an overview of security threats. We begin with a discus-
sion of what we mean by computer security. In essence, computer security deals
with computer-related assets that are subject to a variety of threats and for which
various measures are taken to protect those assets. The remainder of the chap-
ter looks at the two broad categories of computer and network security threats:
intruders and malicious software.

 Cryptographic algorithms, such as encryption and hash functions, play a role
both in computer security threats and computer security techniques. Appendix K
provides an overview of these algorithms.

14.1 COMPUTER SECURITY CONCEPTS

 The NIST Computer Security Handbook [NIST95] defines the term computer
security as follows:

Computer security: The protection afforded to an automated information system
in order to attain the applicable objectives of preserving the integrity, availability,
and confidentiality of information system resources (includes hardware, software,
firmware, information/data, and telecommunications).

14.1 / COMPUTER SECURITY CONCEPTS 609

 This definition introduces three key objectives that are at the heart of compu-
ter security:

 • Confidentiality: This term covers two related concepts:

 — Data1 confidentiality: Assures that private or confidential information is
not made available or disclosed to unauthorized individuals

 — Privacy: Assures that individuals control or influence what information
related to them may be collected and stored and by whom and to whom
that information may be disclosed

 • Integrity: This term covers two related concepts:

 — Data integrity: Assures that information and programs are changed only in
a specified and authorized manner

 — System integrity: Assures that a system performs its intended function in
an unimpaired manner, free from deliberate or inadvertent unauthorized
manipulation of the system

 • Availability: Assures that systems work promptly and service is not denied to
authorized users

 These three concepts form what is often referred to as the CIA triad (Figure 14.1).
The three concepts embody the fundamental security objectives for both data and
for information and computing services. For example, the NIST standard FIPS 199
(Standards for Security Categorization of Federal Information and Information Systems)
lists confidentiality, integrity, and availability as the three security objectives for infor-
mation and for information systems. FIPS PUB 199 provides a useful characterization

Co
nf

id
en

tia
lit

y

Data
and

services

Integrity

Availability

Figure 14.1 The Security Requirements Triad

1 RFC 2828 (Internet Security Glossary) defines information as “facts and ideas, which can be represented
(encoded) as various forms of data,” and data as “information in a specific physical representation, usu-
ally a sequence of symbols that have meaning; especially a representation of information that can be
processed or produced by a computer.” Security literature typically does not make much of a distinction:
nor does this chapter.

610 CHAPTER 14 / COMPUTER SECURITY THREATS

of these three objectives in terms of requirements and the definition of a loss of security
in each category:

 • Confidentiality: Preserving authorized restrictions on information access
and disclosure, including means for protecting personal privacy and propri-
etary information. A loss of confidentiality is the unauthorized disclosure of
information.

 • Integrity: Guarding against improper information modification or destruction,
including ensuring information nonrepudiation and authenticity. A loss of
integrity is the unauthorized modification or destruction of information.

 • Availability: Ensuring timely and reliable access to and use of information.
A loss of availability is the disruption of access to or use of information or an
information system.

 Although the use of the CIA triad to define security objectives is well estab-
lished, some in the security field feel that additional concepts are needed to present
a complete picture. Two of the most commonly mentioned are as follows:

 • Authenticity: The property of being genuine and being able to be verified and
trusted; confidence in the validity of a transmission, a message, or message
originator. This means verifying that users are who they say they are and that
each input arriving at the system came from a trusted source.

 • Accountability: The security goal that generates the requirement for actions
of an entity to be traced uniquely to that entity. This supports nonrepu-
diation, deterrence, fault isolation, intrusion detection and prevention,
and after-action recovery and legal action. Because truly secure systems
aren’t yet an achievable goal, we must be able to trace a security breach to
a responsible party. Systems must keep records of their activities to permit
later forensic analysis to trace security breaches or to aid in transaction
disputes.

 Note that FIPS PUB 199 includes authenticity under integrity.

14.2 THREATS, ATTACKS, AND ASSETS

 We turn now to a look at threats, attacks, and assets as related to computer security.

Threats and Attacks

 Table 14.1 , based on RFC 2828, describes four kinds of threat consequences and
lists the kinds of attacks that result in each consequence.

Unauthorized disclosure is a threat to confidentiality. The following types of
attacks can result in this threat consequence:

 • Exposure: This can be deliberate, as when an insider intentionally releases sensi-
tive information, such as credit card numbers, to an outsider. It can also be the
result of a human, hardware, or software error, which results in an entity gaining
unauthorized knowledge of sensitive data. There have been numerous instances

14.2 / THREATS, ATTACKS, AND ASSETS 611

of this, such as universities accidentally posting student confidential information
on the Web.

 • Interception: Interception is a common attack in the context of communica-
tions. On a shared local area network (LAN), such as a wireless LAN or a
broadcast Ethernet, any device attached to the LAN can receive a copy of
packets intended for another device. On the Internet, a determined hacker
can gain access to e-mail traffic and other data transfers. All of these situations
create the potential for unauthorized access to data.

 • Inference: An example of inference is known as traffic analysis, in which an
adversary is able to gain information from observing the pattern of traffic on
a network, such as the amount of traffic between particular pairs of hosts on
the network. Another example is the inference of detailed information from
a database by a user who has only limited access; this is accomplished by
repeated queries whose combined results enable inference.

Table 14.1 Threat Consequences, and the Types of Threat Actions that Cause Each Consequence
(Based on RFC 2828)

 Threat Consequence Threat Action (Attack)

Unauthorized Disclosure
A circumstance or event whereby an entity
gains access to data for which the entity is not
authorized.

Exposure: Sensitive data are directly released to an
unauthorized entity.
Interception: An unauthorized entity directly
accesses sensitive data, traveling between authorized
sources and destinations.
Inference: A threat action whereby an unauthor-
ized entity indirectly accesses sensitive data (but not
necessarily the data contained in the communication)
by reasoning from characteristics or by-products of
 communications.
Intrusion: An unauthorized entity gains access to
sensitive data by circumventing a system’s security
protections.

Deception
A circumstance or event that may result in
an authorized entity receiving false data and
 believing it to be true.

Masquerade: An unauthorized entity gains access to
a system or performs a malicious act by posing as an
authorized entity.
Falsification: False data deceive an authorized entity.
Repudiation: An entity deceives another by falsely
denying responsibility for an act.

Disruption
A circumstance or event that interrupts or
 prevents the correct operation of system services
and functions.

Incapacitation: Prevents or interrupts system opera-
tion by disabling a system component.
Corruption: Undesirably alters system operation by
adversely modifying system functions or data.
Obstruction: A threat action that interrupts delivery
of system services by hindering system operation.

Usurpation
A circumstance or event that results in control of
system services or functions by an unauthorized
entity.

Misappropriation: An entity assumes unauthorized
logical or physical control of a system resource.
Misuse: Causes a system component to perform a func-
tion or service that is detrimental to system security.

612 CHAPTER 14 / COMPUTER SECURITY THREATS

 • Intrusion: An example of intrusion is an adversary gaining unauthorized access
to sensitive data by overcoming the system’s access control protections.

Deception is a threat to either system integrity or data integrity. The following
types of attacks can result in this threat consequence:

 • Masquerade: One example of masquerade is an attempt by an unauthor-
ized user to gain access to a system by posing as an authorized user; this
could happen if the unauthorized user has learned another user’s logon ID
and password. Another example is malicious logic, such as a Trojan horse,
that appears to perform a useful or desirable function but actually gains
 unauthorized access to system resources or tricks a user into executing other
malicious logic.

 • Falsification: This refers to the altering or replacing of valid data or the intro-
duction of false data into a file or database. For example, a student may alter
his or her grades on a school database.

 • Repudiation: In this case, a user either denies sending data or a user denies
receiving or possessing the data.

Disruption is a threat to availability or system integrity. The following types of
attacks can result in this threat consequence:

 • Incapacitation: This is an attack on system availability. This could occur as a
result of physical destruction of or damage to system hardware. More typically,
malicious software, such as Trojan horses, viruses, or worms, could operate in
such a way as to disable a system or some of its services.

 • Corruption: This is an attack on system integrity. Malicious software in this
context could operate in such a way that system resources or services func-
tion in an unintended manner. Or a user could gain unauthorized access to
a system and modify some of its functions. An example of the latter is a user
placing backdoor logic in the system to provide subsequent access to a system
and its resources by other than the usual procedure.

 • Obstruction: One way to obstruct system operation is to interfere with com-
munications by disabling communication links or altering communication
control information. Another way is to overload the system by placing excess
burden on communication traffic or processing resources.

Usurpation is a threat to system integrity. The following types of attacks can
result in this threat consequence:

 • Misappropriation: This can include theft of service. An example is a distrib-
uted denial of service attack, when malicious software is installed on a number
of hosts to be used as platforms to launch traffic at a target host. In this case,
the malicious software makes unauthorized use of processor and operating
system resources.

 • Misuse: Misuse can occur either by means of malicious logic or a hacker that
has gained unauthorized access to a system. In either case, security functions
can be disabled or thwarted.

14.2 / THREATS, ATTACKS, AND ASSETS 613

Threats and Assets

 The assets of a computer system can be categorized as hardware, software, data,
and communication lines and networks. In this subsection, we briefly describe these
four categories and relate these to the concepts of integrity, confidentiality, and
availability introduced in Section 14.1 (see Figure 14.2 and Table 14.2).

HARDWARE A major threat to computer system hardware is the threat to
availability. Hardware is the most vulnerable to attack and the least susceptible to
automated controls. Threats include accidental and deliberate damage to equipment
as well as theft. The proliferation of personal computers and workstations and the
widespread use of LANs increase the potential for losses in this area. Theft of
CD-ROMs and DVDs can lead to loss of confidentiality. Physical and administrative
security measures are needed to deal with these threats.

SOFTWARE Software includes the operating system, utilities, and application
programs. A key threat to software is an attack on availability. Software, especially
application software, is often easy to delete. Software can also be altered or
damaged to render it useless. Careful software configuration management, which
includes making backups of the most recent version of software, can maintain high
availability. A more difficult problem to deal with is software modification that
results in a program that still functions but that behaves differently than before,
which is a threat to integrity/authenticity. Computer viruses and related attacks fall
into this category. A final problem is protection against software piracy. Although

Guard

Data

Computer system Computer system

Processes representing users

Guard

Data

Processes representing users

Users making requests

Access to the data
must be controlled

(protection)

1

Access to the computer
facility must be controlled

(user authentication)

2

Data must be
securely transmitted

through networks
(network security)

3

Sensitive files
must be secure
(file security)

4

Figure 14.2 Scope of System Security

614 CHAPTER 14 / COMPUTER SECURITY THREATS

certain countermeasures are available, by and large the problem of unauthorized
copying of software has not been solved.

DATA Hardware and software security are typically concerns of computing center
professionals or individual concerns of personal computer users. A much more
widespread problem is data security, which involves files and other forms of data
controlled by individuals, groups, and business organizations.

 Security concerns with respect to data are broad, encompassing availability,
secrecy, and integrity. In the case of availability, the concern is with the destruction
of data files, which can occur either accidentally or maliciously.

 The obvious concern with secrecy is the unauthorized reading of data files or
databases, and this area has been the subject of perhaps more research and effort
than any other area of computer security. A less obvious threat to secrecy involves
the analysis of data and manifests itself in the use of so-called statistical databases,
which provide summary or aggregate information. Presumably, the existence of
aggregate information does not threaten the privacy of the individuals involved.
However, as the use of statistical databases grows, there is an increasing potential
for disclosure of personal information. In essence, characteristics of constituent
individuals may be identified through careful analysis. For example, if one table
records the aggregate of the incomes of respondents A, B, C, and D and another
records the aggregate of the incomes of A, B, C, D, and E, the difference between
the two aggregates would be the income of E. This problem is exacerbated by the
increasing desire to combine data sets. In many cases, matching several sets of data
for consistency at different levels of aggregation requires access to individual units.
Thus, the individual units, which are the subject of privacy concerns, are available at
various stages in the processing of data sets.

Table 14.2 Computer and Network Assets, with Examples of Threats

 Availability Confidentiality Integrity

Hardware Equipment is stolen or
disabled, thus denying
service.

Software Programs are deleted,
denying access to
users.

 An unauthorized copy
of software is made.

 A working program is modi-
fied, either to cause it to fail
during execution or to cause
it to do some unintended task.

Data Files are deleted,
denying access to
users.

 An unauthorized read
of data is performed.
An analysis of sta-
tistical data reveals
underlying data.

 Existing files are modified or
new files are fabricated.

Communication Lines Messages are
destroyed or deleted.
Communication lines
or networks are ren-
dered unavailable.

 Messages are read.
The traffic pattern of
messages is observed.

 Messages are modified,
delayed, reordered, or dupli-
cated. False messages are
 fabricated.

14.2 / THREATS, ATTACKS, AND ASSETS 615

 Finally, data integrity is a major concern in most installations. Modifications
to data files can have consequences ranging from minor to disastrous.

COMMUNICATION LINES AND NETWORKS Network security attacks can be classified
as passive attacks and active attacks . A passive attack attempts to learn or make
use of information from the system but does not affect system resources. An active
attack attempts to alter system resources or affect their operation.

Passive attacks are in the nature of eavesdropping on, or monitoring of, trans-
missions. The goal of the attacker is to obtain information that is being transmitted.
Two types of passive attacks are release of message contents and traffic analysis.

 The concept of release of message contents is easily understood. A telephone
conversation, an electronic mail message, and a transferred file may contain sensitive
or confidential information. We would like to prevent an opponent from learning the
contents of these transmissions.

Traffic analysis is a more subtle form of passive attack. Suppose that we had a
way of masking the contents of messages or other information traffic so that oppo-
nents, even if they captured the message, could not extract the information from
the message. The common technique for masking contents is encryption. If we had
encryption protection in place, an opponent might still be able to observe the pat-
tern of these messages. The opponent could determine the location and identity of
communicating hosts and could observe the frequency and length of messages being
exchanged. This information might be useful in guessing the nature of the commu-
nication that was taking place.

 Passive attacks are very difficult to detect because they do not involve any
alteration of the data. Typically, the message traffic is sent and received in an appar-
ently normal fashion, and neither the sender nor the receiver is aware that a third
party has read the messages or observed the traffic pattern. However, it is feasible
to prevent the success of these attacks, usually by means of encryption. Thus, the
emphasis in dealing with passive attacks is on prevention rather than detection.

Active attacks involve some modification of the data stream or the creation
of a false stream and can be subdivided into four categories: replay, masquerade,
modification of messages, and denial of service.

Replay involves the passive capture of a data unit and its subsequent retrans-
mission to produce an unauthorized effect.

 A masquerade takes place when one entity pretends to be a different entity. A
masquerade attack usually includes one of the other forms of active attack. For exam-
ple, authentication sequences can be captured and replayed after a valid authentica-
tion sequence has taken place, thus enabling an authorized entity with few privileges
to obtain extra privileges by impersonating an entity that has those privileges.

Modification of messages simply means that some portion of a legitimate
 message is altered, or that messages are delayed or reordered, to produce an
 unauthorized effect. For example, a message stating, “Allow John Smith to read con-
fidential file accounts ” is modified to say, “Allow Fred Brown to read confidential
file accounts .”

 The denial of service prevents or inhibits the normal use or management of
communications facilities. This attack may have a specific target; for example, an
entity may suppress all messages directed to a particular destination (e.g., the security

616 CHAPTER 14 / COMPUTER SECURITY THREATS

audit service). Another form of service denial is the disruption of an entire network,
either by disabling the network or by overloading it with messages so as to degrade
performance.

 Active attacks present the opposite characteristics of passive attacks. Whereas
passive attacks are difficult to detect, measures are available to prevent their suc-
cess. On the other hand, it is quite difficult to prevent active attacks absolutely,
because to do so would require physical protection of all communications facilities
and paths at all times. Instead, the goal is to detect them and to recover from any
disruption or delays caused by them. Because the detection has a deterrent effect, it
may also contribute to prevention.

14.3 INTRUDERS

 The concept of intruder was introduced in Section 3.6 . [GRAN04] lists the follow-
ing examples of intrusion:

 • Performing a remote root compromise of an e-mail server

 • Defacing a Web server

 • Guessing and cracking passwords

 • Copying a database containing credit card numbers

 • Viewing sensitive data, including payroll records and medical information,
without authorization

 • Running a packet sniffer on a workstation to capture usernames and passwords

 • Using a permission error on an anonymous FTP server to distribute pirated
software and music files

 • Dialing into an unsecured modem and gaining internal network access

 • Posing as an executive, calling the help desk, resetting the executive’s e-mail
password, and learning the new password

 • Using an unattended, logged-in workstation without permission

Intruder Behavior Patterns

 The techniques and behavior patterns of intruders are constantly shifting, to exploit
newly discovered weaknesses and to evade detection and countermeasures. Even
so, intruders typically follow one of a number of recognizable behavior patterns,
and these patterns typically differ from those of ordinary users. In the following,
we look at three broad examples of intruder behavior patterns to give the reader
some feel for the challenge facing the security administrator. Table 14.3 , based on
[RADC04], summarizes the behavior.

HACKERS Traditionally, those who hack into computers do so for the thrill of
it or for status. The hacking community is a strong meritocracy in which status
is determined by level of competence. Thus, attackers often look for targets of
opportunity and then share the information with others. A typical example is a

14.3 / INTRUDERS 617

break-in at a large financial institution reported in [RADC04]. The intruder took
advantage of the fact that the corporate network was running unprotected services,
some of which were not even needed. In this case, the key to the break-in was the
pcAnywhere application. The manufacturer, Symantec, advertises this program as
a remote control solution that enables secure connection to remote devices. But the
attacker had an easy time gaining access to pcAnywhere; the administrator used the
same three-letter username and password for the program. In this case, there was
no intrusion detection system on the 700-node corporate network. The intruder was
only discovered when a vice president walked into her office and saw the cursor
moving files around on her Windows workstation.

 Benign intruders might be tolerable, although they do consume resources and
may slow performance for legitimate users. However, there is no way in advance to
know whether an intruder will be benign or malign. Consequently, even for systems
with no particularly sensitive resources, there is a motivation to control this problem.

 Intrusion detection systems (IDSs) and intrusion prevention systems (IPSs),
of the type described in this Chapter 15 , are designed to counter this type of hacker
threat. In addition to using such systems, organizations can consider restricting
remote logons to specific IP addresses and/or use virtual private network technology.

Table 14.3 Some Examples of Intruder Patterns of Behavior

(a) Hacker

1. Select the target using IP lookup tools such as NSLookup, Dig, and others.

2. Map network for accessible services using tools such as NMAP.

3. Identify potentially vulnerable services (in this case, pcAnywhere).

4. Brute force (guess) pcAnywhere password.

5. Install remote administration tool called DameWare.

6. Wait for administrator to log on and capture his or her password.

7. Use that password to access remainder of network.

(b) Criminal Enterprise

1. Act quickly and precisely to make their activities harder to detect.

2. Exploit perimeter through vulnerable ports.

3. Use Trojan horses (hidden software) to leave backdoors for reentry.

4. Use sniffers to capture passwords.

5. Do not stick around until noticed.

6. Make few or no mistakes.

(c) Internal Threat

1. Create network accounts for themselves and their friends.

2. Access accounts and applications they wouldn’t normally use for their daily jobs.

3. E-mail former and prospective employers.

4. Conduct furtive instant-messaging chats.

5. Visit Web sites that cater to disgruntled employees, such as f’dcompany.com.

6. Perform large downloads and file copying.

7. Access the network during off hours.

618 CHAPTER 14 / COMPUTER SECURITY THREATS

 One of the results of the growing awareness of the intruder problem has been
the establishment of a number of computer emergency response teams (CERTs).
These cooperative ventures collect information about system vulnerabilities and
 disseminate it to systems managers. Hackers also routinely read CERT reports.
Thus, it is important for system administrators to quickly insert all software patches
to discovered vulnerabilities. Unfortunately, given the complexity of many IT
systems and the rate at which patches are released, this is increasingly difficult to
achieve without automated updating. Even then, there are problems caused by
incompatibilities resulting from the updated software (hence the need for multiple
layers of defense in managing security threats to IT systems).

CRIMINALS Organized groups of hackers have become a widespread and common
threat to Internet-based systems. These groups can be in the employ of a corporation
or government but often are loosely affiliated gangs of hackers. Typically, these
gangs are young, often Eastern European, Russian, or southeast Asian hackers who
do business on the Web [ANTE06]. They meet in underground forums with names
like DarkMarket.org and theftservices.com to trade tips and data and coordinate
attacks. A common target is a credit card file at an e-commerce server. Attackers
attempt to gain root access. The card numbers are used by organized crime gangs
to purchase expensive items and are then posted to carder sites, where others can
access and use the account numbers; this obscures usage patterns and complicates
investigation.

 Whereas traditional hackers look for targets of opportunity, criminal hack-
ers usually have specific targets, or at least classes of targets in mind. Once a site is
penetrated, the attacker acts quickly, scooping up as much valuable information as
possible and exiting.

 IDSs and IPSs can also be used for these types of attackers but may be less
effective because of the quick in-and-out nature of the attack. For e-commerce
sites, database encryption should be used for sensitive customer information,
especially credit cards. For hosted e-commerce sites (provided by an outsider
service), the e-commerce organization should make use of a dedicated server (not
used to support multiple customers) and closely monitor the provider’s security
services.

INSIDER ATTACKS Insider attacks are among the most difficult to detect and
prevent. Employees already have access to and knowledge of the structure and
content of corporate databases. Insider attacks can be motivated by revenge or
simply a feeling of entitlement. An example of the former is the case of Kenneth
Patterson, fired from his position as data communications manager for American
Eagle Outfitters. Patterson disabled the company’s ability to process credit card
purchases during 5 days of the holiday season of 2002. As for a sense of entitlement,
there have always been many employees who felt entitled to take extra office
supplies for home use, but this now extends to corporate data. An example is that of
a vice president of sales for a stock analysis firm who quit and went to a competitor.
Before she left, she copied the customer database to take with her. The offender
reported feeling no animus toward her former employee; she simply wanted the
data because it would be useful to her.

14.4 / MALICIOUS SOFTWARE OVERVIEW 619

 Although IDS and IPS facilities can be useful in countering insider attacks,
other more direct approaches are of higher priority. Examples include the following:

 • Enforce least privilege, only allowing access to the resources employees need
to do their job.

 • Set logs to see what users access and what commands they are entering.

 • Protect sensitive resources with strong authentication.

 • Upon termination, delete employee’s computer and network access.

 • Upon termination, make a mirror image of employee’s hard drive before reis-
suing it. That evidence might be needed if your company information turns up
at a competitor.

Intrusion Techniques

 The objective of the intruder is to gain access to a system or to increase the range of
privileges accessible on a system. Most initial attacks use system or software vulner-
abilities that allow a user to execute code that opens a back door into the system.
Intruders can get access to a system by exploiting attacks such as buffer overflows
on a program that runs with certain privileges.

 Alternatively, the intruder attempts to acquire information that should have
been protected. In some cases, this information is in the form of a user password.
With knowledge of some other user’s password, an intruder can log in to a system
and exercise all the privileges accorded to the legitimate user. Password guessing
and password acquisition techniques are discussed in Chapter 15 .

14.4 MALICIOUS SOFTWARE OVERVIEW

 The concept of malicious software, or malware, was introduced in Section 3.6 . Malware
is software designed to cause damage to or use up the resources of a target computer.
It is frequently concealed within or masquerades as legitimate software. In some cases,
it spreads itself to other computers via e-mail or infected discs. The terminology in this
area presents problems because of a lack of universal agreement on all of the terms
and because some of the categories overlap. Table 14.4 is a useful guide.

 In this section, we briefly survey some of the key categories of malicious soft-
ware, deferring discussion on the key topics of viruses, worms, bots, and rootkits
until the following sections.

Backdoor

 A backdoor , also known as a trapdoor , is a secret entry point into a program
that allows someone who is aware of the backdoor to gain access without going
through the usual security access procedures. Programmers have used backdoors
legitimately for many years to debug and test programs; such a backdoor is called
a maintenance hook . This usually is done when the programmer is developing an
application that has an authentication procedure, or a long setup, requiring the user
to enter many different values to run the application. To debug the program, the

620 CHAPTER 14 / COMPUTER SECURITY THREATS

developer may wish to gain special privileges or to avoid all the necessary setup and
authentication. The programmer may also want to ensure that there is a method of
activating the program should something be wrong with the authentication proce-
dure that is being built into the application. The backdoor is code that recognizes
some special sequence of input or is triggered by being run from a certain user ID or
by an unlikely sequence of events.

 Backdoors become threats when unscrupulous programmers use them to
gain unauthorized access. The backdoor was the basic idea for the vulnerability

Table 14.4 Terminology of Malicious Programs

 Name Description

 Virus Malware that, when executed, tries to replicate itself into other executable
code; when it succeeds the code is said to be infected. When the infected code is
 executed, the virus also executes.

 Worm A computer program that can run independently and can propagate a complete
working version of itself onto other hosts on a network.

 Logic bomb A program inserted into software by an intruder. A logic bomb lies dormant until
a predefined condition is met; the program then triggers an unauthorized act.

 Trojan horse A computer program that appears to have a useful function but also has a hidden
and potentially malicious function that evades security mechanisms, sometimes
by exploiting legitimate authorizations of a system entity that invokes the Trojan
horse program.

 Backdoor (trapdoor) Any mechanism that bypasses a normal security check; it may allow unauthorized
access to functionality.

 Mobile code Software (e.g., script, macro, or other portable instruction) that can be shipped
unchanged to a heterogeneous collection of platforms and execute with identical
semantics.

 Exploits Code specific to a single vulnerability or set of vulnerabilities.

 Downloaders Program that installs other items on a machine that is under attack. Usually, a
downloader is sent in an e-mail.

 Auto-rooter Malicious hacker tools used to break into new machines remotely.

 Kit (virus generator) Set of tools for generating new viruses automatically.

 Spammer programs Used to send large volumes of unwanted e-mail.

 Flooders Used to attack networked computer systems with a large volume of traffic to
carry out a denial-of-service (DoS) attack.

 Keyloggers Captures keystrokes on a compromised system.

 Rootkit Set of hacker tools used after attacker has broken into a computer system and
gained root-level access.

 Zombie, bot Program activated on an infected machine that is activated to launch attacks on
other machines.

 Spyware Software that collects information from a computer and transmits it to another
system.

 Adware Advertising that is integrated into software. It can result in pop-up ads or
 redirection of a browser to a commercial site.

14.4 / MALICIOUS SOFTWARE OVERVIEW 621

 portrayed in the movie War Games . Another example is that during the develop-
ment of Multics, penetration tests were conducted by an Air Force “tiger team”
(simulating adversaries). One tactic employed was to send a bogus operating system
update to a site running Multics. The update contained a Trojan horse (described
later) that could be activated by a backdoor and that allowed the tiger team to gain
access. The threat was so well implemented that the Multics developers could not
find it, even after they were informed of its presence [ENGE80].

 It is difficult to implement operating system controls for backdoors. Security
measures must focus on the program development and software update activities.

Logic Bomb

 One of the oldest types of program threat, predating viruses and worms, is the logic
bomb. The logic bomb is code embedded in some legitimate program that is set to
“explode” when certain conditions are met. Examples of conditions that can be used
as triggers for a logic bomb are the presence or absence of certain files, a particular
day of the week or date, or a particular user running the application. Once triggered,
a bomb may alter or delete data or entire files, cause a machine halt, or do some
other damage. A striking example of how logic bombs can be employed was the
case of Tim Lloyd, who was convicted of setting a logic bomb that cost his employer,
Omega Engineering, more than $10 million, derailed its corporate growth strategy,
and eventually led to the layoff of 80 workers [GAUD00]. Ultimately, Lloyd was
sentenced to 41 months in prison and ordered to pay $2 million in restitution.

Trojan Horse

 A Trojan horse is a useful, or apparently useful, program or command procedure
containing hidden code that, when invoked, performs some unwanted or harmful
function.

 Trojan horse programs can be used to accomplish functions indirectly that an
unauthorized user could not accomplish directly. For example, to gain access to the
files of another user on a shared system, a user could create a Trojan horse program
that, when executed, changes the invoking user’s file permissions so that the files
are readable by any user. The author could then induce users to run the program by
placing it in a common directory and naming it such that it appears to be a useful
utility program or application. An example is a program that ostensibly produces
a listing of the user’s files in a desirable format. After another user has run the
program, the author of the program can then access the information in the user’s
files. An example of a Trojan horse program that would be difficult to detect is a
compiler that has been modified to insert additional code into certain programs as
they are compiled, such as a system login program [THOM84]. The code creates a
backdoor in the login program that permits the author to log on to the system using
a special password. This Trojan horse can never be discovered by reading the source
code of the login program.

 Another common motivation for the Trojan horse is data destruction. The
program appears to be performing a useful function (e.g., a calculator program),
but it may also be quietly deleting the user’s files. For example, a CBS executive
was victimized by a Trojan horse that destroyed all information contained in his

622 CHAPTER 14 / COMPUTER SECURITY THREATS

 computer’s memory [TIME90]. The Trojan horse was implanted in a graphics rou-
tine offered on an electronic bulletin board system.

 Trojan horses fit into one of three models:

 • Continuing to perform the function of the original program and additionally
performing a separate malicious activity

 • Continuing to perform the function of the original program but modifying the
function to perform malicious activity (e.g., a Trojan horse version of a login
program that collects passwords) or to disguise other malicious activity (e.g., a
Trojan horse version of a process listing program that does not display certain
processes that are malicious)

 • Performing a malicious function that completely replaces the function of the
original program

Mobile Code

Mobile code refers to programs (e.g., script, macro, or other portable instruction)
that can be shipped unchanged to a heterogeneous collection of platforms and exe-
cute with identical semantics [JANS01]. The term also applies to situations involving
a large homogeneous collection of platforms (e.g., Microsoft Windows).

 Mobile code is transmitted from a remote system to a local system and then
executed on the local system without the user’s explicit instruction. Mobile code
often acts as a mechanism for a virus, worm, or Trojan horse to be transmitted
to the user’s workstation. In other cases, mobile code takes advantage of vulner-
abilities to perform its own exploits, such as unauthorized data access or root
compromise. Popular vehicles for mobile code include Java applets, ActiveX,
JavaScript, and VBScript. The most common ways of using mobile code for
malicious operations on local system are cross-site scripting, interactive and
dynamic Web sites, e-mail attachments, and downloads from untrusted sites or
of untrusted software.

Multiple-Threat Malware

 Viruses and other malware may operate in multiple ways. The terminology is far
from uniform; this subsection gives a brief introduction to several related concepts
that could be considered multiple-threat malware.

 A multipartite virus infects in multiple ways. Typically, the multipartite virus
is capable of infecting multiple types of files, so that virus eradication must deal with
all of the possible sites of infection.

 A blended attack uses multiple methods of infection or transmission, to maxi-
mize the speed of contagion and the severity of the attack. Some writers characterize
a blended attack as a package that includes multiple types of malware. An example
of a blended attack is the Nimda attack, erroneously referred to as simply a worm.
Nimda uses four distribution methods:

 • E-mail: A user on a vulnerable host opens an infected e-mail attachment;
Nimda looks for e-mail addresses on the host and then sends copies of itself to
those addresses.

14.5 / VIRUSES, WORMS, AND BOTS 623

 • Windows shares: Nimda scans hosts for unsecured Windows file shares; it can
then use NetBIOS86 as a transport mechanism to infect files on that host in
the hopes that a user will run an infected file, which will activate Nimda on
that host.

 • Web servers: Nimda scans Web servers, looking for known vulnerabilities in
Microsoft IIS. If it finds a vulnerable server, it attempts to transfer a copy of
itself to the server and infect it and its files.

 • Web clients: If a vulnerable Web client visits a Web server that has been
 infected by Nimda, the client’s workstation will become infected.

 Thus, Nimda has worm, virus, and mobile code characteristics. Blended attacks
may also spread through other services, such as instant messaging and peer-to-peer
file sharing.

14.5 VIRUSES, WORMS, AND BOTS

Viruses

 A computer virus is a piece of software that can “infect” other programs by modify-
ing them; the modification includes injecting the original program with a routine to
make copies of the virus program, which can then go on to infect other programs.

 Biological viruses are tiny scraps of genetic code—DNA or RNA—that can
take over the machinery of a living cell and trick it into making thousands of flaw-
less replicas of the original virus. Like its biological counterpart, a computer virus
carries in its instructional code the recipe for making perfect copies of itself. The
typical virus becomes embedded in a program on a computer. Then, whenever the
infected computer comes into contact with an uninfected piece of software, a fresh
copy of the virus passes into the new program. Thus, the infection can be spread
from computer to computer by unsuspecting users who either swap disks or send
programs to one another over a network. In a network environment, the ability
to access applications and system services on other computers provides a perfect
 culture for the spread of a virus.

THE NATURE OF VIRUSES A virus can do anything that other programs do. The
only difference is that it attaches itself to another program and executes secretly
when the host program is run. Once a virus is executing, it can perform any function
that is allowed by the privileges of the current user, such as erasing files and
programs.

 A computer virus has three parts [AYCO06]:

 • Infection mechanism : The means by which a virus spreads, enabling it to rep-
licate. The mechanism is also referred to as the infection vector .

 • Trigger: The event or condition that determines when the payload is activated
or delivered.

 • Payload: What the virus does, besides spreading. The payload may involve
damage or may involve benign but noticeable activity.

624 CHAPTER 14 / COMPUTER SECURITY THREATS

 During its lifetime, a typical virus goes through the following four phases:

 • Dormant phase: The virus is idle. The virus will eventually be activated by
some event, such as a date, the presence of another program or file, or the
capacity of the disk exceeding some limit. Not all viruses have this stage.

 • Propagation phase: The virus places an identical copy of itself into other pro-
grams or into certain system areas on the disk. Each infected program will
now contain a clone of the virus, which will itself enter a propagation phase.

 • Triggering phase: The virus is activated to perform the function for which it
was intended. As with the dormant phase, the triggering phase can be caused
by a variety of system events, including a count of the number of times that
this copy of the virus has made copies of itself.

 • Execution phase: The function is performed. The function may be harm-
less, such as a message on the screen, or damaging, such as the destruction of
 programs and data files.

 Most viruses carry out their work in a manner that is specific to a particular
operating system and, in some cases, specific to a particular hardware platform. Thus,
they are designed to take advantage of the details and weaknesses of particular
 systems.

VIRUS STRUCTURE A virus can be prepended or postpended to an executable
program, or it can be embedded in some other fashion. The key to its operation is
that the infected program, when invoked, will first execute the virus code and then
execute the original code of the program.

 A very general depiction of virus structure is shown in Figure 14.3 (based on
[COHE94]). In this case, the virus code, V, is prepended to infected programs, and
it is assumed that the entry point to the program, when invoked, is the first line of
the program.

 The infected program begins with the virus code and works as follows. The
first line of code is a jump to the main virus program. The second line is a special
marker that is used by the virus to determine whether or not a potential victim
program has already been infected with this virus. When the program is invoked,
control is immediately transferred to the main virus program. The virus program
may first seek out uninfected executable files and infect them. Next, the virus may
perform some action, usually detrimental to the system. This action could be per-
formed every time the program is invoked, or it could be a logic bomb that triggers
only under certain conditions. Finally, the virus transfers control to the original pro-
gram. If the infection phase of the program is reasonably rapid, a user is unlikely
to notice any difference between the execution of an infected and an uninfected
program.

 A virus such as the one just described is easily detected because an infected
version of a program is longer than the corresponding uninfected one. A way to
thwart such a simple means of detecting a virus is to compress the executable file
so that both the infected and uninfected versions are of identical length. Figure 14.4
[COHE94] shows in general terms the logic required. The important lines in this
virus are numbered. We assume that program P1 is infected with the virus CV. When

14.5 / VIRUSES, WORMS, AND BOTS 625

this program is invoked, control passes to its virus, which performs the following
steps:

 1. For each uninfected file P2 that is found, the virus first compresses that file to
produce P'2, which is shorter than the original program by the size of the virus.

 2. A copy of the virus is prepended to the compressed program.

Figure 14.3 A Simple Virus

program V :=

{goto main;
 1234567;

subroutine infect-executable :=
 {loop:
 file := get-random-executable-file;
 if (first-line-of-file = 1234567)
 then goto loop
 else prepend V to file; }

subroutine do-damage :=
 {whatever damage is to be done}

subroutine trigger-pulled :=
 {return true if some condition holds}

main: main-program :=
 {infect-executable;
 if trigger-pulled then do-damage;
 goto next;}

next:

}

Figure 14.4 Logic for a Compression Virus

program CV :=

{goto main;
 01234567;

 subroutine infect-executable :=
{loop:

file := get-random-executable-file;
if (first-line-of-file = 01234567) then goto loop;

(1) compress file;
(2) prepend CV to file;

}

main: main-program :=
{if ask-permission then infect-executable;

(3) uncompress rest-of-file;
(4) run uncompressed file;}

 }

626 CHAPTER 14 / COMPUTER SECURITY THREATS

 3. The compressed version of the original infected program, P'1, is uncompressed.

 4. The uncompressed original program is executed.

 In this example, the virus does nothing other than propagate. As previously
mentioned, the virus may include a logic bomb.

INITIAL INFECTION Once a virus has gained entry to a system by infecting a single
program, it is in a position to potentially infect some or all other executable files
on that system when the infected program executes. Thus, viral infection can be
completely prevented by preventing the virus from gaining entry in the first place.
Unfortunately, prevention is extraordinarily difficult because a virus can be part
of any program outside a system. Thus, unless one is content to take an absolutely
bare piece of iron and write all one’s own system and application programs, one is
vulnerable. Many forms of infection can also be blocked by denying normal users
the right to modify programs on the system.

 The lack of access controls on early PCs is a key reason that traditional
machine code based viruses spread rapidly on these systems. In contrast, while it
is easy enough to write a machine code virus for UNIX systems, they were almost
never seen in practice, because the existence of access controls on these systems
 prevented effective propagation of the virus. Traditional machine code based
viruses are now less prevalent, because modern PC operating systems have more
effective access controls. However, virus creators have found other avenues, such as
macro and e-mail viruses, as discussed subsequently.

VIRUSES CLASSIFICATION There has been a continuous arms race between virus
writers and writers of antivirus software since viruses first appeared. As effective
countermeasures are developed for existing types of viruses, newer types are
developed. There is no simple or universally agreed-upon classification scheme
for viruses. In this section, we follow [AYCO06] and classify viruses along two
orthogonal axes: the type of target the virus tries to infect, and the method the
virus uses to conceal itself from detection by users and antivirus software.

 A virus classification by target includes the following categories:

 • Boot sector infector: Infects a master boot record or boot record and spreads
when a system is booted from the disk containing the virus

 • File infector: Infects files that the operating system or shell considers to be
executable

 • Macro virus: Infects files with macro code that is interpreted by an application

 A virus classification by concealment strategy includes the following categories:

 • Encrypted virus: A typical approach is as follows. A portion of the virus
 creates a random encryption key and encrypts the remainder of the virus.
The key is stored with the virus. When an infected program is invoked, the
virus uses the stored random key to decrypt the virus. When the virus rep-
licates, a different random key is selected. Because the bulk of the virus is
 encrypted with a different key for each instance, there is no constant bit
 pattern to observe.

14.5 / VIRUSES, WORMS, AND BOTS 627

 • Stealth virus: A form of virus explicitly designed to hide itself from detection
by antivirus software. Thus, the entire virus, not just a payload is hidden.

 • Polymorphic virus: A virus that mutates with every infection, making detec-
tion by the “signature” of the virus impossible.

 • Metamorphic virus: As with a polymorphic virus, a metamorphic virus mutates
with every infection. The difference is that a metamorphic virus rewrites itself
completely at each iteration, increasing the difficulty of detection. Metamorphic
viruses may change their behavior as well as their appearance.

 One example of a stealth virus was discussed earlier: A virus that uses com-
pression so that the infected program is exactly the same length as an uninfected
version. Far more sophisticated techniques are possible. For example, a virus can
place intercept logic in disk I/O routines, so that when there is an attempt to read
suspected portions of the disk using these routines, the virus will present back the
original, uninfected program. Thus, stealth is not a term that applies to a virus as
such but, rather, refers to a technique used by a virus to evade detection.

 A polymorphic virus creates copies during replication that are functionally
equivalent but have distinctly different bit patterns. As with a stealth virus, the
 purpose is to defeat programs that scan for viruses. In this case, the “signature” of
the virus will vary with each copy. To achieve this variation, the virus may randomly
insert superfluous instructions or interchange the order of independent instruc-
tions. A more effective approach is to use encryption. The strategy of the encryption
virus is followed. The portion of the virus that is responsible for generating keys and
 performing encryption/decryption is referred to as the mutation engine . The muta-
tion engine itself is altered with each use.

VIRUS KITS Another weapon in the virus writers’ armory is the virus-creation
toolkit. Such a toolkit enables a relative novice to quickly create a number of
different viruses. Although viruses created with toolkits tend to be less sophisticated
than viruses designed from scratch, the sheer number of new viruses that can be
generated using a toolkit creates a problem for antivirus schemes.

MACRO VIRUSES In the mid-1990s, macro viruses became by far the most prevalent
type of virus. Macro viruses are particularly threatening for a number of reasons:

 1. A macro virus is platform independent. Many macro viruses infect Microsoft
Word documents or other Microsoft Office documents. Any hardware platform
and operating system that supports these applications can be infected.

 2. Macro viruses infect documents, not executable portions of code. Most of the
information introduced onto a computer system is in the form of a document
rather than a program.

 3. Macro viruses are easily spread. A very common method is by electronic mail.

 4. Because macro viruses infect user documents rather than system programs, tra-
ditional file system access controls are of limited use in preventing their spread.

 Macro viruses take advantage of a feature found in Word and other Office
applications such as Microsoft Excel—namely, the macro. In essence, a macro is an
executable program embedded in a word processing document or other type of file.

628 CHAPTER 14 / COMPUTER SECURITY THREATS

Typically, users employ macros to automate repetitive tasks and thereby save key-
strokes. The macro language is usually some form of the Basic programming language.
A user might define a sequence of keystrokes in a macro and set it up so that the
macro is invoked when a function key or special short combination of keys is input.

 Successive releases of MS Office products provide increased protection
against macro viruses. For example, Microsoft offers an optional Macro Virus
Protection tool that detects suspicious Word files and alerts the customer to the
potential risk of opening a file with macros. Various antivirus product vendors
have also developed tools to detect and correct macro viruses. As in other types of
viruses, the arms race continues in the field of macro viruses, but they no longer are
the predominant virus threat.

E-MAIL VIRUSES A more recent development in malicious software is the e-mail
virus. The first rapidly spreading e-mail viruses, such as Melissa, made use of
a Microsoft Word macro embedded in an attachment. If the recipient opens the
e-mail attachment, the Word macro is activated. Then

 1. The e-mail virus sends itself to everyone on the mailing list in the user’s e-mail
package.

 2. The virus does local damage on the user’s system.

 In 1999, a more powerful version of the e-mail virus appeared. This newer
version can be activated merely by opening an e-mail that contains the virus rather
than opening an attachment. The virus uses the Visual Basic scripting language
 supported by the e-mail package.

 Thus we see a new generation of malware that arrives via e-mail and uses
e-mail software features to replicate itself across the Internet. The virus propa-
gates itself as soon as it is activated (either by opening an e-mail attachment or by
opening the e-mail) to all of the e-mail addresses known to the infected host. As a
result, whereas viruses used to take months or years to propagate, they now do so
in hours. This makes it very difficult for antivirus software to respond before much
damage is done. Ultimately, a greater degree of security must be built into Internet
utility and application software on PCs to counter the growing threat.

Worms

 A worm is a program that can replicate itself and send copies from computer to
 computer across network connections. Upon arrival, the worm may be activated to
replicate and propagate again. In addition to propagation, the worm usually performs
some unwanted function. An e-mail virus has some of the characteristics of a worm
because it propagates itself from system to system. However, we can still classify it as a
virus because it uses a document modified to contain viral macro content and requires
human action. A worm actively seeks out more machines to infect, and each machine
that is infected serves as an automated launching pad for attacks on other machines.

 Network worm programs use network connections to spread from system to
system. Once active within a system, a network worm can behave as a computer
virus or bacteria, or it could implant Trojan horse programs or perform any number
of disruptive or destructive actions.

14.5 / VIRUSES, WORMS, AND BOTS 629

 To replicate itself, a network worm uses some sort of network vehicle.
Examples include the following:

 • Electronic mail facility: A worm mails a copy of itself to other systems, so that
its code is run when the e-mail or an attachment is received or viewed.

 • Remote execution capability: A worm executes a copy of itself on another
system, either using an explicit remote execution facility or by exploiting a
program flaw in a network service to subvert its operations (such as buffer
overflow, described in Chapter 7).

 • Remote login capability: A worm logs on to a remote system as a user and
then uses commands to copy itself from one system to the other, where it then
executes.

 The new copy of the worm program is then run on the remote system where, in
addition to any functions that it performs at that system, it continues to spread in
the same fashion.

 A network worm exhibits the same characteristics as a computer virus: a
 dormant phase, a propagation phase, a triggering phase, and an execution phase.
The propagation phase generally performs the following functions:

 1. Search for other systems to infect by examining host tables or similar reposi-
tories of remote system addresses.

 2. Establish a connection with a remote system.

 3. Copy itself to the remote system and cause the copy to be run.

 The network worm may also attempt to determine whether a system has pre-
viously been infected before copying itself to the system. In a multiprogramming
system, it may also disguise its presence by naming itself as a system process or using
some other name that may not be noticed by a system operator.

 As with viruses, network worms are difficult to counter.

WORM PROPAGATION MODEL [ZOU05] describes a model for worm propagation
based on an analysis of recent worm attacks. The speed of propagation and the
total number of hosts infected depend on a number of factors, including the mode
of propagation, the vulnerability or vulnerabilities exploited, and the degree of
similarity to preceding attacks. For the latter factor, an attack that is a variation of a
recent previous attack may be countered more effectively than a more novel attack.
 Figure 14.5 shows the dynamics for one typical set of parameters. Propagation proceeds
through three phases. In the initial phase, the number of hosts increases exponentially.
To see that this is so, consider a simplified case in which a worm is launched from a
single host and infects two nearby hosts. Each of these hosts infects two more hosts,
and so on. This results in exponential growth. After a time, infecting hosts waste some
time attacking already infected hosts, which reduces the rate of infection. During this
middle phase, growth is approximately linear, but the rate of infection is rapid. When
most vulnerable computers have been infected, the attack enters a slow finish phase
as the worm seeks out those remaining hosts that are difficult to identify.

 Clearly, the objective in countering a worm is to catch the worm in its slow
start phase, at a time when few hosts have been infected.

630 CHAPTER 14 / COMPUTER SECURITY THREATS

STATE OF WORM TECHNOLOGY The state of the art in worm technology includes
the following:

 • Multiplatform: Newer worms are not limited to Windows machines but can
attack a variety of platforms, especially the popular varieties of UNIX.

 • Multiexploit: New worms penetrate systems in a variety of ways, using exploits
against Web servers, browsers, e-mail, file sharing, and other network-based
applications.

 • Ultrafast spreading: One technique to accelerate the spread of a worm is to
conduct a prior Internet scan to accumulate Internet addresses of vulnerable
machines.

 • Polymorphic: To evade detection, skip past filters, and foil real-time analysis,
worms adopt the virus polymorphic technique. Each copy of the worm has
new code generated on the fly using functionally equivalent instructions and
encryption techniques.

 • Metamorphic: In addition to changing their appearance, metamorphic worms
have a repertoire of behavior patterns that are unleashed at different stages of
propagation.

 • Transport vehicles: Because worms can rapidly compromise a large number
of systems, they are ideal for spreading other distributed attack tools, such as
distributed denial of service bots.

 • Zero-day exploit: To achieve maximum surprise and distribution, a worm
should exploit an unknown vulnerability that is only discovered by the general
network community when the worm is launched.

0.5

100

Slow start
phase

Slow finish
phase

Fast spread
phase

200 300

Time t (minutes)

N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

400 500

1

600

1.5

2

2.5

3

3.5

4

4.5

5
�105

Figure 14.5 Worm Propagation Model

14.5 / VIRUSES, WORMS, AND BOTS 631

Bots

 A bot (robot), also known as a zombie or drone, is a program that secretly takes
over another Internet-attached computer and then uses that computer to launch
attacks that are difficult to trace to the bot’s creator. The bot is typically planted on
hundreds or thousands of computers belonging to unsuspecting third parties. The
collection of bots often is capable of acting in a coordinated manner; such a collec-
tion is referred to as a botnet .

 A botnet exhibits three characteristics: the bot functionality, a remote control
facility, and a spreading mechanism to propagate the bots and construct the botnet.
We examine each of these characteristics in turn.

USES OF BOTS [HONE05] lists the following uses of bots:

 • Distributed denial-of-service (DDoS) attacks: A DDoS attack is an attack on
a computer system or network that causes a loss of service to users.

 • Spamming: With the help of a botnet and thousands of bots, an attacker is able
to send massive amounts of bulk e-mail (spam).

 • Sniffing traffic: Bots can also use a packet sniffer to watch for interesting clear-
text data passing by a compromised machine. The sniffers are mostly used to
retrieve sensitive information like usernames and passwords.

 • Keylogging: If the compromised machine uses encrypted communication
channels (e.g., HTTPS or POP3S), then just sniffing the network packets on
the victim’s computer is useless because the appropriate key to decrypt the
packets is missing. But by using a keylogger, which captures keystrokes on the
infected machine, an attacker can retrieve sensitive information. An imple-
mented filtering mechanism (e.g., “I am only interested in key sequences near
the keyword ‘paypal.com’ ”) further helps in stealing secret data.

 • Spreading new malware: Botnets are used to spread new bots. This is very
easy since all bots implement mechanisms to download and execute a file via
HTTP or FTP. A botnet with 10,000 hosts that acts as the start base for a
worm or mail virus allows very fast spreading and thus causes more harm.

 • Installing advertisement add-ons and browser helper objects (BHOs): Botnets
can also be used to gain financial advantages. This works by setting up a fake
Web site with some advertisements: The operator of this Web site negotiates a
deal with some hosting companies that pay for clicks on ads. With the help of
a botnet, these clicks can be “automated” so that instantly a few thousand bots
click on the pop-ups. This process can be further enhanced if the bot hijacks
the start page of a compromised machine so that the “clicks” are executed
each time the victim uses the browser.

 • Attacking IRC chat networks: Botnets are also used for attacks against
Internet Relay Chat (IRC) networks. Popular among attackers is especially
the so-called clone attack: In this kind of attack, the controller orders each bot
to connect a large number of clones to the victim IRC network. The victim is
flooded by service requests from thousands of bots or thousands of channel-
joins by these cloned bots. In this way, the victim IRC network is brought
down, similar to a DDoS attack.

632 CHAPTER 14 / COMPUTER SECURITY THREATS

 • Manipulating online polls/games: Online polls/games are getting more and
more attention, and it is rather easy to manipulate them with botnets. Since
every bot has a distinct IP address, every vote will have the same credibil-
ity as a vote cast by a real person. Online games can be manipulated in a
 similar way.

REMOTE CONTROL FACILITY The remote control facility is what distinguishes a
bot from a worm. A worm propagates itself and activates itself, whereas a bot is
controlled from some central facility, at least initially.

 A typical means of implementing the remote control facility is on an IRC
server. All bots join a specific channel on this server and treat incoming messages
as commands. More recent botnets tend to avoid IRC mechanisms and use covert
communication channels via protocols such as HTTP. Distributed control mecha-
nisms are also used, to avoid a single point of failure.

 Once a communications path is established between a control module and the
bots, the control module can activate the bots. In its simplest form, the control mod-
ule simply issues command to the bot that causes the bot to execute routines that
are already implemented in the bot. For greater flexibility, the control module can
issue update commands that instruct the bots to download a file from some Internet
location and execute it. The bot in this latter case becomes a more general-purpose
tool that can be used for multiple attacks.

CONSTRUCTING THE ATTACK NETWORK The first step in a botnet attack is for the
attacker to infect a number of machines with bot software that will ultimately be
used to carry out the attack. The essential ingredients in this phase of the attack are
the following:

 1. Software that can carry out the attack. The software must be able to run on
a large number of machines, must be able to conceal its existence, must be
able to communicate with the attacker or have some sort of time-triggered
mechanism, and must be able to launch the intended attack toward the
 target.

 2. A vulnerability in a large number of systems. The attacker must become aware
of a vulnerability that many system administrators and individual users have
failed to patch and that enables the attacker to install the bot software.

 3. A strategy for locating and identifying vulnerable machines, a process known
as scanning or fingerprinting .

 In the scanning process, the attacker first seeks out a number of vulnerable
machines and infects them. Then, typically, the bot software that is installed in
the infected machines repeats the same scanning process, until a large distributed
 network of infected machines is created. [MIRK04] lists the following types of
 scanning strategies:

 • Random: Each compromised host probes random addresses in the IP address
space, using a different seed. This technique produces a high volume of
Internet traffic, which may cause generalized disruption even before the actual
attack is launched.

14.6 / ROOTKITS 633

 • Hit list: The attacker first compiles a long list of potential vulnerable machines.
This can be a slow process done over a long period to avoid detection that an
attack is underway. Once the list is compiled, the attacker begins infecting
machines on the list. Each infected machine is provided with a portion of the
list to scan. This strategy results in a very short scanning period, which may
make it difficult to detect that infection is taking place.

 • Topological: This method uses information contained on an infected victim
machine to find more hosts to scan.

 • Local subnet: If a host can be infected behind a firewall, that host then looks
for targets in its own local network. The host uses the subnet address structure
to find other hosts that would otherwise be protected by the firewall.

14.6 ROOTKITS

 A rootkit is a set of programs installed on a system to maintain administrator (or
root) access to that system. Root access provides access to all the functions and
 services of the operating system. The rootkit alters the host’s standard functionality
in a malicious and stealthy way. With root access, an attacker has complete control
of the system and can add or change programs and files, monitor processes, send
and receive network traffic, and get backdoor access on demand.

 A rootkit can make many changes to a system to hide its existence, mak-
ing it difficult for the user to determine that the rootkit is present and to iden-
tify what changes have been made. In essence, a rootkit hides by subverting the
mechanisms that monitor and report on the processes, files, and registries on a
computer.

 Rootkits can be classified based on whether they can survive a reboot and
execution mode. A rootkit may be

 • Persistent: Activates each time the system boots. The rootkit must store code
in a persistent store, such as the registry or file system, and configure a method
by which the code executes without user intervention.

 • Memory based: Has no persistent code and therefore cannot survive a reboot
 • User mode: Intercepts calls to APIs (Application Program Interfaces) and mod-

ifies returned results. For example, when an application performs a directory
listing, the return results don’t include entries identifying the files associated
with the rootkit.

 • Kernel mode: Can intercept calls to native APIs in kernel mode. The root-
kit can also hide the presence of a malware process by removing it from the
 kernel’s list of active processes.

Rootkit Installation

 Unlike worms or bots, rootkits do not directly rely on vulnerabilities or exploits
to get on a computer. One method of rootkit installation is via a Trojan horse pro-
gram. The user is induced to load the Trojan horse, which then installs the rootkit.

634 CHAPTER 14 / COMPUTER SECURITY THREATS

Another means of rootkit installation is by hacker activity. The following sequence
is representative of a hacker attack to install a rootkit [GEER06].

 1. The attacker uses a utility to identify open ports or other vulnerabilities.
 2. The attacker uses password cracking, malware, or a system vulnerability to

gain initial access and, eventually, root access.
 3. The attacker uploads the rootkit to the victim’s machine.
 4. The attacker can add a virus, denial of service, or other type of attack to the

rootkit’s payload.
 5. The attacker then runs the rootkit’s installation script.
 6. The rootkit replaces binaries, files, commands, or system utilities to hide its

presence.
 7. The rootkit listens at a port in the target server, installs sniffers or keyloggers,

activates a malicious payload, or takes other steps to compromise the victim.

System-Level Call Attacks

 Programs operating at the user level interact with the kernel through system calls.
Thus, system calls are a primary target of kernel-level rootkits to achieve conceal-
ment. As an example of how rootkits operate, we look at the implementation of
system calls in Linux. In Linux, each system call is assigned a unique syscall number .
When a user-mode process executes a system call, the process refers to the system
call by this number. The kernel maintains a system call table with one entry per
system call routine; each entry contains a pointer to the corresponding routine. The
syscall number serves as an index into the system call table.

 [LEVI06] lists three techniques that can be used to change system calls:

 • Modify the system call table: The attacker modifies selected syscall addresses
stored in the system call table. This enables the rootkit to direct a system call
away from the legitimate routine to the rootkit’s replacement. Figure 14.6
shows how the knark rootkit achieves this.

 • Modify system call table targets: The attacker overwrites selected legitimate
system call routines with malicious code. The system call table is not changed.

System call table

sys_fork()

sys_read()

sys_execve()

sys_chdir()

#2

#3

#11

#12

System call table

(a) Normal kernel memory layout (b) After knark install

sys_fork()

knark_fork()

sys_read()

knark_read()

sys_execve()

knark_execve()

sys_chdir()

#2

#3

#11

#12

Figure 14.6 System Call Table Modifi cation by Rootkit

14.6 / RECOMMENDED READING AND WEB SITES 635

 Recommended Web sites:

 • Computer Security Resource Center: Maintained by the National Institute on Stan-
dards and Technology (NIST). Contains a broad range of information on security
threats, technology, and standards.

 • CERT Coordination Center: The organization that grew from the computer emergency
 response team formed by the Defense Advanced Research Projects Agency. Site provides
good information on Internet security threats, vulnerabilities, and attack statistics.

 • Vmyths: Dedicated to exposing virus hoaxes and dispelling misconceptions about real
viruses.

ANDR04 Andrews, M., and Whittaker, J. “Computer Security.” IEEE Security and Privacy ,
September/October 2004.

BROW72 Browne, P. “Computer Security—A Survey.” ACM SIGMIS Database , Fall 1972.
FRAS97 Fraser, B. Site Security Handbook. RFC 2196, September 1997.
LAMP04 Lampson, B. “Computer Security in the Real World.” Computer , June 2004.
NIST95 National Institute of Standards and Technology. An Introduction to Computer Security:

The NIST Handbook. Special Publication 800-12. October 1995.
NRC91 National Research Council. Computers at Risk: Safe Computing in the Information Age.

Washington, DC: National Academy Press, 1991.
SALT75 Saltzer, J., and Schroeder, M. “The Protection of Information in Computer Systems.”

Proceedings of the IEEE , September 1975.
SHAN77 Shanker, K. “The Total Computer Security Problem: An Overview.” Computer , June 1977.
STAL08 Stallings, W., and Brown L. Computer Security: Principles and Practice. Upper Saddle

River, NJ: Prentice Hall, 2008.
SUMM84 Summers, R. “An Overview of Computer Security.” IBM Systems Journal , Vol. 23,

No. 4, 1984.
WARE79 Ware, W., ed. Security Controls for Computer Systems. RAND Report 609-1,

October 1979. http://www.rand.org/pubs/reports/R609-1/index2.html

 • Redirect the system call table: The attacker redirects references to the entire
system call table to a new table in a new kernel memory location.

14.6 RECOMMENDED READING AND WEB SITES

 The topics in this chapter are covered in more detail in [STAL08]. It is useful to
read some of the classic tutorial papers on computer security; these provide a his-
torical perspective from which to appreciate current work and thinking. The papers
to read are [WARE79], [BROW72], [SALT75], [SHAN77], and [SUMM84]. Two
more recent short treatments of computer security are [ANDR04] and [LAMP04].
[NIST95] is an exhaustive (290 pages) treatment of the subject. Another good treat-
ment is [NRC91]. Also useful is [FRAS97].

http://www.rand.org/pubs/reports/R609-1/index2.html

636 CHAPTER 14 / COMPUTER SECURITY THREATS

Review Questions

 14.1 Define computer security .
 14.2 What are the fundamental requirements addressed by computer security?
 14.3 What is the difference between passive and active security threats?
 14.4 List and briefly define three classes of intruders.
 14.5 List and briefly define three intruder behavior patterns.
 14.6 What is the role of compression in the operation of a virus?
 14.7 What is the role of encryption in the operation of a virus?
 14.8 What are typical phases of operation of a virus or worm?
 14.9 In general terms, how does a worm propagate?
 14.10 What is the difference between a bot and a rootkit?

Problems

 14.1 Consider an automated teller machine (ATM) in which users provide a personal iden-
tification number (PIN) and a card for account access. Give examples of confidenti-
ality, integrity, and availability requirements associated with the system and, in each
case, indicate the degree of importance of the requirement.

 14.2 Repeat the preceding problem for a telephone switching system that routes calls
through a switching network based on the telephone number requested by the caller.

 14.3 Consider a desktop publishing system used to produce documents for various
 organizations.
a. Give an example of a type of publication for which confidentiality of the stored

data is the most important requirement.
b. Give an example of a type of publication in which data integrity is the most impor-

tant requirement.
c. Give an example in which system availability is the most important requirement.

14.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 accountability
 active attack
 asset
 attack
 authenticity
 availability
 backdoor
 confidentiality
 data integrity
 deception
 denial of service
 disruption
 exposure

 e-mail virus
 falsification
 hacker
 insider attack
 integrity
 interception
 intruder
 intrusion
 logic bomb
 macro virus
 malicious software
 malware
 masquerade

 passive attack
 privacy
 replay
 repudiation
 system integrity
 threat
 traffic analysis
 trapdoor
 Trojan horse
 usurpation
 virus
 virus kit
 worm

14.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 637

 14.4 For each of the following assets, assign a low, moderate, or high impact level for the
loss of confidentiality, availability, and integrity, respectively. Justify your answers.
a. An organization managing public information on its Web server.
b. A law enforcement organization managing extremely sensitive investigative

 information.
c. A financial organization managing routine administrative information (not privacy-

related information).
d. An information system used for large acquisitions in a contracting organization

contains both sensitive, pre-solicitation phase contract information and routine
administrative information. Assess the impact for the two data sets separately and
the information system as a whole.

e. A power plant contains a SCADA (supervisory control and data acquisition)
 system controlling the distribution of electric power for a large military installation.
The SCADA system contains both real-time sensor data and routine administra-
tive information. Assess the impact for the two data sets separately and the infor-
mation system as a whole.

 14.5 Assume that passwords are selected from four-character combinations of 26 alpha-
betic characters. Assume that an adversary is able to attempt passwords at a rate of
one per second.
a. Assuming no feedback to the adversary until each attempt has been completed,

what is the expected time to discover the correct password?
b. Assuming feedback to the adversary flagging an error as each incorrect character

is entered, what is the expected time to discover the correct password?
 14.6 There is a flaw in the virus program of Figure 14.1 . What is it?
 14.7 The question arises as to whether it is possible to develop a program that can analyze

a piece of software to determine if it is a virus. Consider that we have a program D
that is supposed to be able to do that. That is, for any program P, if we run D(P), the
result returned is TRUE (P is a virus) or FALSE (P is not a virus). Now consider the
following program:

Program CV :=

{ ...

main-program :=

{if D(CV) then goto next:

 else infect-executable;

}

next:

}

 In the preceding program, infect-executable is a module that scans memory for exe-
cutable programs and replicates itself in those programs. Determine if D can correctly
decide whether CV is a virus.

 14.8 The point of this problem is to demonstrate the type of puzzles that must be solved in
the design of malicious code and therefore, the type of mind-set that one wishing to
counter such attacks must adopt.
a. Consider the following C program:

begin

 print (*begin print (); end.*);

end

 What do you think the program was intended to do? Does it work?

638 CHAPTER 14 / COMPUTER SECURITY THREATS

b. Answer the same questions for the following program:

char [] = {’0’, ’ ’, ’}’, ’;’, ’m’, ’a’, ’i’, ’n’, ’(’, ’)’, ’{’,

and so on… ’t’, ’)’, ’0’};

main ()

{

int I;

printf(*char t[] = (*);

for (i=0; t[i]!=0; i=i+1)

printf(“%d, “, t[i]);

printf(“%s”, t);

}

c. What is the specific relevance of this problem to this chapter?
 14.9 Consider the following fragment:

legitimate code

if data is Friday the 13th;

crash_computer();

legitimate code

 What type of malicious software is this?
 14.10 Consider the following fragment in an authentication program:

username = read_username();

password = read_password();

if username is “133t h4ck0r”

return ALLOW_LOGIN;

if username and password are valid

return ALLOW_LOGIN

else return DENY_LOGIN

 What type of malicious software is this?
 14.11 The following code fragments show a sequence of virus instructions and a polymor-

phic version of the virus. Describe the effect produced by the metamorphic code.

 Original Code Metamorphic Code

mov eax, 5 mov eax, 5
add eax, ebx push ecx
call [eax] pop ecx

add eax, ebx

swap eax, ebx

swap ebx, eax

call [eax]

nop

 15.1 Authentication
 Password-Based Authentication
 Token-Based Authentication
 Biometric Authentication

 15.2 Access Control
 Discretionary Access Control
 Role-Based Access Control

 15.3 Intrusion Detection
 Basic Principles
 Host-Based Intrusion Detection Techniques
 Audit Records

 15.4 Malware Defense
 Antivirus Approaches
 Worm Countermeasures
 Bot Countermeasures
 Rootkit Countermeasures

 15.5 Dealing with Buffer Overflow Attacks
 Compile-Time Defenses
 Run-Time Defenses

 15.6 Windows 7 Security
 Access Control Scheme
 Access Token
 Security Descriptors

 15.7 Recommended Reading and Web Sites

 15.8 Key Terms, Review Questions, and Problems

COMPUTER SECURITY
TECHNIQUES

CHAPTER

639

640 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

 To guard against the baneful influence exerted by strangers is therefore
an elementary dictate of savage prudence. Hence before strangers are
allowed to enter a district, or at least before they are permitted to mingle
freely with the inhabitants, certain ceremonies are often performed by
the natives of the country for the purpose of disarming the strangers
of their magical powers, or of disinfecting, so to speak, the tainted
atmosphere by which they are supposed to be surrounded.

 — THE GOLDEN BOUGH , Sir James George Frazer

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

• Define and compare three methods of user authentication.
• Compare and contrast two methods of access control.
• Explain the basic principles and techniques of intrusion detection.
• Explain the basic principles and techniques of malware defense.
• Understand how to defend against buffer overflow attacks.
• Explain the file system used in Windows 7.

 This chapter introduces common measures used to counter the security threats
 discussed in Chapter 14 .

15.1 AUTHENTICATION

 User authentication was introduced in Section 3.6 . Note that user authentication is
distinct from message authentication. Message authentication is a procedure that
allows communicating parties to verify that the contents of a received message have
not been altered and that the source is authentic. This chapter is concerned solely
with user authentication.

Password-Based Authentication

 A widely used line of defense against intruders is the password system. Virtually all
multiuser systems, network-based servers, Web-based e-commerce sites, and other
similar services require that a user provide not only a name or identifier (ID) but
also a password. The system compares the password to a previously stored pass-
word for that user ID, maintained in a system password file. The password serves
to authenticate the ID of the individual logging on to the system. In turn, the ID
provides security in the following ways:

 • The ID determines whether the user is authorized to gain access to a system.
In some systems, only those who already have an ID filed on the system are
allowed to gain access.

15.1 / AUTHENTICATION 641

 • The ID determines the privileges accorded to the user. A few users may have
supervisory or “superuser” status that enables them to read files and perform
functions that are especially protected by the operating system. Some systems
have guest or anonymous accounts, and users of these accounts have more
limited privileges than others.

 • The ID is used in what is referred to as discretionary access control. For exam-
ple, by listing the IDs of the other users, a user may grant permission to them
to read files owned by that user.

THE USE OF HASHED PASSWORDS A widely used password security technique is
the use of hashed passwords and a salt value. This scheme is found on virtually all
UNIX variants as well as on a number of other operating systems. The following
procedure is employed (Figure 15.1a). To load a new password into the system,
the user selects or is assigned a password. This password is combined with a fixed-
length salt value [MORR79]. In older implementations, this value is related to the
time at which the password is assigned to the user. Newer implementations use a
pseudorandom or random number. The password and salt serve as inputs to a hashing
algorithm to produce a fixed-length hash code. The hash algorithm is designed to
be slow to execute to thwart attacks. The hashed password is then stored, together
with a plaintext copy of the salt, in the password file for the corresponding user
ID. The hashed-password method has been shown to be secure against a variety of
cryptanalytic attacks [WAGN00].

 When a user attempts to log on to a UNIX system, the user provides an ID
and a password (Figure 15.1b). The operating system uses the ID to index into the
password file and retrieve the plaintext salt and the encrypted password. The salt
and user-supplied password are used as input to the encryption routine. If the result
matches the stored value, the password is accepted.

 The salt serves three purposes:

 • It prevents duplicate passwords from being visible in the password file. Even
if two users choose the same password, those passwords will be assigned
different salt values. Hence, the hashed passwords of the two users will
 differ.

 • It greatly increases the difficulty of offline dictionary attacks. For a salt of
length b bits, the number of possible passwords is increased by a factor of 2 b ,
increasing the difficulty of guessing a password in a dictionary attack.

 • It becomes nearly impossible to find out whether a person with passwords on
two or more systems has used the same password on all of them.

 To see the second point, consider the way that an offline dictionary attack
would work. The attacker obtains a copy of the password file. Suppose first that the
salt is not used. The attacker’s goal is to guess a single password. To that end, the
attacker submits a large number of likely passwords to the hashing function. If any
of the guesses matches one of the hashes in the file, then the attacker has found a
password that is in the file. But faced with the UNIX scheme, the attacker must take
each guess and submit it to the hash function once for each salt value in the diction-
ary file, multiplying the number of guesses that must be checked.

642 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

 There are two threats to the UNIX password scheme. First, a user can gain
access on a machine using a guest account or by some other means and then run a
password guessing program, called a password cracker, on that machine. The attacker
should be able to check many thousands of possible passwords with little resource
consumption. Second, if an opponent is able to obtain a copy of the password file,
then a cracker program can be run on another machine at leisure. This enables the
opponent to run through millions of possible passwords in a reasonable period.

UNIX IMPLEMENTATIONS Since the original development of UNIX, most
implementations have relied on the following password scheme. Each user selects a

User IDSalt

Password

Load

Select

(a) Loading a new password

(b) Verifying a password

Salt

Password file

Hash code

User ID
User ID

Salt

Password file

Slow hash
function

Salt

Hashed password

Password

Slow hash
function

Compare

Hash code

Figure 15.1 UNIX Password Scheme

15.1 / AUTHENTICATION 643

password of up to eight printable characters in length. This is converted into a 56-bit
value (using 7-bit ASCII) that serves as the key input to an encryption routine. The
hash routine, known as crypt(3), is based on DES. A 12-bit salt value is used. The
modified DES algorithm is executed with a data input consisting of a 64-bit block
of zeros. The output of the algorithm then serves as input for a second encryption.
This process is repeated for a total of 25 encryptions. The resulting 64-bit output
is then translated into an 11-character sequence. The modification of the DES
algorithm converts it into a one-way hash function. The crypt(3) routine is designed
to discourage guessing attacks. Software implementations of DES are slow compared
to hardware versions, and the use of 25 iterations multiplies the time required by 25.

 This particular implementation is now considered woefully inadequate. For
example, [PERR03] reports the results of a dictionary attack using a supercom-
puter. The attack was able to process over 50 million password guesses in about
80 minutes. Further, the results showed that for about $10,000 anyone should be
able to do the same in a few months using one uniprocessor machine. Despite its
known weaknesses, this UNIX scheme is still often required for compatibility with
existing account management software or in multivendor environments.

 There are other, much stronger, hash/salt schemes available for UNIX. The
recommended hash function for many UNIX systems, including Linux, Solaris, and
FreeBSD, is based on the MD5 secure hash algorithm (which is similar to, but not
as secure as, SHA-1). 1 The MD5 crypt routine uses a salt of up to 48 bits and effec-
tively has no limitations on password length. It produces a 128-bit hash value. It is
also far slower than crypt(3). To achieve the slowdown, MD5 crypt uses an inner
loop with 1,000 iterations.

 Probably the most secure version of the UNIX hash/salt scheme was devel-
oped for OpenBSD, another widely used open source UNIX. This scheme, reported
in [PROV99], uses a hash function based on the Blowfish symmetric block cipher.
The hash function, called Bcrypt, is quite slow to execute. Bcrypt allows passwords
of up to 55 characters in length and requires a random salt value of 128 bits, to
produce a 192-bit hash value. Bcrypt also includes a cost variable; an increase in
the cost variable causes a corresponding increase in the time required to perform a
Bcyrpt hash. The cost assigned to a new password is configurable, so that adminis-
trators can assign a higher cost to privileged users.

Token-Based Authentication

 Objects that a user possesses for the purpose of user authentication are called
tokens. In this subsection, we examine two types of tokens that are widely used;
these are cards that have the appearance and size of bank cards.

MEMORY CARDS Memory cards can store but not process data. The most common
such card is the bank card with a magnetic stripe on the back. A magnetic stripe
can store only a simple security code, which can be read (and unfortunately
reprogrammed) by an inexpensive card reader. There are also memory cards that
include an internal electronic memory.

1 See Appendix K for a discussion of secure hash algorithms.

644 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

 Memory cards can be used alone for physical access, such as a hotel room. For
computer user authentication, such cards are typically used with some form of pass-
word or personal identification number (PIN). A typical application is an automatic
teller machine (ATM).

 The memory card, when combined with a PIN or password, provides signifi-
cantly greater security than a password alone. An adversary must gain physical
 possession of the card (or be able to duplicate it) plus must gain knowledge of the
PIN. Among the potential drawbacks are the following [NIST95]:

 • Requires special reader: This increases the cost of using the token and creates
the requirement to maintain the security of the reader’s hardware and software.

 • Token loss: A lost token temporarily prevents its owner from gaining system
access. Thus, there is an administrative cost in replacing the lost token. In
addition, if the token is found, stolen, or forged, then an adversary now need
only determine the PIN to gain unauthorized access.

 • User dissatisfaction: Although users may have no difficulty in accepting the
use of a memory card for ATM access, its use for computer access may be
deemed inconvenient.

SMART CARDS A wide variety of devices qualify as smart tokens. These can be
categorized along three dimensions that are not mutually exclusive:

 • Physical characteristics: Smart tokens include an embedded microprocessor.
A smart token that looks like a bank card is called a smart card. Other smart
tokens can look like calculators, keys, or other small portable objects.

 • Interface: Manual interfaces include a keypad and display for human/token
interaction. Smart tokens with an electronic interface communicate with a
compatible reader/writer.

 • Authentication protocol: The purpose of a smart token is to provide a means
for user authentication. We can classify the authentication protocols used with
smart tokens into three categories:

 — Static: With a static protocol, the user authenticates himself or herself to the
token and then the token authenticates the user to the computer. The latter
half of this protocol is similar to the operation of a memory token.

 — Dynamic password generator: In this case, the token generates a unique
password periodically (e.g., every minute). This password is then entered
into the computer system for authentication, either manually by the user or
electronically via the token. The token and the computer system must be
initialized and kept synchronized so that the computer knows the password
that is current for this token.

 — Challenge-response: In this case, the computer system generates a chal-
lenge, such as a random string of numbers. The smart token generates a
response based on the challenge. For example, public-key cryptography
could be used and the token could encrypt the challenge string with the
token’s private key.

15.1 / AUTHENTICATION 645

 For user authentication to computer, the most important category of smart
token is the smart card, which has the appearance of a credit card, has an electronic
interface, and may use any of the type of protocols just described. The remainder of
this section discusses smart cards.

 A smart card contains within it an entire microprocessor, including processor,
memory, and I/O ports. Some versions incorporate a special coprocessing circuit for
cryptographic operation to speed the task of encoding and decoding messages or
generating digital signatures to validate the information transferred. In some cards,
the I/O ports are directly accessible by a compatible reader by means of exposed
electrical contacts. Other cards rely instead on an embedded antenna for wireless
communication with the reader.

Biometric Authentication

 A biometric authentication system attempts to authenticate an individual based on
his or her unique physical characteristics. These include static characteristics, such
as fingerprints, hand geometry, facial characteristics, and retinal and iris patterns;
and dynamic characteristics, such as voiceprint and signature. In essence, biomet-
rics is based on pattern recognition. Compared to passwords and tokens, biometric
authentication is both technically complex and expensive. While it is used in a num-
ber of specific applications, biometrics has yet to mature as a standard tool for user
authentication to computer systems.

 A number of different types of physical characteristics are either in use or
under study for user authentication. The most common are the following:

 • Facial characteristics: Facial characteristics are the most common means of
human-to-human identification; thus it is natural to consider them for iden-
tification by computer. The most common approach is to define characteris-
tics based on relative location and shape of key facial features, such as eyes,
 eyebrows, nose, lips, and chin shape. An alternative approach is to use an
infrared camera to produce a face thermogram that correlates with the under-
lying vascular system in the human face.

 • Fingerprints: Fingerprints have been used as a means of identification for
 centuries, and the process has been systematized and automated particu-
larly for law enforcement purposes. A fingerprint is the pattern of ridges and
 furrows on the surface of the fingertip. Fingerprints are believed to be unique
across the entire human population. In practice, automated fingerprint recog-
nition and matching system extract a number of features from the fingerprint
for storage as a numerical surrogate for the full fingerprint pattern.

 • Hand geometry: Hand geometry systems identify features of the hand, includ-
ing shape, and lengths and widths of fingers.

 • Retinal pattern: The pattern formed by veins beneath the retinal surface is
unique and therefore suitable for identification. A retinal biometric system
obtains a digital image of the retinal pattern by projecting a low-intensity
beam of visual or infrared light into the eye.

 • Iris: Another unique physical characteristic is the detailed structure of the iris.

646 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

 • Signature: Each individual has a unique style of handwriting, and this is
reflected especially in the signature, which is typically a frequently written
sequence. However, multiple signature samples from a single individual will
not be identical. This complicates the task of developing a computer represen-
tation of the signature that can be matched to future samples.

 • Voice: Whereas the signature style of an individual reflects not only the unique
physical attributes of the writer but also the writing habit that has developed,
voice patterns are more closely tied to the physical and anatomical characteris-
tics of the speaker. Nevertheless, there is still a variation from sample to sample
over time from the same speaker, complicating the biometric recognition task.

 Figure 15.2 gives a rough indication of the relative cost and accuracy of these
biometric measures. The concept of accuracy does not apply to user authentication
schemes using smart cards or passwords. For example, if a user enters a password, it
either matches exactly the password expected for that user or not. In the case of bio-
metric parameters, the system instead must determine how closely a presented biomet-
ric characteristic matches a stored characteristic. Before elaborating on the concept of
biometric accuracy, we need to have a general idea of how biometric systems work.

15.2 ACCESS CONTROL

 An access control policy dictates what types of access are permitted, under what
circumstances, and by whom. Access control policies are generally grouped into the
following categories:

 • Discretionary access control (DAC): Controls access based on the identity
of the requestor and on access rules (authorizations) stating what requestors
are (or are not) allowed to do. This policy is termed discretionary because an
entity might have access rights that permit the entity, by its own volition, to
enable another entity to access some resource.

 • Mandatory access control (MAC): Controls access based on comparing secu-
rity labels (which indicate how sensitive or critical system resources are) with

Hand

Signature

Face

Voice

Retina

Finger

Iris

Accuracy

C
os

t

Figure 15.2 Cost versus Accuracy of Various Biometric
Characteristics in User Authentication Schemes

15.2 / ACCESS CONTROL 647

security clearances (which indicate system entities are eligible to access cer-
tain resources). This policy is termed mandatory because an entity that has
clearance to access a resource may not, just by its own volition, enable another
entity to access that resource.

 • Role-based access control (RBAC): Controls access based on the roles that
users have within the system and on rules stating what accesses are allowed to
users in given roles.

 DAC is the traditional method of implementing access control. This method
was introduced in Chapter 12 ; we provide more detail in this section. MAC is a
concept that evolved out of requirements for military information security and is
beyond the scope of this book. RBAC has become increasingly popular and is intro-
duced later in this section.

 These three policies are not mutually exclusive (Figure 15.3). An access control
mechanism can employ two or even all three of these policies to cover different
classes of system resources.

Discretionary Access Control 2

 This section introduces a general model for DAC developed by Lampson, Graham,
and Denning [LAMP71, GRAH72, DENN71]. The model assumes a set of subjects,
a set of objects, and a set of rules that govern the access of subjects to objects. Let us
define the protection state of a system to be the set of information, at a given point in
time, that specifies the access rights for each subject with respect to each object. We can
identify three requirements: representing the protection state, enforcing access rights,
and allowing subjects to alter the protection state in certain ways. The model addresses
all three requirements, giving a general, logical description of a DAC system.

Discretionary
access control

policy

Mandatory
access control

policy

Role-based
access control

policy

Figure 15.3 Access Control Policies

2 Before continuing, the reader should review Section 12.8 and the discussion of UNIX file access control
in Section 12.9 .

648 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

 To represent the protection state, we extend the universe of objects in the
access control matrix to include the following:

 • Processes: Access rights include the ability to delete a process, stop (block),
and wake up a process.

 • Devices: Access rights include the ability to read/write the device, to control
its operation (e.g., a disk seek), and to block/unblock the device for use.

 • Memory locations or regions: Access rights include the ability to read/write
certain locations of regions of memory that are protected so that the default is
that access is not allowed.

 • Subjects: Access rights with respect to a subject have to do with the ability to grant
or delete access rights of that subject to other objects, as explained subsequently.

 Figure 15.4 is an example (compare Figure 12.13a). For an access control
matrix A , each entry A [S , X] contains strings, called access attributes, that specify
the access rights of subject S to object X . For example, in Figure 15.4 , S1 may read
file F2 , because read appears in A [S1 , F1].

 From a logical or functional point of view, a separate access control module
is associated with each type of object (Figure 15.5). The module evaluates each
request by a subject to access an object to determine if the access right exists. An
access attempt triggers the following steps:

 1. A subject S0 issues a request of type a for object X .

 2. The request causes the system (the operating system or an access control
interface module of some sort) to generate a message of the form (S0 , a , X) to
the controller for X .

 3. The controller interrogates the access matrix A to determine if a is in A [S0 , X].
If so, the access is allowed; if not, the access is denied and a protection violation
occurs. The violation should trigger a warning and an appropriate action.

 Figure 15.5 suggests that every access by a subject to an object is mediated
by the controller for that object, and that the controller’s decision is based on the

control wakeup seek

owner

ownerwakeupread
owner

owner
control

execute

write stop

owner

control

control

read *

write *

* � copy flag set

seek *

S1

S2Subjects

Objects

Subjects Files Processes Disk drives

S3

S2S1 S3 F1 F2 P1 P2 D1 D2

Figure 15.4 Extended Access Control Matrix

15.2 / ACCESS CONTROL 649

current contents of the matrix. In addition, certain subjects have the authority to
make specific changes to the access matrix. A request to modify the access matrix is
treated as an access to the matrix, with the individual entries in the matrix treated as
objects. Such accesses are mediated by an access matrix controller, which controls
updates to the matrix.

 The model also includes a set of rules that govern modifications to the access
matrix, shown in Table 15.1 . For this purpose, we introduce the access rights owner
and control and the concept of a copy flag, explained in the subsequent paragraphs.

 The first three rules deal with transferring, granting, and deleting access rights.
Suppose that the entry � exists in A [S0 , X]. This means that S0 has access right � to
subject X and, because of the presence of the copy flag, can transfer this right, with

Filesystem

Memory
addressing
hardware

Process
manager

Terminal
& device
manager

Instruction
decoding
hardware

Access
matrix

monitor

Access
matrixwrite read

Files

Segments
& pages

Processes

Terminal
& devices

Instructions

delete b from Sp, Y (Sm, delete, b, Sp, Y)

(Sk, grant, a, Sn, X)grant a to Sn, X

Sm

wakeup P (Sj, wakeup, P)Sj

read F

Subjects Access control mechanisms Objects

(Si, read, F)Si

Sk

System intervention

Figure 15.5 An Organization of the Access Control Function

650 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

or without copy flag, to another subject. Rule R1 expresses this capability. A subject
would transfer the access right without the copy flag if there were a concern that the
new subject would maliciously transfer the right to another subject that should not
have that access right. For example, S1 may place read or read* in any matrix entry in
the F1 column. Rule R2 states that if S0 is designated as the owner of object X , then S0
can grant an access right to that object for any other subject. Rule 2 states that S0 can
add any access right to A [S , X] for any S , if S0 has owner access to X . Rule R3 permits
S0 to delete any access right from any matrix entry in a row for which S0 controls the
subject and for any matrix entry in a column for which S0 owns the object. Rule R4
permits a subject to read that portion of the matrix that it owns or controls.

 The remaining rules in Table 15.1 govern the creation and deletion of subjects
and objects. Rule R5 states that any subject can create a new object, which it owns,
and can then grant and delete access to the object. Under rule R6, the owner of an
object can destroy the object, resulting in the deletion of the corresponding column
of the access matrix. Rule R7 enables any subject to create a new subject; the crea-
tor owns the new subject and the new subject has control access to itself. Rule R8
permits the owner of a subject to delete the row and column (if there are subject
columns) of the access matrix designated by that subject.

 The set of rules in Table 15.1 is an example of the rule set that could be defined
for an access control system. The following are examples of additional or alternative
rules that could be included. A transfer-only right could be defined, which results in
the transferred right being added to the target subject and deleted from the trans-
ferring subject. The number of owners of an object or a subject could be limited to
one by not allowing the copy flag to accompany the owner right.

Table 15.1 Access Control System Commands

 Rule Command (by S0) Authorization Operation

 R1
transfer ea*

a
f to S , X

 ‘ *’ in A [S o, X]
 store ea*

a
f in A [S , X]

 R2
grant ea*

a
f to S , X

 ‘owner’ in A [S o, X]
 store ea*

a
f in A [S , X]

 R3 delete � from S , X ‘control’ in A [S o, S]
 or
 ‘owner’ in A [S o, X]

 delete � from A [S , X]

 R4 w � read S , X ‘control’ in A [S o, S]
 or
 ‘owner’ in A [S o, X]

 copy A [S , X] into w

 R5 create object X None add column for X to A ; store
‘owner’ in A [S o, X]

 R6 destroy object X ‘owner’ in A [S o, X] delete column for X from A

 R7 create subject S None add row for S to A ; execute
create object S ; store ‘control’
in A [S , S]

 R8 destroy subject S ‘owner’ in A [S o, S] delete row for S from A ;
 execute destroy object S

15.2 / ACCESS CONTROL 651

 The ability of one subject to create another subject and to have owner access
right to that subject can be used to define a hierarchy of subjects. For example, in
 Figure 15.4 , S1 owns S2 and S3 , so that S2 and S3 are subordinate to S1 . By the rules
of Table 15.1 , S1 can grant and delete to S2 access rights that S1 already has. Thus, a
subject can create another subject with a subset of its own access rights. This might be
useful, for example, if a subject is invoking an application that is not fully trusted, and
does not want that application to be able to transfer access rights to other subjects.

Role-Based Access Control

 Traditional DAC systems define the access rights of individual users and groups of
users. In contrast, RBAC is based on the roles that users assume in a system rather
than the user’s identity. Typically, RBAC models define a role as a job function within
an organization. RBAC systems assign access rights to roles instead of individual users.
In turn, users are assigned to different roles, either statically or dynamically, according
to their responsibilities.

 RBAC now enjoys widespread commercial use and remains an area of active
research. The National Institute of Standards and Technology (NIST) has issued a
standard, Security Requirements for Cryptographic Modules (FIPS PUB 140-2, May 25,
2001), that requires support for access control and administration through roles.

 The relationship of users to roles is many to many, as is the relationship of
roles to resources, or system objects (Figure 15.6). The set of users changes, in some

Role 1

Users Roles Resources

Role 2

Role 3

Figure 15.6 Users, Roles, and Resources

652 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

environments frequently, and the assignment of a user to one or more roles may
also be dynamic. The set of roles in the system in most environments is likely to be
static, with only occasional additions or deletions. Each role will have specific access
rights to one or more resources. The set of resources and the specific access rights
associated with a particular role are also likely to change infrequently.

 We can use the access matrix representation to depict the key elements of an
RBAC system in simple terms, as shown in Figure 15.7 . The upper matrix relates
individual users to roles. Typically there are many more users than roles. Each
matrix entry is either blank or marked, the latter indicating that this user is assigned

control wakeup seek

owner

ownerwakeupread
owner

owner
control

execute

write stop

owner

control

control

read *

write * seek *

R1

R2

R
ol

es

Objects

Rn

R2R1 Rn F1 F1 P1 P2 D1 D2

R2R1 Rn

U1

U2

U3

U4

U5

U6

Um

Figure 15.7 Access Control Matrix Representation of RBAC

15.3 / INTRUSION DETECTION 653

to this role. Note that a single user may be assigned multiple roles (more than one
mark in a row) and that multiple users may be assigned to a single role (more
than one mark in a column). The lower matrix has the same structure as the DAC
matrix, with roles as subjects. Typically, there are few roles and many objects, or
resources. In this matrix the entries are the specific access rights enjoyed by the
roles. Note that a role can be treated as an object, allowing the definition of role
hierarchies.

 RBAC lends itself to an effective implementation of the principle of least
privilege. That is, each role should contain the minimum set of access rights needed
for that role. A user is assigned to a role that enables him or her to perform only
what is required for that role. Multiple users assigned to the same role enjoy the
same minimal set of access rights.

15.3 INTRUSION DETECTION

 Intrusion detection systems were introduced in Section 3.6 .

Basic Principles

 Authentication facilities, access control facilities, and firewalls all play a role in
countering intrusions. Another line of defense is intrusion detection, and this has
been the focus of much research in recent years. This interest is motivated by a
number of considerations, including the following:

 1. If an intrusion is detected quickly enough, the intruder can be identified and
ejected from the system before any damage is done or any data are compro-
mised. Even if the detection is not sufficiently timely to preempt the intruder,
the sooner that the intrusion is detected, the less the amount of damage and
the more quickly that recovery can be achieved.

 2. An effective IDS can serve as a deterrent, thus acting to prevent intrusions.

 3. Intrusion detection enables the collection of information about intrusion tech-
niques that can be used to strengthen intrusion prevention measures.

 Intrusion detection is based on the assumption that the behavior of the intruder
differs from that of a legitimate user in ways that can be quantified. Of course, we
cannot expect that there will be a crisp, exact distinction between an attack by an
intruder and the normal use of resources by an authorized user. Rather, we must
expect that there will be some overlap.

 Figure 15.8 suggests, in abstract terms, the nature of the task confronting the
designer of an IDS. Although the typical behavior of an intruder differs from the
typical behavior of an authorized user, there is an overlap in these behaviors. Thus,
a loose interpretation of intruder behavior, which will catch more intruders, will
also lead to a number of false positives , or authorized users identified as intruders.
On the other hand, an attempt to limit false positives by a tight interpretation of
intruder behavior will lead to an increase in false negatives , or intruders not identi-
fied as intruders. Thus, there is an element of compromise and art in the practice of
intrusion detection.

654 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

 In Anderson’s study [ANDE80], it was postulated that one could, with reason-
able confidence, distinguish between a masquerader and a legitimate user. Patterns
of legitimate user behavior can be established by observing past history, and signifi-
cant deviation from such patterns can be detected. Anderson suggests that the task
of detecting a misfeasor (legitimate user performing in an unauthorized fashion) is
more difficult, in that the distinction between abnormal and normal behavior may be
small. Anderson concluded that such violations would be undetectable solely through
the search for anomalous behavior. However, misfeasor behavior might nevertheless
be detectable by intelligent definition of the class of conditions that suggest unau-
thorized use. Finally, the detection of the clandestine user was felt to be beyond the
scope of purely automated techniques. These observations, which were made in 1980,
remain true today.

 For the remainder of this section, we concentrate on host-based intrusion
detection.

Host-Based Intrusion Detection Techniques

 Host-based IDSs add a specialized layer of security software to vulnerable or sensi-
tive systems; examples include database servers and administrative systems. The
host-based IDS monitors activity on the system in a variety of ways to detect suspi-
cious behavior. In some cases, an IDS can halt an attack before any damage is done,
but its primary purpose is to detect intrusions, log suspicious events, and send alerts.

Measurable behavior
parameter

Average behavior
of intruder

Average behavior
of authorized user

Probability
density function

Overlap in observed
or expected behavior

Profile of
authorized user

behavior
Profile of

intruder behavior

Figure 15.8 Profi les of Behavior of Intruders and Authorized Users

15.3 / INTRUSION DETECTION 655

 The primary benefit of a host-based IDS is that it can detect both external and
internal intrusions, something that is not possible either with network-based IDSs or
firewalls.

 Host-based IDSs follow one of two general approaches to intrusion detection:

 1. Anomaly detection: Involves the collection of data relating to the behavior
of legitimate users over a period of time. Then statistical tests are applied to
observed behavior to determine with a high level of confidence whether that
behavior is not legitimate user behavior. The following are two approaches to
statistical anomaly detection:

a. Threshold detection: This approach involves defining thresholds, independ-
ent of user, for the frequency of occurrence of various events.

b. Profile based: A profile of the activity of each user is developed and used to
detect changes in the behavior of individual accounts.

 2. Signature detection: Involves an attempt to define a set of rules or attack pat-
terns that can be used to decide that a given behavior is that of an intruder.

 In essence, anomaly approaches attempt to define normal, or expected, behav-
ior, whereas signature-based approaches attempt to define proper behavior.

 In terms of the types of attackers listed earlier, anomaly detection is effective
against masqueraders, who are unlikely to mimic the behavior patterns of the accounts
they appropriate. On the other hand, such techniques may be unable to deal with mis-
feasors. For such attacks, signature-based approaches may be able to recognize events
and sequences that, in context, reveal penetration. In practice, a system may employ a
combination of both approaches to be effective against a broad range of attacks.

Audit Records

 A fundamental tool for intrusion detection is the audit record. Some record of ongoing
activity by users must be maintained as input to an IDS. Basically, two plans are used:

 • Native audit records: Virtually all multiuser operating systems include ac-
counting software that collects information on user activity. The advantage
of using this information is that no additional collection software is needed.
The disadvantage is that the native audit records may not contain the needed
information or may not contain it in a convenient form.

 • Detection-specific audit records: A collection facility can be implemented that
generates audit records containing only that information required by the IDS.
One advantage of such an approach is that it could be made vendor independ-
ent and ported to a variety of systems. The disadvantage is the extra overhead
involved in having, in effect, two accounting packages running on a machine.

 A good example of detection-specific audit records is one developed by
Dorothy Denning [DENN87]. Each audit record contains the following fields:

 • Subject: Initiators of actions. A subject is typically a terminal user but might
also be a process acting on behalf of users or groups of users. All activity arises
through commands issued by subjects. Subjects may be grouped into different
access classes, and these classes may overlap.

656 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

 • Action: Operation performed by the subject on or with an object; for example,
login, read, perform I/O, and execute.

 • Object: Receptors of actions. Examples include files, programs, messages,
records, terminals, printers, and user- or program-created structures. When a
subject is the recipient of an action, such as electronic mail, then that subject
is considered an object. Objects may be grouped by type. Object granularity
may vary by object type and by environment. For example, database actions
may be audited for the database as a whole or at the record level.

 • Exception-condition: Denotes which, if any, exception condition is raised on
return.

 • Resource-usage: A list of quantitative elements in which each element gives
the amount used of some resource (e.g., number of lines printed or displayed,
number of records read or written, processor time, I/O units used, session
elapsed time).

 • Time-stamp: Unique time-and-date stamp identifying when the action took
place.

 Most user operations are made up of a number of elementary actions. For
example, a file copy involves the execution of the user command, which includes
doing access validation and setting up the copy, plus the read from one file, plus the
write to another file. Consider the command

 COPY GAME.EXE TO 6Library7 GAME.EXE

 issued by Smith to copy an executable file GAME from the current directory to the
<Library> directory. The following audit records may be generated:

 Smith execute <Library>COPY.EXE 0 CPU � 00002 11058721678

 Smith Read <Smith>GAME.EXE 0 RECORDS � 0 11058721679

 Smith execute <Library>COPY.EXE write-viol RECORDS � 0 11058721680

 In this case, the copy is aborted because Smith does not have write permission to
<Library>.

 The decomposition of a user operation into elementary actions has three
advantages:

 1. Because objects are the protectable entities in a system, the use of elemen-
tary actions enables an audit of all behavior affecting an object. Thus, the
system can detect attempted subversions of access controls (by noting an
abnormality in the number of exception conditions returned) and can detect
successful subversions (by noting an abnormality in the set of objects acces-
sible to the subject).

 2. Single-object, single-action audit records simplify the model and the imple-
mentation.

15.4 / MALWARE DEFENSE 657

 3. Because of the simple, uniform structure of the detection-specific audit
records, it may be relatively easy to obtain this information or at least part
of it by a straightforward mapping from existing native audit records to the
detection-specific audit records.

15.4 MALWARE DEFENSE

Antivirus Approaches

 The ideal solution to the threat of viruses is prevention: Do not allow a virus to
get into the system in the first place. This goal is, in general, impossible to achieve,
although prevention can reduce the number of successful viral attacks. The next
best approach is to be able to do the following:

 • Detection: Once the infection has occurred, determine that it has occurred
and locate the virus.

 • Identification: Once detection has been achieved, identify the specific virus
that has infected a program.

 • Removal: Once the specific virus has been identified, remove all traces of
the virus from the infected program and restore it to its original state.
Remove the virus from all infected systems so that the disease cannot
spread further.

 If detection succeeds but either identification or removal is not possible, then the
alternative is to discard the infected program and reload a clean backup version.

 Advances in virus and antivirus technology go hand in hand. Early viruses
were relatively simple code fragments and could be identified and purged with rela-
tively simple antivirus software packages. As the virus arms race has evolved, both
viruses and, necessarily, antivirus software have grown more complex and sophis-
ticated. Increasingly sophisticated antivirus approaches and products continue to
appear. In this subsection, we highlight two of the most important.

GENERIC DECRYPTION Generic decryption (GD) technology enables the antivirus
program to easily detect even the most complex polymorphic viruses while
maintaining fast scanning speeds [NACH97]. Recall that when a file containing a
polymorphic virus is executed, the virus must decrypt itself to activate. In order
to detect such a structure, executable files are run through a GD scanner, which
contains the following elements:

 • CPU emulator: A software-based virtual computer. Instructions in an execut-
able file are interpreted by the emulator rather than executed on the under-
lying processor. The emulator includes software versions of all registers and
other processor hardware, so that the underlying processor is unaffected by
programs interpreted on the emulator.

 • Virus signature scanner: A module that scans the target code looking for
known virus signatures.

 • Emulation control module: Controls the execution of the target code.

658 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

 At the start of each simulation, the emulator begins interpreting instructions
in the target code, one at a time. Thus, if the code includes a decryption routine that
decrypts and hence exposes the virus, that code is interpreted. In effect, the virus
does the work for the antivirus program by exposing the virus. Periodically, the
control module interrupts interpretation to scan the target code for virus signatures.

 During interpretation, the target code can cause no damage to the actual per-
sonal computer environment, because it is being interpreted in a completely con-
trolled environment.

 The most difficult design issue with a GD scanner is to determine how long to
run each interpretation. Typically, virus elements are activated soon after a program
begins executing, but this need not be the case. The longer the scanner emulates a
particular program, the more likely it is to catch any hidden viruses. However, the
antivirus program can take up only a limited amount of time and resources before
users complain of degraded system performance.

DIGITAL IMMUNE SYSTEM The digital immune system is a comprehensive approach
to virus protection developed by IBM [KEPH97a, KEPH97b, WHIT99] and
subsequently refined by Symantec [SYMA01]. The motivation for this development
has been the rising threat of Internet-based virus propagation. We first say a few
words about this threat and then summarize IBM’s approach.

 Traditionally, the virus threat was characterized by the relatively slow spread
of new viruses and new mutations. Antivirus software was typically updated on a
monthly basis, and this was sufficient to control the problem. Also traditionally, the
Internet played a comparatively small role in the spread of viruses. But as [CHES97]
points out, two major trends in Internet technology have had an increasing impact
on the rate of virus propagation in recent years:

 • Integrated mail systems: Systems such as Lotus Notes and Microsoft Outlook
make it very simple to send anything to anyone and to work with objects that
are received.

 • Mobile-program systems: Capabilities such as Java and ActiveX allow pro-
grams to move on their own from one system to another.

 In response to the threat posed by these Internet-based capabilities, IBM has
developed a prototype digital immune system. This system expands on the use of
program emulation discussed in the preceding subsection and provides a general-
purpose emulation and virus-detection system. The objective of this system is to
provide rapid response time so that viruses can be stamped out almost as soon as
they are introduced. When a new virus enters an organization, the immune system
automatically captures it, analyzes it, adds detection and shielding for it, removes it,
and passes information about that virus to systems running IBM AntiVirus so that it
can be detected before it is allowed to run elsewhere.

 Figure 15.9 illustrates the typical steps in digital immune system operation:

 1. A monitoring program on each PC uses a variety of heuristics based on system
behavior, suspicious changes to programs, or family signature to infer that a
virus may be present. The monitoring program forwards a copy of any program
thought to be infected to an administrative machine within the organization.

15.4 / MALWARE DEFENSE 659

 2. The administrative machine encrypts the sample and sends it to a central virus
analysis machine.

 3. This machine creates an environment in which the infected program can be
safely run for analysis. Techniques used for this purpose include emulation,
or the creation of a protected environment within which the suspect program
can be executed and monitored. The virus analysis machine then produces a
prescription for identifying and removing the virus.

 4. The resulting prescription is sent back to the administrative machine.
 5. The administrative machine forwards the prescription to the infected client.
 6. The prescription is also forwarded to other clients in the organization.
 7. Subscribers around the world receive regular antivirus updates that protect

them from the new virus.

 The success of the digital immune system depends on the ability of the virus
analysis machine to detect new and innovative virus strains. By constantly analyzing
and monitoring the viruses found in the wild, it should be possible to continually
update the digital immune software to keep up with the threat.

BEHAVIOR-BLOCKING SOFTWARE Unlike heuristics or fingerprint-based scanners,
behavior blocking software integrates with the operating system of a host computer
and monitors program behavior in real time for malicious actions [CONR02,
NACH02]. The behavior blocking software then blocks potentially malicious actions
before they have a chance to affect the system. Monitored behaviors can include

 • Attempts to open, view, delete, and/or modify files;

 • Attempts to format disk drives and other unrecoverable disk operations;

Derive
prescription

Extract
signature

Virus
analysis
machine

3
2

1

Analyze virus
behavior and

structure

Administrative
machine

Administrative
machine

Individual
user

Virus-
infected
client

machine

Client
machine

Client

Client

Client

Client
machine

Client
machine

Private
network

Other
private

network

5

6

4

7

Figure 15.9 Digital Immune System

660 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

 • Modifications to the logic of executable files or macros;

 • Modification of critical system settings, such as start-up settings;

 • Scripting of e-mail and instant messaging clients to send executable content; and

 • Initiation of network communications.

 Figure 15.10 illustrates the operation of a behavior blocker. Behavior-blocking
software runs on server and desktop computers and is instructed through policies
set by the network administrator to let benign actions take place but to intercede
when unauthorized or suspicious actions occur. The module blocks any suspicious
software from executing. A blocker isolates the code in a sandbox, which restricts
the code’s access to various OS resources and applications. The blocker then sends
an alert.

 Because a behavior blocker can block suspicious software in real time, it has
an advantage over such established antivirus detection techniques as fingerprinting
or heuristics. While there are literally trillions of different ways to obfuscate and
rearrange the instructions of a virus or worm, many of which will evade detection
by a fingerprint scanner or heuristic, eventually malicious code must make a well-
defined request to the operating system. Given that the behavior blocker can inter-
cept all such requests, it can identify and block malicious actions regardless of how
obfuscated the program logic appears to be.

 Behavior blocking alone has limitations. Because the malicious code must run
on the target machine before all its behaviors can be identified, it can cause harm

Internet

Firewall
Server running

behavior-blocking
software

Administrator

Sandbox

1. Administrator sets
acceptable software behavior
policies and uploads them to
a server. Policies can also be
uploaded to desktops.

3. Behavior-blocking
software at server flags
suspicious code. The
blocker “sandboxes” the
suspicious software to
prevent it from proceeding.

2. Malicious software
manages to make it
through the firewall.

4. Server alerts administrator
that suspicious code has been
identified and sandboxed,
awaiting administrator’s
decision on whether the code
should be removed or allowed
to run.

!

Figure 15.10 Behavior-Blocking Software Operation

15.4 / MALWARE DEFENSE 661

before it has been detected and blocked. For example, a new virus might shuffle a
number of seemingly unimportant files around the hard drive before infecting a single
file and being blocked. Even though the actual infection was blocked, the user may be
unable to locate his or her files, causing a loss to productivity or possibly worse.

Worm Countermeasures

 There is considerable overlap in techniques for dealing with viruses and worms.
Once a worm is resident on a machine, antivirus software can be used to detect it.
In addition, because worm propagation generates considerable network activity,
network activity and usage monitoring can form the basis of a worm defense.

 To begin, let us consider the requirements for an effective worm countermeas-
ure scheme:

 • Generality: The approach taken should be able to handle a wide variety of
worm attacks, including polymorphic worms.

 • Timeliness: The approach should respond quickly so as to limit the number
infected systems and the number of generated transmissions from infected
systems.

 • Resiliency: The approach should be resistant to evasion techniques employed
by attackers to evade worm countermeasures.

 • Minimal denial-of-service costs: The approach should result in minimal reduc-
tion in capacity or service due to the actions of the countermeasure software.
That is, in an attempt to contain worm propagation, the countermeasure
should not significantly disrupt normal operation.

 • Transparency: The countermeasure software and devices should not require
modification to existing (legacy) OSs, application software, and hardware.

 • Global and local coverage: The approach should be able to deal with attack
sources both from outside and inside the enterprise network.

 No existing worm countermeasure scheme appears to satisfy all these require-
ments. Thus, administrators typically need to use multiple approaches in defending
against worm attacks.

 Following [JHI07], we list six classes of worm defense:

 A. Signature-based worm scan filtering: This type of approach generates a worm
signature, which is then used to prevent worm scans from entering/leaving a
network/host. Typically, this approach involves identifying suspicious flows
and generating a worm signature. This approach is vulnerable to the use of
polymorphic worms: Either the detection software misses the worm or, if it
is sufficiently sophisticated to deal with polymorphic worms, the scheme may
take a long time to react. [NEWS05] is an example of this approach.

 B. Filter-based worm containment: This approach is similar to class A but focuses
on worm content rather than a scan signature. The filter checks a message
to determine if it contains worm code. An example is Vigilante [COST05],
which relies on collaborative worm detection at end hosts. This approach can
be quite effective but requires efficient detection algorithms and rapid alert
dissemination.

662 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

 C. Payload-classification-based worm containment: These network-based
 techniques examine packets to see if they contain a worm. Various anomaly
detection techniques can be used, but care is needed to avoid high levels
of false positives or negatives. An example of this approach is reported in
[CHIN05], which looks for exploit code in network flows. This approach does
not generate signatures based on byte patterns but rather looks for control
and data flow structures that suggest an exploit.

 D. Threshold random walk (TRW) scan detection: TRW exploits randomness in
picking destinations to connect to as a way of detecting if a scanner is in opera-
tion [JUNG04]. TRW is suitable for deployment in high-speed, low-cost net-
work devices. It is effective against the common behavior seen in worm scans.

 E. Rate limiting: This class limits the rate of scanlike traffic from an infected host.
Various strategies can be used, including limiting the number of new machines
a host can connect to in a window of time, detecting a high connection fail-
ure rate, and limiting the number of unique IP addresses a host can scan in a
window of time. [CHEN04] is an example. This class of countermeasures may
introduce longer delays for normal traffic. This class is also not suited for slow,
stealthy worms that spread slowly to avoid detection based on activity level.

 F. Rate halting: This approach immediately blocks outgoing traffic when a
threshold is exceeded either in outgoing connection rate or diversity of con-
nection attempts [JHI07]. The approach must include measures to quickly
unblock mistakenly blocked hosts in a transparent way. Rate halting can inte-
grate with a signature- or filter-based approach so that once a signature or
filter is generated, every blocked host can be unblocked. Rate halting appears
to offer a very effective countermeasure. As with rate limiting, rate halting
techniques are not suitable for slow, stealthy worms.

Bot Countermeasures

 A number of the countermeasures discussed in this chapter make sense against bots,
including IDSs and digital immune systems. Once bots are activated and an attack is
underway, these countermeasures can be used to detect the attack. But the primary
objective is to try to detect and disable the botnet during its construction phase.

Rootkit Countermeasures

 Rootkits can be extraordinarily difficult to detect and neutralize, particularly so
for kernel-level rootkits. Many of the administrative tools that could be used to
detect a rootkit or its traces can be compromised by the rootkit precisely so that it
is undetectable.

 Countering rootkits requires a variety of network- and computer-level secu-
rity tools. Both network-based and host-based intrusion detection systems can look
for the code signatures of known rootkit attacks in incoming traffic. Host-based
antivirus software can also be used to recognize the known signatures.

 Of course, there are always new rootkits and modified versions of existing
rootkits that display novel signatures. For these cases, a system needs to look for
behaviors that could indicate the presence of a rootkit, such as the interception of

15.5 / DEALING WITH BUFFER OVERFLOW ATTACKS 663

system calls or a keylogger interacting with a keyboard driver. Such behavior detec-
tion is far from straightforward. For example, antivirus software typically intercepts
system calls.

 Another approach is to do some sort of file integrity check. An example of
this is RootkitRevealer, a freeware package from SysInternals. The package com-
pares the results of a system scan using APIs with the actual view of storage using
instructions that do not go through an API. Because a rootkit conceals itself by
modifying the view of storage seen by administrator calls, RootkitRevealer catches
the discrepancy.

 If a kernel-level rootkit is detected, by any means, the only secure and reliable
way to recover is to do an entire new OS install on the infected machine.

15.5 DEALING WITH BUFFER OVERFLOW ATTACKS 3

 Finding and exploiting a stack buffer overflow is not difficult. The large number
of exploits over the previous couple of decades clearly illustrates this. There is
consequently a need to defend systems against such attacks by either preventing
them, or at least detecting and aborting such attacks. This section discusses possible
approaches to implementing such protections. These can be broadly classified into
two categories:

 • Compile-time defenses, which aim to harden programs to resist attacks in new
programs

 • Run-time defenses, which aim to detect and abort attacks in existing programs

 While suitable defenses have been known for a couple of decades, the very large
existing base of vulnerable software and systems hinders their deployment; hence
the interest in run-time defenses, which can be deployed in operating systems and
updates and can provide some protection for existing vulnerable programs. Most of
these techniques are mentioned in [LHEE03].

Compile-Time Defenses

 Compile-time defenses aim to prevent or detect buffer overflows by instrument-
ing programs when they are compiled. The possibilities for doing this range from
choosing a high-level language that does not permit buffer overflows to encourag-
ing safe coding standards, using safe standard libraries, or including additional code
to detect corruption of the stack frame.

CHOICE OF PROGRAMMING LANGUAGE One possibility is to write the program using
a modern high-level programming language, one that has a strong notion of variable
type and what constitutes permissible operations on them. Such languages are not
vulnerable to buffer overflow attacks, because their compilers include additional
code to enforce range checks automatically, removing the need for the programmer
to explicitly code them. The flexibility and safety provided by these languages

3 The material in this section was developed by Lawrie Brown of the Australian Defence Force Academy.

664 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

does come at a cost in resource use, both at compile time and also in additional
code that must execute at run-time to impose checks such as that on buffer limits.
These disadvantages are much less significant than they used to be, due to the rapid
increase in processor performance. Increasingly programs are being written in these
languages and hence should be immune to buffer overflows in their code (though
if they use existing system libraries or run-time execution environments written in
less safe languages, they may still be vulnerable). The distance from the underlying
machine language and architecture also means that access to some instructions and
hardware resources is lost. This limits their usefulness in writing code, such as device
drivers, that must interact with such resources. For these reasons, there is still likely
to be at least some code written in less safe languages such as C.

SAFE CODING TECHNIQUES If languages such as C are being used, programmers
need to be aware that their ability to manipulate pointer addresses and access
memory directly comes at a cost. C was designed as a systems programming
language, running on systems that were vastly smaller and more constrained than
we now use. This meant that C’s designers placed much more emphasis on space
efficiency and performance considerations than on type safety. They assumed that
programmers would exercise due care in writing code using these languages and
take responsibility for ensuring the safe use of all data structures and variables.

 Unfortunately, as several decades of experience has shown, this has not been
the case. This may be seen in large legacy body of potentially unsafe code in the
UNIX and Linux operating systems and applications, some of which are potentially
vulnerable to buffer overflows. 15.6 azx.

 In order to harden these systems, the programmer needs to inspect the code
and rewrite any unsafe coding constructs in a safe manner. Given the rapid uptake
of buffer overflow exploits, this process has begun in some cases. A good exam-
ple is the OpenBSD project, which produces a free, multiplatform 4.4BSD-based
UNIX-like operating system. Among other technology changes, programmers have
undertaken an extensive audit of the existing code base, including the operating
system, standard libraries, and common utilities. This has resulted in what is widely
regarded as one of the safest operating systems in widespread use. The OpenBSD
project claims as of mid-2006 that there has only been one remote hole discov-
ered in the default install in more than 8 years. This is a clearly enviable record.
Microsoft have also undertaken a major project in reviewing their code base, partly
in response to continuing bad publicity over the number of vulnerabilities, including
many buffer overflow issues, that have been found in their operating systems and
applications code. This has clearly been a difficult process, though they claim that
their new Vista operating system will benefit greatly from this process.

LANGUAGE EXTENSIONS AND USE OF SAFE LIBRARIES Given the problems
that can occur in C with unsafe array and pointer references, there have been a
number of proposals to augment compilers to automatically insert range checks
on such references. While this is fairly easy for statically allocated arrays, handling
dynamically allocated memory is more problematic, because the size information
is not available at compile-time. Handling this requires an extension to the
semantics of a pointer to include bounds information and the use of library routines

15.5 / DEALING WITH BUFFER OVERFLOW ATTACKS 665

to ensure that these values are set correctly. Several such approaches are listed in
[LHEE03]. However, there is generally a performance penalty with the use of
such techniques that may or may not be acceptable. These techniques also require
all programs and libraries that require these safety features to be recompiled with
the modified compiler. While this can be feasible for a new release of an operating
system and its associated utilities, there will still likely be problems with third-
party applications.

 A common concern with C comes from the use of unsafe standard library
routines, especially some of the string manipulation routines. One approach to
improving the safety of systems has been to replace these with safer variants. This
can include the provision of new functions, such as strlcpy() in the BSD fam-
ily of systems, including OpenBSD. Using these requires rewriting the source to
conform to the new safer semantics. Alternatively, it involves replacement of the
standard string library with a safer variant. Libsafe is a well-known example of
this. It implements the standard semantics but includes additional checks to ensure
that the copy operations do not extend beyond the local variable space in the stack
frame. So, while it cannot prevent corruption of adjacent local variables, it can
prevent any modification of the old stack frame and return address values, and
thus prevent the classic stack buffer overflow types of attack we examined previ-
ously. This library is implemented as a dynamic library, arranged to load before
the existing standard libraries, and can thus provide protection for existing pro-
grams without requiring them to be recompiled, provided they dynamically access
the standard library routines (as most programs do). The modified library code has
been found to typically be at least as efficient as the standard libraries, and thus
its use is an easy way of protecting existing programs against some forms of buffer
overflow attacks.

STACK PROTECTION MECHANISMS An effective method for protecting programs
against classic stack overflow attacks is to instrument the function entry and exit
code to setup and then check its stack frame for any evidence of corruption. If
any modification is found, the program is aborted rather than allowing the attack
to proceed. There are several approaches to providing this protection, which we
discuss next.

 Stackguard is one of the best known protection mechanisms. It is a GCC
(GNU Compiler Collection) compiler extension that inserts additional function
entry and exit code. The added function entry code writes a canary4 value below
the old frame pointer address, before the allocation of space for local variables.
The added function exit code checks that the canary value has not changed before
continuing with the usual function exit operations of restoring the old frame pointer
and transferring control back to the return address. Any attempt at a classic stack
buffer overflow would have to alter this value in order to change the old frame
pointer and return addresses, and would thus be detected, resulting in the program
being aborted. For this defense to function successfully, it is critical that the canary

4 Named after the miner’s canary used to detect poisonous air in a mine and thus warn the miners in time
for them to escape.

666 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

value be unpredictable and should be different on different systems. If this were not
the case, the attacker would simply ensure the shellcode included the correct canary
value in the required location. Typically, a random value is chosen as the canary
value on process creation and saved as part of the processes state. The code added
to the function entry and exit then uses this value.

 There are some issues with using this approach. First, it requires that all pro-
grams needing protection be recompiled. Second, because the structure of the stack
frame has changed, it can cause problems with programs, such as debuggers, which
analyze stack frames. However, the canary technique has been used to recompile an
entire Linux distribution and provide it with a high level of resistance to stack over-
flow attacks. Similar functionality is available for Windows programs by compiling
them using Microsoft’s /GS Visual C++ compiler option.

Run-Time Defenses

 As has been noted, most of the compile-time approaches require recompilation
of existing programs. Hence, there is interest in run-time defenses that can be
deployed as operating systems updates to provide some protection for existing vul-
nerable programs. These defenses involve changes to the memory management of
the virtual address space of processes. These changes act either to alter the proper-
ties of regions of memory or to make predicting the location of targeted buffers
 sufficiently difficult to thwart many types of attacks.

EXECUTABLE ADDRESS SPACE PROTECTION Many of the buffer overflow attacks
involve copying machine code into the targeted buffer and then transferring
execution to it. A possible defense is to block the execution of code on the stack,
on the assumption that executable code should only be found elsewhere in the
processes address space.

 To support this feature efficiently requires support from the processor’s
memory management unit (MMU) to tag pages of virtual memory as being nonex-
ecutable. Some processors, such as the SPARC used by Solaris, have had support
for this for some time. Enabling its use in Solaris requires a simple kernel param-
eter change. Other processors, such as the x86 family, have not had this support
until recently, with the relatively recent addition of the no-execute bit in its MMU.
Extensions have been made available to Linux, BSD, and other UNIX-style sys-
tems to support the use of this feature. Some indeed are also capable of protecting
the heap as well as the stack, which also is the target of attacks. Support for enabling
no-execute protection is also included in recent Windows systems.

 Making the stack (and heap) nonexecutable provides a high degree of pro-
tection against many types of buffer overflow attacks for existing programs; hence
the inclusion of this practice is standard in a number of recent operating systems
releases. However, one issue is support for programs that do need to place execut-
able code on the stack. This can occur, for example, in just-in-time compilers, such
as is used in the Java Run-time system. Executable code on the stack is also used to
implement nested functions in C (a GCC extension) and also Linux signal handlers.
Special provisions are needed to support these requirements. Nonetheless, this is
regarded as one of the best methods for protecting existing programs and hardening
systems against some attacks.

15.6 / WINDOWS 7 SECURITY 667

ADDRESS SPACE RANDOMIZATION Another run-time technique that can be used
to thwart attacks involves manipulation of the location of key data structures in a
processes address space. In particular, recall that in order to implement the classic
stack overflow attack, the attacker needs to be able to predict the approximate
location of the targeted buffer. The attacker uses this predicted address to determine
a suitable return address to use in the attack to transfer control to the shellcode. One
technique to greatly increase the difficulty of this prediction is to change the address
at which the stack is located in a random manner for each process. The range of
addresses available on modern processors is large (32 bits), and most programs only
need a small fraction of that. Therefore, moving the stack memory region around by
a megabyte or so has minimal impact on most programs but makes predicting the
targeted buffer’s address almost impossible.

 Another target of attack is the location of standard library routines. In an
attempt to bypass protections such as nonexecutable stacks, some buffer overflow
variants exploit existing code in standard libraries. These are typically loaded at
the same address by the same program. To counter this form of attack, we can use
a security extension that randomizes the order of loading standard libraries by a
program and their virtual memory address locations. This makes the address of any
specific function sufficiently unpredictable as to render the chance of a given attack
correctly predicting its address very low.

 The OpenBSD system includes versions of these extensions in its technologi-
cal support for a secure system.

GUARD PAGES A final run-time technique that can be used places guard pages
between critical regions of memory in a processes address space. Again, this
exploits the fact that a process has much more virtual memory available than
it typically needs. Gaps are placed between the ranges of addresses used for
each of the components of the address space. These gaps, or guard pages, are
flagged in the MMU as illegal addresses, and any attempt to access them results
in the process being aborted. This can prevent buffer overflow attacks, typically
of global data, which attempt to overwrite adjacent regions in the processes
address space.

 A further extension places guard pages between stack frames or between dif-
ferent allocations on the heap. This can provide further protection against stack and
heap overflow attacks, but at cost in execution time supporting the large number of
page mappings necessary.

15.6 WINDOWS 7 SECURITY

 A good example of the access control concepts we have been discussing is the
Windows access control facility, which exploits object-oriented concepts to provide
a powerful and flexible access control capability.

 Windows provides a uniform access control facility that applies to processes,
threads, files, semaphores, windows, and other objects. Access control is governed
by two entities: an access token associated with each process and a security descrip-
tor associated with each object for which interprocess access is possible.

668 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

Access Control Scheme

 When a user logs on to a Windows system, Windows uses a name/password scheme
to authenticate the user. If the logon is accepted, a process is created for the user and
an access token is associated with that process object. The access token, whose details
are described later, include a security ID (SID), which is the identifier by which this
user is known to the system for purposes of security. The token also contains SIDs
for the security groups to which the user belongs. If the initial user process spawns a
new process, the new process object inherits the same access token.

 The access token serves two purposes:

 1. It keeps all necessary security information together to speed access validation.
When any process associated with a user attempts access, the security subsys-
tem can make use of the token associated with that process to determine the
user’s access privileges.

 2. It allows each process to modify its security characteristics in limited ways
without affecting other processes running on behalf of the user.

 The chief significance of the second point has to do with privileges that may be
associated with a user. The access token indicates which privileges a user may have.
Generally, the token is initialized with each of these privileges in a disabled state.
Subsequently, if one of the user’s processes needs to perform a privileged opera-
tion, the process may enable the appropriate privilege and attempt access. It would
be undesirable to share the same token among all of the user’s processes, because in
that case enabling a privilege for one process enables it for all of them.

 Associated with each object for which interprocess access is possible is a security
descriptor. The chief component of the security descriptor is an access control list that
specifies access rights for various users and user groups for this object. When a process
attempts to access this object, the SIDs in the process token are matched against the
access control list of the object to determine if access will be allowed or denied.

 When an application opens a reference to a securable object, Windows veri-
fies that the object’s security descriptor grants the process the requested access. If
the check succeeds, Windows caches the resulting granted access rights.

 An important aspect of Windows security is the concept of impersonation,
which simplifies the use of security in a client/server environment. If client and
server talk through a RPC connection, the server can temporarily assume the iden-
tity of the client so that it can evaluate a request for access relative to that client’s
rights. After the access, the server reverts to its own identity.

Access Token

 Figure 15.11a shows the general structure of an access token, which includes the
following parameters:

 • Security ID: Identifies a user uniquely across all of the machines on the net-
work. This generally corresponds to a user’s logon name. Special user SIDs
were added in Windows 7 for use by processes and services. These specially
managed SIDs are designed for secure management; they do not use the ordi-
nary password polices human accounts do.

15.6 / WINDOWS 7 SECURITY 669

 • Group SIDs: A list of the groups to which this user belongs. A group is simply
a set of user IDs that are identified as a group for purposes of access control.
Each group has a unique group SID. Access to an object can be defined on the
basis of group SIDs, individual SIDs, or a combination. There is also a SID
which reflects the process integrity level (low, medium, high, or system).

 • Privileges: A list of security-sensitive system services that this user may call,
for example CreateToken. Another example is the SeBackupPrivilege; users
with this privilege are allowed to use a backup tool to back up files that they
normally would not be able to read.

 • Default owner: If this process creates another object, this field specifies the
owner of the new object. Generally, the owner of a new object is the same
as the owner of the spawning process. However, a user may specify that the
default owner of any processes spawned by this process is a group SID to
which this user belongs.

 • Default ACL: This is an initial list of protections applied to the objects that
the user creates. The user may subsequently alter the ACL for any object that
it owns or that one of its groups owns.

Security Descriptors

 Figure 15.11b shows the general structure of a security descriptor, which includes
the following parameters:

 • Flags: Define the type and contents of a security descriptor. The flags indicate
whether or not the SACL and DACL are present, whether or not they were
placed on the object by a defaulting mechanism, and whether the pointers
in the descriptor use absolute or relative addressing. Relative descriptors are
required for objects that are transmitted over a network, such as information
transmitted in a RPC.

ACL headerSecurity ID (SID)

Group SIDS

Privileges

Default owner

Default ACL

ACE header

Flags

Owner

System access
control list

Discretionary
access

control list

Access mask

SID

ACE header

Access mask

SID

(c) Access control list(b) Security descriptor(a) Access token

Figure 15.11 Windows Security Structures

670 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

 • Owner: The owner of the object can generally perform any action on the secu-
rity descriptor. The owner can be an individual or a group SID. The owner has
the authority to change the contents of the DACL.

 • System a ccess control list (SACL): Specifies what kinds of operations on the
object should generate audit messages. An application must have the corre-
sponding privilege in its access token to read or write the SACL of any object.
This is to prevent unauthorized applications from reading SACLs (thereby
learning what not to do to avoid generating audits) or writing them (to gener-
ate many audits to cause an illicit operation to go unnoticed). The SACL also
specifies the object integrity level. Processes cannot modify an object unless
the process integrity level meets or exceeds the level on the object.

 • Discretionary a ccess control list (DACL): Determines which users and groups
can access this object for which operations. It consists of a list of access control
entries (ACEs).

 When an object is created, the creating process can assign as owner its own
SID or any group SID in its access token. The creating process cannot assign an
owner that is not in the current access token. Subsequently, any process that has
been granted the right to change the owner of an object may do so, but again with
the same restriction. The reason for the restriction is to prevent a user from cover-
ing his or her tracks after attempting some unauthorized action.

 Let us look in more detail at the structure of access control lists, because
these are at the heart of the Windows access control facility (Figure 15.11c). Each
list consists of an overall header and a variable number of access control entries.
Each entry specifies an individual or group SID and an access mask that defines
the rights to be granted to this SID. When a process attempts to access an object,
the object manager in the Windows Executive reads the SID and group SIDs from
the access token along with the integrity level SID. If the access requested includes
modifying the object, the integrity level is checked against the object integrity level
in the SACL. If that test passes, the object manager then scans down the object’s
DACL. If a match is found—that is, if an ACE is found with a SID that matches
one of the SIDs from the access token—then the process can have the access rights
specified by the access mask in that ACE. This also may include denying access, in
which case the access request fails. The first matching ACE determines the result
of the access check.

 Figure 15.12 shows the contents of the access mask. The least significant 16 bits
specify access rights that apply to a particular type of object. For example, bit
0 for a file object is FILE_READ_DATA access and bit 0 for an event object is
EVENT_QUERY_STATE access.

 The most significant 16 bits of the mask contains bits that apply to all types of
objects. Five of these are referred to as standard access types:

 • Synchronize: Gives permission to synchronize execution with some event asso-
ciated with this object. In particular, this object can be used in a wait function.

 • Write_owner: Allows a program to modify the owner of the object. This is
useful because the owner of an object can always change the protection on the
object. (The owner may not be denied Write DAC access.)

15.6 / WINDOWS 7 SECURITY 671

 • Write_DAC: Allows the application to modify the DACL and hence the
 protection on this object.

 • Read_control: Allows the application to query the owner and DACL fields of
the security descriptor of this object.

 • Delete: Allows the application to delete this object.

 The high-order half of the access mask also contains the four generic access
types. These bits provide a convenient way to set specific access types in a number
of different object types. For example, suppose an application wishes to create sev-
eral types of objects and ensure that users have read access to the objects, even
though read has a somewhat different meaning for each object type. To protect
each object of each type without the generic access bits, the application would have
to construct a different ACE for each type of object and be careful to pass the cor-
rect ACE when creating each object. It is more convenient to create a single ACE
that expresses the generic concept “allow read,” and simply apply this ACE to each
object that is created, and have the right thing happen. That is the purpose of the
generic access bits, which are

 • Generic_all : Allow all access

 • Generic_execute : Allow execution if executable

 • Generic_write : Allow write access

 • Generic_read : Allow read-only access

 The generic bits also affect the standard access types. For example, for
a file object, the Generic_Read bit maps to the standard bits Read_Control and
Synchronize and to the object-specific bits File_Read_Data, File_Read_Attributes,
and File_Read_EA. Placing an ACE on a file object that grants some SID Generic_
Read grants those five access rights as if they had been specified individually in the
access mask.

Delete
Read control

Write DAC
Write owner
SynchronizeGeneric

access types

Standard
access types

Access system security

Maximum allowed

Generic all
Generic execute
Generic write
Generic read

Specific access types

Figure 15.12 Access Mask

672 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

 The remaining two bits in the access mask have special meanings. The Access_
System_Security bit allows modifying audit and alarm control for this object.
However, not only must this bit be set in the ACE for a SID but the access token for
the process with that SID must have the corresponding privilege enabled.

 Finally, the Maximum_Allowed bit is not really an access bit, but a bit that
modifies the algorithm for scanning the DACL for this SID. Normally, Windows
will scan through the DACL until it reaches an ACE that specifically grants (bit
set) or denies (bit not set) the access requested by the requesting process or until it
reaches the end of the DACL, in which latter case access is denied. The Maximum_
Allowed bit allows the object’s owner to define a set of access rights that is the
maximum that will be allowed to a given user. With this in mind, suppose that an
application does not know all of the operations that it is going to be asked to per-
form on an object during a session. There are three options for requesting access:

 1. Attempt to open the object for all possible accesses. The disadvantage of this
approach is that the access may be denied even though the application may
have all of the access rights actually required for this session.

 2. Only open the object when a specific access is requested, and open a new han-
dle to the object for each different type of request. This is generally the pre-
ferred method because it will not unnecessarily deny access, nor will it allow
more access than necessary. In many cases the object itself does not need to
be referenced a second time, but the DuplicateHandle function can be used to
make a copy of the handle with a lower level of access.

 3. Attempt to open the object for as much access as the object will allow this
SID. The advantage is that the user will not be artificially denied access, but
the application may have more access than it needs. This latter situation may
mask bugs in the application.

 An important feature of Windows security is that applications can make
use of the Windows security framework for user-defined objects. For example, a
database server might create its own security descriptors and attach them to por-
tions of a database. In addition to normal read/write access constraints, the server
could secure database-specific operations, such as scrolling within a result set or
performing a join. It would be the server’s responsibility to define the meaning of
special rights and perform access checks. But the checks would occur in a stand-
ard context, using systemwide user/group accounts and audit logs. The extensible
security model should also prove useful to implementers of non-Microsoft file
systems.

15.7 RECOMMENDED READING AND WEB SITES

 The topics in this chapter are covered in more detail in [STAL08].
 [OGOR03] is the paper to read for an authoritative survey of user authenti-

cation. [BURR04] is also a worthwhile survey. [SAND94] is an excellent overview
of access control. [SAND96] is a comprehensive overview of RBAC. [SAUN01]
 compares RBAC and DAC. [SCAR07] is a detailed and worthwhile treatment

15.7 / RECOMMENDED READING AND WEB SITES 673

of intrusion detection. Two short but useful survey articles on the subject are
[KENT00] and [MCHU00]. [NING04] surveys recent advances in intrusion
detection techniques. Good overview articles on antivirus approaches and mal-
ware defense generally are [CASS01], [FORR97], [KEPH97a], and [NACH97].
[LHEE03] surveys a range of alternative buffer overflow techniques, including a
number not mentioned in this chapter, along with possible defensive techniques.
The original published description of buffer overflow attacks is given in [LEVY96].
[KUPE05] is a good overview.

BURR04 Burr, W., Dodson, D., and Polk, W. Electronic Authentication Guideline.
Gaithersburg, MD: National Institute of Standards and Technology, Special
Publication 800-63, September 2004.

CASS01 Cass, S. “Anatomy of Malice.” IEEE Spectrum , November 2001.
FORR97 Forrest, S., Hofmeyr, S., and Somayaji, A. “Computer Immunology.”

Communications of the ACM , October 1997.
KENT00 Kent, S. “On the Trail of Intrusions into Information Systems.” IEEE

Spectrum , December 2000.
KEPH97a Kephart, J., Sorkin, G., Chess, D., and White, S. “Fighting Computer

Viruses.” Scientific American , November 1997.
KUPE05 Kuperman, B., et al. “Detection and Prevention of Stack Buffer Overflow

Attacks.” Communications of the ACM , November 2005.
LEVY96 Levy, E., “Smashing the Stack for Fun and Profit.” Phrack Magazine , File 14,

Issue 49, November 1996.
LHEE03 Lhee, K., and Chapin, S., “Buffer Overflow and Format String Overflow

Vulnerabilities.” Software—Practice and Experience , Vol. 33, 2003.
MCHU00 McHugh, J., Christie, A., and Allen, J. “The Role of Intrusion Detection

Systems.” IEEE Software , September/October 2000.
NACH97 Nachenberg, C. “Computer Virus-Antivirus Coevolution.” Communications

of the ACM , January 1997.
NING04 Ning, P., et al. “Techniques and Tools for Analyzing Intrusion Alerts.” ACM

Transactions on Information and System Security , May 2004.
OGOR03 O’Gorman, L. “Comparing Passwords, Tokens and Biometrics for User

Authentication.” Proceedings of the IEEE , December 2003.
SAND94 Sandhu, R., and Samarati, P. “Access Control: Principles and Practice.”

IEEE Communications Magazine , February 1996.
SAND96 Sandhu, R., et al. “Role-Based Access Control Models.” Computer ,

September 1994.
SAUN01 Saunders, G., Hitchens, M., and Varadharajan, V. “Role-Based

Access Control and the Access Control Matrix.” Operating Systems Review ,
October 2001.

SCAR07 Scarfone, K., and Mell, P. Guide to Intrusion Detection and Prevention
Systems . NIST Special Publication SP 800-94, February 2007.

STAL08 Stallings, W., and Brown L. Computer Security: Principles and Practice .
Upper Saddle River, NJ: Prentice Hall, 2008.

674 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

 Recommended Web sites:

 • Password usage and generation: NIST documents on this topic

 • Biometrics Consortium: Government-sponsored site for the research, testing, and eval-
uation of biometric technology

 • NIST RBAC site: Includes numerous documents, standards, and software on RBAC

 • STAT Project: A research and open source project that focuses on signature-based
intrusion detection tools for hosts, applications, and networks

 • Snort: Web site for Snort, an open source network intrusion prevention and detection
system

 • AntiVirus Online: IBM’s site on virus information

 • VirusList: Site maintained by commercial antivirus software provider. Good collection
of useful information

15.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 access control
 antivirus
 audit records
 authentication
 bot
 buffer overflow
 digital immune system

 discretionary access control
(DAC)

 hashed passwords
 host-based IDS
 intrusion detection
 intrusion detections system

(IDS)

 malware
 memory cards
 role-based access control

(RBAC)
 rootkit
 smart cards
 worm

Review Questions
 15.1 In general terms, what are four means of authenticating a user’s identity?
 15.2 Explain the purpose of the salt in Figure 15.1 .
 15.3 Explain the difference between a simple memory card and a smart card.
 15.4 List and briefly describe the principal physical characteristics used for biometric

 identification.
 15.5 Briefly describe the difference between DAC and RBAC.
 15.6 Explain the difference between anomaly intrusion detection and signature intrusion

detection.
 15.7 What is a digital immune system?
 15.8 How does behavior-blocking software work?
 15.9 Describe some worm countermeasures.
 15.10 What types of programming languages are vulnerable to buffer overflows?
 15.11 What are the two broad categories of defenses against buffer overflows?
 15.12 List and briefly describe some of the defenses against buffer overflows that can be

used when compiling new programs.
 15.13 List and briefly describe some of the defenses against buffer overflows that can be

implemented when running existing, vulnerable programs.

15.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 675

Problems

 15.1 Explain the suitability or unsuitability of the following passwords:

a. YK 334
b. mfmitm (for “my favorite

movie is tender mercies”)
c. Natalie1
d. Washington

e. Aristotle
f. tv9stove
g. 12345678
h. dribgib

 15.2 An early attempt to force users to use less predictable passwords involved computer-
supplied passwords. The passwords were eight characters long and were taken from
the character set consisting of lowercase letters and digits. They were generated by a
pseudorandom number generator with 2 15 possible starting values. Using the technol-
ogy of the time, the time required to search through all character strings of length 8
from a 36-character alphabet was 112 years. Unfortunately, this is not a true reflection
of the actual security of the system. Explain the problem.

 15.3 Assume that passwords are selected from four-character combinations of 26 alpha-
betic characters. Assume that an adversary is able to attempt passwords at a rate of
one per second.
a. Assuming no feedback to the adversary until each attempt has been completed,

what is the expected time to discover the correct password?
b. Assuming feedback to the adversary flagging an error as each incorrect character

is entered, what is the expected time to discover the correct password?
 15.4 Assume that source elements of length k are mapped in some uniform fashion into a

target elements of length p . If each digit can take on one of r values, then the number
of source elements is rk and the number of target elements is the smaller number rp .
A particular source element xi is mapped to a particular target element yj .
a. What is the probability that the correct source element can be selected by an ad-

versary on one try?
b. What is the probability that a different source element xk (xi ≠ xk) that results in

the same target element, yj , could be produced by an adversary?
c. What is the probability that the correct target element can be produced by an

adversary on one try?
 15.5 Assume that passwords are limited to the use of the 95 printable ASCII characters

and that all passwords are 10 characters in length. Assume a password cracker with
an encryption rate of 6.4 million encryptions per second. How long will it take to test
exhaustively all possible passwords on a UNIX system?

 15.6 Because of the known risks of the UNIX password system, the SunOS-4.0 documen-
tation recommends that the password file be removed and replaced with a publicly
readable file called /etc/publickey. An entry in the file for user A consists of a user’s
identifier IDA , the user’s public key, PUa , and the corresponding private key, PRa . This
private key is encrypted using DES with a key derived from the user’s login password
Pa . When A logs in, the system decrypts E(Pa , PRa) to obtain PRa .
a. The system then verifies that Pa was correctly supplied. How?
b. How can an opponent attack this system?

 15.7 It was stated that the inclusion of the salt in the UNIX password scheme increases the dif-
ficulty of guessing by a factor of 4096. But the salt is stored in plaintext in the same entry
as the corresponding ciphertext password. Therefore, those two characters are known to
the attacker and need not be guessed. Why is it asserted that the salt increases security?

 15.8 Assuming that you have successfully answered the preceding problem and under-
stand the significance of the salt, here is another question. Wouldn’t it be possible to
thwart completely all password crackers by dramatically increasing the salt size to,
say, 24 or 48 bits?

676 CHAPTER 15 / COMPUTER SECURITY TECHNIQUES

 15.9 For the DAC model discussed in Section 15.2 , an alternative representation of the
protection state is a directed graph. Each subject and each object in the protection
state is represented by a node (a single node is used for an entity that is both subject
and object). A directed line from a subject to an object indicates an access right, and
the label on the link defines the access right.
a. Draw a directed graph that corresponds to the access matrix of Figure 12.15a .
b. Draw a directed graph that corresponds to the access matrix of Figure 15.4 .
c. Is there a one-to-one correspondence between the directed graph representation

and the access matrix representation? Explain.
 15.10 UNIX treats file directories in the same fashion as files; that is, both are defined by

the same type of data structure, called an inode. As with files, directories include a
9-bit protection string. If care is not taken, this can create access control problems. For
example, consider a file with protection mode 644 (octal) contained in a directory with
protection mode 730. How might the file be compromised in this case?

 15.11 In the traditional UNIX file access model, UNIX systems provide a default setting for
newly created files and directories, which the owner may later change. The default is typ-
ically full access for the owner combined with one of the following: no access for group
and other, read/execute access for group and none for other, or read/execute access for
both group and other. Briefly discuss the advantages and disadvantages of each of these
cases, including an example of a type of organization where each would be appropriate.

 15.12 Consider user accounts on a system with a Web server configured to provide access to
user Web areas. In general, this scheme uses a standard directory name, such as public_
html , in a user’s home directory. This acts as the user’s Web area if it exists. However,
to allow the Web server to access the pages in this directory, it must have at least search
(execute) access to the user’s home directory, read/execute access to the Web directory,
and read access to any Web pages in it. Consider the interaction of this requirement
with the cases you discussed for the preceding problem. What consequences does this
requirement have? Note that a Web server typically executes as a special user, and in a
group that is not shared with most users on the system. Are there some circumstances
when running such a Web service is simply not appropriate? Explain.

 15.13 Assume a system with N job positions. For job position i , the number of individual users
in that position is Ui and the number of permissions required for the job position is Pi .
a. For a traditional DAC scheme, how many relationships between users and permis-

sions must be defined?
b. For a RBAC scheme, how many relationships between users and permissions must

be defined?
 15.14 In the context of an IDS, we define a false positive to be an alarm generated by an IDS

in which the IDS alerts to a condition that is actually benign. A false negative occurs
when an IDS fails to generate an alarm when an alert-worthy condition is in effect.
Using the following diagram, depict two curves that roughly indicate false positives
and false negatives, respectively.

Conservativeness
of signatures

Frequency
of alerts

More specific
or stricter

Less specific
or looser

 15.15 Rewrite the function shown in Figure 7.13a so that it is no longer vulnerable to a stack
buffer overflow.

677

 16.1 Client/Server Computing
 What Is Client/Server Computing?
 Client/Server Applications
 Middleware

 16.2 Service-Oriented Architecture

 16.3 Distributed Message Passing
 Reliability versus Unreliability
 Blocking versus Nonblocking

 16.4 Remote Procedure Calls
 Parameter Passing
 Parameter Representation
 Client/Server Binding
 Synchronous versus Asynchronous
 Object-Oriented Mechanisms

 16.5 Clusters
 Cluster Configurations
 Operating System Design Issues
 Cluster Computer Architecture
 Clusters Compared to SMP

 16.6 Windows Cluster Server

 16.7 Beowulf and Linux Clusters
 Beowulf Features
 Beowulf Software

 16.8 Summary

 16.9 Recommended Reading and Web Sites

 16.10 Key Terms, Review Questions, and Problems

DISTRIBUTED PROCESSING,
CLIENT/SERVER, AND CLUSTERS

CHAPTER

Distributed Systems PART 8

678 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

 The reader who has persevered thus far in this account will realize the
difficulties that were coped with, the hazards that were encountered,
the mistakes that were made, and the work that was done.

 — THE WORLD CRISIS , Winston Churchill

LEARNING OBJECTIVES

 After studying this chapter, you should be able to:

• Present a summary of the key aspects of client/server computing.
• Define service-oriented architecture.
• Understand the principle design issues for distributed message passing.
• Understand the principle design issues for remote procedure calls.
• Understand the principle design issues for clusters.
• Describe the cluster mechanisms in Windows 7 and Beowulf.

 In this chapter, we begin with an examination of some of the key concepts in distributed
software, including client/server architecture, message passing, and remote procedure
calls. Then we examine the increasingly important cluster architecture.

 Chapters 17 and 18 complete our discussion of distributed systems.

16.1 CLIENT/SERVER COMPUTING

 The concept of client/server computing, and related concepts, has become increas-
ingly important in information technology systems. This section begins with a
description of the general nature of client/server computing. This is followed by a
discussion of alternative ways of organizing the client/server functions. The issue of
file cache consistency, raised by the use of file servers, is then examined. Finally, this
section introduces the concept of middleware.

What Is Client/Server Computing?

 As with other new waves in the computer field, client/server computing comes with
its own set of jargon words. Table 16.1 lists some of the terms that are commonly
found in descriptions of client/server products and applications.

 Figure 16.1 attempts to capture the essence of the client/server concept. As the
term suggests, a client/server environment is populated by clients and servers. The
client machines are generally single-user PCs or workstations that provide a highly
user-friendly interface to the end user. The client-based station generally presents
the type of graphical interface that is most comfortable to users, including the use
of windows and a mouse. Microsoft Windows and Macintosh OS provide examples
of such interfaces. Client-based applications are tailored for ease of use and include
such familiar tools as the spreadsheet.

 Each server in the client/server environment provides a set of shared services
to the clients. The most common type of server currently is the database server,

16.1 / CLIENT/SERVER COMPUTING 679

usually controlling a relational database. The server enables many clients to share
access to the same database and enables the use of a high-performance computer
system to manage the database.

 In addition to clients and servers, the third essential ingredient of the client/
server environment is the network . Client/server computing is typically distributed
computing. Users, applications, and resources are distributed in response to business
requirements and linked by a single LAN or WAN or by an internet of networks.

Table 16.1 Client/Server Terminology

Applications Programming Interface (API)

 A set of function and call programs that allow clients and servers to intercommunicate

Client

 A networked information requester, usually a PC or workstation, that can query database and/or other
information from a server

Middleware

 A set of drivers, APIs, or other software that improves connectivity between a client application and a server

Relational Database

 A database in which information access is limited to the selection of rows that satisfy all search criteria

Server

 A computer, usually a high-powered workstation, a minicomputer, or a mainframe, that houses information
for manipulation by networked clients

Structured Query Language (SQL)

 A language developed by IBM and standardized by ANSI for addressing, creating, updating, or querying
relational databases

LAN or WAN
or Internet

Workstation
(client)

Server

Figure 16.1 Generic Client/Server Environment

680 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

 How does a client/server configuration differ from any other distributed
processing solution? There are a number of characteristics that stand out and that,
together, make client/server distinct from other types of distributed processing:

 • There is a heavy reliance on bringing user-friendly applications to the user
on his or her own system. This gives the user a great deal of control over the
timing and style of computer usage and gives department-level managers the
ability to be responsive to their local needs.

 • Although applications are dispersed, there is an emphasis on centralizing cor-
porate databases and many network management and utility functions. This
enables corporate management to maintain overall control of the total capital
investment in computing and information systems and to provide interoper-
ability so that systems are tied together. At the same time it relieves individual
departments and divisions of much of the overhead of maintaining sophis-
ticated computer-based facilities but enables them to choose just about any
type of machine and interface they need to access data and information.

 • There is a commitment, both by user organizations and vendors, to open and
modular systems. This means that the user has more choice in selecting prod-
ucts and in mixing equipment from a number of vendors.

 • Networking is fundamental to the operation. Thus, network management and
network security have a high priority in organizing and operating information
systems.

Client/Server Applications

 The key feature of a client/server architecture is the allocation of application-level tasks
between clients and servers. Figure 16.2 illustrates the general case. In both client and
server, of course, the basic software is an operating system running on the hardware
platform. The platforms and the operating systems of client and server may differ.
Indeed, there may be a number of different types of client platforms and operating

Communications
software

Server
operating system

Hardware platform

Presentation services

Application logic
(client portion)

Communications
software

Client
operating system

Hardware platform

Client workstation

Application logic
(server portion)

Server

Request

Response

Protocol
interaction

Figure 16.2 Generic Client/Server Architecture

16.1 / CLIENT/SERVER COMPUTING 681

systems and a number of different types of server platforms in a single environment.
As long as a particular client and server share the same communications protocols and
support the same applications, these lower-level differences are irrelevant.

 It is the communications software that enables client and server to interoper-
ate. The principal example of such software is TCP/IP. Of course, the point of all of
this support software (communications and operating system) is to provide a base
for distributed applications. Ideally, the actual functions performed by the applica-
tion can be split up between client and server in a way that optimizes the use of
resources. In some cases, depending on the application needs, the bulk of the appli-
cations software executes at the server, while in other cases, most of the application
logic is located at the client.

 An essential factor in the success of a client/server environment is the way
in which the user interacts with the system as a whole. Thus, the design of the user
interface on the client machine is critical. In most client/server systems, there is
heavy emphasis on providing a graphical user interface (GUI) that is easy to use,
easy to learn, yet powerful and flexible. Thus, we can think of a presentation serv-
ices module in the client workstation that is responsible for providing a user-friendly
interface to the distributed applications available in the environment.

DATABASE APPLICATIONS As an example that illustrates the concept of splitting
application logic between client and server, let us consider one of the most common
families of client/server applications: those that use relational databases. In this
environment, the server is essentially a database server. Interaction between client
and server is in the form of transactions in which the client makes a database request
and receives a database response.

 Figure 16.3 illustrates, in general terms, the architecture of such a system. The
server is responsible for maintaining the database, for which purpose a complex

Communications
software

Database management
system

Server operating system

Hardware platform

Database logic

Server

Presentation services

Application logic

Communications
software

Client
operating system

Hardware platform

Client workstation

Database logic

Request

Response

Protocol
interaction

Figure 16.3 Client/Server Architecture for Database Applications

682 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

database management system software module is required. A variety of different
applications that make use of the database can be housed on client machines. The
“glue” that ties client and server together is software that enables the client to make
requests for access to the server’s database. A popular example of such logic is the
structured query language (SQL).

 Figure 16.3 suggests that all of the application logic—the software for “number
crunching” or other types of data analysis—is on the client side, while the server is
only concerned with managing the database. Whether such a configuration is appro-
priate depends on the style and intent of the application. For example, suppose that
the primary purpose is to provide online access for record lookup. Figure 16.4a sug-
gests how this might work. Suppose that the server is maintaining a database of 1
million records (called rows in relational database terminology), and the user wants
to perform a lookup that should result in zero, one, or at most a few records. The
user could search for these records using a number of search criteria (e.g., records
older than 1992, records referring to individuals in Ohio, records referring to a spe-
cific event or characteristic, etc.). An initial client query may yield a server response
that there are 100,000 records that satisfy the search criteria. The user then adds
additional qualifiers and issues a new query. This time, a response indicating that
there are 1,000 possible records is returned. Finally, the client issues a third request
with additional qualifiers. The resulting search criteria yield a single match, and the
record is returned to the client.

Initial query

100,000 possible records

Next query

1,000 possible records

Final query

One record returned 1,000,000
record

database

ServerClient

(a) Desirable client/server use

Query

300,000 records returned

1,000,000
record

database

Server

Client

(b) Misused client/server

Figure 16.4 Client/Server Database Usage

16.1 / CLIENT/SERVER COMPUTING 683

 The preceding application is well suited to a client/server architecture for two
reasons:

 1. There is a massive job of sorting and searching the database. This requires
a large disk or bank of disks, a high-speed CPU, and a high-speed I/O archi-
tecture. Such capacity and power is not needed and is too expensive for a
single-user workstation or PC.

 2. It would place too great a traffic burden on the network to move the entire
1-million record file to the client for searching. Therefore, it is not enough for
the server just to be able to retrieve records on behalf of a client; the server
needs to have database logic that enables it to perform searches on behalf of
a client.

 Now consider the scenario of Figure 16.4b , which has the same 1-million-
record database. In this case, a single query results in the transmission of 300,000
records over the network. This might happen if, for example, the user wishes to find
the grand total or mean value of some field across many records or even the entire
database.

 Clearly, this latter scenario is unacceptable. One solution to this problem,
which maintains the client/server architecture with all of its benefits, is to move
part of the application logic over to the server. That is, the server can be equipped
with application logic for performing data analysis as well as data retrieval and data
searching.

CLASSES OF CLIENT/SERVER APPLICATIONS Within the general framework of
client/server, there is a spectrum of implementations that divide the work between
client and server differently. Figure 16.5 illustrates in general terms some of the
major options for database applications. Other splits are possible, and the options
may have a different characterization for other types of applications. In any case, it
is useful to examine this figure to get a feel for the kind of trade-offs possible.

 Figure 16.5 depicts four classes:

 • Host-based processing: Host-based processing is not true client/server comput-
ing as the term is generally used. Rather, host-based processing refers to the
traditional mainframe environment in which all or virtually all of the process-
ing is done on a central host. Often the user interface is via a dumb terminal.
Even if the user is employing a microcomputer, the user’s station is generally
limited to the role of a terminal emulator.

 • Server-based processing: The most basic class of client/server configuration
is one in which the client is principally responsible for providing a graphical
user interface, while virtually all of the processing is done on the server. This
configuration is typical of early client/server efforts, especially departmental-
level systems. The rationale behind such configurations is that the user work-
station is best suited to providing a user-friendly interface and that databases
and applications can easily be maintained on central systems. Although the
user gains the advantage of a better interface, this type of configuration does
not generally lend itself to any significant gains in productivity or to any funda-
mental changes in the actual business functions that the system supports.

684 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

 • Client-based processing: At the other extreme, virtually all application
processing may be done at the client, with the exception of data validation
routines and other database logic functions that are best performed at the
server. Generally, some of the more sophisticated database logic functions
are housed on the client side. This architecture is perhaps the most common
 client/server approach in current use. It enables the user to employ applica-
tions tailored to local needs.

 • Cooperative processing: In a cooperative processing configuration, the
 application processing is performed in an optimized fashion, taking advantage
of the strengths of both client and server machines and of the distribution of
data. Such a configuration is more complex to set up and maintain but, in the
long run, this type of configuration may offer greater user productivity gains
and greater network efficiency than other client/server approaches.

 Figures 16.5c and 16.5d correspond to configurations in which a considerable
fraction of the load is on the client. This so-called fat client model has been popu-
larized by application development tools such as Sybase Inc.’s PowerBuilder and
Gupta Corp.’s SQL Windows. Applications developed with these tools are typically
departmental in scope, supporting between 25 and 150 users [ECKE95]. The main

DBMS

Database logic

Application logic

DBMS

Database logic

Application logic

DBMS

Database logic

DBMS

Database logicDatabase logic

Application logicApplication logic

Presentation logic

Presentation logic

Presentation logic

Application logic

Presentation logic

(a) Host-based processing

(b) Server-based processing

(c) Cooperative processing

(d) Client-based processing

Client Server

Figure 16.5 Classes of Client/Server Applications

16.1 / CLIENT/SERVER COMPUTING 685

benefit of the fat client model is that it takes advantage of desktop power, offload-
ing application processing from servers and making them more efficient and less
likely to be bottlenecks.

 There are, however, several disadvantages to the fat client strategy. The addi-
tion of more functions rapidly overloads the capacity of desktop machines, forcing
companies to upgrade. If the model extends beyond the department to incorporate
many users, the company must install high-capacity LANs to support the large
volumes of transmission between the thin servers and the fat clients. Finally, it is
difficult to maintain, upgrade, or replace applications distributed across tens or
hundreds of desktops.

 Figure 16.5b is representative of a thin client approach. This approach more
nearly mimics the traditional host-centered approach and is often the migration
path for evolving corporate-wide applications from the mainframe to a distributed
environment.

THREE-TIER CLIENT/SERVER ARCHITECTURE The traditional client/server
architecture involves two levels, or tiers: a client tier and a server tier. A three-
tier architecture is also common (Figure 16.6). In this architecture, the application
software is distributed among three types of machines: a user machine, a middle-tier
server, and a backend server. The user machine is the client machine we have been
discussing and, in the three-tier model, is typically a thin client. The middle-tier
machines are essentially gateways between the thin user clients and a variety of

Client

Middle-tier server
(application server)

Back-end servers
(data servers)

Figure 16.6 Three-Tier Client/Server Architecture

686 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

backend database servers. The middle-tier machines can convert protocols and map
from one type of database query to another. In addition, the middle-tier machine
can merge/integrate results from different data sources. Finally, the middle-tier
machine can serve as a gateway between the desktop applications and the backend
legacy applications by mediating between the two worlds.

 The interaction between the middle-tier server and the backend server also
follows the client/server model. Thus, the middle-tier system acts as both a client
and a server.

FILE CACHE CONSISTENCY When a file server is used, performance of file I/O can
be noticeably degraded relative to local file access because of the delays imposed
by the network. To reduce this performance penalty, individual systems can use file
caches to hold recently accessed file records. Because of the principle of locality, use
of a local file cache should reduce the number of remote server accesses that must
be made.

 Figure 16.7 illustrates a typical distributed mechanism for caching files among
a networked collection of workstations. When a process makes a file access, the
request is presented first to the cache of the process’s workstation (“file traffic”). If
not satisfied there, the request is passed either to the local disk, if the file is stored
there (“disk traffic”), or to a file server, where the file is stored (“server traffic”).
At the server, the server’s cache is first interrogated and, if there is a miss, then the
server’s disk is accessed. The dual caching approach is used to reduce communica-
tions traffic (client cache) and disk I/O (server cache).

 When caches always contain exact copies of remote data, we say that the caches
are consistent . It is possible for caches to become inconsistent when the remote data
are changed and the corresponding obsolete local cache copies are not discarded.
This can happen if one client modifies a file that is also cached by other clients. The
difficulty is actually at two levels. If a client adopts a policy of immediately writing

Server
traffic

File
traffic

Server
traffic

Disk
traffic

Network

Server
disk

Disk
traffic

File
traffic

Client
disk

Client
cache

Server
cache

Client
cache

Figure 16.7 Distributed File Cacheing in Sprite

16.1 / CLIENT/SERVER COMPUTING 687

any changes to a file back to the server, then any other client that has a cache copy
of the relevant portion of the file will have obsolete data. The problem is made even
worse if the client delays writing back changes to the server. In that case, the server
itself has an obsolete version of the file, and new file read requests to the server
might obtain obsolete data. The problem of keeping local cache copies up to date to
changes in remote data is known as the cache consistency problem.

 The simplest approach to cache consistency is to use file-locking techniques to
prevent simultaneous access to a file by more than one client. This guarantees con-
sistency at the expense of performance and flexibility. A more powerful approach
is provided with the facility in Sprite [NELS88, OUST88]. Any number of remote
processes may open a file for read and create their own client cache. But when an
open file request to a server requests write access and other processes have the file
open for read access, the server takes two actions. First, it notifies the writing process
that, although it may maintain a cache, it must write back all altered blocks immedi-
ately upon update. There can be at most one such client. Second, the server notifies
all reading processes that have the file open that the file is no longer cacheable.

Middleware

 The development and deployment of client/server products has far outstripped
efforts to standardize all aspects of distributed computing, from the physical layer
up to the application layer. This lack of standards makes it difficult to implement an
integrated, multivendor, enterprise-wide client/server configuration. Because much
of the benefit of the client/server approach is tied up with its modularity and the
ability to mix and match platforms and applications to provide a business solution,
this interoperability problem must be solved.

 To achieve the true benefits of the client/server approach, developers must
have a set of tools that provide a uniform means and style of access to system
resources across all platforms. This will enable programmers to build applications
that not only look and feel the same on various PCs and workstations but that use
the same method to access data regardless of the location of that data.

 The most common way to meet this requirement is by the use of standard
 programming interfaces and protocols that sit between the application above and
communications software and operating system below. Such standardized interfaces
and protocols have come to be referred to as middleware. With standard program-
ming interfaces, it is easy to implement the same application on a variety of server
types and workstation types. This obviously benefits the customer, but vendors are
also motivated to provide such interfaces. The reason is that customers buy appli-
cations, not servers; customers will only choose among those server products that
run the applications they want. The standardized protocols are needed to link these
various server interfaces back to the clients that need access to them.

 There is a variety of middleware packages ranging from the very simple to the
very complex. What they all have in common is the capability to hide the complexi-
ties and disparities of different network protocols and operating systems. Client and
server vendors generally provide a number of the more popular middleware pack-
ages as options. Thus, a user can settle on a particular middleware strategy and then
assemble equipment from various vendors that support that strategy.

688 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

MIDDLEWARE ARCHITECTURE Figure 16.8 suggests the role of middleware in a
client/server architecture. The exact role of the middleware component will depend
on the style of client/server computing being used. Referring back to Figure 16.5 ,
recall that there are a number of different client/server approaches, depending on
the way in which application functions are split up. In any case, Figure 16.8 gives a
good general idea of the architecture involved.

 Note that there is both a client and server component of middleware. The
basic purpose of middleware is to enable an application or user at a client to access
a variety of services on servers without being concerned about differences among
servers. To look at one specific application area, the structured query language
(SQL) is supposed to provide a standardized means for access to a relational data-
base by either a local or remote user or application. However, many relational
database vendors, although they support SQL, have added their own proprietary
extensions to SQL. This enables vendors to differentiate their products but also
creates potential incompatibilities.

 As an example, consider a distributed system used to support, among other
things, the personnel department. The basic employee data, such as employee name
and address, might be stored on a Gupta database, whereas salary information
might be contained on an Oracle database. When a user in the personnel depart-
ment requires access to particular records, that user does not want to be concerned
with which vendor’s database contains the records needed. Middleware provides a
layer of software that enables uniform access to these differing systems.

 It is instructive to look at the role of middleware from a logical, rather than
an implementation, point of view. This viewpoint is illustrated in Figure 16.9 .
Middleware enables the realization of the promise of distributed client/server com-
puting. The entire distributed system can be viewed as a set of applications and
resources available to users. Users need not be concerned with the location of data

Communications
software

Application
services

Server operating system

Hardware platform

Middleware

Server

Presentation services

Application logic

Communications
software

Client
operating system

Hardware platform

Client workstation

Middleware
Middleware
interaction

Protocol
interaction

Figure 16.8 The Role of Middleware in Client/Server Architecture

16.2 / SERVICE-ORIENTED ARCHITECTURE 689

or indeed the location of applications. All applications operate over a uniform
applications programming interface (API). The middleware, which cuts across all
client and server platforms, is responsible for routing client requests to the appro-
priate server.

 Although there is a wide variety of middleware products, these products are
typically based on one of two underlying mechanisms: message passing or remote
procedure calls. These two methods are examined in the next two sections.

16.2 SERVICE-ORIENTED ARCHITECTURE

 The service-oriented architecture (SOA) is a form of client/server architecture
that now enjoys widespread use in enterprise systems. An SOA organizes business
functions into a modular structure rather than as monolithic applications for each
department. As a result, common functions can be used by different departments
internally and by external business partners as well. The more fine-grained the
modules, the more they can be reused. In general, an SOA consists of a set of
services and a set of client applications that use these services. A client request may
involve a single service or may involve two or more services to coordinating some
activity, requiring communication of services with each other. The services are
available through published and discoverable interfaces.

 Standardized interfaces are used to enable service modules to communicate
with one another and to enable client applications to communicate with service mod-
ules. The most popular interface is the use of XML (Extensible Markup Language)

Application

APIs

Middleware
(distributed system services)

Platform interfaces

Application

Platform:
OS
Hardware

Platform:
OS
Hardware

Figure 16.9 Logical View of Middleware

690 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

over HTTP (Hypertext Transfer Protocol), known as Web services . SOAs are also
implemented using other standards, such as CORBA (Common Object Request
Broker Architecture).

 At a top level, an SOA contains three types of architectural elements [BIH06],
illustrated in Figure 16.10 :

 • Service provider: A network node that provides a service interface for a soft-
ware asset that manages a specific set of tasks. A service provider node can
represent the services of a business entity, or it can simply represent the service
interface for a reusable subsystem.

 • Service requestor: A network node that discovers and invokes other soft-
ware services to provide a business solution. Service requestor nodes will
often represent a business application component that performs remote
procedure calls to a distributed object, the service provider. In some cases,
the provider node may reside locally within an intranet or in other cases
it could reside remotely over the Internet. The conceptual nature of SOA
leaves the networking, transport protocol, and security details to the specific
 implementation.

 • Service broker: A specific kind of service provider that acts as a registry and
allows for the lookup of service provider interfaces and service locations. The
service broker can pass on service requests to one or more additional service
providers.

 [BROW03] lists the following as key characteristics for effective use of services:

 • Coarse-grained: Operations on services are frequently implemented to
 encompass more functionality and operate on larger data sets, compared with
component-interface design.

 • Interface-based design: Services implement separately defined interfaces. The
benefit of this is that multiple services can implement a common interface and
a service can implement multiple interfaces.

Service

broker

Service

provider

Find
service

Pu
bl

ish
se

rv
ic

e

Bind client

to service

Service

requester

Figure 16.10 SOA Model

16.3 / DISTRIBUTED MESSAGE PASSING 691

 • Discoverable: Services need to be found at both design time and run time, not
only by unique identity but also by interface identity and by service kind.

 • Single instance: Unlike component-based development, which instantiates
components as needed, each service is a single, always running instance that a
number of clients communicate with.

 • Loosely coupled: Services are connected to other services and clients using
standard, dependency-reducing, decoupled message-based methods such as
XML document exchanges.

 • Asynchronous: In general, services use an asynchronous message-passing
approach; however, this is not required. In fact, many services will use syn-
chronous message passing at times.

 To give the reader some feel for the use of SOA, we look at an example. Figure
 16.11a shows a common approach to building applications targeted at specific user
categories. For each specific application, a single self-contained application module
is built. What ties together the various applications in the enterprise is an applica-
tion-independent database management system that supports a number of databases.
Multiple applications may have access to a single database. For example, in this
configuration all three applications require access to a customer information data-
base. The advantages of this arrangement are clear. By separating the data from the
applications and providing a uniform database interface, multiple applications can
be developed and revised independently from one another.

 This typical approach, of a variety of applications using a common set of data-
bases, has some drawbacks. The addition of a new feature or user service, such as
ATM, generally requires building a new application independent of existing appli-
cations. This is despite the fact that much of the necessary logic has already been
implemented in related applications.

 We can achieve greater efficiency and flexibility by migrating to an SOA, as
shown in Figure 16.11b . Here, the strategy is to isolate services that may be of com-
mon use to multiple applications and implement these as separate service modules.
In this particular example of the SOA, there are some core applications that deal
with the functionality of individual databases. These applications are accessible by
application programming interfaces by service modules that implement common
services. Finally, the specific applications visible to users deal primarily with presen-
tation issues and with specific business logic.

16.3 DISTRIBUTED MESSAGE PASSING

 It is usually the case in a distributed processing systems that the computers do not
share main memory; each is an isolated computer system. Thus, interprocessor com-
munication techniques that rely on shared memory, such as semaphores, cannot be
used. Instead, techniques that rely on message passing are used. In this section and
the next, we look at the two most common approaches. The first is the straightfor-
ward application of messages as they are used in a single system. The second is a
separate technique that relies on message passing as a basic function: the remote
procedure call.

692 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

Account
info

Customer
info

Loan
info

Credit
risk analysis

(external)

Loan
management
application

Checking
account

application

Checking
account web
application

Internet
customer

(a) Typical application structure

(b) An architecture reflecting SOA principles

Bank
teller

Loan
officer

Checking
account
service

Credit risk
analysis

(external)

Credit risk
service
(proxy)

Loan
request
service

Loan
management

service

Customer
vault

service

Account
info

Customer
info

Loan
info

Teller
application

ATM
application

Customer Web
application

Loan manager
application

Bank
teller

ATM
customer

Internet
customer

Loan
officer

Loan
management
application

Checking
account

application

Figure 16.11 Example Use of SOA

16.3 / DISTRIBUTED MESSAGE PASSING 693

 Figure 16.12a shows the use of message passing to implement client/server
functionality. A client process requires some service (e.g., read a file, print) and
sends a message containing a request for service to a server process. The server
process honors the request and sends a message containing a reply. In its simplest
form, only two functions are needed: Send and Receive. The Send function speci-
fies a destination and includes the message content. The Receive function tells from
whom a message is desired (including “all”) and provides a buffer where the incom-
ing message is to be stored.

 Figure 16.13 suggests an implementation for message passing. Processes make
use of the services of a message-passing module. Service requests can be expressed in
terms of primitives and parameters. A primitive specifies the function to be performed,
and the parameters are used to pass data and control information. The actual form of
a primitive depends on the message-passing software. It may be a procedure call, or it
may itself be a message to a process that is part of the operating system.

Application RPC
stub

program

Transport

Network

Application
RPC
stub

program

Transport

Network

(b) Remote procedure calls

Application-specific
procedure invocations

and returns

Application

Message-oriented
middleware

(with message queue)

Transport

Network

(a) Message-oriented middleware

Application-specific
messages

(c) Object request broker

Network

Transport

Object
request
broker

Network

Transport

Object
server

Object requests
and responses

Object requests
and responses

Client

Client Server

Application

Message-oriented
middleware

(with message queue)

Transport

Network

ApplicationRPC
stub

program

Transport

Network

Server

Client Server

Figure 16.12 Middleware Mechanisms

694 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

 The Send primitive is used by the process that desires to send the message.
Its parameters are the identifier of the destination process and the contents of the
message. The message-passing module constructs a data unit that includes these two
elements. This data unit is sent to the machine that hosts the destination process,
using some sort of communications facility, such as TCP/IP. When the data unit
is received in the target system, it is routed by the communications facility to the
message-passing module. This module examines the process ID field and stores the
message in the buffer for that process.

 In this scenario, the receiving process must announce its willingness to receive
messages by designating a buffer area and informing the message-passing module
by a Receive primitive. An alternative approach does not require such an announce-
ment. Instead, when the message-passing module receives a message, it signals the
destination process with some sort of Receive signal and then makes the received
message available in a shared buffer.

 Several design issues are associated with distributed message passing, and
these are addressed in the remainder of this section.

Reliability versus Unreliability

 A reliable message-passing facility is one that guarantees delivery if possible. Such
a facility makes use of a reliable transport protocol or similar logic and performs
error checking, acknowledgment, retransmission, and reordering of misordered
messages. Because delivery is guaranteed, it is not necessary to let the sending
 process know that the message was delivered. However, it might be useful to pro-
vide an acknowledgment back to the sending process so that it knows that deliv-
ery has already taken place. In either case, if the facility fails to achieve delivery
(e.g., persistent network failure, crash of destination system), the sending process is
 notified of the failure.

 At the other extreme, the message-passing facility may simply send the mes-
sage out into the communications network but will report neither success nor
failure. This alternative greatly reduces the complexity and processing and com-
munications overhead of the message-passing facility. For those applications that

Sending
process

Receiving
process

Message-passing
module

Message-passing
module

ProcessId Message

Figure 16.13 Basic Message-Passing Primitives

16.4 / REMOTE PROCEDURE CALLS 695

require confirmation that a message has been delivered, the applications them-
selves may use request and reply messages to satisfy the requirement.

Blocking versus Nonblocking

 With nonblocking, or asynchronous, primitives, a process is not suspended as a
result of issuing a Send or Receive. Thus, when a process issues a Send primi-
tive, the operating system returns control to the process as soon as the message
has been queued for transmission or a copy has been made. If no copy is made,
any changes made to the message by the sending process before or even while it
is being transmitted are made at the risk of the process. When the message has
been transmitted or copied to a safe place for subsequent transmission, the send-
ing process is interrupted to be informed that the message buffer may be reused.
Similarly, a nonblocking Receive is issued by a process that then proceeds to run.
When a message arrives, the process is informed by interrupt, or it can poll for
status periodically.

 Nonblocking primitives provide for efficient, flexible use of the message-
passing facility by processes. The disadvantage of this approach is that it is difficult
to test and debug programs that use these primitives. Irreproducible, timing-
dependent sequences can create subtle and difficult problems.

 The alternative is to use blocking, or synchronous, primitives. A blocking
Send does not return control to the sending process until the message has been
transmitted (unreliable service) or until the message has been sent and an acknowl-
edgment received (reliable service). A blocking Receive does not return control
until a message has been placed in the allocated buffer.

16.4 REMOTE PROCEDURE CALLS

 A variation on the basic message-passing model is the remote procedure call. This
is now a widely accepted and common method for encapsulating communica-
tion in a distributed system. The essence of the technique is to allow programs on
 different machines to interact using simple procedure call/return semantics, just as
if the two programs were on the same machine. That is, the procedure call is used
for access to remote services. The popularity of this approach is due to the following
 advantages.

 1. The procedure call is a widely accepted, used, and understood abstraction.

 2. The use of remote procedure calls enables remote interfaces to be specified
as a set of named operations with designated types. Thus, the interface can
be clearly documented and distributed programs can be statically checked for
type errors.

 3. Because a standardized and precisely defined interface is specified, the
 communication code for an application can be generated automatically.

 4. Because a standardized and precisely defined interface is specified, develop-
ers can write client and server modules that can be moved among computers
and operating systems with little modification and recoding.

696 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

 The remote procedure call mechanism can be viewed as a refinement of reli-
able, blocking message passing. Figure 16.12b illustrates the general architecture,
and Figure 16.14 provides a more detailed look. The calling program makes a nor-
mal procedure call with parameters on its machine. For example,

 CALL P(X,Y)

 where

 P � procedure name

X � passed arguments

Y � returned values

 It may or may not be transparent to the user that the intention is to invoke a remote
procedure on some other machine. A dummy or stub procedure P must be included
in the caller’s address space or be dynamically linked to it at call time. This proce-
dure creates a message that identifies the procedure being called and includes the
parameters. It then sends this message to a remote system and waits for a reply.
When a reply is received, the stub procedure returns to the calling program, provid-
ing the returned values.

 At the remote machine, another stub program is associated with the called
procedure. When a message comes in, it is examined and a local CALL P(X, Y) is
generated. This remote procedure is thus called locally, so its normal assumptions
about where to find parameters, the state of the stack, and so on are identical to the
case of a purely local procedure call.

 Several design issues are associated with remote procedure calls, and these are
addressed in the remainder of this section.

Local stub

RPC
mechanism

Local stub

RPC
mechanism

Local application
or

operating system

Client
application

Remote server
application

Local
procedure

calls

Local
procedure

call

Local
response

Local
response

Local
response

Remote procedure call

Remote procedure call

Figure 16.14 Remote Procedure Call Mechanism

16.4 / REMOTE PROCEDURE CALLS 697

Parameter Passing

 Most programming languages allow parameters to be passed as values (call by
value) or as pointers to a location that contains the value (call by reference). Call by
value is simple for a remote procedure call: The parameters are simply copied into
the message and sent to the remote system. It is more difficult to implement call by
reference. A unique, systemwide pointer is needed for each object. The overhead
for this capability may not be worth the effort.

Parameter Representation

 Another issue is how to represent parameters and results in messages. If the called
and calling programs are in identical programming languages on the same type of
machines with the same operating system, then the representation requirement
may present no problems. If there are differences in these areas, then there will
probably be differences in the ways in which numbers and even text are repre-
sented. If a full-blown communications architecture is used, then this issue is han-
dled by the presentation layer. However, the overhead of such an architecture has
led to the design of remote procedure call facilities that bypass most of the com-
munications architecture and provide their own basic communications facility. In
that case, the conversion responsibility falls on the remote procedure call facility
(e.g., see [GIBB87]).

 The best approach to this problem is to provide a standardized format for
common objects, such as integers, floating-point numbers, characters, and character
strings. Then the native parameters on any machine can be converted to and from
the standardized representation.

Client/Server Binding

 Binding specifies how the relationship between a remote procedure and the
 calling program will be established. A binding is formed when two applications
have made a logical connection and are prepared to exchange commands and
data.

Nonpersistent binding means that a logical connection is established
between the two processes at the time of the remote procedure call and that as
soon as the values are returned, the connection is dismantled. Because a con-
nection requires the maintenance of state information on both ends, it consumes
resources. The nonpersistent style is used to conserve those resources. On the
other hand, the overhead involved in establishing connections makes nonpersist-
ent binding inappropriate for remote procedures that are called frequently by the
same caller.

 With persistent binding , a connection that is set up for a remote procedure
call is sustained after the procedure return. The connection can then be used for
future remote procedure calls. If a specified period of time passes with no activ-
ity on the connection, then the connection is terminated. For applications that
make many repeated calls to remote procedures, persistent binding maintains the
logical connection and allows a sequence of calls and returns to use the same
 connection.

698 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

Synchronous versus Asynchronous

 The concepts of synchronous and asynchronous remote procedure calls are analo-
gous to the concepts of blocking and nonblocking messages. The traditional remote
procedure call is synchronous, which requires that the calling process wait until the
called process returns a value. Thus, the synchronous RPC behaves much like a
 subroutine call.

 The synchronous RPC is easy to understand and program because its behavior
is predictable. However, it fails to exploit fully the parallelism inherent in distrib-
uted applications. This limits the kind of interaction the distributed application can
have, resulting in lower performance.

 To provide greater flexibility, various asynchronous RPC facilities have been
implemented to achieve a greater degree of parallelism while retaining the famili-
arity and simplicity of the RPC [ANAN92]. Asynchronous RPCs do not block the
caller; the replies can be received as and when they are needed, thus allowing client
execution to proceed locally in parallel with the server invocation.

 A typical asynchronous RPC use is to enable a client to invoke a server repeatedly
so that the client has a number of requests in the pipeline at one time, each with its own
set of data. Synchronization of client and server can be achieved in one of two ways:

 1. A higher-layer application in the client and server can initiate the exchange
and then check at the end that all requested actions have been performed.

 2. A client can issue a string of asynchronous RPCs followed by a final syn-
chronous RPC. The server will respond to the synchronous RPC only after
 completing all of the work requested in the preceding asynchronous RPCs.

 In some schemes, asynchronous RPCs require no reply from the server and
the server cannot send a reply message. Other schemes either require or allow a
reply, but the caller does not wait for the reply.

Object-Oriented Mechanisms

 As object-oriented technology becomes more prevalent in operating system design,
client/server designers have begun to embrace this approach. In this approach, cli-
ents and servers ship messages back and forth between objects. Object communica-
tions may rely on an underlying message or RPC structure or be developed directly
on top of object-oriented capabilities in the operating system.

 A client that needs a service sends a request to an object request broker, which
acts as a directory of all the remote service available on the network (Figure 16.12c).
The broker calls the appropriate object and passes along any relevant data. Then
the remote object services the request and replies to the broker, which returns the
response to the client.

 The success of the object-oriented approach depends on standardization
of the object mechanism. Unfortunately, there are several competing designs
in this area. One is Microsoft’s Component Object Model (COM), the basis for
Object Linking and Embedding (OLE). A competing approach, developed by the
Object Management Group, is the Common Object Request Broker Architecture
(CORBA), which has wide industry support. IBM, Apple, Sun, and many other
vendors support the CORBA approach.

16.5 / CLUSTERS 699

16.5 CLUSTERS

 Clustering is an alternative to symmetric multiprocessing (SMP) as an approach to
providing high performance and high availability and is particularly attractive for
server applications. We can define a cluster as a group of interconnected, whole
computers working together as a unified computing resource that can create the
illusion of being one machine. The term whole computer means a system that can
run on its own, apart from the cluster; in the literature, each computer in a cluster is
typically referred to as a node .

 [BREW97] lists four benefits that can be achieved with clustering. These can
also be thought of as objectives or design requirements:

 • Absolute scalability: It is possible to create large clusters that far surpass the
power of even the largest stand-alone machines. A cluster can have dozens or
even hundreds of machines, each of which is a multiprocessor.

 • Incremental scalability: A cluster is configured in such a way that it is possible
to add new systems to the cluster in small increments. Thus, a user can start
out with a modest system and expand it as needs grow, without having to go
through a major upgrade in which an existing small system is replaced with a
larger system.

 • High availability: Because each node in a cluster is a stand-alone computer,
the failure of one node does not mean loss of service. In many products, fault
tolerance is handled automatically in software.

 • Superior price/performance: By using commodity building blocks, it is possible
to put together a cluster with equal or greater computing power than a single
large machine, at much lower cost.

Cluster Configurations

 In the literature, clusters are classified in a number of different ways. Perhaps the sim-
plest classification is based on whether the computers in a cluster share access to the
same disks. Figure 16.15a shows a two-node cluster in which the only interconnection
is by means of a high-speed link that can be used for message exchange to coordinate
cluster activity. The link can be a LAN that is shared with other computers that are
not part of the cluster, or the link can be a dedicated interconnection facility. In the
latter case, one or more of the computers in the cluster will have a link to a LAN
or WAN so that there is a connection between the server cluster and remote client
systems. Note that in the figure, each computer is depicted as being a multiprocessor.
This is not necessary but does enhance both performance and availability.

 In the simple classification depicted in Figure 16.15 , the other alternative is
a shared-disk cluster. In this case, there generally is still a message link between
nodes. In addition, there is a disk subsystem that is directly linked to multiple com-
puters within the cluster. In Figure 16.15b , the common disk subsystem is a RAID
system. The use of RAID or some similar redundant disk technology is common in
clusters so that the high availability achieved by the presence of multiple computers
is not compromised by a shared disk that is a single point of failure.

700 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

 A clearer picture of the range of clustering approaches can be gained by look-
ing at functional alternatives. A white paper from Hewlett Packard [HP96] provides
a useful classification along functional lines (Table 16.2), which we now discuss.

 A common, older method, known as passive standby , is simply to have one
computer handle all of the processing load while the other computer remains inac-
tive, standing by to take over in the event of a failure of the primary. To coordi-
nate the machines, the active, or primary, system periodically sends a “heartbeat”
message to the standby machine. Should these messages stop arriving, the standby
assumes that the primary server has failed and puts itself into operation. This
approach increases availability but does not improve performance. Further, if the
only information that is exchanged between the two systems is a heartbeat message,
and if the two systems do not share common disks, then the standby provides a
functional backup but has no access to the databases managed by the primary.

 The passive standby is generally not referred to as a cluster. The term cluster
is reserved for multiple interconnected computers that are all actively doing
processing while maintaining the image of a single system to the outside world.
The term active secondary is often used in referring to this configuration. Three
classifications of clustering can be identified: separate servers, shared nothing, and
shared memory.

P P

High-speed message link

High-speed message link

M I/O I/O

P P

I/OI/O M

(a) Standby server with no shared disk

(b) Shared disk

P P

RAID

M I/O I/O

P P

I/OI/O M

I/O I/O

Figure 16.15 Cluster Confi gurations

16.5 / CLUSTERS 701

 In one approach to clustering, each computer is a separate server with its own
disks and there are no disks shared between systems (Figure 16.15a). This arrange-
ment provides high performance as well as high availability. In this case, some type
of management or scheduling software is needed to assign incoming client requests
to servers so that the load is balanced and high utilization is achieved. It is desirable
to have a failover capability, which means that if a computer fails while executing an
application, another computer in the cluster can pick up and complete the applica-
tion. For this to happen, data must constantly be copied among systems so that each
system has access to the current data of the other systems. The overhead of this data
exchange ensures high availability at the cost of a performance penalty.

 To reduce the communications overhead, most clusters now consist of serv-
ers connected to common disks (Figure 16.15b). In one variation of this approach,
called shared nothing , the common disks are partitioned into volumes, and each
volume is owned by a single computer. If that computer fails, the cluster must be
reconfigured so that some other computer has ownership of the volumes of the
failed computer.

 It is also possible to have multiple computers share the same disks at the same
time (called the shared disk approach), so that each computer has access to all of the
volumes on all of the disks. This approach requires the use of some type of locking
facility to ensure that data can only be accessed by one computer at a time.

Table 16.2 Clustering Methods: Benefits and Limitations

 Clustering Method Description Benefits Limitations

Passive Standby A secondary server
takes over in case of pri-
mary server failure.

 Easy to implement High cost because the
secondary server is
unavailable for other
processing tasks

Active Secondary The secondary server is
also used for processing
tasks.

 Reduced cost because
secondary servers can
be used for processing

 Increased complexity

 Separate Servers Separate servers have
their own disks. Data
are continuously copied
from primary to
secondary server.

 High availability High network and server
overhead due to copying
operations

 Servers Connected to
Disks

 Servers are cabled to
the same disks, but each
server owns its disks. If
one server fails, its disks
are taken over by the
other server.

 Reduced network and
server overhead due to
elimination of copying
operations

 Usually requires disk
mirroring or RAID tech-
nology to compensate
for risk of disk failure

 Servers Share Disks Multiple servers simul-
taneously share access
to disks.

 Low network and server
overhead. Reduced risk
of downtime caused by
disk failure

 Requires lock manager
software. Usually used
with disk mirroring or
RAID technology

702 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

Operating System Design Issues

 Full exploitation of a cluster hardware configuration requires some enhancements
to a single-system operating system.

FAILURE MANAGEMENT How failures are managed by a cluster depends on the
clustering method used (Table 16.2). In general, two approaches can be taken to
dealing with failures: highly available clusters and fault-tolerant clusters. A highly
available cluster offers a high probability that all resources will be in service. If a
failure occurs, such as a node goes down or a disk volume is lost, then the queries in
progress are lost. Any lost query, if retried, will be serviced by a different computer
in the cluster. However, the cluster operating system makes no guarantee about
the state of partially executed transactions. This would need to be handled at the
application level.

 A fault-tolerant cluster ensures that all resources are always available. This
is achieved by the use of redundant shared disks and mechanisms for backing out
uncommitted transactions and committing completed transactions.

 The function of switching an application and data resources over from a failed
system to an alternative system in the cluster is referred to as failover . A related
function is the restoration of applications and data resources to the original system
once it has been fixed; this is referred to as failback . Failback can be automated, but
this is desirable only if the problem is truly fixed and unlikely to recur. If not, auto-
matic failback can cause subsequently failed resources to bounce back and forth
between computers, resulting in performance and recovery problems.

LOAD BALANCING A cluster requires an effective capability for balancing the
load among available computers. This includes the requirement that the cluster
be incrementally scalable. When a new computer is added to the cluster, the
load-balancing facility should automatically include this computer in scheduling
applications. Middleware mechanisms need to recognize that services can appear
on different members of the cluster and may migrate from one member to another.

PARALLELIZING COMPUTATION In some cases, effective use of a cluster requires
executing software from a single application in parallel. [KAPP00] lists three
general approaches to the problem:

 • Parallelizing compiler: A parallelizing compiler determines, at compile time,
which parts of an application can be executed in parallel. These are then split
off to be assigned to different computers in the cluster. Performance depends
on the nature of the problem and how well the compiler is designed.

 • Parallelized application: In this approach, the programmer writes the appli-
cation from the outset to run on a cluster and uses message passing to move
data, as required, between cluster nodes. This places a high burden on the
programmer but may be the best approach for exploiting clusters for some
applications.

 • Parametric computing: This approach can be used if the essence of the applica-
tion is an algorithm or program that must be executed a large number of times,

16.5 / CLUSTERS 703

each time with a different set of starting conditions or parameters. A good
example is a simulation model, which will run a large number of different sce-
narios and then develop statistical summaries of the results. For this approach
to be effective, parametric processing tools are needed to organize, run, and
manage the jobs in an orderly manner.

Cluster Computer Architecture

 Figure 16.16 shows a typical cluster architecture. The individual computers are con-
nected by some high-speed LAN or switch hardware. Each computer is capable of
operating independently. In addition, a middleware layer of software is installed in
each computer to enable cluster operation. The cluster middleware provides a uni-
fied system image to the user, known as a single-system image . The middleware may
also be responsible for providing high availability, by means of load balancing and
responding to failures in individual components. [HWAN99] lists the following as
desirable cluster middleware services and functions:

 • Single entry point: A user logs on to the cluster rather than to an individual
computer.

 • Single file hierarchy: The user sees a single hierarchy of file directories under
the same root directory.

 • Single control point: There is a default node used for cluster management and
control.

 • Single virtual networking: Any node can access any other point in the cluster,
even though the actual cluster configuration may consist of multiple intercon-
nected networks. There is a single virtual network operation.

 • Single memory space: Distributed shared memory enables programs to share
variables.

Net. interface HW

Comm SW

PC/workstation

Net. interface HW

Comm SW

PC/workstation

Net. interface HW

Comm SW

PC/workstation

Net. interface HW

Comm SW

PC/workstation

Net. interface HW

Comm SW

PC/workstation

Cluster middleware
(Single system image and availability infrastructure)

Sequential applications

High-speed-network/switch

Parallel applications

Parallel programming environment

Figure 16.16 Cluster Computer Architecture

704 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

 • Single job-management system: Under a cluster job scheduler, a user can
 submit a job without specifying the host computer to execute the job.

 • Single user interface: A common graphic interface supports all users, regard-
less of the workstation from which they enter the cluster.

 • Single I/O space: Any node can remotely access any I/O peripheral or disk
device without knowledge of its physical location.

 • Single process space: A uniform process-identification scheme is used. A
process on any node can create or communicate with any other process on a
remote node.

 • Checkpointing: This function periodically saves the process state and interme-
diate computing results, to allow rollback recovery after a failure.

 • Process migration: This function enables load balancing.

 The last four items on the preceding list enhance the availability of the cluster.
The remaining items are concerned with providing a single system image.

 Returning to Figure 16.16 , a cluster will also include software tools for ena-
bling the efficient execution of programs that are capable of parallel execution.

Clusters Compared to SMP

 Both clusters and symmetric multiprocessors provide a configuration with multiple
processors to support high-demand applications. Both solutions are commercially
available, although SMP has been around far longer.

 The main strength of the SMP approach is that an SMP is easier to manage
and configure than a cluster. The SMP is much closer to the original single-processor
model for which nearly all applications are written. The principal change required
in going from a uniprocessor to an SMP is to the scheduler function. Another ben-
efit of the SMP is that it usually takes up less physical space and draws less power
than a comparable cluster. A final important benefit is that the SMP products are
well established and stable.

 Over the long run, however, the advantages of the cluster approach are likely
to result in clusters dominating the high-performance server market. Clusters are
far superior to SMPs in terms of incremental and absolute scalability. Clusters are
also superior in terms of availability, because all components of the system can
readily be made highly redundant.

16.6 WINDOWS CLUSTER SERVER

 Windows Failover Clustering is a shared-nothing cluster, in which each disk volume
and other resources are owned by a single system at a time.

 The Windows cluster design makes use of the following concepts:

 • Cluster Service: The collection of software on each node that manages all
cluster-specific activity.

 • Resource: An item managed by the cluster service. All resources are objects
representing actual resources in the system, including hardware devices such

16.6 / WINDOWS CLUSTER SERVER 705

as disk drives and network cards and logical items such as logical disk volumes,
TCP/IP addresses, entire applications, and databases.

 • Online: A resource is said to be online at a node when it is providing service
on that specific node.

 • Group: A collection of resources managed as a single unit. Usually, a group
contains all of the elements needed to run a specific application and for client
systems to connect to the service provided by that application.

 The concept of group is of particular importance. A group combines resources
into larger units that are easily managed, both for failover and load balancing.
Operations performed on a group, such as transferring the group to another node,
automatically affect all of the resources in that group. Resources are implemented
as dynamically linked libraries (DLLs) and managed by a resource monitor. The
resource monitor interacts with the cluster service via remote procedure calls and
responds to cluster service commands to configure and move resource groups.

 Figure 16.17 depicts the Windows clustering components and their relation-
ships in a single system of a cluster. The node manager is responsible for maintain-
ing this node’s membership in the cluster. Periodically, it sends heartbeat messages
to the node managers on other nodes in the cluster. In the event that one node man-
ager detects a loss of heartbeat messages from another cluster node, it broadcasts a

Cluster management tools

Cluster API DLL

Event processor

RPC

Resource monitors

Communication
manager

Resource mgr

Failover mgrApp
resource

DLL

Physical
resource

DLL

Logical
resource

DLL

App
resource

DLL

Node
manager

Cluster
service

Resource
management

interface

Other
nodes

Nonaware
app

Cluster-aware
app

Database
manager

Global update
manager

Figure 16.17 Windows Cluster Server Block Diagram

706 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

message to the entire cluster, causing all members to exchange messages to verify
their view of current cluster membership. If a node manager does not respond, it is
removed from the cluster and its active groups are transferred to one or more other
active nodes in the cluster.

 The configuration database manager maintains the cluster configuration
database. The database contains information about resources and groups and node
ownership of groups. The database managers on each of the cluster nodes cooper-
ate to maintain a consistent picture of configuration information. Fault-tolerant
transaction software is used to assure that changes in the overall cluster configura-
tion are performed consistently and correctly.

 The resource manager/failover manager makes all decisions regarding
resource groups and initiates appropriate actions such as startup, reset, and failover.
When failover is required, the failover managers on the active node cooperate to
negotiate a distribution of resource groups from the failed system to the remain-
ing active systems. When a system restarts after a failure, the failover manager can
decide to move some groups back to this system. In particular, any group may be
configured with a preferred owner. If that owner fails and then restarts, the group is
moved back to the node in a rollback operation.

 The event processor connects all of the components of the cluster serv-
ice, handles common operations, and controls cluster service initialization. The
 communications manager manages message exchange with all other nodes of the
cluster. The global update manager provides a service used by other components
within the cluster service.

 Microsoft is continuing to ship their cluster product, but they have also devel-
oped virtualization solutions based on efficient live migration of virtual machines
between hypervisors running on different computer systems as part of Windows
Server 2008 R2. For new applications, live migration offers many benefits over the
cluster approach, such as simpler management, and improved flexibility.

16.7 BEOWULF AND LINUX CLUSTERS

 In 1994, the Beowulf project was initiated under the sponsorship of the NASA
High Performance Computing and Communications (HPCC) project. Its goal was
to investigate the potential of clustered PCs for performing important computa-
tion tasks beyond the capabilities of contemporary workstations at minimum cost.
Today, the Beowulf approach is widely implemented and is perhaps the most impor-
tant cluster technology available.

Beowulf Features

 Key features of Beowulf include the following [RIDG97]:

 • Mass market commodity components

 • Dedicated processors (rather than scavenging cycles from idle workstations)

 • A dedicated, private network (LAN or WAN or internetted combination)

 • No custom components

16.7 / BEOWULF AND LINUX CLUSTERS 707

 • Easy replication from multiple vendors

 • Scalable I/O

 • A freely available software base

 • Use of freely available distribution computing tools with minimal changes

 • Return of the design and improvements to the community

 Although elements of Beowulf software have been implemented on a
number of different platforms, the most obvious choice for a base is Linux,
and most Beowulf implementations use a cluster of Linux workstations and/or
PCs. Figure 16.18 depicts a representative configuration. The cluster consists of
a number of workstations, perhaps of differing hardware platforms, all running
the Linux operating system. Secondary storage at each workstation may be made
available for distributed access (for distributed file sharing, distributed virtual
memory, or other uses). The cluster nodes (the Linux systems) are interconnected
with a commodity networking approach, typically Ethernet. The Ethernet sup-
port may be in the form of a single Ethernet switch or an interconnected set of
switches. Commodity Ethernet products at the standard data rates (10 Mbps, 100
Mbps, 1 Gbps) are used.

Beowulf Software

 The Beowulf software environment is implemented as an add-on to commercially
available, royalty-free base Linux distributions. The principal source of open-source
Beowulf software is the Beowulf site at www.beowulf.org , but numerous other
 organizations also offer free Beowulf tools and utilities.

 Each node in the Beowulf cluster runs its own copy of the Linux kernel and
can function as an autonomous Linux system. To support the Beowulf cluster
 concept, extensions are made to the Linux kernel to allow the individual nodes

Ethernet or
interconnected ethernets

Linux
workstations

Distributed
shared storage

Figure 16.18 Generic Beowulf Confi guration

www.beowulf.org

708 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

to participate in a number of global namespaces. The following are examples of
Beowulf system software:

 • Beowulf distributed process space (BPROC): This package allows a process
ID space to span multiple nodes in a cluster environment and also provides
mechanisms for starting processes on other nodes. The goal of this package is
to provide key elements needed for a single system image on Beowulf cluster.
BPROC provides a mechanism to start processes on remote nodes without
ever logging into another node and by making all the remote processes visible
in the process table of the cluster’s front-end node.

 • Beowulf Ethernet channel bonding: This is a mechanism that joins multiple
low-cost networks into a single logical network with higher bandwidth. The
only additional work over using single network interface is the computation-
ally simple task of distributing the packets over the available device trans-
mit queues. This approach allows load balancing over multiple Ethernets
 connected to Linux workstations.

 • Pvmsync: This is a programming environment that provides synchronization
mechanisms and shared data objects for processes in a Beowulf cluster.

 • EnFuzion: EnFuzion consists of a set of tools for doing parametric computing,
as described in Section 16.4 . Parametric computing involves the execution of
a program as a large number of jobs, each with different parameters or start-
ing conditions. EnFusion emulates a set of robot users on a single root node
machine, each of which will log into one of the many clients that form a clus-
ter. Each job is set up to run with a unique, programmed scenario, with an
appropriate set of starting conditions [KAPP00].

16.8 SUMMARY

 Client/server computing is the key to realizing the potential of information systems
and networks to improve productivity significantly in organizations. With client/
server computing, applications are distributed to users on single-user workstations
and personal computers. At the same time, resources that can and should be shared
are maintained on server systems that are available to all clients. Thus, the client/
server architecture is a blend of decentralized and centralized computing.

 Typically, the client system provides a graphical user interface (GUI) that
enables a user to exploit a variety of applications with minimal training and relative
ease. Servers support shared utilities, such as database management systems. The
actual application is divided between client and server in a way intended to optimize
ease of use and performance.

 The key mechanism required in any distributed system is interprocess com-
munication. Two techniques are in common use. A message-passing facility gener-
alizes the use of messages within a single system. The same sorts of conventions and
synchronization rules apply. Another approach is the use of the remote procedure
call. This is a technique by which two programs on different machines interact using
procedure call/return syntax and semantics. Both the called and calling program
behave as if the partner program were running on the same machine.

16.9 / RECOMMENDED READING AND WEB SITES 709

 A cluster is a group of interconnected, whole computers working together as
a unified computing resource that can create the illusion of being one machine. The
term whole computer means a system that can run on its own, apart from the cluster.

16.9 RECOMMENDED READING AND WEB SITES

 [BERS96] provides a good technical discussion of the design issues involved in allo-
cating applications to client and server and in middleware approaches; the book
also discusses products and standardization efforts. [REAG00a] and [REAG00b]
cover client/server computing and network design approaches for supporting client/
server computing.

 A good overview of middleware technology and products is [BRIT04].
[MENA05] provides a performance comparison of remote procedure calls and
 distributed message passing.

 Two worthwhile surveys of SOA are [BROW03] and [BIH06]. [CHER05] and
[BIEB05] analyze the impact of migrating to a SOA. [HUTC08] discusses strategies
for migrating to an SOA. [CARE08] looks at the role of data services in an SOA.

 [TANE85] is a survey of distributed operating systems that covers both dis-
tributed process communication and distributed process management. [CHAN90]
provides an overview of distributed message passing operating systems. [TAY90]
is a survey of the approach taken by various operating systems in implementing
remote procedure calls.

 A thorough treatment of clusters can be found in [BUYY99a] and [BUYY99b].
The former has a good treatment of Beowulf, which is also nicely covered in
[RIDG97]. A more detailed treatment of Beowulf is [STER99].Windows Cluster
Server is described in [SHOR97]; [RAJA00] provides a more detailed treatment.
[LAI06] provides a close examination of thin client architecture.

BERS96 Berson, A. Client/Server Architecture. New York: McGraw-Hill, 1996.
BIEB05 Bieberstein, N., et al. “Impact of Service-Oriented Architecture on Enterprise

Systems, Organizational Structures, and Individuals.” IBM Systems Journal , Vol.
44, No. 4, 2005.

BIH06 Bih, J. “Service Oriented Architecture (SOA): A New Paradigm to Implement
Dynamic E-Business Solutions.” ACM Ubiquity , August 2006; acm.org/ubiquity/
views/v7i30_soa.html

BRIT04 Britton, C. IT Architectures and Middleware. Reading, MA: Addison-
Wesley, 2004.

BROW03 Brown, A., Johnston, S., and Kelly, K. Using Service-Oriented Architecture
and Component-Based Development to Build Web Service Applications. IBM
Rational Software Technical Report, 2003. ibm.com/developerworks/rational/
library/510.html

BUYY99a Buyya, R. High Performance Cluster Computing: Architectures and
Systems. Upper Saddle River, NJ: Prentice Hall, 1999.

BUYY99b Buyya, R. High Performance Cluster Computing: Programming and
Applications. Upper Saddle River, NJ: Prentice Hall, 1999.

710 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

Recommended Web sites:

 • SQL Standards: A central source of information about the SQL standards process and
its current documents

 • IEEE Computer Society Task Force on Cluster Computing: An international forum to
promote cluster computing research and education

 • Beowulf: An international forum to promote cluster computing research and education

16.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

CARE08 Carey, M. “SOA What?” IEEE Computer , March 2008.
CHAN90 Chandras, R. “Distributed Message Passing Operating Systems.” Operating

Systems Review , January 1990.
CHER05 Cherbacko, L., et al. “Impact of Service Orientation at the Business Level.”

IBM Systems Journal , Vol 44., No. 4, 2005.
HUTC08 Hutchinson, J., et al. “Migrating to SOAs by Way of Hybrid Systems.” IT

Pro , January/February 2008.
LAI06 Lai, A., and Nieh, J. “On the Performance of Wide-Area Thin-Client

Computing.” ACM Transactions on Computer Systems , May 2006.
MENA05 Menasce, D. “MOM vs. RPC: Communication Models for Distributed

Applications.” IEEE Internet Computing , March/April 2005.
RAJA00 Rajagopal, R. Introduction to Microsoft Windows NT Cluster Server. Boca

Raton, FL: CRC Press, 2000.
REAG00a Reagan, P. Client/Server Computing. Upper Saddle River, NJ: Prentice

Hall, 2000.
REAG00b Reagan, P. Client/Server Network: Design, Operation, and Management.

Upper Saddle River, NJ: Prentice Hall, 2000.
RIDG97 Ridge, D., et al. “Beowulf: Harnessing the Power of Parallelism in a Pile-of-

PCs.” Proceedings, IEEE Aerospace Conference , 1997.
SHOR97 Short, R., Gamache, R., Vert, J., and Massa, M. “Windows NT Clusters for

Availability and Scalability.” Proceedings, COMPCON Spring 97 , February 1997.
STER99 Sterling, T., et al. How to Build a Beowulf. Cambridge, MA: MIT Press, 1999.
TANE85 Tanenbaum, A., and Renesse, R. “Distributed Operating Systems.”

Computing Surveys , December 1985.
TAY90 Tay, B., and Ananda, A. “A Survey of Remote Procedure Calls.” Operating

Systems Review , July 1990.

 applications programming
interface

 Beowulf

 Client
 client/server
 cluster

 distributed message passing
 failback
 failover

16.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 711

Review Questions

 16.1 What is client/server computing?
 16.2 What distinguishes client/server computing from any other form of distributed data

processing?
 16.3 What is the role of a communications architecture such as TCP/IP in a client/server

environment?
 16.4 Discuss the rationale for locating applications on the client, the server, or split between

client and server.
 16.5 What are fat clients and thin clients, and what are the differences in philosophy of the

two approaches?
 16.6 Suggest pros and cons for fat client and thin client strategies.
 16.7 Explain the rationale behind the three-tier client/server architecture.
 16.8 What is middleware?
 16.9 Because we have standards such as TCP/IP, why is middleware needed?
 16.10 List some benefits and disadvantages of blocking and nonblocking primitives for

 message passing.
 16.11 List some benefits and disadvantages of nonpersistent and persistent binding for RPCs.
 16.12 List some benefits and disadvantages of synchronous and asynchronous RPCs.
 16.13 List and briefly define four different clustering methods.

Problems

 16.1 Let � be the percentage of program code that can be executed simultaneously by n
computers in a cluster, each computer using a different set of parameters or initial
conditions. Assume that the remaining code must be executed sequentially by a single
processor. Each processor has an execution rate of x MIPS.
a. Derive an expression for the effective MIPS rate when using the system for

 exclusive execution of this program, in terms of n, � , and x .
b. If n � 16 and x � 4 MIPS, determine the value of that will yield a system

 performance of 40 MIPS.
 16.2 An application program is executed on a nine-computer cluster. A benchmark pro-

gram takes time T on this cluster. Further, 25% of T is time in which the application
is running simultaneously on all nine computers. The remaining time, the application
has to run on a single computer.
a. Calculate the effective speedup under the aforementioned condition as compared

to executing the program on a single computer. Also calculate, the percentage of
code that has been parallelized (programmed or compiled so as to use the cluster
mode) in the preceding program.

b. Suppose that we are able to effectively use 18 computers rather than 9 comput-
ers on the parallelized portion of the code. Calculate the effective speedup that is
achieved.

 16.3 The following FORTRAN program is to be executed on a computer, and a parallel
version is to be executed on a 32-computer cluster.

 fat client
 file cache consistency

graphical user interface

 message
 middleware
 remote procedure call (RPC)

 server
 thin client

712 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

 L1: DO 10 I = 1, 1024
 L2: SUM(I) = 0
 L3: DO 20 J = 1, I
 L4: 20 SUM(I) = SUM(I) + I
 L5: 10 CONTINUE

 Suppose lines 2 and 4 each take two machine cycle times, including all processor and
memory-access activities. Ignore the overhead caused by the software loop control
statements (lines 1, 3, 5) and all other system overhead and resource conflicts.
a. What is the total execution time (in machine cycle times) of the program on a

single computer?
b. Divide the I-loop iterations among the 32 computers as follows: Computer 1

 executes the first 32 iterations (I � 1 to 32), processor 2 executes the next 32
 iterations, and so on. What are the execution time and speedup factor compared
with part (a)? (Note that the computational workload, dictated by the J-loop, is
unbalanced among the computers.)

c. Explain how to modify the parallelizing to facilitate a balanced parallel exe-
cution of all the computational workload over 32 computers. A balanced load
means an equal number of additions assigned to each computer with respect to
both loops.

d. What is the minimum execution time resulting from the parallel execution on 32
computers? What is the resulting speedup over a single computer?

A-1

APPENDIX A
TOPICS IN CONCURRENCY

 A.1 Mutual Exclusion: Software Approaches
 Dekker’s Algorithm
 Peterson’s Algorithm

 A.2 Race Conditions and Semaphores
 Problem Statement
 First Attempt
 Second Attempt
 Third Attempt
 Fourth Attempt
 A Good Attempt

 A.3 A Barbership Problem
 An Unfair Barbershop
 A Fair Barbershop

 A.4 Problems

A-2 APPENDIX A / TOPICS IN CONCURRENCY

 It was impossible to get a conversation going; everybody was talking
too much.

 — Yogi Berra

 A.1 MUTUAL EXCLUSION: SOFTWARE APPROACHES

 Software approaches can be implemented for concurrent processes that execute on
a single processor or a multiprocessor machine with shared main memory. These
approaches usually assume elementary mutual exclusion at the memory access level
([LAMP91], but see Problem A.3). That is, simultaneous accesses (reading and/or writing)
to the same location in main memory are serialized by some sort of memory arbiter,
although the order of access granting is not specified ahead of time. Beyond this, no
support in the hardware, operating system, or programming language is assumed.

Dekker’s Algorithm

 Dijkstra [DIJK65] reported an algorithm for mutual exclusion for two processes,
designed by the Dutch mathematician Dekker. Following Dijkstra, we develop
the solution in stages. This approach has the advantage of illustrating many of the
 common bugs encountered in developing concurrent programs.

FIRST ATTEMPT As mentioned earlier, any attempt at mutual exclusion must rely
on some fundamental exclusion mechanism in the hardware. The most common
of these is the constraint that only one access to a memory location can be made
at a time. Using this constraint, we reserve a global memory location labeled
turn . A process (P0 or P1) wishing to execute its critical section first examines the
contents of turn . If the value of turn is equal to the number of the process, then
the process may proceed to its critical section. Otherwise, it is forced to wait. Our
waiting process repeatedly reads the value of turn until it is allowed to enter its
critical section. This procedure is known as busy waiting , or spin waiting , because
the thwarted process can do nothing productive until it gets permission to enter its
critical section. Instead, it must linger and periodically check the variable; thus it
consumes processor time (busy) while waiting for its chance.

 After a process has gained access to its critical section and after it has com-
pleted that section, it must update the value of turn to that of the other process.

 In formal terms, there is a shared global variable:

int turn = 0;

 Figure A.1a shows the program for the two processes. This solution guarantees
the mutual exclusion property but has two drawbacks. First, processes must strictly
alternate in their use of their critical section; therefore, the pace of execution is dic-
tated by the slower of the two processes. If P0 uses its critical section only once per
hour but P1 would like to use its critical section at a rate of 1,000 times per hour, P1
is forced to adopt the pace of P0. A much more serious problem is that if one process
fails, the other process is permanently blocked. This is true whether a process fails in
its critical section or outside of it.

A.1 / MUTUAL EXCLUSION: SOFTWARE APPROACHES A-3

Figure A.1 Mutual Exclusion Attempts

 /* PROCESS 0 /* /* PROCESS 1 */

. .

. .

while (turn != 0) while (turn != 1)

 /* do nothing */ ; /* do nothing */;

/* critical section*/; /* critical section*/;

turn = 1; turn = 0;

. .

 (a) First attempt

 /* PROCESS 0 */ /* PROCESS 1 */

. .

. .

while (flag[1]) while (flag[0])

 /* do nothing */; /* do nothing */;

flag[0] = true; flag[1] = true;

/*critical section*/; /* critical section*/;

flag[0] = false; flag[1] = false;

. .

 (b) Second attempt

 /* PROCESS 0 */ /* PROCESS 1 */

. .

. .

flag[0] = true; flag[1] = true;

while (flag[1]) while (flag[0])

 /* do nothing */; /* do nothing */;

/* critical section*/; /* critical section*/;

flag[0] = false; flag[1] = false;

. .

 (c) Third attempt

 /* PROCESS 0 */ /* PROCESS 1 */

. .

. .

flag[0] = true; flag[1] = true;

while (flag[1]) { while (flag[0]) {

 flag[0] = false; flag[1] = false;

 /*delay */; /*delay */;

 flag[0] = true; flag[1] = true;

} }

/*critical section*/; /* critical section*/;

flag[0] = false; flag[1] = false;

.

 (d) Fourth attempt

A-4 APPENDIX A / TOPICS IN CONCURRENCY

 The foregoing construction is that of a coroutine . Coroutines are designed to be
able to pass execution control back and forth between themselves (see Problem 5.2).
While this is a useful structuring technique for a single process, it is inadequate to
 support concurrent processing.

SECOND ATTEMPT The flaw in the first attempt is that it stores the name of the
process that may enter its critical section, when in fact we need state information
about both processes. In effect, each process should have its own key to the critical
section so that if one fails, the other can still access its critical section. To meet this
requirement a Boolean vector flag is defined, with flag[0] corresponding to P0
and flag[1] corresponding to P1. Each process may examine the other’s flag but
may not alter it. When a process wishes to enter its critical section, it periodically
checks the other’s flag until that flag has the value false , indicating that the other
process is not in its critical section. The checking process immediately sets its own
flag to true and proceeds to its critical section. When it leaves its critical section, it
sets its flag to false .

 The shared global variable 1 now is

enum boolean (false = 0; true = 1);
boolean flag[2] = {0, 0}

 Figure A.1b shows the algorithm. If one process fails outside the critical
 section, including the flag-setting code, then the other process is not blocked. In
fact, the other process can enter its critical section as often as it likes, because the
flag of the other process is always false . However, if a process fails inside its criti-
cal section or after setting its flag to true just before entering its critical section,
then the other process is permanently blocked.

 This solution is, if anything, worse than the first attempt because it does not
even guarantee mutual exclusion. Consider the following sequence:

 P0 executes the while statement and finds flag[1] set to false

 P1 executes the while statement and finds flag[0] set to false

 P0 sets flag[0] to true and enters its critical section

 P1 sets flag[1] to true and enters its critical section

 Because both processes are now in their critical sections, the program is incor-
rect. The problem is that the proposed solution is not independent of relative process
execution speeds.

THIRD ATTEMPT Because a process can change its state after the other process
has checked it but before the other process can enter its critical section, the second
attempt failed. Perhaps we can fix this problem with a simple interchange of two
statements, as shown in Figure A.1c .

 As before, if one process fails inside its critical section, including the flag-setting
code controlling the critical section, then the other process is blocked, and if a process
fails outside its critical section, then the other process is not blocked.

1 The enum declaration is used here to declare a data type (boolean) and to assign its values.

A.1 / MUTUAL EXCLUSION: SOFTWARE APPROACHES A-5

 Next, let us check that mutual exclusion is guaranteed, using the point of view
of process P0. Once P0 has set flag[0] to true , P1 cannot enter its critical section
until after P0 has entered and left its critical section. It could be that P1 is already in
its critical section when P0 sets its flag. In that case, P0 will be blocked by the while
statement until P1 has left its critical section. The same reasoning applies from the
point of view of P1.

 This guarantees mutual exclusion but creates yet another problem. If both
processes set their flags to true before either has executed the while state-
ment, then each will think that the other has entered its critical section, causing
 deadlock.

FOURTH ATTEMPT In the third attempt, a process sets its state without knowing
the state of the other process. Deadlock occurs because each process can insist on
its right to enter its critical section; there is no opportunity to back off from this
position. We can try to fix this in a way that makes each process more deferential:
Each process sets its flag to indicate its desire to enter its critical section but is
prepared to reset the flag to defer to the other process, as shown in Figure A.1d .

 This is close to a correct solution but is still flawed. Mutual exclusion is still
guaranteed, using similar reasoning to that followed in the discussion of the third
attempt. However, consider the following sequence of events:

 P0 sets flag[0] to true.

 P1 sets flag[1] to true.

 P0 checks flag[1].

 P1 checks flag[0].

 P0 sets flag[0] to false.

 P1 sets flag[1] to false.

 P0 sets flag[0] to true.

 P1 sets flag[1] to true.

 This sequence could be extended indefinitely, and neither process could enter
its critical section. Strictly speaking, this is not deadlock, because any alteration in
the relative speed of the two processes will break this cycle and allow one to enter
the critical section. This condition is referred to as livelock . Recall that deadlock
occurs when a set of processes wishes to enter their critical sections but no process
can succeed. With livelock, there are possible sequences of executions that succeed,
but it is also possible to describe one or more execution sequences in which no
 process ever enters its critical section.

 Although the scenario just described is not likely to be sustained for very long,
it is nevertheless a possible scenario. Thus we reject the fourth attempt.

A CORRECT SOLUTION We need to be able to observe the state of both processes,
which is provided by the array variable flag . But, as the fourth attempt shows,
this is not enough. We must impose an order on the activities of the two processes
to avoid the problem of “mutual courtesy” that we have just observed. The
variable turn from the first attempt can be used for this purpose; in this case

A-6 APPENDIX A / TOPICS IN CONCURRENCY

the variable indicates which process has the right to insist on entering its critical
region.

 We can describe this solution, referred to as Dekker’s algorithm, as follows.
When P0 wants to enter its critical section, it sets its flag to true . It then checks the
flag of P1. If that is false , P0 may immediately enter its critical section. Otherwise,
P0 consults turn . If it finds that turn = 0, then it knows that it is its turn to insist
and periodically checks P1’s flag. P1 will at some point note that it is its turn to
defer and set its to flag false , allowing P0 to proceed. After P0 has used its criti-
cal section, it sets its flag to false to free the critical section and sets turn to 1 to
transfer the right to insist to P1.

Figure A.2 Dekker’s Algorithm

boolean flag [2];
int turn;
void P0()
{

while (true) {
flag [0] = true;
while (flag [1]) {

if (turn == 1) {
flag [0] = false;
while (turn == 1) /* do nothing */;
flag [0] = true;

}
}
/* critical section */;
turn = 1;
flag [0] = false;
/* remainder */;

}
}
void P1()
{

while (true) {
flag [1] = true;
while (flag [0]) {

if (turn == 0) {
flag [1] = false;
while (turn == 0) /* do nothing */;

 flag [1] = true;
}

 }
/* critical section */;
turn = 0;
flag [1] = false;
/* remainder */;

 }
}
void main ()
{

flag [0] = false;
 flag [1] = false;

turn = 1;
parbegin (P0, P1);

}

A.1 / MUTUAL EXCLUSION: SOFTWARE APPROACHES A-7

 Figure A.2 provides a specification of Dekker’s algorithm. The construct
parbegin (P1, P2, . . . , P n) means the following: suspend the execution of the main
program; initiate concurrent execution of procedures P1, P2, . . . , P n ; when all of P1,
P2, . . . , P n have terminated, resume the main program. A verification of Dekker’s
algorithm is left as an exercise (see Problem A.1).

Peterson’s Algorithm

 Dekker’s algorithm solves the mutual exclusion problem but with a rather com-
plex program that is difficult to follow and whose correctness is tricky to prove.
Peterson [PETE81] has provided a simple, elegant solution. As before, the global
array variable flag indicates the position of each process with respect to mutual
exclusion, and the global variable turn resolves simultaneity conflicts. The algo-
rithm is presented in Figure A.3 .

 That mutual exclusion is preserved is easily shown. Consider process P0. Once
it has set flag[0] to true , P1 cannot enter its critical section. If P1 already is
in its critical section, then flag[1] = true and P0 is blocked from entering its
critical section. On the other hand, mutual blocking is prevented. Suppose that P0 is
blocked in its while loop. This means that flag[1] is true and turn = 1. P0 can

Figure A.3 Peterson’s Algorithm for Two Processes

boolean flag [2];
int turn;
void P0()
{

while (true) {
 flag [0] = true;
 turn = 1;
 while (flag [1] && turn == 1) /* do nothing */;
 /* critical section */;
 flag [0] = false;
 /* remainder */;

}
}
void P1()
{

while (true) {
 flag [1] = true;
 turn = 0;
 while (flag [0] && turn == 0) /* do nothing */;
 /* critical section */;
 flag [1] = false;
 /* remainder */

}
}
void main()
{

flag [0] = false;
flag [1] = false;
parbegin (P0, P1);

}

A-8 APPENDIX A / TOPICS IN CONCURRENCY

enter its critical section when either flag[1] becomes false or turn becomes 0.
Now consider three exhaustive cases:

 1. P1 has no interest in its critical section. This case is impossible, because it
 implies flag[1] = false .

 2. P1 is waiting for its critical section. This case is also impossible, because if
turn = 1, P1 is able to enter its critical section.

 3. P1 is using its critical section repeatedly and therefore monopolizing access
to it. This cannot happen, because P1 is obliged to give P0 an opportunity by
 setting turn to 0 before each attempt to enter its critical section.

 Thus we have a simple solution to the mutual exclusion problem for two processes.
Furthermore, Peterson’s algorithm is easily generalized to the case of n processes
[HOFR90].

 A.2 RACE CONDITIONS AND SEMAPHORES

 Although the definition of a race condition, provided in Section 5.1 , seems straight-
forward, experience has shown that students usually have difficulty pinpointing
race conditions in their programs. The purpose of this section, which is based on
[CARR01],2 is to step through a series of examples using semaphores that should
help clarify the topic of race conditions.

Problem Statement

 Assume that there are two processes, A and B , each of which consists of a number
of concurrent threads. Each thread includes an infinite loop in which a message is
exchanged with a thread in the other process. Each message consists of an integer
placed in a shared global buffer. There are two requirements:

 1. After a thread A1 of process A makes a message available to some thread B1
in B , A1 can only proceed after it receives a message from B1. Similarly, after
B1 makes a message available to A1, it can only proceed after it receives a
message from A1.

 2. Once a thread A1 makes a message available, it must make sure that no other
thread in A overwrites the global buffer before the message is retrieved by a
thread in B .

 In the remainder of this section, we show four attempts to implement this
scheme using semaphores, each of which can result in a race condition. Finally, we
show a correct solution.

2 I am grateful to Professor Ching-Kuang Shene of Michigan Technological University for permission to
use this example.

A.2 / RACE CONDITIONS AND SEMAPHORES A-9

First Attempt

 Consider this approach:

semaphore a = 0, b = 0;
int buf_a, buf_b;

thread_A(...)

{

int var_a;

...

while (true) {

 . . .

var_a =. ..;

semSignal(b);

semWait(a);

buf_a = var_a;

var_a = buf_b;

. . .;

}

}

thread_B(...)

{

int var_b;

...

while (true) {

 . . .

var_b =. ..;

semSignal(a);

semWait(b);

buf_b = var_b;

var_b = buf_a;

. . .;

}

}

 This is a simple handshaking protocol. When a thread A1 in A is ready to
exchange messages, it sends a signal to a thread in B and then waits for a thread B1
in B to be ready. Once a signal comes back from B1, which A perceives by perform-
ing semWait(a) , then A1 assumes that B1 is ready and performs the exchange. B1
behaves similarly, and the exchange happens regardless of which thread is ready first.

 This attempt can lead to race conditions. For example, consider the following
sequence, with time going vertically down the table:

Thread A1 Thread B1

semSignal(b)

semWait(a)

semSignal(a)

semWait(b)

buf_a = var_a

var_a = buf_b

buf_b = var_b

 In the preceding sequence, A1 reaches semWait(a) and is blocked. B1
reaches semWait(b) and is not blocked, but is switched out before it can update
its buf_b . Meanwhile, A1 executes and reads from buf_b before it has the
intended value. At this point, buf_b may have a value provided previously by
another thread or provided by B1 in a previous exchange. This is a race condition.

 A subtler race condition can be seen if two threads in A and B are active.
Consider the following sequence:

A-10 APPENDIX A / TOPICS IN CONCURRENCY

Thread A1 Thread A2 Thread B1 Thread B2

semSignal(b)

semWait(a)

semSignal(a)

semWait(b)

semSignal(b)

semWait(a)

buf_b = var_b1

semSignal(a)

buf_a = var_a1

buf_a = var_a2

 In this sequence, threads A1 and B1 attempt to exchange messages and
go through the proper semaphore signaling instructions. However, immediately
after the two semWait signals occur (in threads A1 and B1), thread A2 runs and
executes semSignal(b) and semWait(a) , which causes thread B2 to execute
semSignal(a) to release A2 from semWait(a) . At this point, either A1 or A2
could update buf_a next, and we have a race condition. By changing the sequence
of execution among the threads, we can readily find other race conditions.

Lesson Learned: When a variable is shared by multiple threads, race condi-
tions are likely to occur unless proper mutual exclusion protection is used.

Second Attempt

 For this attempt, we use a semaphore to protect the shared variable. The purpose is
to ensure that access to buf_a and buf_b are mutually exclusive. The program is as
follows:

semaphore a = 0, b = 0; mutex = 1;
int buf_a, buf_b;

thread_A(...)
{

int var_a;
. . .
while (true) {

 . . .
var_a =. ..;
semSignal(b);
semWait(a);

semWait(mutex);
buf_a = var_a;

semSignal(mutex);
semSignal(b);
semWait(a);

semWait(mutex);
var_a = buf_b;

semSignal(mutex);
 . . .;
 }
}

thread_B(...)
{

int var_b;
. . .
while (true) {

. . .
var_b =. ..;
semSignal(a);
semWait(b);

semWait(mutex);
buf_b = var_b;

semSignal(mutex);
semSignal(a);
semWait(b);

semWait(mutex);
var_b = buf_a;

semSignal(mutex);
. . .;

}
}

A.2 / RACE CONDITIONS AND SEMAPHORES A-11

 Before a thread can exchange a message, it follows the same handshak-
ing protocol as in the first attempt. The semaphore mutex protects buf_a
and buf_b in an attempt to assure that update precedes reading. But the protec-
tion is not adequate. Once both threads complete the first handshaking stage,
the values of semaphores a and b are both 1. There are three possibilities that
could occur:

 1. Two threads, say A1 and B1, complete the first handshaking and continue
with the second stage of the exchange.

 2. Another pair of threads starts the first stage.

 3. One of the current pair will continue and exchange a message with a new-
comer in the other pair.

 All of these possibilities can lead to race conditions. As an example of a race
condition based on the third possibility, consider the following sequence:

Thread A1 Thread A2 Thread B1

semSignal(b)

semWait(a)

semSignal(a)

semWait(b)

buf_a = var_a1

buf_b = var_b1

semSignal(b)

semWait(a)

semSignal(a)

semWait(b)

buf_a = var_a2

 In this example, after A1 and B1 go through the first handshake, they both
update the corresponding global buffers. Then A2 initiates the first handshaking
stage. Following this, B1 initiates the second handshaking stage. At this point, A2
updates buf_a before B1 can retrieve the value placed in buf_a by A1. This is a
race condition.

Lesson Learned: Protecting a single variable may be insufficient if the use
of that variable is part of a long execution sequence. Protect the whole execution
sequence.

Third Attempt

 For this attempt, we want to expand the critical section to include the entire mes-
sage exchange (two threads each update one of two buffers and read from the other
buffer). A single semaphore is insufficient because this could lead to deadlock, with
each side waiting on the other. The program is as follows:

A-12 APPENDIX A / TOPICS IN CONCURRENCY

semaphore aready = 1, adone = 0, bready = 1 bdone = 0;
int buf_a, buf_b;

thread_A(...)
{

int var_a;
...
while (true) {

. . .
var_a =. ..;
semWait(aready);

buf_a = var_a;
semSignal(adone);
semWait(bdone);
var_a = buf_b;

semSignal(aready);
. . .;

}
}

thread_B(...)
{

int var_b;
...
while (true) {

. . .
var_b =. ..;
semWait(bready);

buf_b = var_b;
semSignal(bdone);
semWait(adone);
var_b = buf_a;

semSignal(bready);
. . .;

}
}

 The semaphore aready is intended to insure that no other thread in A can update
buf_a while one thread from A enters its critical section. The semaphore adone is
intended to insure that no thread from B will attempt to read buf_a until buf_a has
been updated. The same considerations apply to bready and bdone . However, this
scheme does not prevent race conditions. Consider the following sequence:

Thread A1 Thread B1

buf_a = var_a

semSignal(adone)

semWait(bdone)

buf_b = var_b

semSignal(bdone)

semWait(adone)

var_a = buf_b;

semSignal(aready)

...loop back. ..

semWait(aready)

buf_a = var_a

var_b = buf_a

 In this sequence, both A1 and B1 enter their critical sections, deposit their
 messages, and reach the second wait. Then A1 copies the message from B1 and leaves
its critical section. At this point, A1 could loop back in its program, generate a new
message, and deposit it in buf_a , as shown in the preceding execution sequence.
Another possibility is that at this same point another thread of A could generate a mes-
sage and put it in buf_a . In either case, a message is lost and a race condition occurs.

A.2 / RACE CONDITIONS AND SEMAPHORES A-13

Lesson Learned: If we have a number of cooperating thread groups, mutual
exclusion guaranteed for one group may not prevent interference from threads in
other groups. Further, if a critical section is repeatedly entered by one thread, then
the timing of the cooperation between threads must be managed properly.

Fourth Attempt

 The third attempt fails to force a thread to remain in its critical section until the
other thread retrieves the message. Here is an attempt to achieve this objective:

semaphore aready = 1, adone = 0, bready = 1 bdone = 0;
int buf_a, buf_b;

thread_A(...)
{

int var_a;
 . ..

while (true) {
 . . .
 var_a =. ..;
 semWait(bready);
 buf_a = var_a;
 semSignal(adone);
 semWait(bdone);
 var_a = buf_b;
 semSignal(aready);
 . . .;
 }
}

thread_B(...)
{

int var_b;
 . ..

while (true) {
 . . .
 var_b =. ..;
 semWait(aready);
 buf_b = var_b;
 semSignal(bdone);
 semWait(adone);
 var_b = buf_a;
 semSignal(bready);
 . . .;
 }
}

 In this case, the first thread in A to enter its critical section decrements
bready to 0. No subsequent thread from A can attempt a message exchange until a
thread from B completes the message exchange and increments bready to 1. This
approach too can lead to race conditions, such as in the following sequence:

Thread A1 Thread A2 Thread B1

semWait(bready)

buf_a = var_a1

semSignal(adone)

semWait(aready)

buf_b = var_b1

semSignal(bdone)

semWait(adone)

var_b = buf_a

semSignal(bready)

semWait(bready)

. . .

semWait(bdone)

var_a2 = buf_b

A-14 APPENDIX A / TOPICS IN CONCURRENCY

 In this sequence, threads A1 and B1 enter corresponding critical sections in
order to exchange messages. Thread B1 retrieves its message and signals bready .
This enables another thread from A , A2, to enter its critical section. If A2 is faster
than A1, then A2 may retrieve the message that was intended for A1.

Lesson Learned: If the semaphore for mutual exclusion is not released by its
owner, race conditions can occur. In this fourth attempt, a semaphore is locked by a
thread in A and then unlocked by a thread in B . This is risky programming practice.

A Good Attempt

 The reader may notice that the problem in this section is a variation of the bounded-
buffer problem and can be approached in a manner similar to the discussion
in Section 5.4 . The most straightforward approach is to use two buffers, one for
B-to-A messages and one for A-to-B messages. The size of each buffer needs to be
one. To see the reason for this, consider that there is no ordering assumption for
releasing threads from a synchronization primitive. If a buffer has more than one
slot, then we cannot guarantee that the messages will be properly matched. For
example, B1 could receive a message from A1 and then send a message to A1. But
if the buffer has multiple slots, another thread in A may retrieve the message from
the slot intended for A1.

 Using the same basic approach as was used in Section 5.4 , we can develop the
following program:

semaphore notFull_A = 1, notFull_B = 1;
semaphore notEmpty_A = 0, notEmpty_B = 0;
int buf_a, buf_b;

thread_A(...)
{

int var_a;
 . ..

while (true) {
 . . .
 var_a =. ..;
 semWait(notFull_A);
 buf_a = var_a;
 semSignal(notEmpty_A);
 semWait(notEmpty_B);
 var_a = buf_b;
 semSignal(notFull_B);
 . . .;
 }
}

thread_B(...)
{

int var_b;
 . ..

while (true) {
 . . .
 var_b =. ..;
 semWait(notFull_B);
 buf_b = var_b;
 semSignal(notEmpty_B);
 semWait(notEmpty_A);
 var_b = buf_a;
 semSignal(notFull_A);
 . . .;
 }
}

 To verify that this solution works, we need to address three issues:

 1. The message exchange section is mutually exclusive within the thread group.
Because the initial value of notFull_A is 1, only one thread in A can pass
through semWait(notFull_A) until the exchange is complete as signaled

A.3 / A BARBERSHIP PROBLEM A-15

by a thread in B that executes semSignal(notFull_A) . A similar reason-
ing applies to threads in B . Thus, this condition is satisfied.

 2. Once two threads enter their critical sections, they exchange messages with-
out interference from any other threads. No other thread in A can enter its
critical section until the thread in B is completely done with the exchange, and
no other thread in B can enter its critical section until the thread in A is com-
pletely done with the exchange. Thus, this condition is satisfied.

 3. After one thread exits its critical section, no thread in the same group can
rush in and ruin the existing message. This condition is satisfied because a
one-slot buffer is used in each direction. Once a thread in A has executed
semWait(notFull_A) and entered its critical section, no other thread in A
can update buf_a until the corresponding thread in B has retrieved the value
in buf_a and issued a semSignal(notFull_A) .

Lesson Learned: It is well to review the solutions to well-known problems,
because a correct solution to the problem at hand may be a variation of a solution
to a known problem.

 A.3 A BARBERSHIP PROBLEM

 As another example of the use of semaphores to implement concurrency, we
consider a simple barbershop problem. 3 This example is instructive because the
problems encountered when attempting to provide tailored access to barbershop
resources are similar to those encountered in a real operating system.

 Our barbershop has three chairs, three barbers, and a waiting area that can
accommodate four customers on a sofa and that has standing room for additional
customers (Figure A.4). Fire codes limit the total number of customers in the shop

Sofa

Standing
room
area

Entrance

Exit

Barber chairs

Cashier

Figure A.4 The Barbershop

3 I am indebted to Professor Ralph Hilzer of California State University at Chico for supplying this treat-
ment of the problem.

A-16 APPENDIX A / TOPICS IN CONCURRENCY

to 20. In this example, we assume that the barbershop will eventually process 50
customers.

 A customer will not enter the shop if it is filled to capacity with other custom-
ers. Once inside, the customer takes a seat on the sofa or stands if the sofa is filled.
When a barber is free, the customer that has been on the sofa the longest is served
and, if there are any standing customers, the one that has been in the shop the long-
est takes a seat on the sofa. When a customer’s haircut is finished, any barber can
accept payment, but because there is only one cash register, payment is accepted for
one customer at a time. The barbers divide their time among cutting hair, accepting
payment, and sleeping in their chair waiting for a customer.

An Unfair Barbershop

 Figure A.5 shows an implementation using semaphores; the three procedures are
listed side-by-side to conserve space. We assume that all semaphore queues are
handled with a first-in-first-out policy.

 The main body of the program activates 50 customers, 3 barbers, and the cashier
process. We now consider the purpose and positioning of the various synchronization
operators:

 • Shop and sofa capacity: The capacity of the shop and the capacity of the sofa
are governed by the semaphores max_capacity and sofa , respectively.
Every time a customer attempts to enter the shop, the max_capacity sema-
phore is decremented by 1; every time a customer leaves, the semaphore
is incremented. If a customer finds the shop full, then that customer’s pro-
cess is blocked on max_capacity by the semWait function. Similarly, the
semWait and semSignal operations surround the actions of sitting on and
 getting up from the sofa.

 • Barber chair capacity: There are three barber chairs, and care must be taken
that they are used properly. The semaphore barber_chair assures that
no more than three customers attempt to obtain service at a time, trying to
avoid the undignified occurrence of one customer sitting on the lap of another.
A customer will not get up from the sofa until at least one chair is free
[semWait(barber_chair)], and each barber signals when a customer has
left that barber’s chair [semSignal(barber_chair)]. Fair access to the
barber chairs is guaranteed by the semaphore queue organization: The first
customer to be blocked is the first one allowed into an available chair. Note
that, in the customer procedure, if semWait(barber_chair) occurred
after semSignal(sofa) , each customer would only briefly sit on the sofa
and then stand in line at the barber chairs, creating congestion and leaving the
barbers with little elbow room.

 • Ensuring customers are in barber chair: The semaphore cust_ready pro-
vides a wakeup signal for a sleeping barber, indicating that a customer has just
taken a chair. Without this semaphore, a barber would never sleep but would
begin cutting hair as soon as a customer left the chair; if no new customer had
grabbed the seat, the barber would be cutting air.

A
-17

/* program barbershop1 */
semaphore max_capacity = 20;
semaphore sofa = 4;
semaphore barber_chair = 3;
semaphore coord = 3;
semaphore cust_ready = 0, finished = 0, leave_b_chair = 0, payment = 0, receipt = 0;

void customer() void barber() Void cashier()
{ { {
 semWait(max_capacity); while (true) while (true)
 enter_shop(); { { semWait(payment);
 semWait(sofa); semWait(cust ready); semWait(coord);
 sit_on_sofa(); semWait(coord); accept_pay();
 semWait(barber_chair); cut_hair(); semSignal(coord);
 get_up_from_sofa(); semSignal(coord); semSignal(receipt);
 semSignal(sofa); semSignal(finished); }
 sit_in_barber_chair(); semWait(leave_b_chair); }
 semSignal(cust_ready); semSignal(barber_chair);
 semWait(finished); }
 leave_barber_chair(); }
 semSignal(leave_b_chair);
 pay();
 semSignal(payment);
 semWait(receipt);
 exit_shop();
 semSignal(max_capacity)
}
void main()
{

parbegin (customer,. ..50 times,. ..customer, barber, barber, barber, cashier);

}

Figure A.5 An Unfair Barbershop

A-18 APPENDIX A / TOPICS IN CONCURRENCY

 • Holding customers in barber chair: Once seated, a customer remains in the
chair until the barber gives the signal that the haircut is complete, using the
semaphore finished .

 • Limiting one customer to a barber chair: The semaphore barber_chair
is intended to limit the number of customers in barber chairs to three.
However, by itself, barber_chair does not succeed in doing this. A cus-
tomer that fails to get the processor immediately after his barber executes
semSignal(finished) (i.e., one who falls into a trance or stops to chat
with a neighbor) may still be in the chair when the next customer is given the
go ahead to be seated. The semaphore leave_b_chair is intended to cor-
rect this problem by restraining the barber from inviting a new customer into
the chair until the lingering one has announced his departure from it. In the
problems at the end of this chapter, we will find that even this precaution fails
to stop the mettlesome customer lap sittings.

 • Paying and receiving: Naturally, we want to be careful when dealing with
money. The cashier wants to be assured that each customer pays before leav-
ing the shop, and the customer wants verification that payment was received
(a receipt). This is accomplished, in effect, by a face-to-face transfer of the
money. Each customer, upon arising from a barber chair, pays, then alerts the
cashier that money has been passed over [semSignal(payment)], and then
waits for a receipt [semWait(receipt)]. The cashier process repeatedly
takes payments: It waits for a payment to be signaled, accepts the money, and
then signals acceptance of the money. Several programming errors need to be
avoided here. If semSignal(payment) occurred just before the action pay ,
then a customer could be interrupted after signaling; this would leave the cash-
ier free to accept payment even though none had been offered. An even more
serious error would be to reverse the positions of the semSignal(payment)
and semWait(receipt) lines. This would lead to deadlock because that
would cause all customers and the cashier to block at their respective semWait
operators.

 • Coordinating barber and cashier functions: To save money, this barbershop
does not employ a separate cashier. Each barber is required to perform that
task when not cutting hair. The semaphore coord ensures that barbers per-
form only one task at a time.

 Table A.1 summarizes the use of each of the semaphores in the program.
 The cashier process could be eliminated by merging the payment function

into the barber procedure. Each barber would sequentially cut hair and then
accept pay . However, with a single cash register, it is necessary to limit access to
the accept pay function to one barber at a time. This could be done by treating
that function as a critical section and guarding it with a semaphore.

A Fair Barbershop

 Figure A.5 is a good effort, but some difficulties remain. One problem is solved
in the remainder of this section; others are left as exercises for the reader (see
Problem A.6).

A.3 / A BARBERSHIP PROBLEM A-19

 There is a timing problem in Figure A.5 that could lead to unfair treat-
ment of customers. Suppose that three customers are currently seated in the
three barber chairs. In that case, the customers would most likely be blocked on
semWait(finished) , and due to the queue organization they would be released
in the order they entered the barber chair. However, what if one of the barbers is
very fast or one of the customers is quite bald? Releasing the first customer to enter
the chair could result in a situation where one customer is summarily ejected from
his seat and forced to pay full price for a partial haircut while another is restrained
from leaving his chair even though his haircut is complete.

 The problem is solved with more semaphores, as shown in . We assign a unique
customer number to each customer; this is equivalent to having each customer
take a number upon entering the shop. The semaphore mutex1 protects access to
the global variable count so that each customer receives a unique number. The
semaphore finished is redefined to be an array of 50 semaphores. Once a cus-
tomer is seated in a barber chair, he executes semWait(finished[custnr]) to
wait on his own unique semaphore; when the barber is finished with that customer,
the barber executes semSignal(finished[b_cust]) to release the correct
customer.

 It remains to say how a customer’s number is known to the barber. A customer
places his number on the queue enqueue1 just prior to signaling the barber with the
semaphore cust_ready . When a barber is ready to cut hair, dequeue1(b_cust)
removes the top customer number from queue1 and places it in the barber’s local
variable b_cust .

Table A.1 Purpose of Semaphores in Figure A.5

 Semaphore Wait Operation Signal Operation

max_capacity Customer waits for space to enter shop. Exiting customer signals customer
waiting to enter.

sofa Customer waits for seat on sofa. Customer leaving sofa signals cus-
tomer waiting for sofa.

barber_chair Customer waits for empty barber chair. Barber signals when that barber’s
chair is empty.

cust_ready Barber waits until a customer is in the chair. Customer signals barber that
customer is in the chair.

finished Customer waits until his haircut is complete. Barber signals when cutting hair
of this customer is done.

leave_b_chair Barber waits until customer gets up from the
chair.

 Customer signals barber when
customer gets up from chair.

payment Cashier waits for a customer to pay. Customer signals cashier that he
has paid.

receipt Customer waits for a receipt for payment. Cashier signals that payment has
been accepted.

coord Wait for a barber resource to be free to perform
either the hair cutting or cashiering function.

 Signal that a barber resource is
free.

A
-20

Figure A.6 A Fair Barbershop

/* program barbershop2 */
semaphore max_capacity = 20;
semaphore sofa = 4;
semaphore barber_chair = 3, coord = 3;
semaphore mutex1 = 1, mutex2 = 1;
semaphore cust_ready = 0, leave_b_chair = 0, payment= 0, receipt = 0;
semaphore finished [50] = {0};
int count;

void customer () void barber() void cashier()
{ { {

int custnr; int b_cust; while (true)
 semWait(max_capacity); while (true) {
 enter_shop(); { semWait(payment);

semWait(mutex1); semWait(cust_ready); semWait(coord);
 custnr = count; semWait(mutex2); accept_pay();
 count++; dequeue1(b_cust); semSignal(coord);
 semSignal(mutex1); semSignal(mutex2); semSignal(receipt);
 semWait(sofa); semWait(coord); }
 sit_on_sofa(); cut_hair(); }
 semWait(barber_chair); semSignal(coord);
 get_up_from_sofa(); semSignal(finished[b_cust]);
 semSignal(sofa); semWait(leave_b_chair);
 sit_in_barber_chair(); semSignal(barber_chair);
 semWait(mutex2); }
 enqueue1(custnr); }
 semSignal(cust_ready);
 semSignal(mutex2);
 semWait(finished[custnr]);
 leave_barber_chair();
 semSignal(leave_b_chair);
 pay();
 semSignal(payment);
 semWait(receipt);
 exit_shop();
 semSignal(max_capacity)
}

void main()
{ count := 0;

parbegin (customer,. ..50 times,. ..customer, barber, barber, barber, cashier);

}

A.4 / PROBLEMS A-21

 A.4 PROBLEMS

 A.1 Demonstrate the correctness of Dekker’s algorithm.
a. Show that mutual exclusion is enforced. Hint: Show that when Pi enters its critical

section, the following expression is true:

flag[i] and (not flag[1 − i])

b. Show that a process requiring access to its critical section will not be delayed
indefinitely. Hint: Consider the following cases: (1) A single process is attempting
to enter the critical section; (2) both processes are attempting to enter the critical
section, and (2a) turn = 0 and flag[0] = false , and (2b) turn = 0 and
flag[0] = true .

 A.2 Consider Dekker’s algorithm, written for an arbitrary number of processes by chang-
ing the statement executed when leaving the critical section from

 turn = 1 − i /* i.e. P0 sets turn to 1 and P1 sets turn to 0 */

 to

 turn = (turn + 1) % n /* n = number of processes */

 Evaluate the algorithm when the number of concurrently executing processes is
greater than two.

 A.3 Demonstrate that the following software approaches to mutual exclusion do not
depend on elementary mutual exclusion at the memory access level:
a. the bakery algorithm
b. Peterson’s algorithm

 A.4 Answer the following questions relating to the fair barbershop (Figure A.6):
a. Does the code require that the barber who finishes a customer’s haircut collect

that customer’s payment?
b. Do barbers always use the same barber chair?

 A.5 A number of problems remain with the fair barbershop of Figure A.6 . Modify the
program to correct the following problems.
a. The cashier may accept pay from one customer and release another if two or

more are waiting to pay. Fortunately, once a customer presents payment, there is
no way for him to un-present it, so in the end, the right amount of money ends up
in the cash register. Nevertheless, it is desirable to release the right customer as
soon as his payment is taken.

b. The semaphore leave_b_chair supposedly prevents multiple access to a sin-
gle barber chair. Unfortunately, this semaphore does not succeed in all cases.
For example, suppose that all three barbers have finished cutting hair and are
blocked at semWait(leave_b_chair) . Two of the customers are in an inter-
rupted state just prior to leave barber chair . The third customer leaves his
chair and executes semSignal(leave_b_chair) . Which barber is released?
Because the leave_b_chair queue is first in first out, the first barber that was
blocked is released. Is that the barber that was cutting the signaling customer’s
hair? Maybe, but maybe not. If not, then a new customer will come along and sit
on the lap of a customer that was just about to get up.

c. The program requires a customer first sits on the sofa even if a barber chair is
empty. Granted, this is a rather minor problem, and fixing it makes code that is
already a bit messy even messier. Nevertheless, give it a try.

This page intentionally left blank

B-1

APPENDIX B

PROGRAMMING AND OPERATING
SYSTEM PROJECTS

 B.1 OS/161
 B.2 Simulations
 B.3 Programming Projects

 Textbook-Defi ned Projects
 Additional Major Programming Projects
 Small Programming Projects

 B.4 Research Projects
 B.5 Reading/Report Assignments
 B.6 Writing Assignments
 B.7 Discussion Topics
 B.8 BACI

B.1 / OS/161 B-2

 Analysis and observation, theory and experience must never disdain
or exclude each other; on the contrary, they support each other.

 — ON WAR , Carl Von Clausewitz

 Many instructors believe that implementation or research projects are crucial to
the clear understanding of operating system concepts. Without projects, it may be
difficult for students to grasp some of the basic OS abstractions and interactions
among components; a good example of a concept that many students find difficult
to master is that of semaphores. Projects reinforce the concepts introduced in this
book, give the student a greater appreciation of how the different pieces of an OS fit
together, and can motivate students and give them confidence that they are capable
of not only understanding but also implementing the details of an OS.

 In this text, I have tried to present the concepts of OS internals as clearly
as possible and have provided numerous homework problems to reinforce those
concepts. Many instructors will wish to supplement this material with projects. This
appendix provides some guidance in that regard and describes support material
available at the instructor’s Web site. The support material covers eight types of
projects and other student exercises:

 • OS/161 projects

 • Simulation projects

 • Programming projects

 • Research projects

 • Reading/report assignments

 • Writing assignments

 • Discussion topics

 • BACI

 B.1 OS/161

 The Instructor’s Resource Center (IRC) for this book provides support for using
OS/161 as an active learning component.

 OS/161 is an educational operating system developed at Harvard University
[HOLL02]. It aims to strike a balance between giving students experience in work-
ing on a real operating system, and potentially overwhelming students with the
complexity that exists in a fully-fledged operating system, such as Linux. Compared
to most deployed operating systems, OS/161 is quite small (approximately 20,000
lines of code and comments), and therefore it is much easier to develop an under-
standing of the entire code base.

 The source code distribution contains a full operating system source tree,
including the kernel, libraries, various utilities (ls, cat,…), and some test programs.
OS/161 boots on the simulated machine in the same manner as a real system might
boot on real hardware.

B-3 APPENDIX B / PROGRAMMING AND OPERATING SYSTEM PROJECTS

 System/161 simulates a “real” machine to run OS/161 on. The machine fea-
tures a MIPS R2000/R3000 CPU including an MMU, but no floating-point unit or
cache. It also features simplified hardware devices hooked up to the system bus.
These devices are much simpler than real hardware, and thus make it feasible for
students to get their hands dirty without having to deal with the typical level of
complexity of physical hardware. Using a simulator has several advantages: Unlike
other software students write, buggy OS software may result in completely locking
up the machine, making it difficult to debug and requiring a reboot. A simulator
enables debuggers to access the machine below the software architecture level as
if debugging was built into the CPU. In some senses, the simulator is similar to an
in-circuit emulator (ICE) that you might find in industry, only it is implemented in
software. The other major advantage is the speed of reboots. Rebooting real hard-
ware takes minutes, and hence the development cycle can be frustratingly slow on
real hardware. System/161 boots OS/161 in mere seconds.

 The OS/161 and System/161 simulators can be hosted on a variety of plat-
forms, including Unix, Linux, Mac OS X, and Cygwin (the free Unix environment
for Windows).

 The IRC includes the following:

 • Package for instructor’s Web server: A set of html and pdf files that can be
easily uploaded to the instructor’s site for the OS course, which provide all
the online resources for OS/161 and S/161 access, user’s guides for students,
assignments, and other useful material.

 • Getting started for instructors: This guide lists all of the files that make up the
Web site for the course and instructions on how to set up the Web site.

 • Getting started for students: This guide explains to students step-by-step how
to download and install OS/161 and S/161 on their PC.

 • Background material for students: This consists of two documents that pro-
vide an overview of the architecture of S/161 and the internals of OS/161.
These overviews are intended to be sufficient so that the student is not over-
whelmed with figuring out what these systems are.

 • Student exercises: A set of exercises that cover some of the key aspects of
OS internals, including support for system calls, threading, synchronization,
locks and condition variables, scheduling, virtual memory, files systems, and
security

 The IRC OS/161 package was prepared by Andrew Peterson and other
 colleagues and students at the University of Toronto.

 B.2 SIMULATIONS

 The IRC provides support for assigning projects based on a set of simulations devel-
oped at the University of Texas, San Antonio. Table B.1 lists the simulations by
chapter. The simulators are all written in Java and can be run either locally as a Java
application or online through a browser.

B.3 / PROGRAMMING PROJECTS B-4

Table B.1 OS Simulations by Chapter

Chapter 5 – Concurrency: Mutual Exclusion and Synchronization

 Producer-consumer Allows the user to experiment with a bounded buffer
synchronization problem in the context of a single
producer and a single consumer

 UNIX Fork-pipe Simulates a program consisting of pipe , dup2 ,
close , fork , read , write , and print instructions

Chapter 6 – Concurrency: Deadlock and Starvation

 Starving philosophers Simulates the dining philosophers problem

Chapter 8 – Virtual Memory

 Address translation Used for exploring aspects of address translation. It
supports 1- and 2-level page tables and a translation
lookaside buffer

Chapter 9 – Uniprocessor Scheduling

 Process scheduling Allows users to experiment with various process
scheduling algorithms on a collection of processes
and to compare such statistics as throughput and
waiting time

Chapter 11 – I/O Management and Disk Scheduling

 Disk head scheduling Supports the standard scheduling algorithms such
as FCFS, SSTF, SCAN, LOOK, C-SCAN, and
C-LOOK as well as double buffered versions of these

Chapter 12 – File Management

 Concurrent I/O Simulates a program consisting of open , close ,
read , write , fork , wait , pthread_create ,
pthread_detach , and pthread_join instructions

 The IRC includes the following:

 1. A brief overview of the simulations available.

 2. How to port them to the local environment.

 3. Specific assignments to give to students, telling them specifically what they are
to do and what results are expected. For each simulation, this section provides
one or two original assignments that the instructor can assign to students.

 These simulation assignments were developed by Adam Critchley (University
of Texas at San Antonio).

 B.3 PROGRAMMING PROJECTS

 Three sets of programming projects are provided.

Textbook-Defined Projects

 Two major programming projects, one to build a shell, or command line interpreter,
and one to build a process dispatcher are described in the online portion of the

B-5 APPENDIX B / PROGRAMMING AND OPERATING SYSTEM PROJECTS

textbook. The projects can be assigned after Chapter 3 and after Chapter 9 , respec-
tively. The IRC provides further information and step-by-step exercises for devel-
oping the programs.

 These projects were developed by Ian G. Graham of Griffith University,
Australia.

Additional Major Programming Projects

 A set of programming assignments, called machine problems (MPs), are available
that are based on the Posix Programming Interface. The first of these assignments
is a crash course in C, to enable the student to develop sufficient proficiency in C to
be able to do the remaining assignments. The set consists of nine machine problems
with different difficulty degrees. It may be advisable to assign each project to a team
of two students.

 Each MP includes not only a statement of the problem but a number of C files
that are used in each assignment, step-by-step instructions, and a set of questions for
each assignment that the student must answer that indicate a full understanding of
each project. The scope of the assignments includes:

 1. Create a program to run in a shell environment using basic I/O and string
 manipulation functions.

 2. Explore and extend a simple Unix shell interpreter.

 3. Modify faulty code that utilizes threads.

 4. Implement a multithreaded application using thread synchronization
 primitives.

 5. Write a user–mode thread scheduler

 6. Simulate a time-sharing system by using signals and timers

 7. A six-week project aimed at creating a simple yet functional networked file
system. Covers I/O and file system concepts, memory management, and net-
working primitives.

 The IRC provides specific instructions for setting up the appropriate support
files on the instructor’s Web site of local server.

 These project assignments were developed at the University of Illinois at
Urbana-Champaign, Department of Computer Science and adapted by Matt Sparks
(University of Illinois at Urbana-Champagne) for use with this textbook.

Small Programming Projects

 The instructor can also assign a number of small programming projects described in
the IRC. The projects can be programmed by the students on any available compu-
ter and in any appropriate language: They are platform and language independent.

 These small projects have certain advantages over the larger projects. Larger
projects usually give students more of a sense of achievement, but students with
less ability or fewer organizational skills can be left behind. Larger projects usually
elicit more overall effort from the best students. Smaller projects can have a higher
concepts-to-code ratio, and because more of them can be assigned, the opportu-
nity exists to address a variety of different areas. Accordingly, the instructor’s IRC

B.6 / WRITING ASSIGNMENTS B-6

 contains a series of small projects, each intended to be completed in a week or
so, which can be very satisfying to both student and teacher. These projects were
developed at Worcester Polytechnic Institute by Stephen Taylor, who has used and
refined the projects in the course of teaching operating systems a dozen times.

 B.4 RESEARCH PROJECTS

 An effective way of reinforcing basic concepts from the course and for teaching
students research skills is to assign a research project. Such a project could involve
a literature search as well as a Web search of vendor products, research lab activi-
ties, and standardization efforts. Projects could be assigned to teams or, for smaller
projects, to individuals. In any case, it is best to require some sort of project proposal
early in the term, giving the instructor time to evaluate the proposal for appropriate
topic and appropriate level of effort. Student handouts for research projects should
include

 • A format for the proposal

 • A format for the final report

 • A schedule with intermediate and final deadlines

 • A list of possible project topics

 The students can select one of the listed topics or devise their own comparable
project. The IRC includes a suggested format for the proposal and final report as
well as a list of possible research topics developed by Professor Tan N. Nguyen of
George Mason University.

 B.5 READING/REPORT ASSIGNMENTS

 Another excellent way to reinforce concepts from the course and to give students
research experience is to assign papers from the literature to be read and analyzed.
The IRC includes a suggested list of papers to be assigned, organized by chapter.
The Premium Content Web site provides a copy of each of the papers. The IRC also
includes a suggested assignment wording.

 B.6 WRITING ASSIGNMENTS

 Writing assignments can have a powerful multiplier effect in the learning process
in a technical discipline such as OS internals. Adherents of the Writing Across the
Curriculum (WAC) movement (http://wac.colostate.edu/) report substantial bene-
fits of writing assignments in facilitating learning. Writing assignments lead to more
detailed and complete thinking about a particular topic. In addition, writing assign-
ments help to overcome the tendency of students to pursue a subject with a mini-
mum of personal engagement, just learning facts and problem-solving techniques
without obtaining a deep understanding of the subject matter.

http://wac.colostate.edu/

B-7 APPENDIX B / PROGRAMMING AND OPERATING SYSTEM PROJECTS

 The IRC contains a number of suggested writing assignments, organized
by chapter. Instructors may ultimately find that this is an important part of their
approach to teaching the material. I would greatly appreciate any feedback on this
area and any suggestions for additional writing assignments.

 B.7 DISCUSSION TOPICS

 One way to provide a collaborative experience is discussion topics, a number of
which are included in the IRC. Each topic relates to material in the book. The
instructor can set it up so that students can discuss a topic either in a class setting, an
online chat room, or a message board. Again, I would greatly appreciate any feed-
back on this area and any suggestions for additional discussion topics.

 B.8 BACI

 In addition to all of the support provided at the IRC, the Ben-Ari Concurrent
Interpreter (BACI) is a publicly available package that instructors may wish to use.
BACI simulates concurrent process execution and supports binary and counting
semaphores and monitors. BACI is accompanied by a number of project assign-
ments to be used to reinforce concurrency concepts.

 Appendix O provides a more detailed introduction to BACI, with information
about how to obtain the system and the assignments.

This page intentionally left blank

713

binary semaphore A semaphore that takes
on only the values 0 and 1. A binary
semaphore allows only one process or
thread to have access to a shared criti-
cal resource at a time.

block (1) A collection of contiguous
records that are recorded as a unit; the
units are separated by interblock gaps.
(2) A group of bits that are transmitted
as a unit.

B-tree A technique for organizing indexes.
In order to keep access time to a
minimum, it stores the data keys in a
balanced hierarchy that continually
realigns itself as items are inserted and
deleted. Thus, all nodes always have a
similar number of keys.

busy waiting The repeated execution of a
loop of code while waiting for an event
to occur.

cache memory A memory that is smaller
and faster than main memory and that
is interposed between the processor
and main memory. The cache acts as a
buffer for recently used memory loca-
tions.

central processing unit (CPU) That por-
tion of a computer that fetches and
executes instructions. It consists of an
Arithmetic and Logic Unit (ALU), a
control unit, and registers. Often sim-
ply referred to as a processor.

chained list A list in which data items may
be dispersed but in which each item
contains an identifier for locating the
next item.

access method The method that is used to
find a file, a record, or a set of records.

address space The range of addresses avail-
able to a computer program.

address translator A functional unit that
transforms virtual addresses to real
addresses.

application programming interface (API)
A standardized library of program-
ming tools used by software developers
to write applications that are compat-
ible with a specific operating system or
graphic user interface.

asynchronous operation An operation that
occurs without a regular or predictable
time relationship to a specified event,
for example, the calling of an error
diagnostic routine that may receive
control at any time during the execu-
tion of a computer program.

base address An address that is used as the
origin in the calculation of addresses in
the execution of a computer program.

batch processing Pertaining to the tech-
nique of executing a set of computer
programs such that each is completed
before the next program of the set is
started.

Beowulf Defines a class of clustered com-
puting that focuses on minimizing
the price-to-performance ratio of the
overall system without compromising
its ability to perform the computation
work for which it is being built. Most
Beowulf systems are implemented on
Linux computers.

GLOSSARY

713

 In studying the Imperium, Arrakis, and the whole culture which produced
Maud’Dib, many unfamiliar terms occur. To increase understanding is a laud-
able goal, hence the definitions and explanations given below

 — DUNE, Frank Herbert

714 GLOSSARY

deadlock (1) An impasse that occurs when
multiple processes are waiting for the
availability of a resource that will not
become available because it is being
held by another process that is in a simi-
lar wait state. (2) An impasse that occurs
when multiple processes are waiting for
an action by or a response from another
process that is in a similar wait state.

deadlock avoidance A dynamic technique
that examines each new resource
request for deadlock. If the new
request could lead to a deadlock, then
the request is denied.

deadlock detection A technique in which
requested resources are always granted
when available. Periodically, the oper-
ating system tests for deadlock.

deadlock prevention A technique that
guarantees that a deadlock will not
occur. Prevention is achieved by assur-
ing that one of the necessary condi-
tions for deadlock is not met.

demand paging The transfer of a page from
secondary memory to main memory
storage at the moment of need. Com-
pare prepaging .

device driver An operating system mod-
ule (usually in the kernel) that deals
directly with a device or I/O module.

direct access The capability to obtain data
from a storage device or to enter data
into a storage device in a sequence
independent of their relative position,
by means of addresses that indicate the
physical location of the data.

direct memory access (DMA) A form of
I/O in which a special module, called a
DMA module, controls the exchange
of data between main memory and
an I/O device. The processor sends a
request for the transfer of a block of
data to the DMA module and is inter-
rupted only after the entire block has
been transferred.

disabled interrupt A condition, usually cre-
ated by the operating system, during

client A process that requests services by
sending messages to server processes.

cluster A group of interconnected, whole
computers working together as a
 unified computing resource that
can create the illusion of being one
machine. The term whole computer
means a system that can run on its own,
apart from the cluster.

communications architecture The hardware
and software structure that implements
the communications function.

compaction A technique used when mem-
ory is divided into variable-size parti-
tions. From time to time, the operating
system shifts the partitions so that they
are contiguous and so that all of the free
memory is together in one block. See
external fragmentation .

concurrent Pertaining to processes or
threads that take place within a com-
mon interval of time during which they
may have to alternately share common
resources.

consumable resource A resource that can be
created (produced) and destroyed (con-
sumed). When a resource is acquired by
a process, the resource ceases to exist.
Examples of consumable resources are
interrupts, signals, messages, and infor-
mation in I/O buffers.

critical section In an asynchronous pro-
cedure of a computer program, a part
that cannot be executed simultane-
ously with an associated critical section
of another asynchronous procedure.
See mutual exclusion .

database A collection of interrelated data,
often with controlled redundancy, orga-
nized according to a schema to serve
one or more applications; the data are
stored so that they can be used by dif-
ferent programs without concern for the
data structure or organization. A com-
mon approach is used to add new data
and to modify and retrieve existing data.

GLOSSARY 715

file allocation table (FAT) A table that
indicates the physical location on sec-
ondary storage of the space allocated
to a file. There is one file allocation
table for each file.

file management system A set of system
software that provides services to users
and applications in the use of files,
 including file access, directory mainte-
nance, and access control.

file organization The physical order of
 records in a file, as determined by the
access method used to store and retrieve
them.

first come first served (FCFS) Same as FIFO .
first in first out (FIFO) A queueing tech-

nique in which the next item to be
 retrieved is the item that has been in
the queue for the longest time.

frame In paged virtual storage, a fixed-
length block of main memory that is
used to hold one page of virtual memory.

gang scheduling The scheduling of a set of
related threads to run on a set of proces-
sors at the same time, on a one-to-one
basis.

hash file A file in which records are
accessed according to the values of a
key field. Hashing is used to locate a
record on the basis of its key value.

hashing The selection of a storage location
for an item of data by calculating the
address as a function of the contents
of the data. This technique complicates
the storage allocation function but
 results in rapid random retrieval.

hit ratio In a two-level memory, the fraction
of all memory accesses that are found
in the faster memory (e.g., the cache).

indexed access Pertaining to the organiza-
tion and accessing of the records of a
storage structure through a separate
index to the locations of the stored
 records.

which the processor will ignore inter-
rupt request signals of a specified class.

disk allocation table A table that indicates
which blocks on secondary storage are
free and available for allocation to files.

disk cache A buffer, usually kept in main
memory, that functions as a cache of
disk blocks between disk memory and
the rest of main memory.

dispatch To allocate time on a proces-
sor to jobs or tasks that are ready for
 execution.

distributed operating system A common
operating system shared by a net-
work of computers. The distributed
operating system provides support for
interprocess communication, process
migration, mutual exclusion, and the
prevention or detection of deadlock.

dynamic relocation A process that assigns
new absolute addresses to a computer
program during execution so that the
program may be executed from a dif-
ferent area of main storage.

enabled interrupt A condition, usually cre-
ated by the operating system, during
which the processor will respond to inter-
rupt request signals of a specified class.

encryption The conversion of plain text or
data into unintelligible form by means of
a reversible mathematical computation.

execution context Same as process state .
external fragmentation Occurs when mem-

ory is divided into variable-size parti-
tions corresponding to the blocks of
data assigned to the memory (e.g., seg-
ments in main memory). As segments
are moved into and out of the memory,
gaps will occur between the occupied
portions of memory.

field (1) Defined logical data that are part
of a record. (2) The elementary unit of
a record that may contain a data item, a
data aggregate, a pointer, or a link.

file A set of related records treated as a unit.

716 GLOSSARY

express statements in a job that are
used to identify the job or to describe
its requirements to an operating system.

kernel A portion of the operating system
that includes the most heavily used por-
tions of software. Generally, the kernel
is maintained permanently in main
memory. The kernel runs in a privileged
mode and responds to calls from pro-
cesses and interrupts from devices.

kernel mode A privileged mode of execution
reserved for the kernel of the operating
system. Typically, kernel mode allows
access to regions of main memory that
are unavailable to processes execut-
ing in a less-privileged mode, and also
enables execution of certain machine
instructions that are restricted to the
kernel mode. Also referred to as system
mode or privileged mode .

last in first out (LIFO) A queueing tech-
nique in which the next item to be
retrieved is the item most recently
placed in the queue.

lightweight process A thread.
livelock A condition in which two or more

processes continuously change their
state in response to changes in the
other process(es) without doing any
useful work. This is similar to deadlock
in that no progress is made, but it dif-
fers in that neither process is blocked
or waiting for anything.

locality of reference The tendency of a pro-
cessor to access the same set of mem-
ory locations repetitively over a short
period of time.

logical address A reference to a memory
location independent of the current
assignment of data to memory. A
translation must be made to a physical
address before the memory access can
be achieved.

logical record A record independent of its
physical environment; portions of one

indexed file A file in which records are
 accessed according to the value of key
fields. An index is required that indi-
cates the location of each record on the
basis of each key value.

indexed sequential access Pertaining to
the organization and accessing of the
records of a storage structure through
an index of the keys that are stored in
arbitrarily partitioned sequential files.

indexed sequential file A file in which
 records are ordered according to the val-
ues of a key field. The main file is supple-
mented with an index file that contains
a partial list of key values; the index
provides a lookup capability to quickly
reach the vicinity of a desired record.

instruction cycle The time period during
which one instruction is fetched from
memory and executed when a com-
puter is given an instruction in machine
language.

internal fragmentation Occurs when mem-
ory is divided into fixed-size partitions
(e.g., page frames in main memory,
physical blocks on disk). If a block of
data is assigned to one or more parti-
tions, then there may be wasted space
in the last partition. This will occur if
the last portion of data is smaller than
the last partition.

interrupt A suspension of a process, such as
the execution of a computer program,
caused by an event external to that
process and performed in such a way
that the process can be resumed.

interrupt handler A routine, generally part
of the operating system. When an inter-
rupt occurs, control is transferred to
the corresponding interrupt handler,
which takes some action in response to
the condition that caused the interrupt.

job A set of computational steps packaged
to run as a unit.

job control language (JCL) A problem-
oriented language that is designed to

GLOSSARY 717

execute in a different mode (kernel
or process). When the mode switches
from process to kernel, the program
counter, processor status word, and
other registers are saved. When the
mode switches from kernel to process,
this information is restored.

monitor A programming language construct
that encapsulates variables, access pro-
cedures, and initialization code within
an abstract data type. The monitor’s
variable may only be accessed via its
access procedures and only one process
may be actively accessing the moni-
tor at any one time. The access proce-
dures are critical sections . A monitor
may have a queue of processes that are
 waiting to access it.

monolithic kernel A large kernel contain-
ing virtually the complete operat-
ing system, including scheduling, file
system, device drivers, and memory
management. All the functional com-
ponents of the kernel have access to
all of its internal data structures and
routines. Typically, a monolithic kernel
is implemented as a single process, with
all elements sharing the same address
space.

multilevel security A capability that
enforces access control across multiple
levels of classification of data.

multiprocessing A mode of operation that
provides for parallel processing by two
or more processors of a multiprocessor.

multiprocessor A computer that has two
or more processors that have common
access to a main storage.

multiprogramming A mode of opera-
tion that provides for the interleaved
execution of two or more computer
programs by a single processor. The
same as multitasking, using different
terminology.

multiprogramming level The number of
processes that are partially or fully res-
ident in main memory.

logical record may be located in differ-
ent physical records or several logical
records or parts of logical records may
be located in one physical record.

macrokernel A large operating system core
that provides a wide range of services.

mailbox A data structure shared among a
number of processes that is used as a
queue for messages. Messages are sent
to the mailbox and retrieved from the
mailbox rather than passing directly
from sender to receiver.

main memory Memory that is internal to the
computer system, is program address-
able, and can be loaded into registers
for subsequent execution or processing.

malicious software Any software designed
to cause damage to or use up the
resources of a target computer. Mali-
cious software (malware) is frequently
concealed within or masquerades as
legitimate software. In some cases, it
spreads itself to other computers via
e-mail or infected disks. Types of mali-
cious software include viruses, Trojan
horses, worms, and hidden software for
launching denial-of-service attacks.

memory cycle time The time it takes to
read one word from or write one word
to memory. This is the inverse of the
rate at which words can be read from
or written to memory.

memory partitioning The subdividing of
storage into independent sections.

message A block of information that may
be exchanged between processes as a
means of communication.

microkernel A small privileged operat-
ing system core that provides process
scheduling, memory management, and
communication services and relies on
other processes to perform some of the
functions traditionally associated with
the operating system kernel.

mode switch A hardware operation that
occurs that causes the processor to

718 GLOSSARY

page frame A fixed-size contiguous block
of main memory used to hold a page.

paging The transfer of pages between main
memory and secondary memory.

physical address The absolute location of a
unit of data in memory (e.g., word or
byte in main memory, block on second-
ary memory).

pipe A circular buffer allowing two pro-
cesses to communicate on the pro-
ducer–consumer model. Thus, it is a
first-in-first-out queue, written by one
process and read by another. In some
systems, the pipe is generalized to allow
any item in the queue to be selected for
consumption.

preemption Reclaiming a resource from a
process before the process has finished
using it.

prepaging The retrieval of pages other than
the one demanded by a page fault. The
hope is that the additional pages will be
needed in the near future, conserving
disk I/O. Compare demand paging .

priority inversion A circumstance in which
the operating system forces a higher-
priority task to wait for a lower-priority
task.

privileged instruction An instruction that
can be executed only in a specific mode,
usually by a supervisory program.

privileged mode Same as kernel mode .
process A program in execution. A pro-

cess is controlled and scheduled by the
operating system. Same as task .

process control block The manifestation of
a process in an operating system. It is a
data structure containing information
about the characteristics and state of
the process.

process descriptor Same as process control
block.

process image All of the ingredients of a
process, including program, data, stack,
and process control block.

process migration The transfer of a sufficient
amount of the state of a process from

multitasking A mode of operation that pro-
vides for the concurrent performance
or interleaved execution of two or more
computer tasks. The same as multipro-
gramming, using different terminology.

mutex Similar to a binary semaphore. A key
difference between the two is that the
process that locks the mutex (sets the
value to zero) must be the one to unlock
it (sets the value to 1). In contrast, it is
possible for one process to lock a binary
semaphore and for another to unlock it.

mutual exclusion A condition in which
there is a set of processes, only one of
which is able to access a given resource
or perform a given function at any
time. See critical section .

nonprivileged state An execution context
that does not allow sensitive hardware
instructions to be executed, such as the
halt instruction and I/O instructions.

nonuniform memory access (NUMA) multi-
processor A shared-memory multipro-
cessor in which the access time from a
given processor to a word in memory var-
ies with the location of the memory word.

object request broker An entity in an
object-oriented system that acts as an
intermediary for requests sent from a
client to a server.

operating system Software that controls
the execution of programs and that
provides services such as resource allo-
cation, scheduling, input/output con-
trol, and data management.

page In virtual storage, a fixed-length block
that has a virtual address and that is
transferred as a unit between main
memory and secondary memory.

page fault Occurs when the page contain-
ing a referenced word is not in main
memory. This causes an interrupt
and requires that the proper page be
brought into main memory.

GLOSSARY 719

real-time system An operating system that
must schedule and manage real-time
tasks.

real-time task A task that is executed in
connection with some process or func-
tion or set of events external to the
computer system and that must meet
one or more deadlines to interact effec-
tively and correctly with the external
environment.

record A group of data elements treated as
a unit.

reentrant procedure A routine that may
be entered before the completion of
a prior execution of the same routine
and execute correctly.

registers High-speed memory internal to the
CPU. Some registers are user visible—
that is, available to the programmer
via the machine instruction set. Other
registers are used only by the CPU, for
 control purposes.

relative address An address calculated as a
displacement from a base address.

remote procedure call (RPC) A technique
by which two programs on different
machines interact using procedure call/
return syntax and semantics. Both the
called and calling program behave as if
the partner program were running on
the same machine.

rendezvous In message passing, a condition
in which both the sender and receiver
of a message are blocked until the mes-
sage is delivered.

resident set That portion of a process that
is actually in main memory at a given
time. Compare working set .

response time In a data system, the elapsed
time between the end of transmission
of an enquiry message and the begin-
ning of the receipt of a response mes-
sage, measured at the enquiry terminal.

reusable resource A resource that can be
safely used by only one process at a
time and is not depleted by that use.
Processes obtain reusable resource

one machine to another for the process
to execute on the target machine.

process spawning The creation of a new
process by another process.

process state All of the information that
the operating system needs to manage
a process and that the processor needs
to properly execute the process. The
process state includes the contents of
the various processor registers, such
as the program counter and data reg-
isters; it also includes information of
use to the operating system, such as the
priority of the process and whether the
process is waiting for the completion of
a particular I/O event. Same as execu-
tion context .

process switch An operation that switches
the processor from one process to
another, by saving all the process con-
trol block, registers, and other informa-
tion for the first and replacing them with
the process information for the second.

processor In a computer, a functional unit
that interprets and executes instruc-
tions. A processor consists of at least an
instruction control unit and an arith-
metic unit.

program counter Instruction address reg-
ister.

program status word (PSW) A register or
set of registers that contains condition
codes, execution mode, and other sta-
tus information that reflects the state
of a process.

programmed I/O A form of I/O in which
the CPU issues an I/O command to an
I/O module and must then wait for the
operation to be complete before pro-
ceeding.

race condition Situation in which multiple
processes access and manipulate shared
data with the outcome dependent on
the relative timing of the processes.

real address A physical address in main
memory.

720 GLOSSARY

medium in the same sequence as the
data are ordered, or to obtain data in
the same order as they were entered.

sequential file A file in which records are
ordered according to the values of one
or more key fields and processed in the
same sequence from the beginning of
the file.

server (1) A process that responds to
request from clients via messages. (2)
In a network, a data station that pro-
vides facilities to other stations; for
example, a file server, a print server, a
mail server.

session A collection of one or more pro-
cesses that represents a single interac-
tive user application or operating sys-
tem function. All keyboard and mouse
input is directed to the foreground ses-
sion, and all output from the foreground
session is directed to the display screen.

shell The portion of the operating system that
interprets interactive user commands
and job control language commands. It
functions as an interface between the
user and the operating system.

spin lock Mutual exclusion mechanism in
which a process executes in an infinite
loop waiting for the value of a lock
variable to indicate availability.

spooling The use of secondary memory
as buffer storage to reduce processing
delays when transferring data between
peripheral equipment and the proces-
sors of a computer.

stack An ordered list in which items are
appended to and deleted from the
same end of the list, known as the top.
That is, the next item appended to the
list is put on the top, and the next item
to be removed from the list is the item
that has been in the list the shortest
time. This method is characterized as
last in first out.

starvation A condition in which a process
is indefinitely delayed because other
processes are always given preference.

units that they later release for reuse
by other processes. Examples of reus-
able resources include processors, I/O
channels, main and secondary memory,
devices, and data structures such as
files, databases, and semaphores.

round robin A scheduling algorithm in
which processes are activated in a fixed
cyclic order; that is, all processes are in
a circular queue. A process that can-
not proceed because it is waiting for
some event (e.g., termination of a child
process or an input/output operation)
returns control to the scheduler.

scheduling To select jobs or tasks that are
to be dispatched. In some operating
systems, other units of work, such as
input/output operations, may also be
scheduled.

secondary memory Memory located out-
side the computer system itself; that is,
it cannot be processed directly by the
processor. It must first be copied into
main memory. Examples include disk
and tape.

segment In virtual memory, a block that has
a virtual address. The blocks of a pro-
gram may be of unequal length and may
even be of dynamically varying lengths.

segmentation The division of a program or
application into segments as part of a
virtual memory scheme.

semaphore An integer value used for sig-
naling among processes. Only three
operations may be performed on a
semaphore, all of which are atomic:
initialize, decrement, and increment.
Depending on the exact definition of
the semaphore, the decrement opera-
tion may result in the blocking of a pro-
cess, and the increment operation may
result in the unblocking of a process.
Also known as a counting semaphore
or a general semaphore .

sequential access The capability to enter
data into a storage device or a data

GLOSSARY 721

time sharing The concurrent use of a device
by a number of users.

time slice The maximum amount of time
that a process can execute before being
interrupted.

time slicing A mode of operation in which
two or more processes are assigned
quanta of time on the same processor.

trace A sequence of instructions that are
executed when a process is running.

translation lookaside buffer (TLB) A
high-speed cache used to hold recently
 referenced page table entries as part of a
paged virtual memory scheme. The TLB
reduces the frequency of access to main
memory to retrieve page table entries.

trap An unprogrammed conditional jump to
a specified address that is automatically
activated by hardware; the location from
which the jump was made is recorded.

trap door Secret undocumented entry
point into a program, used to grant
access without normal methods of
access authentication.

trojan horse Secret undocumented routine
embedded within a useful program.
Execution of the program results in
execution of the secret routine.

trusted system A computer and operating
system that can be verified to imple-
ment a given security policy.

user mode The least-privileged mode of
execution. Certain regions of main
memory and certain machine instruc-
tions cannot be used in this mode.

virtual address The address of a storage
location in virtual memory.

virtual memory The storage space that may
be regarded as addressable main stor-
age by the user of a computer system
in which virtual addresses are mapped
into real addresses. The size of virtual
storage is limited by the addressing
scheme of the computer system and
by the amount of secondary memory

strong semaphore A semaphore in which
all processes waiting on the same
semaphore are queued and will even-
tually proceed in the same order as
they executed the wait (P) operations
(FIFO order).

swapping A process that interchanges the
contents of an area of main storage
with the contents of an area in second-
ary memory.

symmetric multiprocessing (SMP) A form
of multiprocessing that allows the
operating system to execute on any
available processor or on several avail-
able processors simultaneously.

synchronous operation An operation that
occurs regularly or predictably with
respect to the occurrence of a specified
event in another process, for example,
the calling of an input/output routine
that receives control at a precoded
location in a computer program.

synchronization Situation in which two or
more processes coordinate their activi-
ties based on a condition.

system bus A bus used to interconnect
major computer components (CPU,
memory, I/O).

system mode Same as kernel mode .

task Same as process .
thrashing A phenomenon in virtual mem-

ory schemes, in which the processor
spends most of its time swapping pieces
rather than executing instructions.

thread A dispatchable unit of work. It
includes a processor context (which
includes the program counter and
stack pointer) and its own data area for
a stack (to enable subroutine branch-
ing). A thread executes sequentially
and is interruptible so that the proces-
sor can turn to another thread. A
 process may consist of multiple threads.

thread switch The act of switching proces-
sor control from one thread to another
within the same process.

722 GLOSSARY

may be stored, transmitted, or operated
on within a given computer. Typically, if
a processor has a fixed-length instruc-
tion set, then the instruction length
equals the word length.

working set The working set with param-
eter � for a process at virtual time t ,
W(t , �) is the set of pages of that pro-
cess that have been referenced in the
last � time units. Compare resident set .

worm Program that can travel from com-
puter to computer across network
connections. May contain a virus or
bacteria.

available and not by the actual number
of main storage locations.

virus Secret undocumented routine
embedded within a useful program.
Execution of the program results in
execution of the secret routine.

weak semaphore A semaphore in which
all processes waiting on the same
semaphore proceed in an unspecified
order (i.e., the order is unknown or
indeterminate).

word An ordered set of bytes or bits that
is the normal unit in which information

723

ABBREVIATIONS

 ACM Association for Computing Machinery
 IEEE Institute of Electrical and Electronics Engineers

ABRA06 Abramson, T. “Detecting Potential Deadlocks.” Dr. Dobb’s Journal , January 2006.
AGAR89 Agarwal, A. Analysis of Cache Performance for Operating Systems and

 Multiprogramming. Boston: Kluwer Academic Publishers, 1989.
ANAN92 Ananda, A., Tay, B., and Koh, E. “A Survey of Asynchronous Remote Proce-

dure Calls.” Operating Systems Review , April 1992.
ANDE80 Anderson, J. Computer Security Threat Monitoring and Surveillance. Fort

Washington, PA: James P. Anderson Co., April 1980.
ANDE89 Anderson, T., Laxowska, E., and Levy, H. “The Performance Implications of

Thread Management Alternatives for Shared-Memory Multiprocessors.”
IEEE Transactions on Computers , December 1989.

ANDE04 Anderson, T., Bershad, B., Lazowska, E., and Levy, H. “Thread Management
for Shared-Memory Multiprocessors.” In [TUCK04].

ANDR83 Andrews, G., and Schneider, F. “Concepts and Notations for Concurrent
 Programming.” Computing Surveys , March 1983.

ANDR90 Andrianoff, S. “A Module on Distributed Systems for the Operating System
Course.” Proceedings, Twenty-First SIGCSE Technical Symposium on Computer
Science Education, SIGSCE Bulletin , February 1990.

ANDR04 Andrews, M., and Whittaker, J. “Computer Security.” IEEE Security and
 Privacy , September/October 2004.

ANTE06 Ante, S., and Grow, B. “Meet the Hackers.” Business Week , May 29, 2006.
APPL09 Apple. Inc. “Grand Central Dispatch: A Better Way to Do Multicore.”

Technology Brief , August 2009.
ARDE80 Arden, B., editor. What Can Be Automated? Cambridge, MA: MIT Press, 1980.
ARTS89a Artsy, Y., ed. Special Issue on Process Migration. Newsletter of the IEEE

 Computer Society Technical Committee on Operating Systems , Winter 1989.
ARTS89b Artsy, Y. “Designing a Process Migration Facility: The Charlotte Experience.”

Computer , September 1989.
ATLA89 Atlas, A., and Blundon, B. “Time to Reach for It All.” UNIX Review , January

1989.

REFERENCES

723

 In matters of this kind everyone feels he is justified in writing and publishing
the first thing that comes into his head when he picks up a pen, and thinks his
own idea as axiomatic as the fact that two and two make four. If critics would
go to the trouble of thinking about the subject for years on end and testing
each conclusion against the actual history of war, as I have done, they would
undoubtedly be more careful of what they wrote.

 — ON WAR , Carl von Clausewitz

724 REFERENCES

AXFO88 Axford, T. Concurrent Programming: Fundamental Techniques for Real-Time
and Parallel Software Design. New York: Wiley, 1988.

AYCO06 Aycock, J. Computer Viruses and Malware. New York: Springer, 2006.
BACH86 Bach, M. The Design of the UNIX Operating System. Englewood Cliffs, NJ:

Prentice Hall, 1986.
BACO03 Bacon, J., and Harris, T. Operating Systems: Concurrent and Distributed Soft-

ware Design. Reading, MA: Addison-Wesley, 2003.
BAER80 Baer, J. Computer Systems Architecture. Rockville, MD: Computer Science

Press, 1980.
BARB90 Barbosa, V. “Strategies for the Prevention of Communication Deadlocks in

Distributed Parallel Programs.” IEEE Transactions on Software Engineering ,
November 1990.

BARK89 Barkley, R., and Lee, T. “A Lazy Buddy System Bounded by Two Coalescing
Delays per Class.” Proceedings of the Twelfth ACM Symposium on Operating
Systems Principles , December 1989.

BAYS77 Bays, C. “A Comparison of Next-Fit, First-Fit, and Best-Fit.” Communications
of the ACM , March 1977.

BECK97 Beck, L. System Software. Reading, MA: Addison-Wesley, 1997.
BELA66 Belady, L. “A Study of Replacement Algorithms for a Virtual Storage Com-

puter.” IBM Systems Journal , No. 2, 1966.
BELL94 Bellovin, S., and Cheswick, W. “Network Firewalls.” IEEE Communications

Magazine , September 1994.
BEN82 Ben-Ari, M. Principles of Concurrent Programming. Englewood Cliffs, NJ:

Prentice Hall, 1982.
BEN06 Ben-Ari, M. Principles of Concurrent and Distributed Programming. Harlow,

England: Addison-Wesley, 2006.
BERS96 Berson, A. Client/Server Architecture. New York: McGraw-Hill, 1996.
BIEB05 Bieberstein, N., et al. “Impact of Service-Oriented Architecture on Enterprise

Systems, Organizational Structures, and Individuals.” IBM Systems Journal ,
Vol. 44, No. 4, 2005.

BIH06 Bih, J. “Service Oriented Architecture (SOA): A New Paradigm to Imple-
ment Dynamic E-Business Solutions.” ACM Ubiquity , August 2006. acm.org/
ubiquity/views/v7i30_soa.html

BIRR89 Birrell, A. An Introduction to Programming with Threads. SRC Research
Report 35, Compaq Systems Research Center, Palo Alto, CA, January 1989.
 http://www.research.compaq.com/SRC

BLAC90 Black, D. “Scheduling Support for Concurrency and Parallelism in the Mach
Operating System.” Computer , May 1990.

BOLO89 Bolosky, W., Fitzgerald, R., and Scott, M. “Simple but Effective Techniques for
NUMA Memory Management.” Proceedings, Twelfth ACM Symposium on
Operating Systems Principles , December 1989.

BONW94 Bonwick, J. “An Object-Caching Memory Allocator.” Proceedings, USENIX
Summer Technical Conference , 1994.

BORG90 Borg, A., Kessler, R., and Wall, D. “Generation and Analysis of Very Long
Address Traces.” Proceedings of the 17th Annual International Symposium on
Computer Architecture , May 1990.

http://www.research.compaq.com/SRC

REFERENCES 725

BOVE06 Bovet, D., and Cesati, M. Understanding the Linux Kernel. Sebastopol, CA:
O’Reilly, 2006.

BREN89 Brent, R. “Effi cient Implementation of the First-Fit Strategy for Dynamic
 Storage Allocation.” ACM Transactions on Programming Languages and
 Systems , July 1989.

BREW97 Brewer, E. “Clustering: Multiply and Conquer.” Data Communications , July
1997.

BRIA99 Briand, L., and Roy, D. Meeting Deadlines in Hard Real-Time Systems: The
Rate Monotonic Approach. Los Alamitos, CA: IEEE Computer Society Press,
1999.

BRIN01 Brinch Hansen, P. Classic Operating Systems: From Batch Processing to
 Distributed Systems. New York: Springer-Verlag, 2001.

BRIT04 Britton, C. IT Architectures and Middleware. Reading, MA: Addison-Wesley,
2004.

BROW03 Brown, A., Johnston, S., and Kelly, K. Using Service-Oriented Architecture
and Component-Based Development to Build Web Service Applications. IBM
Rational Software Technical Report, 2003. ibm.com/developerworks/rational/
library/510.html

BROW72 Browne, P. “Computer Security—A Survey.” ACM SIGMIS Database , Fall
1972.

BUHR95 Buhr, P., and Fortier, M. “Monitor Classifi cation.” ACM Computing Surveys ,
March 1995.

BULM79 Bulmer, M. Principles of Statistics. New York: Dover, 1979.
BUON01 Buonadonna, P.; Hill, J.; and Culler, D. “Active Message Communication for

Tiny Networked Sensors.” Proceedings, IEEE INFOCOM 2001 , April 2001.
BURR04 Burr, W., Dodson, D., and Polk, W. Electronic Authentication Guideline.

Gaithersburg, MD: National Institute of Standards and Technology, Special
Publication 800-63, September 2004.

BUTT99 Buttazzo, G. “Optimal Deadline Assignment for Scheduling Soft Aperiodic
Tasks in Hard Real-Time Environments.” IEEE Transactions on Computers ,
October 1999.

BUYY99a Buyya, R. High Performance Cluster Computing: Architectures and Systems.
Upper Saddle River, NJ: Prentice Hall, 1999.

BUYY99b Buyya, R. High Performance Cluster Computing: Programming and Applica-
tions. Upper Saddle River, NJ: Prentice Hall, 1999.

CABR86 Cabrear, L. “The Infl uence of Workload on Load Balancing Strategies.”
USENIX Conference Proceedings , Summer 1986.

CAO96 Cao, P., Felten, E., Karlin, A., and Li, K. “Implementation and Performance of
Integrated Application-Controlled File Caching, Prefetching, and Disk Sched-
uling.” ACM Transactions on Computer Systems , November 1996.

CARE08 Carey, M. “SOA What?” IEEE Computer , March 2008.
CARR81 Carr, R., and Hennessey, J. “WSClock—A Simple and Effi cient Algorithm

for Virtual Memory Management.” Proceedings of the Eighth Symposium on
Operating System Principles , December 1981.

CARR84 Carr, R. Virtual Memory Management. Ann Arbor, MI: UMI Research Press,
1984.

726 REFERENCES

CARR89 Carriero, N., and Gelernter, D. “How to Write Parallel Programs: A Guide for
the Perplexed.” ACM Computing Surveys , September 1989.

CARR01 Carr, S., Mayo, J., and Shene, C. “Race Conditions: A Case Study.” The Journal
of Computing in Small Colleges , October 2001.

CARR05 Carrier, B. File System Forensic Analysis. Upper Saddle River, NJ: Addison-
Wesley, 2005.

CASA94 Casavant, T., and Singhal, M. Distributed Computing Systems. Los Alamitos,
CA: IEEE Computer Society Press, 1994.

CASS01 Cass, S. “Anatomy of Malice.” IEEE Spectrum , November 2001.
CHAN85 Chandy, K., and Lamport, L. “Distributed Snapshots: Determining Global

States of Distributed Systems.” ACM Transactions on Computer Systems ,
 February 1985.

CHAN90 Chandras, R. “Distributed Message Passing Operating Systems.” Operating
Systems Review , January 1990.

CHAP97 Chapin, S., and Maccabe, A., eds. “Multiprocessor Operating Systems:
 Harnessing the Power.” Special issue of IEEE Concurrency , April–June
1997.

CHEN92 Chen, J.; Borg, A.; and Jouppi, N. “A Simulation Based Study of TLB Perfor-
mance.” Proceedings of the 19th Annual International Symposium on Computer
Architecture , May 1992.

CHEN94 Chen, P., Lee, E., Gibson, G., Katz, R., and Patterson, D. “RAID: High-Perfor-
mance, Reliable Secondary Storage.” ACM Computing Surveys , June 1994.

CHEN96 Chen, S., and Towsley, D. “A Performance Evaluation of RAID Architectures.”
IEEE Transactions on Computers , October 1996.

CHEN04 Chen, S., and Tang, T. “Slowing Down Internet Worms.” Proceedings of the 24th
International Conference on Distributed Computing Systems , 2004.

CHU72 Chu, W., and Opderbeck, H. “The Page Fault Frequency Replacement Algo-
rithm.” Proceedings, Fall Joint Computer Conference , 1972.

CLAR85 Clark, D., and Emer, J. “Performance of the VAX-11/780 Translation Buffer:
Simulation and Measurement.” ACM Transactions on Computer Systems ,
 February 1985.

CLAR98 Clarke, D., and Merusi, D. System Software Programming: The Way Things
Work. Upper Saddle River, NJ: Prentice Hall, 1998.

CHER05 Cherbacko, L., et al. “Impact of Service Orientation at the Business Level.”
IBM Systems Journal , Vol. 44, No. 4, 2005.

CHES97 Chess, D. “The Future of Viruses on the Internet.” Proceedings, Virus Bulletin
International Conference , October 1997.

CHIN05 Chinchani, R., and Berg, E. “A Fast Static Analysis Approach to Detect Exploit
Code Inside Network Flows.” Recent Advances in Intrusion Detection, 8th
International Symposium , 2005.

COFF71 Coffman, E., Elphick, M., and Shoshani, A. “System Deadlocks.” Computing
Surveys , June 1971.

COHE94 Cohen, F. A Short Course on Computer Viruses. New York: Wiley, 1994.
COME79 Comer, D. “The Ubiquitous B-Tree.” Computing Surveys , June 1979.
CONR02 Conry-Murray, A. “Behavior-Blocking Stops Unknown Malicious Code.”

Network Magazine , June 2002.

REFERENCES 727

CONW63 Conway, M. “Design of a Separable Transition-Diagram Compiler.” Communi-
cations of the ACM , July 1963.

CONW67 Conway, R., Maxwell, W., and Miller, L. Theory of Scheduling. Reading, MA:
Addison-Wesley, 1967. Reprinted by Dover Publications, 2003.

CORB62 Corbato, F., Merwin-Daggett, M.; and Dealey, R. “An Experimental Time-
Sharing System.” Proceedings of the 1962 Spring Joint Computer Conference ,
1962. Reprinted in [BRIN01].

CORB68 Corbato, F. “A Paging Experiment with the Multics System.” MIT Project
MAC Report MAC-M-384 , May 1968.

CORB96 Corbett, J. “Evaluating Deadlock Detection Methods for Concurrent Soft-
ware.” IEEE Transactions on Software Engineering , March 1996.

CORM09 Cormen, T., et al. Introduction to Algorithms. Cambridge, MA: MIT Press, 2009.
COST05 Costa, M., et al. “Vigilante: End-to-End Containment of Internet Worms.”

ACM Symposium on Operating Systems Principles , 2005.
COX89 Cox, A., and Fowler, R. “The Implementation of a Coherent Memory Abstrac-

tion on a NUMA Multiprocessor: Experiences with PLATINUM.” Proceed-
ings, Twelfth ACM Symposium on Operating Systems Principles , December
1989.

CUST94 Custer, H. Inside the Windows NT File System. Redmond, WA: Microsoft Press,
1994.

DALE68 Daley, R., and Dennis, R. “Virtual Memory, Processes, and Sharing in MULTICS.”
Communications of the ACM , May 1968.

DALT96 Dalton, W., et al. Windows NT Server 4: Security, Troubleshooting, and Optimi-
zation. Indianapolis, IN: New Riders Publishing, 1996.

DASG92 Dasgupta, P., et al. “The Clouds Distributed Operating System.” IEEE
 Computer , November 1992.

DATT90 Datta, A., and Ghosh, S. “Deadlock Detection in Distributed Systems.”
Proceedings, Phoenix Conference on Computers and Communications , March
1990.

DATT92 Datta, A.; Javagal, R.; and Ghosh, S. “An Algorithm for Resource Deadlock
Detection in Distributed Systems.” Computer Systems Science and Engineer-
ing , October 1992.

DELL00 Dekker, E., and Newcomer, J. Developing Windows NT Device Drivers: A
 Programmer’s Handbook. Reading, MA: Addison-Wesley, 2000.

DENN05 Denning, P. “The Locality Principle.” Communications of the ACM , July 2005.
DENN68 Denning, P. “The Working Set Model for Program Behavior.” Communications

of the ACM , May 1968.
DENN70 Denning, P. “Virtual Memory.” Computing Surveys , September 1970.
DENN71 Denning, P. “Third Generation Computer Systems.” ACM Computing Surveys ,

December 1971.
DENN80a Denning, P.; Buzen, J.; Dennis, J.; Gaines, R.; Hansen, P.; Lynch, W.; and

Organick, E. “Operating Systems.” In [ARDE80].
DENN80b Denning, P. “Working Sets Past and Present.” IEEE Transactions on Software

Engineering , January 1980.
DENN84 Denning, P., and Brown, R. “Operating Systems.” Scientifi c American ,

 September 1984.

728 REFERENCES

DENN87 Denning, D. “An Intrusion-Detection Model.” IEEE Transactions on Software
Engineering , February 1987.

DIJK65 Dijkstra, E. Cooperating Sequential Processes. Technological University,
 Eindhoven, The Netherlands, 1965. (Reprinted in Great Papers in Computer
Science , P. Laplante, ed., IEEE Press, New York, NY, 1996.) Also reprinted in
[BRIN01].

DIJK68 Dijkstra, E. “The Structure of ‘THE’ Multiprogramming System.” Communi-
cations of the ACM , May 1968. Reprinted in [BRIN01].

DIJK71 Dijkstra, E. “Hierarchical Ordering of sequential Processes.” Acta informatica ,
Vol. 1, No. 2, 1971. Reprinted in [BRIN01].

DIMI98 Dimitoglou, G. “Deadlocks and Methods for Their Detection, Prevention, and
Recovery in Modern Operating Systems.” Operating Systems Review , July 1998.

DONA01 Donahoo, M., and Clavert, K. The Pocket Guide to TCP/IP Sockets. San Fran-
cisco, CA: Morgan Kaufmann, 2001.

DOUG89 Douglas, F., and Ousterhout, J. “Process Migration in Sprite: A Status Report.”
Newsletter of the IEEE Computer Society Technical Committee on Operating
Systems , Winter 1989.

DOUG91 Douglas, F., and Ousterhout, J. “Transparent Process Migration: Design Alter-
natives and the Sprite Implementation.” Software Practice and Experience ,
August 1991.

DOWD93 Dowdy, L., and Lowery, C. P.S. to Operating Systems. Upper Saddle River, NJ:
Prentice Hall, 1993.

DOWN08 Downey, A. The Little Book of Semaphores. www.greenteapress.com/
semaphores/

DUBE98 Dube, R. A Comparison of the Memory Management Sub-Systems in FreeBSD
and Linux. Technical Report CS-TR-3929, University of Maryland, September
25, 1998.

EAGE86 Eager, D.; Lazowska, E.; and Zahnorjan, J. “Adaptive Load Sharing in Homo-
geneous Distributed Systems.” IEEE Transactions on Software Engineering ,
May 1986.

ECKE95 Eckerson, W. “Client Server Architecture.” Network World Collaboration ,
Winter 1995.

ECOS07 eCosCentric Limited, and Red Hat, Inc. eCos Reference Manual , 2007. http://
www.ecoscentric.com/ecospro/doc/html/ref/ecos-ref.html

EISC07 Eischen, C. “RAID 6 Covers More Bases.” Network World , April 9, 2007.
ENGE80 Enger, N., and Howerton, P. Computer Security. New York: Amacom, 1980.
ESKI90 Eskicioglu, M. “Design Issues of Process Migration Facilities in Distributed

Systems.” Newsletter of the IEEE Computer Society Technical Committee on
Operating Systems and Application Environments , Summer 1990.

FEIT90a Feitelson, D., and Rudolph, L. “Distributed Hierarchical Control for Parallel
Processing.” Computer , May 1990.

FEIT90b Feitelson, D., and Rudolph, L. “Mapping and Scheduling in a Shared Parallel
Environment Using Distributed Hierarchical Control.” Proceedings, 1990 Inter-
national Conference on Parallel Processing , August 1990.

FERR83 Ferrari, D., and Yih, Y. “VSWS: The Variable-Interval Sampled Working Set
Policy.” IEEE Transactions on Software Engineering , May 1983.

www.greenteapress.com/semaphores/
www.greenteapress.com/semaphores/
http://www.ecoscentric.com/ecospro/doc/html/ref/ecos-ref.html
http://www.ecoscentric.com/ecospro/doc/html/ref/ecos-ref.html

REFERENCES 729

FIDG96 Fidge, C. “Fundamentals of Distributed System Observation.” IEEE Software ,
November 1996.

FINK88 Finkel, R. An Operating Systems Vade Mecum. Englewood Cliffs, NJ: Prentice
Hall, 1988.

FINK89 Finkel, R. “The Process Migration Mechanism of Charlotte.” Newsletter of the
IEEE Computer Society Technical Committee on Operating Systems , Winter
1989.

FOLK98 Folk, M., and Zoellick, B. File Structures: An Object-Oriented Approach with
C++. Reading, MA: Addison-Wesley, 1998.

FORR97 Forrest, S.; Hofmeyr, S.; and Somayaji, A. “Computer Immunology.” Communi-
cations of the ACM , October 1997.

FOST91 Foster, L. “Automatic Generation of Self-Scheduling Programs.” IEEE Trans-
actions on Parallel and Distributed Systems , January 1991.

FRAN97 Franz, M. “Dynamic Linking of Software Components.” Computer , March
1997.

FRAS97 Fraser, B. Site Security Handbook. RFC 2196, September 1997.
FRIE96 Friedman, M. “RAID Keeps Going and Going and...” IEEE Spectrum , April

1996.
GALL00 Galli, D. Distributed Operating Systems: Concepts and Practice. Upper Saddle

River, NJ: Prentice Hall, 2000.
GANA98 Ganapathy, N., and Schimmel, C. “General Purpose Operating System Support

for Multiple Page Sizes.” Proceedings, USENIX Symposium , 1998.
GARG02 Garg, V. Elements of Distributed Computing. New York: Wiley, 2002.
GAUD00 Gaudin, S. “The Omega Files.” Network World , June 26, 2000.
GAY03 Gay, D., et al. “The nesC Language: A Holistic Approach to Networked

Embedded Systems.” Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation , 2003.

GAY05 Gay, D.; Levis, P.; and Culler, D. “Software Design Patterns for TinyOS.”
Proceedings, Conference on Languages, Compilers, and Tools for Embedded
 Systems , 2005.

GEER06 Geer, D. “Hackers Get to the Root of the Problem.” Computer , May 2006.
GEER09 Geer, D. “The OS Faces a Brave New World.” Computer , October 2009.
GEHR87 Gehringer, E.; Siewiorek, D.; and Segall, Z. Parallel Processing: The Cm* Expe-

rience. Bedford, MA: Digital Press, 1987.
GIBB87 Gibbons, P. “A Stub Generator for Multilanguage RPC in Heterogeneous

Environments.” IEEE Transactions on Software Engineering , January 1987.
GING90 Gingras, A. “Dining Philosophers Revisited.” ACM SIGCSE Bulletin ,

 September 1990.
GOLD87 Goldberg, S. Probability: An Introduction. New York: Dover, 1987.
GOLD89 Goldman, P. “Mac VM Revealed.” Byte , November 1989.
GOOD94 Goodheart, B., and Cox, J. The Magic Garden Explained: The Internals of

UNIX System V Release 4. Englewood Cliffs, NJ: Prentice Hall, 1994.
GOPA85 Gopal, I. “Prevention of Store-and-Forward Deadlock in Computer Networks.”

IEEE Transactions on Communications , December 1985.
GORM04 Gorman, M. Understanding the Linux Virtual Memory Manager. Upper Saddle

River, NJ: Prentice Hall, 2004.

730 REFERENCES

GOYE99 Goyeneche, J., and Souse, E. “Loadable Kernel Modules.” IEEE Software ,
 January/February 1999.

GRAH72 Graham, G., and Denning, P. “Protection—Principles and Practice.” Proceed-
ings, AFIPS Spring Joint Computer Conference , 1972.

GRAN04 Grance, T.; Kent, K.; and Kim, B. Computer Security Incident Handling Guide.
NIST Special Publication SP 800-61, January 2004.

GRAY97 Gray, J. Interprocess Communications in UNIX: The Nooks and Crannies.
Upper Saddle River, NJ: Prentice Hall, 1997.

GRIM01a Grimmett, G., and Stirzaker, D. Probability and Random Processes. Oxford:
Oxford University Press, 2001.

GRIM01b Grimmett, G., and Stirzaker, D. One Thousand Exercises in Probability. Oxford:
Oxford University Press, 2001.

GRIM05 Grimheden, M., and Torngren, M. “What is Embedded Systems and How
Should It Be Taught?—Results from a Didactic Analysis.” ACM Transactions
on Embedded Computing Systems , August 2005.

GROS86 Grosshans, D. File Systems: Design and Implementation. Englewood Cliffs, NJ:
Prentice Hall, 1986.

GROS09 Gross, D., and Harris, C. Fundamentals of Queueing Theory. New York: Wiley,
2009.

GUNT00 Gunther, N. The Practical Performance Analyst. New York: Authors Choice
Press, 2000.

GUPT78 Gupta, R., and Franklin, M. “Working Set and Page Fault Frequency Replace-
ment Algorithms: A Performance Comparison.” IEEE Transactions on
 Computers , August 1978.

HALD91 Haldar, S., and Subramanian, D. “Fairness in Processor Scheduling in Time
Sharing Systems.” Operating Systems Review , January 1991.

HALL01 Hall, B. Beej’s Guide to Network Programming Using Internet Sockets , 2001.
 http://beej.us/guide/bgnet

HALL10 Hall, B. Beej’s Guide to Unix IPC , 2010. Document available in premium content
section for this book.

HAMM91 Hamming, R. The Art of Probability: For Scientists and Engineers. Reading,
MA: Addison-Wesley, 1991.

HARR06 Harris, W. “Multi-core in the Source Engine.” bit-tech.net technical paper,
November 2, 2006. bit-tech.net/gaming/2006/11/02/Multi_core_in_the_Source_
Engin/1

HATF72 Hatfi eld, D. “Experiments on Page Size, Program Access Patterns, and Virtual
Memory Performance.” IBM Journal of Research and Development , January 1972.

HENN07 Hennessy, J., and Patterson, D. Computer Architecture: A Quantitative
Approach. San Mateo, CA: Morgan Kaufmann, 2007.

HENR84 Henry, G. “The Fair Share Scheduler.” AT&T Bell Laboratories Technical Jour-
nal , October 1984.

HERL90 Herlihy, M. “A Methodology for Implementing Highly Concurrent Data Struc-
tures.” Proceedings of the Second ACM SIGPLAN Symposium on Principles
and Practices of Parallel Programming , March 1990.

HILL00 Hill, J., et al. “System Architecture Directions for Networked Sensors.” Pro-
ceedings, Architectural Support for Programming Languages and Operating
Systems , 2000.

http://beej.us/guide/bgnet

REFERENCES 731

HOAR74 Hoare, C. “Monitors: An Operating System Structuring Concept.” Communi-
cations of the ACM , October 1974.

HOAR85 Hoare, C. Communicating Sequential Processes. Englewood Cliffs, NJ:
 Prentice-Hall, 1985.

HOFR90 Hofri, M. “Proof of a Mutual Exclusion Algorithm.” Operating Systems Review ,
January 1990.

HOLL02 Holland, D.; Lim, A.; and Seltzer, M. “A New Instructional Operating System.”
Proceedings of SIGCSE 2002 , 2002.

HOLT72 Holt, R. “Some Deadlock Properties of Computer Systems.” Computing
 Surveys , September 1972.

HONE05 Honeynet Project. Knowing Your Enemy: Tracking Botnets. Honeynet White
Paper, March 2005. http://honeynet.org/papers/bots

HONG89 Hong, J.; Tan, X.; and Towsley, D. “A Performance Analysis of Minimum Laxity
and Earliest Deadline Scheduling in a Real-Time System.” IEEE Transactions
on Computers , December 1989.

HOWA73 Howard, J. “Mixed Solutions for the Deadlock Problem.” Communications of
the ACM , July 1973.

HP96 Hewlett Packard. White Paper on Clustering , June 1996.
HUCK83 Huck, T. Comparative Analysis of Computer Architectures. Stanford University

Technical Report Number 83-243, May 1983.
HUCK93 Huck, J., and Hays, J. “Architectural Support for Translation Table Management

in Large Address Space Machines.” Proceedings of the 20th Annual Interna-
tional Symposium on Computer Architecture , May 1993.

HUTC08 Hutchinson, J., et al. “Migrating to SOAs by Way of Hybrid Systems.” IT Pro ,
January/February 2008.

HWAN99 Hwang, K., et al. “Designing SSI Clusters with Hierarchical Checkpointing and
Single I/O Space.” IEEE Concurrency , January–March 1999.

HYMA66 Hyman, H. “Comments on a Problem in Concurrent Programming Control.”
Communications of the ACM , January 1966.

IBM86 IBM National Technical Support, Large Systems. Multiple Virtual Storage
(MVS) Virtual Storage Tuning Cookbook. Dallas Systems Center Technical
Bulletin G320-0597, June 1986.

INSO02a Insolvibile, G. “Inside the Linux Packet Filter.” Linux Journal , February,
2002.

INSO02b Insolvibile, G. “Inside the Linux Packet Filter, Part II.” Linux Journal , March,
2002.

ISLO80 Isloor, S., and Marsland, T. “The Deadlock Problem: An Overview.” Computer ,
September 1980.

IYER01 Iyer, S., and Druschel, P. “Anticipatory Scheduling: A Disk Scheduling Frame-
work to Overcome Deceptive Idleness in Synchronous I/O.” Proceedings, 18th
ACM Symposium on Operating Systems Principles , October 2001.

JACK10 Jackson, J. “Multicore Requires OS Rework, Windows Architect Advises.”
Network World , March 19, 2010.

JACO98a Jacob, B., and Mudge, T. “Virtual Memory: Issues of Implementation.”
Computer , June 1998.

JACO98b Jacob, B., and Mudge, T. “Virtual Memory in Contemporary Microprocessors.”
IEEE Micro , August 1998.

http://honeynet.org/papers/bots

732 REFERENCES

JAIN91 Jain, R. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. New York:
Wiley, 1991.

JANS01 Jansen, W. Guidelines on Active Content and Mobile Code. NIST Special
 Publication SP 800-28, October 2001.

JHI07 Jhi, Y., et al. “Proactive Containment of Fast Scanning Worms through White
Detection.” Proceedings of 3rd International Conference on Security and Privacy
in Communication Networks , September 2007.

JOHN91 Johnston, B.; Javagal, R.; Datta, A.; and Ghosh, S. “A Distributed Algorithm for
Resource Deadlock Detection.” Proceedings, Tenth Annual Phoenix Confer-
ence on Computers and Communications , March 1991.

JOHN92 Johnson, T., and Davis, T. “Space Effi cient Parallel Buddy Memory Management.”
Proceedings, Third International Conference on Computers and Information , May
1992.

JONE80 Jones, S., and Schwarz, P. “Experience Using Multiprocessor Systems—A Status
Report.” Computing Surveys , June 1980.

JONE97 Jones, M. “What Really Happened on Mars?”, 1997. http://research.microsoft.
com/~mbj/Mars_Pathfi nder/Mars_Pathfi nder.html

JUL88 Jul, E.; Levy, H.; Hutchinson, N.; and Black, A. “Fine-Grained Mobility in the
Emerald System.” ACM Transactions on Computer Systems , February 1988.

JUL89 Jul, E. “Migration of Light-Weight Processes in Emerald.” Newsletter of the
IEEE Computer Society Technical Committee on Operating Systems , Winter
1989.

JUNG04 Jung, J., et al. “Fast Portscan Detection Using Sequential Hypothesis Testing.”
Proceedings, IEEE Symposium on Security and Privacy , 2004.

KANG98 Kang, S., and Lee, J. “Analysis and Solution of Non-Preemptive Policies for
Scheduling Readers and Writers.” Operating Systems Review , July 1998.

KAPP00 Kapp, C. “Managing Cluster Computers.” Dr. Dobb’s Journal , July 2000.
KATZ89 Katz, R.; Gibson, G.; and Patterson, D. “Disk System Architecture for High

Performance Computing.” Proceedings of the IEEE , December 1989.
KAY88 Kay, J., and Lauder, P. “A Fair Share Scheduler.” Communications of the ACM ,

January 1988.
KENT00 Kent, S. “On the Trail of Intrusions into Information Systems.” IEEE Spectrum ,

December 2000.
KEPH97a Kephart, J.; Sorkin, G.; Chess, D.; and White, S. “Fighting Computer Viruses.”

Scientifi c American , November 1997.
KEPH97b Kephart, J.; Sorkin, G.; Swimmer, B.; and White, S. “Blueprint for a Computer

Immune System.” Proceedings, Virus Bulletin International Conference , Octo-
ber 1997.

KESS92 Kessler, R., and Hill, M. “Page Placement Algorithms for Large Real-Indexed
Caches.” ACM Transactions on Computer Systems , November 1992.

KHAL93 Khalidi, Y.; Talluri, M.; Williams, D.; and Nelson, M. “Virtual Memory Support
for Multiple Page Sizes.” Proceedings, Fourth Workshop on Workstation
 Operating Systems , October 1993.

KILB62 Kilburn, T.; Edwards, D.; Lanigan, M.; and Sumner, F. “One-Level Storage
 System.” IRE Transactions , April 1962.

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html
http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

REFERENCES 733

KLEI75 Kleinrock, L. Queueing Systems, Volume I: Theory. New York: Wiley, 1975.
KLEI76 Kleinrock, L. Queueing Systems, Volume II: Computer Applications. New York:

Wiley, 1976.
KLEI95 Kleiman, S. “Interrupts as Threads.” Operating System Review , April 1995.
KLEI96 Kleiman, S.; Shah, D.; and Smallders, B. Programming with Threads. Upper

Saddle River, NJ: Prentice Hall, 1996.
KLEI04 Kleinrock, L. Queuing Systems, Volume Three: Computer Applications. New

York: Wiley, 2004.
KNUT71 Knuth, D. “An Experimental Study of FORTRAN Programs.” Software Practice

and Experience , Vol. 1, 1971.
KNUT97 Knuth, D. The Art of Computer Programming, Volume 1: Fundamental

 Algorithms. Reading, MA: Addison-Wesley, 1997.
KNUT98 Knuth, D. The Art of Computer Programming, Volume 3: Sorting and Search-

ing. Reading, MA: Addison-Wesley, 1998.
KOOP96 Koopman, P. “Embedded System Design Issues (the Rest of the Story).

Proceedings, 1996 International Conference on Computer Design , 1996.
KRIS94 Krishna, C., and Lee, Y., eds. “Special Issue on Real-Time Systems.” Proceedings

of the IEEE , January 1994.
KUPE05 Kuperman, B., et al. “Detection and Prevention of Stack Buffer Overfl ow

Attacks.” Communications of the ACM , November 2005.
LAI06 Lai, A., and Nieh, J. “On the Performance of Wide-Area Thin-Client Comput-

ing.” ACM Transactions on Computer Systems , May 2006.
LAMP71 Lampson, B. “Protection.” Proceedings, Fifth Princeton Symposium on Infor-

mation Sciences and Systems , March 1971; Reprinted in Operating Systems
Review , January 1974.

LAMP74 Lamport, L. “A New Solution to Dijkstra’s Concurrent Programming Problem.”
Communications of the ACM , August 1974.

LAMP78 Lamport, L. “Time, Clocks, and the Ordering of Events in a Distributed
 System.” Communications of the ACM , July 1978.

LAMP80 Lampson, B., and Redell D. “Experience with Processes and Monitors in
Mesa.” Communications of the ACM , February 1980.

LAMP86 Lamport, L. “The Mutual Exclusion Problem.” Journal of the ACM , April 1986.
LAMP91 Lamport, L. “The Mutual Exclusion Problem Has Been Solved.” Communica-

tions of the ACM , January 1991.
LAMP04 Lampson, B. “Computer Security in the Real World.” Computer , June 2004.
LARM05 Larmour, J. “How eCos Can Be Shrunk to Fit.” Embedded Systems Europe ,

May 2005. www.embedded.com/europe/esemay05.htm
LARO92 LaRowe, R.; Holliday, M.; and Ellis, C. “An Analysis of Dynamic Page Place-

ment an a NUMA Multiprocessor.” Proceedings, 1992 ACM SIGMETRICS
and Performance ’92 , June 1992.

LEBL87 LeBlanc, T., and Mellor-Crummey, J. “Debugging Parallel Programs with
Instant Replay.” IEEE Transactions on Computers , April 1987.

LEE93 Lee, Y., and Krishna, C., eds. Readings in Real-Time Systems. Los Alamitos, CA:
IEEE Computer Society Press, 1993.

LELA86 Leland, W., and Ott, T. “Load-Balancing Heuristics and Process Behavior.”
Proceedings, ACM SigMetrics Performance 1986 Conference , 1986.

www.embedded.com/europe/esemay05.htm

734 REFERENCES

LEON07 Leonard, T. “Dragged Kicking and Screaming: Source Multicore.” Proceedings,
Game Developers Conference 2007 , March 2007.

LERO76 Leroudier, J., and Potier, D. “Principles of Optimality for Multiprogramming.”
Proceedings, International Symposium on Computer Performance Modeling,
Measurement, and Evaluation , March 1976.

LETW88 Letwin, G. Inside OS/2. Redmond, WA: Microsoft Press, 1988.
LEUT90 Leutenegger, S., and Vernon, M. “The Performance of Multiprogrammed

 Multiprocessor Scheduling Policies.” Proceedings, Conference on Measurement
and Modeling of Computer Systems , May 1990.

LEVE10 Leventhal, A. “Triple-Parity RAID and Beyond.” Communications of the
ACM , January 2010.

LEVI00 Levine, J. Linkers and Loaders. San Francisco: Morgan Kaufmann, 2000.
LEVI03a Levine, G. “Defi ning Deadlock.” Operating Systems Review , January 2003.
LEVI03b Levine, G. “Defi ning Deadlock with Fungible Resources.” Operating Systems

Review , July 2003.
LEVI05 Levis, P., et al. “T2: A Second Generation OS for Embedded Sensor Networks.”

Technical Report TKN-05-007, Telecommunication Networks Group, Tech-
nische Universitat Berlin, 2005. http://csl.stanford.edu/~pal/pubs.html

LEVI06 Levine, J.; Grizzard, J.; and Owen, H. “Detecting and Categorizing Kernel-
Level Rootkits to Aid Future Detection.” IEEE Security and Privacy ,
May–June 2006.

LEVY96 Levy, E., “Smashing the Stack for Fun and Profi t.” Phrack Magazine , File 14,
Issue 49, November 1996.

LEWI96 Lewis, B., and Berg, D. Threads Primer. Upper Saddle River, NJ: Prentice Hall,
1996.

LHEE03 Lhee, K., and Chapin, S. “Buffer Overfl ow and Format String Overfl ow Vulner-
abilities.” Software—Practice and Experience , Vol. 33, 2003.

LI10 Li, Y.; Li, W.; and Jiang, C. “A Survey of Virtual Machine Systems: Current
Technology and Future Trends.” Proceedings, Third International Symposium
on Electronic Commerce and Security , 2010.

LIED95 Liedtke, J. “On μ-Kernel Construction.” Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles , December 1995.

LIED96 Liedtke, J. “Toward Real Microkernels.” Communications of the ACM ,
 September 1996.

LIGN05 Ligneris, B. “Virtualization of Linux Based Computers: The Linux-VServer
Project.” Proceedings of the 19th International Symposium on High Perfor-
mance Computing Systems and Applications , 2005.

LIND04 Lindsley, R. “What’s New in the 2.6 Scheduler.” Linux Journal , March 2004.
LIU73 Liu, C., and Layland, J. “Scheduling Algorithms for Multiprogramming in a

Hard Real-time Environment.” Journal of the ACM , February 1973.
LIU00 Liu, J. Real-Time Systems. Upper Saddle River, NJ: Prentice Hall, 2000.
LIVA90 Livadas, P. File Structures: Theory and Practice. Englewood Cliffs, NJ: Prentice

Hall, 1990.
LOVE04 Love, R. “I/O Schedulers.” Linux Journal , February 2004.
LOVE10 Love, R. Linux Kernel Development. Upper Saddle River, NJ: Addison- Wesley,

2010.

http://csl.stanford.edu/~pal/pubs.html

REFERENCES 735

LURI94 Lurie, D., and Moore, R. Applying Statistics. U.S. Nuclear Regulatory Commis-
sion Report NUREG-1475. (Available from the Government Printing Offi ce,
GPO Stock Number 052-020-00390-4.)

LYNC96 Lynch, N. Distributed Algorithms. San Francisco, CA: Morgan Kaufmann,
1996.

MAEK87 Maekawa, M.; Oldehoeft, A.; and Oldehoeft, R. Operating Systems: Advanced
Concepts. Menlo Park, CA: Benjamin Cummings, 1987.

MAJU88 Majumdar, S.; Eager, D.; and Bunt, R. “Scheduling in Multiprogrammed Parallel
Systems.” Proceedings, Conference on Measurement and Modeling of Computer
Systems , May 1988.

MARW06 Marwedel, P. Embedded System Design. Dordrecht, The Netherlands: Springer,
2006.

MASS03 Massa, A. Embedded Software Development with eCos. Upper Saddle River,
NJ: Prentice Hall, 2003.

MAUE08 Mauerer, W. Professional Linux Kernal Architecture. New York: Wiley, 2008.
MCDO06 McDougall, R., and Laudon, J. “Multi-Core Microprocessors are Here.” login ,

October 2006.
MCDO07 McDougall, R., and Mauro, J. Solaris Internals: Solaris 10 and OpenSolaris

 Kernel Architecture. Palo Alto, CA: Sun Microsystems Press, 2007.
MCHU00 McHugh, J.; Christie, A.; and Allen, J. “The Role of Intrusion Detection

 Systems.” IEEE Software , September/October 2000.
MCKU05 McKusick, M., and Neville-Neil, J. The Design and Implementation of the Free-

BSD Operating System. Reading, MA: Addison-Wesley, 2005.
MEE96a Mee, C., and Daniel, E. eds. Magnetic Recording Technology. New York:

McGraw Hill, 1996.
MEE96b Mee, C., and Daniel, E. eds. Magnetic Storage Handbook. New York: McGraw

Hill, 1996.
MENA05 Menasce, D. “MOM vs. RPC: Communication Models for Distributed Applica-

tions.” IEEE Internet Computing , March/April 2005.
MILE92 Milenkovic, M. Operating Systems: Concepts and Design. New York: McGraw-

Hill, 1992.
MILO00 Milojicic, D.; Douglis, F.; Paindaveine, Y.; Wheeler, R.; and Zhou, S. “Process

Migration.” ACM Computing Surveys , September 2000.
MIRK04 Mirkovic, J., and Relher, P. “A Taxonomy of DDoS Attack and DDoS Defense

Mechanisms.” ACM SIGCOMM Computer Communications Review , April
2004.

MORG92 Morgan, K. “The RTOS Difference.” Byte , August 1992.
MORR79 Morris, R., and Thompson, K. “Password Security: A Case History.” Communi-

cations of the ACM , November 1979.
MOSB02 Mosberger, D., and Eranian, S. IA-64 Linux Kernel: Design and Implementation.

Upper Saddle River, NJ: Prentice Hall, 2002.
MS96 Microsoft Corp. Microsoft Windows NT Workstation Resource Kit. Redmond,

WA: Microsoft Press, 1996.
MUKH96 Mukherjee, B., and Karsten, S. “Operating Systems for Parallel Machines.” In

Parallel Computers: Theory and Practice. Edited by T. Casavant, P. Tvrkik, and
F. Plasil. Los Alamitos, CA: IEEE Computer Society Press, 1996.

736 REFERENCES

NACH97 Nachenberg, C. “Computer Virus-Antivirus Coevolution.” Communications of
the ACM , January 1997.

NACH02 Nachenberg, C. “Behavior Blocking: The Next Step in Anti-Virus Protection.”
White Paper , SecurityFocus.com, March 2002.

NAGA97 Nagar, R. Windows NT File System Internals. Sebastopol, CA: O’Reilly, 1997.
NEHM75 Nehmer, J. “Dispatcher Primitives for the Construction of Operating System

Kernels.” Acta Informatica , Vol. 5, 1975.
NELS88 Nelson, M.; Welch, B.; and Ousterhout, J. “Caching in the Sprite Network File

System.” ACM Transactions on Computer Systems , February 1988.
NELS91 Nelson, G. Systems Programming with Modula-3. Englewood Cliffs, NJ: Prentice

Hall, 1991.
NEWS05 Newsome, J.; Karp, B.; and Song, D. “Polygraph: Automatically Generating Signa-

tures for Polymorphic Worms.” IEEE Symposium on Security and Privacy , 2005.
NG98 Ng, S. “Advances in Disk Technology: Performance Issues.” Computer , May

1989.
NING04 Ning, P., et al. “Techniques and Tools for Analyzing Intrusion Alerts.” ACM

Transactions on Information and System Security , May 2004.
NIST95 National Institute of Standards and Technology. An Introduction to Computer

Security: The NIST Handbook. Special Publication 800-12, October 1995.
NIST10 National Institute of Standards and Technology. NIST/SEMATECH e-Hand-

book of Statistical Methods , 2010. http://www.itl.nist.gov/div898/handbook
NRC91 National Research Council. Computers at Risk: Safe Computing in the Informa-

tion Age. Washington, DC: National Academy Press, 1991.
NUTT94 Nuttal, M. “A Brief Survey of Systems Providing Process or Object Migration

Facilities.” Operating Systems Review , October 1994.
OGOR03 O’Gorman, L. “Comparing Passwords, Tokens and Biometrics for User

Authentication.” Proceedings of the IEEE , December 2003.
OUST85 Ousterhout, J., et al. “A Trace-Drive Analysis of the UNIX 4.2 BSD File System.”

Proceedings, Tenth ACM Symposium on Operating System Principles , 1985.
OUST88 Ousterhout, J., et al. “The Sprite Network Operating System.” Computer ,

 February 1988.
PAI00 Pai, V.; Druschel, P.; and Zwaenepoel, W. “IO-Lite: A Unifi ed I/O Buffering and

Caching System.” ACM Transactions on Computer Systems , February 2000.
PANW88 Panwar, S.; Towsley, D.; and Wolf, J. “Optimal Scheduling Policies for a Class of

Queues with Customer Deadlines in the Beginning of Service.” Journal of the
ACM , October 1988.

PAPO02 Papoulis, A., and Unnikrishna, P. Probability, Random Variables, and Stochastic
Processes. New York: McGraw-Hill, 2002.

PARZ06 Parziale, L., et al. TCP/IP Tutorial and Technical Overview. IBM Redbook
GG24-3376-07, 2006. http://www.redbooks.ibm.com/abstracts/gg243376.html

PATT82 Patterson, D., and Sequin, C. “A VLSI RISC.” Computer , September 1982.
PATT85 Patterson, D. “Reduced Instruction Set Computers.” Communications of the

ACM , January 1985.
PATT88 Patterson, D.; Gibson, G.; and Katz, R. “A Case for Redundant Arrays of

 Inexpensive Disks (RAID).” Proceedings, ACM SIGMOD Conference of
Management of Data , June 1988.

http://www.itl.nist.gov/div898/handbook
http://www.redbooks.ibm.com/abstracts/gg243376.html

REFERENCES 737

PATT09 Patterson, D., and Hennessy, J. Computer Organization and Design: The
Hardware/Software Interface. San Mateo, CA: Morgan Kaufmann, 2009.

PAZZ92 Pazzini, M., and Navaux, P. “TRIX, a Multiprocessor Transputer-Based
 Operating System.” In Parallel Computing and Transputer Applications. Edited
by M. Valero et al., Barcelona: IOS Press/CIMNE, 1992.

PERR03 Perrine, T. “The End of crypt() Passwords…Please?” login , December 2003.
PETE77 Peterson, J., and Norman, T. “Buddy Systems.” Communications of the ACM ,

June 1977.
PETE81 Peterson, G. “Myths About the Mutual Exclusion Problem.” Information

 Processing Letters , June 1981.
PHAM96 Pham, T., and Garg, P. Multithreaded Programming with Windows NT. Upper

Saddle River, NJ: Prentice Hall, 1996.
PHIL99 Phillips, J. How to Think About Statistics. New York: Freeman, 1999.
PIZZ89 Pizzarello, A. “Memory Management for a Large Operating System.” Proceed-

ings, International Conference on Measurement and Modeling of Computer
Systems , May 1989.

POPE85 Popek, G., and Walker, B. The LOCUS Distributed System Architecture ,
 Cambridge, MA: MIT Press, 1985.

PROV99 Provos, N., and Mazieres, D. “A Future-Adaptable Password Scheme.”
Proceedings of the 1999 USENIX Annual Technical Conference , 1999.

PRZY88 Przybylski, S.; Horowitz, M.; and Hennessy, J. “Performance Trade-offs in
Cache Design.” Proceedings, Fifteenth Annual International Symposium on
Computer Architecture , June 1988.

RADC04 Radcliff, D. “What Are They Thinking?” Network World , March 1, 2004.
RAJA00 Rajagopal, R. Introduction to Microsoft Windows NT Cluster Server. Boca

Raton, FL: CRC Press, 2000.
RAMA94 Ramamritham, K., and Stankovic, J. “Scheduling Algorithms and Operating

Systems Support for Real-Time Systems.” Proceedings of the IEEE , January
1994.

RASH88 Rashid, R., et al. “Machine-Independent Virtual Memory Management for
Paged Uniprocessor and Multiprocessor Architectures.” IEEE Transactions
on Computers , August 1988.

RAYN86 Raynal, M. Algorithms for Mutual Exclusion. Cambridge, MA: MIT Press,
1986.

RAYN88 Raynal, M. Distributed Algorithms and Protocols. New York: Wiley, 1988.
RAYN90 Raynal, M., and Helary, J. Synchronization and Control of Distributed Systems

and Programs. New York: Wiley, 1990.
REAG00a Reagan, P. Client/Server Computing. Upper Saddle River, NJ: Prentice Hall,

2000.
REAG00b Reagan, P. Client/Server Network: Design, Operation, and Management. Upper

Saddle River, NJ: Prentice Hall, 2000.
REIM06 Reimer, J. “Valve Goes Multicore.” ars technica, November 5, 2006. arstech-

nica.com/articles/paedia/cpu/valve-multicore.ars
RICA81 Ricart, G., and Agrawala, A. “An Optimal Algorithm for Mutual Exclusion in

Computer Networks.” Communications of the ACM , January 1981 (Corrigen-
dum in Communications of the ACM , September 1981).

738 REFERENCES

RICA83 Ricart, G., and Agrawala, A. “Author’s Response to ‘On Mutual Exclusion in
Computer Networks’ by Carvalho and Roucairol.” Communications of the
ACM , February 1983.

RIDG97 Ridge, D., et al. “Beowulf: Harnessing the Power of Parallelism in a Pile-of-PCs.”
Proceedings, IEEE Aerospace , 1997.

RITC74 Ritchie, D., and Thompson, K. “The UNIX Time-Sharing System.” Communi-
cations of the ACM , July 1974.

RITC78 Ritchie, D. “UNIX Time-Sharing System: A Retrospective.” The Bell System
Technical Journal , July–August 1978.

RITC84 Ritchie, D. “The Evolution of the UNIX Time-Sharing System.” AT&T Bell
Labs Technical Journal , October 1984.

ROBB04 Robbins, K., and Robbins, S. UNIX Systems Programming: Communication,
Concurrency, and Threads. Upper Saddle River, NJ: Prentice Hall, 2004.

ROBE03 Roberson, J. “ULE: A Modern Scheduler for FreeBSD.” Proceedings of
BSDCon ’03 , September 2003.

ROBI90 Robinson, J., and Devarakonda, M. “Data Cache Management Using Frequency-
Based Replacement.” Proceedings, Conference on Measurement and Modeling
of Computer Systems , May 1990.

ROME04 Romer, K., and Mattern, F. “The Design Space of Wireless Sensor Networks.”
IEEE Wireless Communications , December 2004.

ROSE78 Rosenkrantz, D.; Stearns, R.; and Lewis, P. “System Level Concurrency Control
in Distributed Database Systems.” ACM Transactions on Database Systems ,
June 1978.

ROSS10 Ross, S. First Course in Probability. Upper Saddle River, NJ: Prentice Hall,
2010

RUBI97 Rubini, A. “The Virtual File System in Linux.” Linux Journal , May 1997.
RUDO90 Rudolph, B. “Self-Assessment Procedure XXI: Concurrency.” Communica-

tions of the ACM , May 1990.
RUSS11 Russinovich, M.; Solomon, D.; and Ionescu, A. Windows Internals: Covering

Windows 7 and Windows Server 2008 R2. Redmond, WA: Microsoft Press, 2011.
SALT75 Saltzer, J., and Schroeder, M. “The Protection of Information in Computer Sys-

tems.” Proceedings of the IEEE , September 1975.
SAND94 Sandhu, R., and Samarati, P. “Access Control: Principles and Practice.” IEEE

Communications Magazine , February 1996.
SAND96 Sandhu, R., et al. “Role-Based Access Control Models.” Computer , September

1994.
SATY81 Satyanarayanan, M. and Bhandarkar, D. “Design Trade-Offs in VAX-11 Trans-

lation Buffer Organization.” Computer , December 1981.
SAUE81 Sauer, C., and Chandy, K. Computer Systems Performance Modeling. Englewood

Cliffs, NJ: Prentice Hall, 1981.
SAUN01 Saunders, G.; Hitchens, M.; and Varadharajan, V. “Role-Based Access Control

and the Access Control Matrix.” Operating Systems Review , October 2001.
SCAR07 Scarfone, K., and Mell, P. Guide to Intrusion Detection and Prevention Systems.

NIST Special Publication SP 800-94, February 2007.
SELT90 Seltzer, M.; Chen, P.; and Ousterhout, J. “Disk Scheduling Revisited.” Proceedings,

USENIX Winter Technical Conference , January 1990.

REFERENCES 739

SHA90 Sha, L.; Rajkumar, R.; and Lehoczky, J. “Priority Inheritance Protocols: An
Approach to Real-Time Synchronization.” IEEE Transactions on Computers ,
September 1990.

SHA91 Sha, L.; Klein, M.; and Goodenough, J. “Rate Monotonic Analysis for Real-
Time Systems.” In [TILB91].

SHA94 Sha, L.; Rajkumar, R.; and Sathaye, S. “Generalized Rate-Monotonic Scheduling
Theory: A Framework for Developing Real-Time Systems.” Proceedings of the
IEEE , January 1994.

SHAN77 Shanker, K. “The Total Computer Security Problem: An Overview.” Computer ,
June 1977.

SHEN02 Shene, C. “Multithreaded Programming Can Strengthen an Operating Systems
Course.” Computer Science Education Journal , December 2002.

SHIV92 Shivaratri, N.; Krueger, P.; and Singhal, M. “Load Distributing for Locally
 Distributed Systems.” Computer , December 1992.

SHOR75 Shore, J. “On the External Storage Fragmentation Produced by First-Fit
and Best-Fit Allocation Strategies.” Communications of the ACM , August,
1975.

SHOR97 Short, R.; Gamache, R.; Vert, J.; and Massa, M. “Windows NT Clusters for
Availability and Scalability.” Proceedings, COMPCON Spring 97 , February
1997.

SHUB03 Shub, C. “A Unifi ed Treatment of Deadlock.” Journal of Computing in Small
Colleges , October 2003. Available through the ACM digital library.

SILB04 Silberschatz, A.; Galvin, P.; and Gagne, G. Operating System Concepts with
Java. Reading, MA: Addison-Wesley, 2004.

SING94 Singhal, M. “Deadlock Detection in Distributed Systems.” In [CASA94].
SINH97 Sinha, P. Distributed Operating Systems. Piscataway, NJ: IEEE Press, 1997.
SIRA09 Siracusa, J. “Grand Central Dispatch.” Ars Technica Review , 2009. http://

arstechnica.com/apple/reviews/2009/08/mac-os-x-10-6.ars/12
SMIT82 Smith, A. “Cache Memories.” ACM Computing Surveys , September 1982.
SMIT85 Smith, A. “Disk Cache—Miss Ratio Analysis and Design Considerations.”

ACM Transactions on Computer Systems , August 1985.
SMIT88 Smith, J. “A Survey of Process Migration Mechanisms.” Operating Systems

Review , July 1988.
SMIT89 Smith, J. “Implementing Remote fork() with Checkpoint/restart.” Newsletter

of the IEEE Computer Society Technical Committee on Operating Systems ,
Winter 1989.

SMIT05 Smith, J., and Nair, R. “The Architecture of Virtual Machines.” Computer , May
2005.

SOLT07 Soltesz, S., et al. “Container-Based Operating System Virtualization: A Scalable
High-Performance Alternative to Hypervisors.” Proceedings of the EuroSys
2007 2nd EuroSys Conference, Operating Systems Review , June 2007.

STAI10 Staimer, M. “Alternatives to RAID.” Storage Magazine , May 2010.
STAL08 Stallings, W., and Brown L. Computer Security: Principles and Practice. Upper

Saddle River, NJ: Prentice Hall, 2008.
STAL10 Stallings, W. Computer Organization and Architecture , 8th ed. Upper Saddle

River, NJ: Prentice Hall, 2010.

http://arstechnica.com/apple/reviews/2009/08/mac-os-x-10-6.ars/12
http://arstechnica.com/apple/reviews/2009/08/mac-os-x-10-6.ars/12

740 REFERENCES

STAL11 Stallings, W. Data and Computer Communications. Upper Saddle River: NJ:
Prentice Hall, 2011.

STAN89 Stankovic, J., and Ramamrithan, K. “The Spring Kernel: A New Paradigm for
Real-Time Operating Systems.” Operating Systems Review , July 1989.

STAN93 Stankovic, J., and Ramamritham, K., eds. Advances in Real-Time Systems. Los
Alamitos, CA: IEEE Computer Society Press, 1993.

STAN96 Stankovic, J., et al. “Strategic Directions in Real-Time and Embedded Systems.”
ACM Computing Surveys , December 1996.

STEE95 Steensgarrd, B., and Jul, E. “Object and Native Code Mobility Among
 Heterogeneous Computers.” Proceedings, 15th ACM Symposium on Operating
 Systems Principles , December 1995.

STER99 Sterling, T., et al. How to Build a Beowulf. Cambridge, MA: MIT Press, 1999.
STON93 Stone, H. High-Performance Computer Architecture. Reading, MA: Addison-

Wesley, 1993.
STRE83 Strecker, W. “Transient Behavior of Cache Memories.” ACM Transactions on

Computer Systems , November 1983.
SUMM84 Summers, R. “An Overview of Computer Security.” IBM Systems Journal , Vol.

23, No. 4, 1984.
SUZU82 Suzuki, I., and Kasami, T. “An Optimality Theory for Mutual Exclusion

Algorithms in Computer Networks.” Proceedings of the Third International
 Conference on Distributed Computing Systems , October 1982.

SWAI07 Swaine, M. “Wither Operating Systems?” Dr. Dobb’s Journal , March 2007.
SYMA01 Symantec Corp. The Digital Immune System. Symantec Technical Brief, 2001.
TAKA01 Takada, H. “Real-Time Operating System for Embedded Systems.” In Asia

South-Pacifi c Design Automation Conference. Edited by M. Imai and N.
Yoshida. 2001.

TALL92 Talluri, M.; Kong, S.; Hill, M.; and Patterson, D. “Tradeoffs in Supporting Two
Page Sizes.” Proceedings of the 19th Annual International Symposium on Com-
puter Architecture , May 1992.

TAMI83 Tamir, Y., and Sequin, C. “Strategies for Managing the Register File in RISC.”
IEEE Transactions on Computers , November 1983.

TANE78 Tanenbaum, A. “Implications of Structured Programming for Machine Archi-
tecture.” Communications of the ACM , March 1978.

TANE85 Tanenbaum, A., and Renesse, R. “Distributed Operating Systems.” Computing
Surveys , December 1985.

TANE06 Tanenbaum, A., and Woodhull, A. Operating Systems: Design and Implementation.
Upper Saddle River, NJ: Prentice Hall, 2006.

TAY90 Tay, B., and Ananda, A. “A Survey of Remote Procedure Calls.” Operating
 Systems Review , July 1990.

TEL01 Tel, G. Introduction to Distributed Algorithms. Cambridge: Cambridge University
Press, 2001.

TEVA87 Tevanian, A., et al. “Mach Threads and the UNIX Kernel: The Battle for
 Control.” Proceedings, Summer 1987 USENIX Conference , June 1987.

THOM01 Thomas, G. “eCos: An Operating System for Embedded Systems.” Dr. Dobb’s
Journal , January 2001.

REFERENCES 741

THOM84 Thompson, K. “Refl ections on Trusting Trust (Deliberate Software Bugs).”
Communications of the ACM , August 1984.

TILB91 Tilborg, A., and Koob, G., eds. Foundations of Real-Time Computing: Sched-
uling and Resource Management. Boston: Kluwer Academic Publishers,
1991.

TIME90 Time, Inc. Computer Security, Understanding Computers Series. Alexandria,
VA: Time-Life Books, 1990.

TIME02 TimeSys Corp. “Priority Inversion: Why You Care and What to Do About
It.” TimeSys White Paper , 2002. http://www.techonline.com/community/
ed_resource/tech_paper/21779

TUCK89 Tucker, A., and Gupta, A. “Process Control and Scheduling Issues for
 Multiprogrammed Shared-Memory Multiprocessors.” Proceedings, Twelfth
ACM Symposium on Operating Systems Principles , December 1989.

TUCK04 Tucker, A. ed. The Computer Science Handbook. Boca Raton, FL: CRC Press,
2004.

VAHA96 Vahalia, U. UNIX Internals: The New Frontiers. Upper Saddle River, NJ: Prentice
Hall, 1996.

VENU09 Venugopal, K. Files Structures Using C++. New York: McGraw-Hill, 2009.
WAGN00 Wagner, D., and Goldberg, I. “Proofs of Security for the UNIX Password

Hashing Algorithm.” Proceedings, ASIACRYPT ’00 , 2000.
WALK89 Walker, B., and Mathews, R. “Process Migration in AIX’s Transparent Com-

puting Facility.” Newsletter of the IEEE Computer Society Technical Committee
on Operating Systems , Winter 1989.

WARD80 Ward, S. “TRIX: A Network-Oriented Operating System.” Proceedings,
COMPCON ’80 , 1980.

WARR91 Warren, C. “Rate Monotonic Scheduling.” IEEE Micro , June 1991.
WARE79 Ware, W., ed. Security Controls for Computer Systems. RAND Report 609-1,

October 1979. http://www.rand.org/pubs/reports/R609-1/index2.html
WEIZ81 Weizer, N. “A History of Operating Systems.” Datamation , January 1981.
WEND89 Wendorf, J.; Wendorf, R.; and Tokuda, H. “Scheduling Operating System Pro-

cessing on Small-Scale Microprocessors.” Proceedings, 22nd Annual Hawaii
International Conference on System Science , January 1989.

WHIT99 White, S. Anatomy of a Commercial-Grade Immune System. IBM Research
White Paper, 1999.

WIED87 Wiederhold, G. File Organization for Database Design. New York: McGraw-
Hill, 1987.

WOOD86 Woodside, C. “Controllability of Computer Performance Tradeoffs Obtained
Using Controlled-Share Queue Schedulers.” IEEE Transactions on Software
Engineering , October 1986.

WOOD89 Woodbury, P., et al. “Shared Memory Multiprocessors: The Right Approach to
Parallel Processing.” Proceedings, COMPCON Spring ’89 , March 1989.

WORT94 Worthington, B.; Ganger, G.; and Patt, Y. “Scheduling Algorithms for Modern
Disk Drives.” ACM SiGMETRICS , May 1994.

WRIG95 Wright, G., and Stevens, W. TCP/IP Illustrated, Volume 2: The Implementation.
Reading, MA: Addison-Wesley, 1995.

http://www.techonline.com/community/ed_resource/tech_paper/21779
http://www.techonline.com/community/ed_resource/tech_paper/21779
http://www.rand.org/pubs/reports/R609-1/index2.html

742 REFERENCES

ZAHO90 Zahorjan, J., and McCann, C. “Processor Scheduling in Shared Memory
 Multiprocessors.” Proceedings, Conference on Measurement and Modeling of
 Computer Systems , May 1990.

ZAJC93 Zajcew, R., et al. “An OSF/1 UNIX for Massively Parallel Multicomputers.”
Proceedings, Winter USENIX Conference , January 1993.

ZEAD97 Zeadally, S. “An Evaluation of the Real-Time Performance of SVR4.0 and
SVR4.2.” Operating Systems Review , January 1977.

ZOU05 Zou, C., et al. “The Monitoring and Early Detection of Internet Worms.” IEEE/
ACM Transactions on Networking , October 2005.

743

Index
Note : letters “A” and “B” followed by locators refers to Appendix page numbers. Green colored locators refers to online
chapter page numbers.

 A
 Absolute loading, 334 – 336
 Absolute scalability, 699
 Access

 efficiency, 44
 matrix, 552
 methods for file systems, 526
 rights for file sharing, 540 – 541 , 553
 time, 487
 token, 668 – 669

 Access control, 146 , 646 – 653
 categories of, 646 – 647
 commands, 650
 discretionary, 646 , 647 – 651
 function of, 649
 lists, 553 , 559 – 560
 mandatory, 646 – 647
 matrix of, 648
 protection and, 66
 role-based, 647 , 651 – 653
 security scheme, 668
 security threats and, 646 – 653
 structures of, 552 – 553
 UNIX systems, 558 – 559

 Access control lists
 discretionary, 670
 file system security, 553
 system, 670
 UNIX systems, 559 – 560

 Accountability for computer security, 610
 Accounting information, 109
 Accumulator (AC), 12
 Action field, 656
 Active attacks, 615
 Active Directory, 80
 Active secondary, 700 , 701
 Address binding, 336
 Addresses. See also Address translation; Virtual addresses

 executable, space protection, 666
 logical, 320 , 323
 physical, 320
 read, 67
 real, 341
 registers, 9 , 10
 relative, 320
 space, 187 , 341
 space randomization, 667

 Addressing, 68 , 235 – 236
 direct, 235
 indirect, 235
 indirect process communication, 235 – 236
 Linux virtual memory, 384 – 385
 many-to-one relationship, 235
 message passing, 235 – 236
 one-to-many relationship, 235
 one-to-one relationship, 235
 for process, requirements of, 308
 translation of, 324
 virtual memory, 384 – 385

 Address translation
 for paging system, 347 , 348
 in segmentation, 357 , 358

 Advanced local procedure call (ALPC) facility, 84
 Advertisement add-ons, 631
 Alignment check, 132
 All users class, 541
 AMD 64 , 81
 Amdahl’s law, 171
 Analyzers for intrusion detection, 145
 Anomaly detection, 655
 Anticipatory input/output scheduler, 511 – 512
 Antivirus approaches, 657 – 661

 behavior-blocking software, 659 – 661
 digital immune system, 658 – 659
 generic decryption, 657 – 658

 Anys state : exit process, 124
 Aperiodic tasks, 443 , 451
 Appending access rights, 540
 Application binary interface (ABI), 50 , 75
 Application layer, 17 - 8
 Application programming interface (API), 50 , 75 , 679 , 17 - 16
 Architecture, 582

 client/server application, three-tier, 680 , 685 – 686
 client/server model, 85 – 86
 cluster, 703 – 704
 file management systems, 525 – 526
 Linux VServer, 101
 microkernel, 71
 Microsoft Windows, 82 – 85
 Microsoft Windows Vista, 82
 middleware, 688 – 689
 UNIX systems, 91
 virtual machines (VM), 75 – 76

 ARPANET, 17 - 6
 Assets of computer system, threats to, 613 – 616
 Assignment of processes to processors, 433 – 434
 Associative lookup for page table, 353
 Associative mapping, 351
 Asynchronous input/output, Windows, 513 – 514
 Asynchronous procedure call (APC), 514
 Asynchronous processing, 161 – 162
 Asynchronous remote procedure calls (RPC), 698
 Asynchronous service, 691
 Atomic bitmap operations, 286 , 287
 Atomic integer operations, 286 – 287
 Atomic operations, 200 , 285 – 287
 AT&T, 90 , 93
 Attacks on computer system

 threats, 610 – 612
 types of, 610 – 611

 Attribute definition table, 567
 Audit records for intrusion detection, 655 – 657
 Authentication, 145 – 146 , 640 – 646

 biometric, 645 – 646
 computer security, 145 – 146 , 640 – 646
 password-based, UNIX system, 640 – 643
 steps of, 145
 token-based, 643 – 645

744 INDEX

 permanent, 259
 record, 541 – 543

 Block operation, 162
 Block-oriented device, 484
 Blocks, 28 , 189 – 190 , 544

 boot, 557
 data, 557
 defined, 189
 dispatched, 190
 function of, 190
 process control, 109 – 110
 scheduled, 190
 size of, 30

 Boot block, 557
 Boot sector infector, 626
 Bots, 631 – 633

 botnet, 631
 botnet attack, construction of, 632 – 633
 remote control facility, 632
 use of, 631 – 632

 Bottom half code, 288
 Bottom-half kernel threads, 463
 Bounded-buffer monitor code, 231
 Bounded-buffer producer/consumer

problem, 229 , 238
 Brownian motion process, 19 - 19 – 22
 Browser helper objects (BHOs), 631
 B-trees, 532 – 535

 characteristics of, 533
 definition of, 533
 nodes into, insertion of, 535
 properties of, 533
 rules for, 534

 Buddy system, 317 – 319
 algorithms of, 318
 example of, 318
 tree representation of, 319

 Buffer cache, UNIX system, 507 – 508
 Buffering, 369 , 483 – 487
 Buffer overflow

 basic, example of, 327
 stack values, 328

 Buffer overflow attacks, 326 – 330
 compile-time defenses, 663 – 666
 dealing with, 663 – 667
 defending against, 330
 run-time defenses, 666 – 667

 Buffer overrun. See Buffer overflow
 Buffer registers

 input/output buffer register (I/OBR), 10
 memory buffer register (MBR), 9 – 10

 Buffer swapping. See Double buffer
 Busy waiting technique, 212, A- 2

 C
 Cache consistency, 687
 Cache levels, 30
 Cache manager, 83 , 513 , 568
 Cache memory, 27 – 31 , 502 – 503 . See also Disk cache

 blocks, 28
 block size, 30
 cache size, 30
 categories of, 30
 design of, 29 – 31
 main memory and, 28 – 29
 mapping function, 31

Authentication (continued)
 of user’s identification, 145 , 146
 verification step of, 145

 Authenticity of information, 69 , 610
 Autocovariance, 19 - 16
 Automatic allocation, 66
 Automatic management, 66
 Automatic teller machine (ATM), 644
 Auto-rooter, 620
 Auxiliary carry flag, 132
 Auxiliary memory, 27
 Availability, 18 - 3
 Availability of information, 69 , 72 , 609 , 610
 Available state, 388
 Avoidance approaches for operating systems, 265
 Awareness, degrees of, 205
 Axiomatic definition of probability, 19 - 2 – 5

 B
 BACI (Ben-Ari Concurrent Interpreter), B- 7
 Backdoor, 619 – 621 , 620
 Background work, 161
 Balancing resources, 401
 Banker’s algorithm, 271
 Barbershop problem, A- 15 – 21
 Basic buffer overflow, 327
 Basic file systems, 522
 Basic input/output supervisor, 525
 Basic spinlocks, 287 – 288
 Batch systems

 multiprogrammed, 56 – 58
 simple, 53 – 56

 Bayes’s Theorem, 19 - 6 – 8
 Behavior-blocking software, 659 – 661
 Bell Labs, 90
 Beowulf clusters, 706 – 708

 configuration of, 707
 features of, 706 – 707

 Beowulf distributed process space (BPROC), 708
 Beowulf Ethernet channel bonding, 708
 Beowulf software, 707 – 708
 Berkeley Sockets Interface, 17 - 16
 Berkeley Software Distribution (BSD), 94
 Best fit strategy, 315 , 544
 _bh, 288
 Bias, 20 - 41
 Binary semaphores, 213 , 215 , 221 , 223 , 224 , 289 – 290
 Biometric authentication, 645 – 646
 Bitmap operations, Linux atomic, 286 , 287
 Bitmap scheduler, 587
 Bit tables, 548 – 549
 Blended attack, 622
 Block device drivers, 100
 Block diagram, 36 , 479
 Blocked : blocked/suspend process, 123
 Blocked : exit process, 119
 Blocked process, 122 – 123
 Blocked : ready process, 119
 Blocked state, 119 , 147 – 148
 Blocked/suspend : blocked process, 124
 Blocked/suspended process, 123
 Blocked/suspend : ready/suspend process, 123
 Blocked/waiting process state, 117
 Blocking, 234

 fixed, 541
 nonblocking, 695

INDEX 745

 middleware, 687 – 689
 network for, 679
 servers in, 678 – 679
 terminology of, 679

 Client-server model, 85 – 86
 Clock algorithm, 367 , 381 , 386
 Clock interrupt, 137
 Clock page, 368
 Clock replacement policy, 365 , 366
 Cloned () process, 188
 Closing files, 522
 Clouds, 171
 Cluster bit map, 567
 Clusters, 431 , 565 , 699 – 704

 architecture of, 703 – 704
 benefits of, 701
 Beowulf, 706 – 708
 configurations of, 699 – 701
 limitations of, 701
 Linux, 706 – 708
 methods of, 701
 multiprocessor system, 431
 objectives of, 699
 operating system design issues with, 702 – 703
 parallelizing computation, 702 – 703
 requirements of, 699
 sizes of, 566
 SMP, 704
 in symmetric multiprocessor, 704

 Cluster service, 704
 Coarse-grained services, 690
 Coarse parallelism, 432 – 433
 Coarse threading, 174
 Codecs, 10
 Coefficient of variation, 20 - 20
 Commands, TinyOS, 598
 Commercial operating systems, 578
 Committed state, 388
 Common Object Request Broker Architecture

(CORBA), 690 , 698
 Communication

 architecture, 17 - 2 – 3
 cooperation among processes by, 208 – 209
 datagram, 17 - 16 , 17 - 18
 deadlock, in distributed system, 18 - 44
 devices, 476
 indirect process, 235 – 236
 interprocess, 233
 lines, security of, 509 , 615 – 616
 message, 18 - 38 – 44
 performance, 18 - 3
 socket, 17 - 18
 stream, 17 - 18

 Compaction of memory, 314
 Compare&swap instruction, 210 – 212
 Compatible Time-Sharing System (CTSS), 60 – 61
 Competition, 205
 Compile-time defenses, 663 – 666

 language extensions, safe libraries and, 664 – 665
 programming language choices, 663 – 664
 safe coding techniques, 664
 stacking protection mechanisms, 665 – 666

 Complement, 19 - 3
 Completion deadline, 448
 Compression viruses, 625
 Computer-aided design (CAD), 40

 motivation, 27
 principles of, 28 – 29
 read operation of, 29 – 30
 replacement algorithm, 31
 slots, 28
 write policy, 31

 Cache operation, 353
 Cache size, 30 , 369 – 370
 CalmRISC, 579
 Canary value, 665
 Capability tickets, 553
 Carry flag, 132
 Centralized algorithm, 18 - 18 – 19
Centralized control, 18 - 34
 Central processing unit (CPU), 8
 Certain event, 19 - 3
 Chained allocation, 546 – 547
 Chained free portions, 549
 Chain pointer, 349
 Challenge-response, 644
 Changing protection access rights, 540
 Channel, 18 - 12
 Character device drivers, Linux, 100
 Character queue, UNIX SVR 4 , 508
 Chbind, 101
 Chcontext, 100 – 101
 Checkpointing, 704
 Child process, 115
 Chip multiprocessor, 35 – 36
 Chroot, 100
 CIA triad for security, 609
 C implementation of UNIX systems, 90
 Circular buffer, 486
 Circular SCAN (C-SCAN) policy, 493
 Circular wait condition, 18 - 31
 Circular wait process, deadlock prevention using, 267 , 269
 Clandestine user, 143
 Classes

 all users, 541
 of client-server applications, 683 – 685
 of interrupts, 14
 kernel (99-60), 462
 objects, 86
 priority, 463 , 467
 real time (159-100), 461 – 462
 real-time priority, 467
 specific user, 541
 time-shared (59-0), 462
 user groups, 541
 variable priority, 467

 Classification by target, 626
 Cleaning policy, 376 – 377
 Client, 678 , 679 . See also Client/server computing
 Client-based processing, 684
 Client machines, 678
 Client/server applications, 680 – 687

 classes of, 683 – 685
 database applications, 681 – 683
 file cache consistency, 686 – 687
 three-tier architecture of, 685 – 686

 Client/server binding, 697
 Client/server computing, 678 – 689 . See also Client/server

applications
 architecture of, 680
 concept of, 678
 definition of, 678 – 680

746 INDEX

 scheduling and, 482 – 483
 status registers and, 130 , 131
 user, 444

 Control bits, 132 , 349
 Control mode, 135
 Control objects, Windows, 88
 Cooperation, 205
 Cooperative processing, 684
 Copy-on-reference strategy, 18 - 6
 Cores, 10 , 35
 Coroutines, 247, 283, A- 4
 Correlation coefficient, 19 - 13 , 19 - 16
 Corruption, 612
 Counting (general) semaphores, 215 , 222 , 289 – 290
 Covariance variables, 19 - 13
 CPU emulator, 657
 Create file operation, 537
 Creation of files, 522
 Criminal intruders, 618
 Critchley, Adam, B- 4
 Critical resource, 206
 Critical sections, 200 , 206 , 296 – 297
 C-SCAN (circular SCAN) policy, 493
 Csignal (c), 227
 Currency mechanisms, 213
 Cutler, Dave, 80
 Cwait (c), 227

 D
 Data

 block, 557
 confidentiality, 609
 Context, 109
 integrity, 69 , 609
 memory, external fragmentation of, 314
 processing, 11
 rate, 476
 security threats to, 614 – 615
 semaphores and, 219
 set of, 109
 SIMD techniques, 10
 streams, multiple, 565
 table entry, page frame, 380 – 381
 transfer capacity, RAID level 0 for high, 498 – 499

 Database, 523
 client/server applications, 681 – 683
 configuration database manager, 706
 relational, 679
 server, 20 - 24 – 25

 Datagram communication, 17 - 16 , 17 - 18
 DDR3 (double data rate) memory controller, 35
 Deadlines, 401
 Deadline scheduler, 510 – 511
 Deadline scheduling, 448 – 452

 design issues, 449
 real-time scheduling, 448 – 452
 for tasks, 448 – 451

 Deadlocks, 64 , 200 , 206 , 213
 communication, in distributed system, 18 - 44
 conditions for, 267 – 268
 consumable resources, 264 – 266
 distributed, 18 - 30 – 44
 errors in process, 64
 example of, 261
 execution paths of, 262
 free, 18 - 26

 Computer communications, 17 - 4
 Computer emergency response teams (CERTs), 618
 Computer network, 17 - 4
 Computer systems. See also Operating systems (OS)

 assets of, threats to, 613 – 616
 attacks, types of, 610 – 611
 basic elements of, 8 – 10
 cache memory, 27 – 31
 direct memory access, 31 – 32
 instruction execution, 11 – 13
 interrupts, 14 – 23
 memory hierarchy, 24 – 27
 microprocessor, 10 , 33 – 36
 overview of, 7 – 36
 threats, 610 – 612
 top-level components of, 9

 Concurrency, 198–244, 258–298, A- 1 – 20
 barbershop problem, A- 15 – 21
 contexts of, 199 – 200
 deadlock, 259 – 278
 dining philosophers problem, 279 – 281
 example of, 201 – 203
 Linux kernel, mechanisms of, 285 – 292
 message passing, 233 – 239
 monitors, 226 – 232
 mutual exclusion, 209 – 213
 operating systems, concerns of, 204
 principles of, 201 – 209
 process interaction, 205 – 209
 race conditions of, 204, A- 8 – 15
 readers/writers problems, 239 – 243
 semaphores, 213–226, A- 8 – 15
 Solaris thread synchronization, primitives of, 292 – 294
 terms related to, 200
 UNIX, mechanisms of, 281 – 285
 Windows 7, mechanisms of, 294 – 297

 Concurrent process, simultaneous, 77
 Concurrent threads, simultaneous, 77
 Conditional probability, and independence, 19 - 6
 Condition codes, 132
 Condition variables, 213 , 227 , 294 , 297

 eCos, 590 – 591
 monitors, 227

 Confidentiality, of information, 69 , 609 , 610
 Configurability, 577 , 579 – 582
 Configuration database manager, 706
 Configuration manager, Windows, 84
 Connection-oriented protocol, 17 - 19
 Consistency, 686
 Consistent distributed global states, 18 - 13
 Consumable resources, deadlock and, 264 – 266
 Containment, 661 – 662
 Context data, 109
 Contiguous allocation, 545 – 546
 Continuous-time stochastic process, 19 - 14
 Continuous-value stochastic process, 19 - 15
 Continuous variable, 19 - 8
 Control, 11

 bits, 132 , 349
 complexity of, 476
 load, 377 – 379
 mode, 135
 with multiple interrupts, transfer of, 22
 objects, Windows, 88
 operating system, structures of, 126 – 128
 process, 134 – 139

INDEX 747

 Dining philosophers problem, 279 – 281
 dining arrangement, for philosophers, 279
 monitors, solutions using, 280 – 281
 semaphores, solutions using, 280

 Direct addressing, 235
 Direct (hashed) file, 532
 Direction flag, 132
 Direct lookup for page table, 353
 Direct memory access (DMA), 31 – 32

 block diagram, 479
 configurations for, alternative, 480
 input/output operations, techniques for,

 31 – 32 , 477 – 480
 Directories

 attributes, 567
 file, 553 – 554
 management, 483
 UNIX, 557

 Disabled interrupts, 22 – 23
 Discoverable services, 691
 Discrete variable, 19 - 8
 Discrete-time stochastic process, 19 - 14
 Discrete-value stochastic process, 19 - 15
 Discretionary access control (DAC),

 646 , 647 – 651
 Discretionary access control list (DACL), 670
 Disk allocation tables, 547
 Disk block descriptors, 380 – 381
 Disk cache, 40 , 502 – 506

 design issues of, 503 – 505
 performance issues of, 505 – 506

 Disk drives, 509
 Disk duplexing, 515
 Disk performance parameters, 487 – 489

 rotational delay, 488 – 489
 seek time, 488
 timing comparison, 489

 Disk scheduling
 algorithms for, 491 – 492
 anticipatory input/output scheduler,

 511 – 512
 deadline scheduler, 510 – 511
 disk performance parameters, 487 – 489
 elevator scheduler, 510
 input/output management and, 474 – 516
 policies for, 490 – 494

 Disk storage, 565 – 566
 Dispatched blocks, 190
 Dispatcher objects, 88 , 295 – 296
 Dispatcher program, 111
 Dispatching discipline, 20 - 13
 Dispatch queues, 462
 Disruption, security threats of, 612
 Distributed algorithm, 18 - 19
 Distributed control, 18 - 34
 Distributed data processing (DDP), 17 - 2
 Distributed deadlock, 18 - 30 – 44

 in message communication, 18 - 38 – 44
 in resource allocation, 18 - 30 – 38

 Distributed denial-of-service (DDoS) attacks, 631
 Distributed global states, 18 - 10 – 16

 consistent, 18 - 13
 distributed snapshot algorithm, 18 - 14 – 16
 example of, 18 - 12
 inconsistent, 18 - 13
 process and channel graph, 18 - 15

 illustration of, 260
 integrated strategy for, 278
 no, example of, 263
 phantom, 18 - 31
 principles of, 259 – 268
 resource allocation graphs, 266 – 267
 reusable resources, 263 – 264
 store-and-forward, 18 - 42

 Deadlock avoidance, 268 , 270 – 275 , 18 - 33 – 34
 logic of, 275
 process initiation denial, 270 – 271
 resource allocation denial, 271 – 275
 restrictions of, 274

 Deadlock detection, 265 , 268 , 276 – 278
 algorithm of, 276 – 277 , 18 - 34 – 38
 recovery, 277 – 278

 Deadlock prevention, 265 , 268 – 275 ,
18 - 32 – 33 , 18 - 43

 circular wait condition, 269
 hold and wait condition, 269
 mutual exclusion, 269
 no preemption condition, 267 , 269

 Deception, security threats of, 612
 Decision mode, 404
 Dedicated processor assignment, 440 – 441
 Dedicated resources, 601 – 602
 Default ACL, 669
 Default owner, 669
 Defense Advanced Research Projects Agency

(DARPA), 17 - 6 – 7
 Deferred service routines (DSRs), 584 – 585
 Degrees of awareness, 205
 Dekker’s algorithm, A- 2 – 7
 Delay variable, 383 – 384
 Delete access, 671
 Delete file operation, 537
 Deletion access rights, 540
 Deletion of files, 522
 Demand cleaning policy, 376
 Demand paging, 361
 Denial of service attacks, 615 – 616
 Denning, Dorothy, 655
 Density function, 19 - 8 – 9
 Dentry object, Linux, 562 , 564
 *deps, 97
 Design issues

 with deadline scheduling, 449
 of disk cache, 503 – 505
 for embedded operating systems, 577
 of input/output, 480 – 483
 with multiprocessor scheduling, 433 – 435

 Destination network address, 17 - 14
 Detection of virus, 657
 Detection-specific audit records, 655
 Determinism, 443 – 444
 Deterministic behavior, 583
 Device driver interface to eCos kernel,

 585 – 586
 Device drivers, 83 , 525
 Device input/output, 482
 Device list, 507
 Die, 35
 Differential responsiveness, 69
 Digital Equipment Corporation, 80
 Digital immune system, 658 – 659
 Digital Signal Processors (DSPs), 10

748 INDEX

 Electronic mail facility, 629
 Elevator scheduler, 510
 E-mail, security threats to, 622
 E-mail viruses, 628
 Embedded Configurable Operating System (eCos),

 579 – 594 . See also specific types of
 components of, 582 – 586
 configurability, 579 – 582
 hardware abstraction layer, 582 – 583
 input/output system, 584 – 586
 scheduler, 587 – 588
 standard C libraries, 586
 thread synchronization, 589 – 594

 Embedded Configurable Operating System (eCos) kernel,
 583 – 584

 device driver interface to, 585 – 586
 objectives of, 583

 Embedded operating systems, 573 – 603
 characteristics of, 576 – 579
 commercial operating systems, adapting to existing, 578
 definition of, 574
 design issues for, 577
 eCos (Embedded Configurable Operating System),

 579 – 594
 elements of, 576
 examples of, 575
 organization of, 576
 purpose-built, 578 – 579
 requirements/constraints of, 574 – 575
 TinyOS, 594 – 603

 Emerald system, 171
 Emulation control module, 657
 Encapsulation, 86
 Encrypted viruses, 626
 Encryption, volume, 515
 Energy efficiency, Microsoft Windows 7 , 89
 Enforcing priorities, 401
 EnFuzion, 708
 Engineering improvements, Microsoft Windows 7 , 89
 Ensemble averages, 19 - 25
 Enterprise Edition (J2EE platform), 173
 Environmental subsystems, Windows, 84
 Ergodicity, 19 - 24 – 26
 Errors in process, causes of, 63 – 64

 deadlocks, 64
 mutual exclusion, failed, 63 – 64
 program operation, nondeterminate, 64
 synchronization, improper, 63

 Event, 19 - 2
 Event flags, 213 , 591 – 592
 Event object, Windows, 296 , 514
 Event processor, 706
 Events, TinyOS, 598
 Eviction, 18 - 9 – 10
 Exception-condition field, 656
 Exchange instruction, 212
 Executable address space protection, 666
 Executable program, 64
 Executables (EXEs), 84
 Execution

 access rights, 540
 context (process state), 64
 modules of, 83 – 84
 of object-oriented design, 87
 paths of deadlock, 262
 phase, 624

 Distributed message passing, 691 – 695
 blocking, differentiating between nonblocking and, 695
 middleware, 693
 primitives of, basic, 694
 reliability, differentiating between unreliability and,

 694 – 695
 Distributed multiprocessor system, 431
 Distributed mutual exclusion, 18 - 16 – 30

 concepts of, 18 - 17 – 20
 distributed queue, 18 - 24 – 27
 distributed system, ordering of events in, 18 - 20 – 23
 token-passing approach, 18 - 28 – 30

 Distributed operating systems, 73 , 17 - 3
 Distributed processing, 199

 Beowulf clusters, 706 – 708
 client/server computing, 678 – 689
 clusters, 699 – 704
 distributed message passing, 691 – 695
 Linux clusters, 706 – 708
 Microsoft Windows cluster server, 704 – 706
 remote procedure call (RPC), 695 – 698
 service-oriented architecture (SOA), 689 – 691

 Distributed process management, 18 - 1 – 45
 distributed deadlock, 18 - 30 – 44
 distributed global states, 18 - 10 – 16
 distributed mutual exclusion, 18 - 16 – 30
 process migration, 18 - 2 – 10

 Distributed queue, 18 - 24 – 27
 first version, 18 - 24 – 26
 second version, 18 - 26 – 27

 Distributed snapshot, 18 - 13
 Distributed snapshot algorithm, 18 - 14 – 16
 Distributed system, ordering of events in, 18 - 20 – 23
 Distribution function, 19 - 8 – 9
 Distributions, 19 - 9 – 12

 exponential, 19 - 9 – 11
 normal, 19 - 12
 poisson, 19 - 11 – 12

 DMA. See Direct memory access (DMA)
 Domain Name System (DNS) database, 17 - 15
 Dormant phase, 624
 Double buffer, 486
 Downloaders, 620
 Driver input/output queue, 507
 Dynamic allocation, 543 – 544
 Dynamically linked libraries (DLLs), 705
 Dynamic best effort scheduling, 447 , 448
 Dynamic biometrics, 146
 Dynamic linker, 338 – 339
 Dynamic linking, Linux, 95 , 338 – 339
 Dynamic link libraries (DLLs), 84 , 339
 Dynamic partitioning for memory, 314 – 317

 effect of, 315
 placement algorithm, 315 – 317
 replacement algorithm, 317

 Dynamic password generator, 644
 Dynamic planning-based scheduling, 447 , 448
 Dynamic run-time loading, 337
 Dynamic scheduling, 442

 E
 Eager strategy, 18 - 5
 ECos. See Embedded Configurable Operating System

(eCos)
 Efficiency, 69 , 480
 EFLAGS register, Pentium, 131 – 132

INDEX 749

 security (See File system security)
 UNIX, 553 – 560

 File object, Linux, 514 , 562 , 564
 File organization/access, 527 – 532

 criteria for, 527 – 528
 direct file, 532
 hash file, 532
 indexed file, 531 – 532
 indexed sequential file, 530 – 531
 performance, grades of, 529
 pile, 529 – 530
 sequential file, 530
 types of, common, 528 – 529

 Files, 522
 allocation (See File allocation)
 cache consistency, 686 – 687
 closing, 522
 creation of, 522
 deletion of, 522
 direct, 532
 directories (See File directories)
 field, input/output, 522 – 523
 hashed, 532
 indexed, 531 – 532
 indexed sequential, 530 – 531
 large, support for, 565
 links, 554
 log, 567
 long-term existence of, 522
 management (See File management systems)
 MFT 2 , 567
 naming, 538 – 539
 object, Linux, 514 , 562 , 564
 opening, 522
 operations performed on, 522
 ordinary, 553
 organization/access (See File organization/access)
 performance, grades of, 529
 pile, 529 – 530
 properties of, 522
 reading, 522
 regular, 553
 sequential (See Sequential files)
 sharing, 207 – 208 , 309 , 522 , 540 – 541
 special, 554
 structure, 522 – 524 , 565 – 567
 symbolic links, 554 , 565
 systems (See File systems)
 tables, 127 , 543 , 567
 tree-structured, 538 , 539
 UNIX, 553 – 555
 UNIX FreeBSD, structure of, 555
 writing, 522

 File systems, 100 , 187 , 483 , 522 , 567
 drivers, 513
 isolation, 100
 Windows, 564 – 569

 File system security, 551 – 553
 access control lists, 553
 access control structures, 552 – 553
 capability tickets, 553

 File tables, 127
 allocation table (FAT), 543
 volume master, 567

 File transfer, architecture for, 17 - 6
 File Transfer Protocol (FTP), 17 - 15

 of process, 158
 process control, modes of, 134 – 136
 of Solaris threads, 184 – 185
 speed of, 162
 stack, 160
 state, 186

 Executive stage, 12 – 13
 Exit process state, 117
 Exploits, 620
 Exponential averaging, 410 , 412
 Exponential distributions, 19 - 9 – 11
 Exponential population, means for, 20 - 40
 Exponential smoothing coefficients, 411
 Exposure, 610 – 611
 External fragmentation of memory data, 314

 F
 Facial characteristics, 645
 Facilities request, 17 - 14
Failback, 702
 Failover, 702
 Failover manger, 706
 Fail-soft operation, 444 – 445
 Failure management, clusters, 702
 Fairness, 69 , 401 , 18 - 26
 Fair-share scheduling, 420 – 422
 False negatives/positives, 653
 Falsification, 612
 Fatal region, 262
 Fat client, 684
 Faulting processing, 378
 Faults, 100
 Fault tolerance, 78
 Feedback, 413 – 415
 Feedback scheduling, 414
 Fetches, 11
 Fetch policy, 361 – 362
 Fetch stage, 12 – 13
 Field, input/output files, 522 – 523
 File allocation, 543 – 547

 dynamic allocation vs. preallocation,
 543 – 544

 methods of, 545 – 547
 portion size, 544 – 545
 UNIX, 556 – 557

 File allocation table (FAT), 543
 File directories, 535 – 539

 contents of, 535 – 536
 elements of, 536
 naming, 538 – 539
 structure of, 537 – 538
 tree-structured, 538 , 539
 working, 539

 File infector, 626
 File management systems, 520 – 569

 architecture of, 525 – 526
 B-trees, 532 – 535
 elements of, 526
 file sharing, 540 – 541
 functions of, 526 – 527
 Linux virtual file system (VFS), 560 – 564
 objectives of, 524
 overview of, 522 – 527
 record blocking, 541 – 543
 requirements of, minimal, 524 – 524
 secondary storage management, 543 – 551

750 INDEX

 G
 Gang scheduling, 439
 GCC (GNU Compiler Collection), 665
 Generality, 481 , 661
 General message format, 236 – 237
 General semaphores, 215 , 222
 Generic_all access bits, 671
 Generic decryption (GD), 657 – 658
 Generic_execute access bits, 671
 Generic_read access bits, 671
 Generic_write access bits, 671
 Global coverage, 661
 Global replacement policy, 371
 Global scope, 372
 Global state, 18 - 13
 Grand Central Dispatch (GCD), 78 – 79
 Granularity, 432 – 433 . See also Parallelism
 Graphical Processing Units (GPUs), 10
 Graphic user interface (GUI), 681
 Group

 concept of, 705
 resources, 705
 SIDs, 669

 Guard pages, 667
 Gupta Corp, 684

 H
 Hackers, 616 – 618
 Hamming code, 500
 Hand geometry, 645
 Handspread, 381
 Hard affinity process, 181
 Hard links, 565
 Hard real-time task, 443
 Hardware

 device drivers, 513
 interrupt processing, 19 – 20
 mutual exclusion, 209 – 213
 RAID, 514
 relocation, 320
 security threats to, 613
 simple batch systems, 55 – 56
 virtual memory (paging), 348 – 360

 Hardware abstraction layer (HAL), 83 , 582 – 583
 Hashed file, 532
 Hashed passwords, 641 – 642
 Hash table, 507 – 508
 Hexadecimal digit, 12
 Hierarchical control, 18 - 34
 High availability, 699
 Highest response ratio next (HRRN), 413
 High-level language (HLL), 50
 High Performance Computing and Communications

(HPCC), 706
 Hit list scanning, 633
 Hit ratio (H), 25
 Hold and wait condition, 18 - 31
 Hold and wait process, deadlock prevention

using, 267 , 269
 Host-based intrusion detection, 654 – 655
 Host-based processing, 683
 Hosting platform, 101
 Hot-based IDS, 144
 Human readable devices, 475
 Hybrid threading, 174 – 175
 Hypervisor, 74

 Filter-based worm containment, 661
 Fine-grained parallelism, 433
 Fine-grained threading, 174
 Fingerprinting, 632 , 645
 Finish operation, 162
 Finite circular buffer, for producer/consumer problem, 225
 Firewalls, 146 – 147
 First-come-first-served (FCFS), 407 , 438 , 20 - 13
 First fit strategy, 315 – 316 , 544
 First-in-first-out (FIFO) policy, 216 , 364 , 490
 First-order statistics, 19 - 15 – 17
 Five-state process model, 116 – 120

 states of, 117
 transitions of, 118 – 119

 Fixed allocation
 local page, 367
 local scope, 371
 replacement policy, 370

 Fixed blocking, 541
 Fixed function units, 10
 Fixed partitioning for memory, 310 – 314

 partition size, 310 – 312
 placement algorithm, 312 – 314

 Flags, 97 , 669
 Flexibility of input/output devices, 577
 Flooders, 620
 Flushing strategy, 18 - 6
Foreground work, 161
 FORTRAN programs, 40
 Four page replacement algorithm,

behavior of, 364
 Frame, 307 , 321 , 322
 Frame locking, 363
 Free block list, 549 – 550
 Free frame, 322
 Free list, 507
 Free Software Foundation (FSF), 94
 Free space management, 547 – 550

 bit tables, 548 – 549
 chained free portions, 549
 free block list, 549 – 550
 indexing, 549

 FREE state, 184
 Frequency-based replacement, 504
 FSCAN policy, 493 – 494
 Functionally specialized multiprocessor

system, 431
 Functions

 access control, 649
 blocks, 190
 file management systems, 526 – 527
 kernel (nucleus), 135
 linking, 338
 loading, 334
 MAC OS Grand Central Dispatch (GCD), 192
 mapping, 30 , 31
 Microsoft Windows input/output, 513
 operating systems (OS), 48 – 52
 processor, 9
 resource management in OS, scheduling and, 70
 selection, 403
 support, 135
 threads, 162 – 164
 wait, 295
 worms, 629

 Fuzzing, 329

INDEX 751

 logical structure of, 481 – 483
 management, 135
 manager, 83 , 513 , 568
 model of, 482
 modules, 9 , 10
 organization of, 477 – 480
 performing, techniques for, 31 – 32 , 477
 physical, 522 , 525
 processor, 11 , 478
 program/programmed, 14 , 31 – 32 , 477
 RAID, 494 – 502 , 499
 scheduling, 396
 space, single, 704
 status information, 109
 supervisor, basic, 525
 tables, 127
 three-level interrupt mode for, 584 – 585
 UNIX SVR4 input/output, 506 – 509
 Windows, 512 – 515

 Input/output (I/O) buffering, 483 – 487
 circular buffer, 486
 double buffer, 486
 single buffer, 484 – 486
 utility of, 486 – 487

 Input/output buffer register (I/OBR), 10
 Input/output (I/O) devices

 data rates of, 476
 flexibility of, 577
 types of, 475 – 477

 Insider attacks, 618 – 619
 Instantiation of objects, 86
 Instruction cycle, 11 , 15 – 18
 Instruction execution, 11 – 13 . See also Direct

memory access (DMA)
 categories of, 11
 characteristics of, 12
 executive stage of, 11
 fetch stage of, 11
 partial program execution, 12 – 13
 steps of, 11

 Instruction register (IR), 11
 Instruction set architecture (ISA), 50
 Instructor’s Resource Center (IRC), A- 23 – 24
 Integer operations, atomic, 286 – 287
 Integrated mail systems, 658
 Integrated strategy for deadlock, 278
 Integrity of information, 609 – 610
 Intel Core i 7 , 35 , 36
 Intel IA 32 , 579
 Intel IA 64 , 81
 Interactive scoring, 464 – 466
 Interactive threads, 464
 Interception, 611
 Interface-based design, 690
 Interface calls, 17 - 16 – 20
 Interfaces

 application binary, 50 , 75
 application programming, 50 , 75 , 679
 device driver interface to eCos kernel,

 585 – 586
 graphic user interface, 681
 native system, 84
 resource, 603
 single user, 704
 TinyOS resource, 601 – 603
 of typical operating systems, 50

 I
 IBM personal computer (PC), 60 , 80 , 94
 Identification flag, 132
 Identification of virus, 657
 Identification step of authentication, 145
 Identifiers, 109 , 186
 Idle user, 463
 IDS. See Intrusion detection systems (IDS)
 If statements, 231
 Incapacitation, 612
 In-circuit emulator (ICE), B- 3
 Inconsistent distributed global states, 18 - 13
 Incremental growth, 72
 Incremental scalability, 699
 Independence, and conditional probability, 19 - 6
 Independent events, 19 - 6
 Independent increments, 19 - 19 – 24

 Brownian motion process, 19 - 19 – 22
 poisson counting process, 19 - 22 – 24

 Independent parallelism, 432
 Independent variables, 19 - 13
 Indexed allocation, 547
 Indexed files, 531 – 532
 Indexed sequential files, 530 – 531
 Indexing, 549
 Index register, 64 – 65
 Indirect addressing, 235
 Indirect process communication, 235 – 236
 Individual processors, 434 – 435
 Infection from viruses, 626
 Infection mechanism (vector), 623
 Infection vector, 623
 Inference, 611
 Infinite buffer for producer/consumer problem,

 220 , 221 , 223 , 224
 Information, 68 – 69 , 186
 Information protection. See Security threats
 Inheritance, 86 – 87
 Initial infection from viruses, 626
 Inode object, 562 , 563
 Inodes, UNIX, 554 – 556

 elements of, 554 – 555
 FreeBSD, structure of, 555

 Inode table, 557
 Input/output (I/O)

 address register (I/OAR), 10
 address registers, 10
 anticipatory scheduler, 511 – 512
 asynchronous, Windows, 513 – 514
 basic, 513
 buffering (See Input/output (I/O) buffering)
 channel, 478
 completion ports, 514
 design issues with, 480 – 483
 devices (See Input/output (I/O) devices)
 direct memory access, 478 – 480
 disk cache, 502 – 506
 disk scheduling, 474 – 516
 driver queues, 507
 eCos, 584 – 586
 evolution of, 477 – 478
 field files, 522 – 523
 file system, logical, 481 – 483 , 526
 function, organization of, 477 – 480
 interrupt, 32 , 137 , 477
 Linux, 509 – 512

752 INDEX

 Itanium, 81
 Item population, 20 - 13

 J
 Jacketing, 168
 Jackson’s Theorem, 20 - 34 – 35
 Java Application Server, 173
 Java 2 Platform, 173
 Java VM, 75
 Job, serial processing, 52
 Job control language (JCL), 54
 Joint progress diagram, 260 – 261
 Journaling, 565

 K
 Kendall’s notation, 20 - 18 – 21
 Kernel-level threads (KLT), 168 – 169
 Kernel memory allocation

 Linux, 386
 Solaris, 379 , 382 – 384
 UNIX, 379 , 382 – 384

 Kernels, 51 , 83
 class (99-60), 462
 control objects, 88
 eCos, 585 – 586
 functions of, 135
 input/output manager, 513
 Linux (See Linux kernels)
 memory allocation (See Kernel memory allocation)
 microkernels, 71
 Microsoft Windows, 83 – 84
 mode, 56 , 135
 mode rootkit, 633
 modules, 96
 monolithic, 71
 nonprocess, 140 – 141
 UNIX systems, 92 – 93

 Key field for sequential files, 530
 Keylogging, 620 , 631
 Kit (virus generator), 620
 Knowledge access rights, 540

 L
 Language extensions, 664 – 665
 Large disks, 565
 Large files, 565
 Largest process, 378
 Last-in-first-out (LIFO) implementation, 128 , 130 , 20 - 13
 Last process activated, 378
 Lazy buddy system algorithm, 383 – 384
 Least frequently used policy (LFU), 386 , 503
 Least recently used (LRU) policy, 31 , 363 – 364 , 503 – 504
 Lightweight processes (LPW), 182 , 183 . See also Threads
 Lines of memory, 28
 Linkage editor, 337 – 338
 Linking, 337 – 339

 dynamic linker, 338 – 339
 function of, 338
 linkage editor, 337 – 338

 Links, 186
 Links file, 554
 Linux, 94 – 100 , 384 – 386 . See also Linux virtual file system

(VFS); Linux VServer
 character device drivers, 100
 clone () flags, 189

 Interfaces (continued)
user, in intrusion detection systems, 145
 user/computer, 48 – 50

 Internal fragmentation, 343 , 354
 Internal registers of processor, 9 – 10
 Internal resources, 278
 Internet Activities Board (IAB), 17 - 7
 Internet Engineering Task Force (IETF), 17 - 10
 Internet Protocol (IP), 17 - 8

 addresses, 17 - 16
 datagram, 17 - 14
 IPv6 and, 17 - 10 – 11

 Interprocess communication (IPC), 71 , 186 , 233
 Interrupt-driven input/output, 32 , 477
 Interruptible state, 187
 Interrupt processing, 19 – 21

 hardware events of, sequence of, 19 – 20
 memory for, changes in, 20 – 21
 operations of, 20
 registers for, changes in, 20 – 21
 simple, 19

 Interrupts, 14 – 23 , 56 , 100 , 137 . See also specific types of
 classes of, 14
 direct use of, 577 – 578
 disabled/disabling, 22 – 23 , 210
 enable flag, 132
 handler, 17
 and instruction cycle, 15 – 18
 multiple, 21 – 23
 processing (See Interrupt processing)
 program flow of control with/without, 14 – 15
 request, 15
 Solaris threads, 185 – 186
 stage, 16
 WRITE call, 14 – 15 , 18
 WRITE instruction, 15

 Interrupt service routine (ISR), 23 , 584
 Intersection, 19 - 3
 Intruders, 143 – 144 , 616 – 619

 behavior patterns of, 616 – 619
 criminals, 618
 hackers, 616 – 618
 insider attacks, 618 – 619

 Intrusion, 612 , 616 , 619
 Intrusion detection, 144 – 145 , 653 – 657

 audit records, 655 – 657
 host-based, techniques for, 654 – 655
 principles of, 653 – 654
 sensors for, 145

 Intrusion detection systems (IDS), 144 – 145
 analyzers, 145
 hot-based, 144
 network-based, 144 – 145
 user interface, 145

 Inverted page tables, 349 , 350
 I/O. See Input/output (I/O)
 IOPL (I/O privilege level), 132
 IP. See Internet Protocol (IP)
 IPng. See Internet Protocol (IP)
 IPv4 header, 17 - 11
 IPv6, Internet Protocol and, 17 - 10 – 11
 IRC (Internet Relay Chat) chat networks, 631
 Iris, 645
 _irq, 287
 _irqsave, 287

INDEX 753

 Load control, 377 – 379
 Loading, 334 – 337

 absolute, 334 – 335
 addressing binding, 336
 approaches to, 334
 dynamic run-time, 337
 function of, 334
 modules, 336
 relocatable, 335 – 336

 Load sharing, 437 – 439 , 18 - 3
 Load-time dynamic linking, 338
 Local coverage, 661
 Locality of references, 26 , 40 – 42 , 344 – 345

 principle of, 344
 spatial, 42
 temporal, 42

 Local organization, 309
 Local procedure call (LPC) facility, 696
 Local replacement policy, 371
 Local scope, 372 – 376
 Local subnet scanning, 633
 Lock-free synchronization, 297
 Log file, NTFS, 567
 Log file service, 568
 Logical address, 320 , 323
 Logical input/output file system, 481 – 483 , 526
 Logic bomb, 620 , 621
 Long memory process, 19 - 17
 Long-term existence of files, 522
 Long-term scheduling, 396 , 397 – 399
 Long-term storage, 66
 Loosely coupled multiprocessor system, 431
 Loosely coupled service, 691
 Lost calls cleared, 20 - 37
 Lost calls delayed, 20 - 37
 Lost calls held, 20 - 37
 Lotus Domino, 173
 Lowest-priority process, 378
 Low interrupt latency, 583
 Low task switching latency, 583

 M
 Mach 3. 0 , 94
 Machine problems (MPs), B- 5
 Machine readable devices, 476
 MAC OS Grand Central Dispatch (GCD), 189 – 192

 blocks, 189 – 190
 codes for, 191
 functions of, 192
 purpose of, 189

 Mac OS X, 94
 Macro viruses, 626 , 627 – 628
 Mailboxes, 213 , 235 , 592 – 593
 Main memory, 9 , 10 , 28 – 29 , 278
 Main memory cache, 40
 Maintenance hook, 619
 Malicious programs, 620
 Malicious software, 144 , 619 – 623 . See also

Malware defense
 backdoor, 619 – 621
 logic bomb, 621
 mobile code, 622
 multiple-threat malware, 622 – 623
 spreading new, 631
 Trojan horse, 621 – 622

 clusters, 706 – 708
 dentry object, 562 , 564
 dynamic linking, 95 , 338 – 339
 file object, 514 , 562 , 564
 history of, 94 – 95
 input/output, 509 – 512
 loadable modules, 95 – 97 , 336
 memory barrier operations, 291
 modular structure of, 95 – 97
 page cache, 512
 real-time tasks, 461
 scheduling (See Linux scheduling)
 semaphores, 290
 spinlocks, 288
 tasks, 186 – 188
 threads, 188 – 189
 2. 4 , 459
 2. 6 , 95 , 459
 virtual machine process scheduling, 468 – 469
 virtual memory (See Linux virtual memory)

 Linux kernels
 components of, 97 – 100
 components of TCP/IP protocol, 17 - 20
 concurrency mechanisms, 285 – 292
 memory allocation, 386

 Linux networking, 17 - 21 – 22
 Linux scheduling, 457 – 461

 non-real-time scheduling, 459 – 461
 real-time scheduling, 457 – 458

 Linux virtual file system (VFS), 560 – 564
 concept of, 562
 context of, 561
 dentry object, 564
 file object, 564
 inode object, 563
 object types in, 562
 superblock object, 562 – 563

 Linux virtual memory, 384 – 386
 page allocation, 385 – 386
 page replacement algorithm, 386
 virtual memory addressing, 384 – 385

 Linux VServer
 applications running on, 101
 architecture of, 101
 chbind, 101
 chcontext, 100 – 101
 chroot, 100
 file system isolation, 100
 hosting platform, 101
 network isolation, 101
 process isolation, 101
 root isolation, 101
 token bucket filter (TBF), 468 – 469
 virtual machine architecture, differentiating

between, 100 – 101
 virtual platform, 101
 virtual servers, 100 – 101

 List directory operation, 537
 Livelocks, 200, A- 5
 Loadable modules, Linux, 95 – 97 , 336

 absolute, 336
 characteristics of, 95
 kernel modules, 96
 module table, elements of, 96 – 97

 Load balancing, clusters, 702

754 INDEX

 UNIX SVR4, parameters of, 380 – 381
 virtual address, 67
 virtual memory, 67 – 68
 Windows, 386 – 389

 Memory management unit (MMU), 666
 Memory partitioning, 310 – 321

 buddy system, 317 – 319
 dynamic partitioning, 314 – 317
 fixed partitioning, 310 – 314
 relocation, 319 – 321

 Mesa monitors, 231
 Message buffers, unavailability of, 18 - 41 – 44
 Message communication

 deadlock in, 18 - 40
 distributed deadlock in, 18 - 38 – 44

 Message passing, 233 – 239
 addressing, 235 – 236
 blocking, 234
 distributed (See Distributed message passing)
 implementation of, 234
 for interprocess communication, design

characteristics of, 233
 message format, 236 – 237
 mutual exclusion, 237 – 239
 nonblocking, 234
 producer/consumer problem using, solution

to bounded-buffer, 238
 queuing discipline, 237
 synchronization, 233 – 235

 Messages, 237 , 283 , 18 - 6 – 7 . See also Mailboxes
 contents attack, release of, 615
 format, 236 – 237
 modification of, 615
 mutual exclusion, 237

 Metamorphic technique, 630
 Metamorphic viruses, 627
 MFT2 files, 567
 Micro-electromechanical sensors (MEMS), 594
 Microkernels, 71
 Microprocessor

 cores, 10
 Digital Signal Processors (DSPs), 10
 evolution of, 10
 Graphical Processing Units (GPUs), 10
 multicore computer (chip multiprocessor), 35 – 36
 and multicore organization, 33 – 36
 Single-Instruction Multiple Data (SIMD)

techniques, 10
 sockets, 10
 symmetric (SMP), 33 – 35
 System on a Chip (SoC), 10

 Microsoft
 Common Language Infrastructure, 75
 DOS, 80
 Xenix System V, 93

 Microsoft Windows. See also Microsoft Windows 7
 architecture of, 82 – 85
 asynchronous input/output, 513 – 514
 Azure, 81
 CE, 81
 client-server model, 85 – 86
 cluster server, 704 – 706
 file system, 564 – 569
 history of, 80 – 81
 input/output, 512 – 515
 kernel-mode components of, 83 – 84

 Malware defense, 657 – 663
 antivirus approaches, 657 – 661
 rootkit, countermeasures for, 662 – 663
 worms, countermeasures for, 661 – 662

 Mandatory access control (MAC), 646 – 647
 Many-to-many relationships, 169 – 170
 Many-to-one relationships, 235
 Mapping function, cache memory, 30 , 31
 Marker, 18 - 14
 Masquerade attacks, 612 , 615
 Masquerader, 143
 Master file table (MFT), 567
 Matrix of access control, 648
 Mean residence time, 20 - 11
 Mean residence time for single-server queues, 20 - 22
 Mean value, 19- 9
 Medium-grained parallelism, 433
 Medium-term scheduling, 396 , 399 – 400
 Memory

 auxiliary, 27
 cache, 27 – 31 , 502 – 503
 cards, 643 – 644
 compaction of, 314
 dynamic partitioning for, 314 – 317
 fault, 137 – 138
 for interrupt processing, changes in, 20 – 21
 layout for resident monitor, 53 , 54
 Linux virtual, 384 – 386
 main, 9 , 10 , 28 – 29 , 278
 physical, 100
 pointers, 109
 processor, 11
 protection, 55
 real, 343
 rootkit, 633
 secondary, 27
 shared, 283
 tables, 126 – 127
 two-level, 39 – 45
 virtual, 40 , 67 , 98 , 340 – 389

 Memory address register (MAR), 9
 Memory buffer register (MBR), 9 – 10
 Memory hierarchy, 24 – 27

 auxiliary memory, 27
 hit ratio, 25
 levels of, 24 – 26
 locality of reference, 26
 secondary memory, 27
 in software, 27
 two-level memory, 25 – 26 , 39 – 45

 Memory management, 58 , 77 , 135 , 305 – 330
 buffer overflow, 326 – 330
 definition of, 306
 formats for, typical, 346
 Linux, 384 – 386
 memory partitioning, 310 – 321
 in OS, 66 – 68
 paging, 321 – 325
 read address, 67
 requirements of, 307 – 310
 security issues, 326 – 330
 segmentation, 325 – 326
 Solaris, 379 – 384
 storage management responsibilities of, 66
 terms associated with, 307
 UNIX, 379 – 384

INDEX 755

 system, 135
 user, 56 , 135

 Modification of messages, 615
 Modular programming, 66
 Modular program structure, 162
 Modular structure of Linux, 95 – 97
 Modules. See also specific types of

 emulation control, 657
 of execution, 83 – 84
 input/output, 9 , 10
 kernel, 96
 loadable, Linux, 95 , 336
 loading, 336
 rendering, 174 – 175
 stackable, 95
 table, elements of, 96 – 97

 Monitor point of view, 53 – 54
 Monitors, 53 , 213 , 226 – 232

 alternate model of, with notify and
broadcast, 230 – 232

 bounded-buffer producer/consumer
problem, 229

 characteristics of, 227
 concurrency, 226 – 232
 condition variables, 227
 dining philosophers problem, solutions using, 280 – 281
 Mesa, 231
 resident, 53 , 54
 security reference, 84
 with signal, 227 – 230
 simple batch systems, 53
 structure of, 228
 virtual machine, 74

 Monolithic kernel, 71
 Motivation, 27 , 183 , 18 - 2 – 3
 MS-DOS, 80
 Multicore computer, 35 – 36

 DDR3 (double data rate) memory controller, 35
 Intel Core i7, example of, 35 – 36
 multithreading of, 171 – 175
 operating systems, 77 – 79
 QuickPath Interconnect (QPI), 35 – 36
 software on, 171 – 174
 support, 464 – 466
 valve game software, application example, 174 – 175

 Multicore organization, 33 – 36
 Multics, 90
 Multiexploit, 630
 Multiinstance applications, 174
 Multilevel feedback, 414
 Multilevel queue scheduler, 587
 Multipartite virus, 622
 Multiplatform, 630
 Multiple applications, 199
 Multiple data streams, 565
 Multiple interrupts, 21 – 23

 approaches to, 22 – 23
 control with, transfer of, 22
 disable interrupt, 22 – 23
 interrupt service routine (ISR), 23
 time sequence of, 23

 Multiple random variables, 19 - 12 – 14
 Multiple-threat malware, 622 – 623
 Multiprocess applications, 173
 Multiprocessing, 72 – 73 , 199
 Multiprocessor operating system, 77 – 79

 Me, 80
 memory management, 386 – 389
 98 , 80
 95 , 80
 NT (3.1), 80
 object-oriented design, 86 – 88
 operating system for, modern, 81
 overview of, 80 – 89
 scheduling, 466 – 468
 Server 2008, 80 – 81
 symmetric multiprocessing (SMP),

threads for, 86
 3. 0 , 80
 3. 1 , 80
 2000, 80
 Vista, 80 , 82
 XP, 80

 Microsoft Windows 7 , 81 , 88 – 89
 characteristics of, 176
 concurrency mechanisms of, 294 – 297
 energy efficiency, 89
 engineering improvements, 89
 features of, 89
 object-oriented design of, 177 – 179
 performance improvements, 89
 processes of, 176 – 179
 reliability improvements, 89
 resources of, 176
 security, 89 , 667 – 672
 subsystems of, support for, 181
 thread objects, 177 – 179
 threads, 89 , 176 – 181

 Middleware, 679 , 687 – 689
 architecture of, 688 – 689
 distributed message passing, 693

 Migrated process, 18 - 5 – 6
 Migration scenario, 18 - 7
 Migration, initiation of, 18 - 3 – 5
 Minimal denial-of-service costs, 661
 MIPS, 81 , 579
 Misappropriation, 612
 Misfeasor, 143
 Misuse, 612
 Mobile code, 620 , 622
 Mobile-program systems, 658
 Model parameters, estimating, 20 - 38 – 41

 sampling, 20 - 38 – 41
 sampling errors, 20 - 41

 Modern operating systems (OS)
 development leading to, 71 – 73
 distributed operating system, 73
 microkernel architecture, 71
 monolithic kernel, 71
 multiprocessing, 72 – 73
 multiprogramming, 72 – 73
 multithreading, 71 – 72
 object-oriented design, 73
 process, 72
 symmetric multiprocessing (SMP), 72 – 73

 Modes
 control, 135
 decision, 404
 kernel, 56 , 135
 nonpreemptive, 404
 preemptive, 404
 switching, 138 – 139

756 INDEX

 Ndeps, 97
 Nearest fit strategy, 544
 NEC V8xx, 579
 Negatively correlated, 19 - 13
 Negotiation of process migration, 18 - 7 – 9
 Nested task flag, 132
 .NET, framework of, 75
 Network access layer, 17 - 7 – 8
 Network-based IDS, 144 – 145
 Network operating system, 17 - 3
 Network protocols, 17 - 1 – 23

 architecture of, 17 - 3 – 6
 definition of, 17 - 4
 elements of, 17 - 4 – 5
 Linux networking, 17 - 21 – 22
 sockets, 17 - 15 – 20
 tasks performed for, 17 - 3 – 4
 TCP/IP protocol architecture, 17 - 6 – 15

 Networks, 615 – 616 , 679 . See also
specific networks

 device drivers, 100
 drivers, 513
 isolation, 101
 protocols, 100
 vehicles for worms, 629

 Networks of queues, 20 - 32 – 37
 Jackson’s Theorem, 20 - 34 – 35
 packet-switching network, application

to, 20 - 35 – 37
 partitioning, 20 - 33
 queues in tandem, 20 - 33
 traffic streams, merging of, 20 - 33

 New process state, 117
 New : ready process, 118
 New : ready/suspend and new : ready process, 124
 New Technology File System (NTFS)

 cluster sizes, 566
 components of, 568
 directory attributes, types of, 567
 disk storage, concepts of, 565 – 566
 examples of, 564
 features of, 564 – 565
 file structure, 565 – 567
 hard links, 565
 journaling, 565
 large disks, support for, 565
 large files, support for, 565
 multiple data streams, 565
 partition sizes, 566
 recoverability, 564 – 565 , 568 – 569
 security, 565
 symbolic links, 565
 volume, 565 – 567

 *next, 96
 Next-fit, 316
 Nimda attack, 622 – 623
 No access rights, 540
 Node, 699
 No deadlock, 263
 Node manager, 705
 Nodes into B-trees, insertion of, 535
 No-execute bit, 666
 Nonblocking, 234 , 695
 Nonpersistent binding, 697
 Nonpreemptive mode, 404
 Nonprocess kernel, 140 – 141

 Multiprocessor scheduling, 431 – 442 , 468
 design issues, 433 – 435
 granularity, 432 – 433
 process scheduling, 435 – 436
 thread scheduling, 437 – 442

 Multiprocessor system, 431
 Multiprogrammed batch systems, 56 – 58

 example of, 57
 memory management, 58
 multiprogramming (multitasking), 56
 program execution attributes of, sample, 57
 on resource utilization, effects of, 58
 system utilization of, 56
 time-sharing systems, differentiating between, 60
 uniprogramming, 58
 utilization histograms, 58 , 59

 Multiprogramming, 56 , 72 – 73 , 199
 processors, 434 – 435

 Multiprogramming levels, 377 – 378
 Multiserver approach, 20 - 27
 Multiserver model, 20 - 28 – 30
 Multiserver queues, 20 - 22 – 24

 assumptions of, 20 - 18 – 19
 calculations for, 20 - 30
 formulas for, 20 - 23
 multiserver model, 20 - 28 – 30
 problems with, 20 - 28 – 30
 queuing models, 20 - 16
 queuing relationships, basic, 20 - 16 – 18
 single-server model, 20 - 28

 Multitasking. See Multiprogramming
 Multithreading, 71 – 72 , 159 – 162

 Microsoft Windows 7 , 179
 of multicore computer, 171 – 175
 native applications, 173
 process models, 160
 on uniprocessor, 164

 Mutex, 213 , 215 – 216 , 589 . See also Mutual exclusion
 Mutex object, 296
 Mutual exclusion, 200, 206, 237–239, 267, 269, 18-26,

18-31, A- 2 – 8
 attempts for, A- 3
 Dekker’s algorithm, A- 2 – 7
 failed, 63 – 64
 hardware support for, 209 – 213
 illustration of, 207
 interrupt disabling, 210
 lock, 292 – 293
 Peterson’s algorithm, A- 7 – 8
 requirements for, 209
 semaphores, 218 – 219
 software approaches, A- 2 – 8
 special machine instructions, 210 – 213
 using messages, 237

 Mutually exclusive, 19 - 3
 Mutual waiting, 18 - 38 – 41

 N
 *name, 96
 Named pipes, 554
 Naming files, 538 – 539
 NASA, 706
 National Institute of Standards and Technology (NIST),

 326 , 651
 Native audit records, 655
 Native system interfaces (NT API), 84

INDEX 757

 avoidance approaches for, 265
 central themes of, 199
 commercial, 578
 concurrency, concerns of, 204
 development of, 62 – 63
 distributed, 73
 eCos (See Embedded Configurable Operating

System (eCos))
 embedded (See Embedded operating systems)
 evolution of, 52 – 62
 functions, 48 – 52
 information in, protection and security of, 68 – 69
 interfaces of, typical, 50
 Linux (See Linux)
 Mac OS X, 94
 memory management in, 66 – 68
 Microsoft (See Microsoft Windows)
 modern, development leading to, 71 – 73
 multiprocessor/multicore, 77 – 79
 objectives/functions of, 48 – 52
 organization of, 82 – 84
 overview of, 46 – 101
 process-based, 142 – 143
 processes, 62 – 66 , 140 – 143
 real-time, 443 – 447 , 577
 resource management in, 50 – 51 , 69 – 70
 services provided by, 49
 structure, 200
 symmetric multiprocessor, considerations of, 77 – 78
 TinyOS (See TinyOS)
 UNIX (See UNIX systems)
 as user/computer interface, 48 – 50
 virtual machines (VM), 74 – 76

 Operating systems (OS) control
 file tables, 127
 input/output tables, 127
 memory tables, 126 – 127
 process tables, 127 – 128
 structures of, 126 – 128

 Operating systems (OS) software
 cleaning policy, 376 – 377
 fetch policy, 361 – 362
 load control, 377 – 379
 placement policy, 362
 policies for, 361
 replacement policy, 362 – 370
 resident set management, 370 – 376
 virtual memory, 360 – 379

 Optimal (OPT) replacement policy, 363
 Oracle, 173
 Ordinary file, 553
 OS. See Operating systems (OS)
 OS/161, B- 2 – 3
 Outcome, 19 - 2
 Overall normalized response time, 417
 Overflow flag, 132
 Owner of object, 670

 P
 Packet-switching network, application to, 20 - 35 – 37
 Page/paging, 307 , 321 – 325

 address translation in system for, 347 , 348
 allocation, 385 – 386
 behavior, 345 , 354
 buffering, 369
 cache, Linux, 512

 Non-real-time scheduling, 459 – 461
 disadvantages of, 459
 priorities, calculating, 460 – 461
 real-time tasks, relationship to, 461
 timeslices, calculating, 460 – 461

 Nonuniform memory access (NUMA), 362
 No preemption condition, 18 - 31
 No preemption deadlock prevention, 267 , 269
 Nonpreemptive transfers, 18 - 10
 Normal distributions, 19 - 12
 Normalized response time, 417 – 418
 Notation for queuing systems, 20 - 14
 Notify and broadcast, 230 – 232
 N-step-SCAN policy, 493 – 494
 Nsyms, 97
 NTFS. See New Technology File System (NTFS)
 Nucleus. See Kernels
 Null Fork, 168
 Null : new process, 118

 O
 Object-oriented design, 73

 categories of, 88
 concepts of, 86 – 88
 Executive of, 87
 kernel control objects, 88
 of Microsoft Windows 7 , 177 – 179
 Security Descriptor (SD) of, 87

 Object-oriented mechanisms, 698
 Objects

 access rights, 553
 browser helper, 631
 classes, 86
 control, Windows, 88
 dentry, Linux, 562 , 564
 dispatcher, 88 , 295 – 296
 event, Windows, 296 , 514
 field, 656
 file, Linux, 514 , 562 , 564
 inode, 562 , 563
 instance, 86
 instantiation of, 86
 kernel control, 88
 manager, 83
 mutex, 296
 owner of, 670
 request broker, 693 , 698
 semaphore, 296
 superblock, 562 – 563
 thread, 177 – 179
 types, 562
 waitable timer, 296

 Obstruction, 612
 One-to-many relationships, 170 – 171 , 235
 One-to-one relationship, 235
 Online polls/games, manipulating, 632
 Online resources, 705
 ONPROC state, 184
 Opcode, 12
 Opening files, 522
 Open-source Tomcat, 173
 Operating mode bits, 132
 Operating systems (OS). See also Modern operating

systems (OS)
 achievements of, major, 62 – 70
 aspects of, 48 – 51

758 INDEX

 Performance comparison, 415 – 420
 queuing analysis, 415 – 418
 simulation modeling, 418 – 420

 Periodic tasks, 443 , 450
 Permanent blocking, 259
 Persistent binding, 697
 Persistent rootkit, 633
 Personal identification number (PIN), 146 , 644
 Peterson’s algorithm, A- 7 – 8
 Phantom deadlock, 18 - 31
 Physical address, 320
 Physical input/output, 522 , 525
 Physical layer, 17 - 7
 Physical memory, Linux, 100
 Physical organization, 309 – 310 , 483
 Pile files, 529 – 530
 Pipes, UNIX, 283
 Placement algorithm for memory, 312 – 317
 Placement policy, 361 , 362
 Plain spinlocks, 287
 Platform, 582
 Plug-and-play manager, Windows, 83
 Poisson arrival rate, 416
 Poisson counting process, 19 - 22 – 24
 Poisson distributions, 19 - 11 – 12
 Poisson increment process, 19 - 24
 Polymorphic technique, 630
 Polymorphic viruses, 627
 Polymorphism, 87
 Portion, 543 , 544
 Portion size, 544 – 545
 Ports, 17 - 13
 Ports, microkernels and, 71
 Positively correlated, 19 - 13
 POSIX, 80 , 84 , 188
 Posix Programming Interface, B- 5
 PowerBuilder, 684
 Power manager, Windows, 84
 PowerPC, 81 , 579
 Power spectrum. See Spectral density
 Preallocation, 543 – 544
 Precleaning, 376
 Precopy strategy, 18 - 5
 Predictability, 401
 Preempted process, 119
 Preemptive mode, 404
 Preemptive smallest number of threads first, 438
 Preemptive transfers, 18 - 10
 Prepaging, 361
 Pre-thread static storage, 160
 Printer interrupt service routine (ISR), 23
 Printers, 509
 Priorities, 449

 ceiling, 457
 classes, 463 , 467
 enforcing, 401
 inheritance, 456 – 457
 level, 109
 Linux, calculating, 460 – 461
 policy, 490
 priority queuing, 402
 process, 466 – 468
 queues, 20 - 30 – 32
 queuing, 402
 thread, 466 – 468
 use of, 402 – 403

 Page/paging (continued)
characteristics of, 343
 demand, 361
 directory, 384
 fault, 350
 fault frequency (PFF), 375
 frame data table entry, 380 – 381
 logical addresses, 323
 middle directory, 385
 numbers, 349
 prepaging, 361
 replacement, 381 – 382
 replacement algorithm, 386
 segmentation and, combining, 357 – 359
 simple, 343
 size, 354 – 356
 system, 379 – 381
 table entry, 380 – 381
 translation lookaside buffer (TLB), 349 – 354
 virtual memory, 343 , 345 – 356
 Windows, 388 – 389

 Page tables, 321 , 385
 direct vs. associative lookup for, 353
 inverted, 349 , 350
 structure of, 347 – 349
 two-level hierarchical, 348

 Parallelism, 78 – 79 , 432 – 433
 coarse, 432 – 433
 fine-grained, 433
 independent, 432
 medium-grained, 433
 synchronization, 432
 very coarse-grained, 432 – 433

 Parallelized application, 702
 Parallelizing compiler, 702
 Parallelizing computation, clusters, 702 – 703
 Parameter passing, 697
 Parameter representation, 697
 Parametric computing, 702 – 703
 Parasitic, 144
 Parbegin, A- 7
 Parent process, 115
 Parity flag, 132
 Partial program execution, 12 – 13
 Partition/partitioning, 20 - 33

 boot sector, 566 – 567
 dynamic, 314 – 317
 fixed, 310 – 314
 memory, 310 – 321
 size, 310 – 312 , 566

 Passive attacks, 615
 Passive standby, 700 , 701
 Password, 146
 Password-based authentication, 640 – 643
 Pathname, 538
 Payload, 623
 Payload-classification-based worm

containment, 662
 Pentium EFLAGS Register bits, 132
 PeopleSoft, 173
 Percentiles, calculating, 20 - 25 – 26
 Performance

 disk cache, issues of, 505 – 506
 files, grades of, 529
 improvements in Microsoft Windows 7 , 89
 of software on multicore computer, 171 – 174

INDEX 759

 resources, 278
 scheduling, 404 , 435 – 436
 security issues, 143 – 147
 with smallest resident set, 378
 spawning, 115
 state of (See Process state)
 state transitions, 396
 structure, 183
 suspension, 378 – 379
 switching, 137 – 139
 synchronization, 432
 table entry, 150
 tables, 127 – 128
 termination of, 115 – 116
 threads and, 66 , 158 – 164 , 169 , 182
 traces of, 111 – 113
 UNIX SVR4 process management, 147 – 152
 virtual machines (VM), 75

 Process interaction, 205 – 209
 awareness, 205
 communication, 208 – 209
 resources, 206 – 207
 sharing, 207 – 208

 Process migration, 18 - 2 – 10
 eviction, 18 - 9 – 10
 mechanisms, 18 - 3 – 7
 motivation, 18 - 2 – 3
 negotiation of, 18 - 7 – 9
 nonpreemptive transfers, 18 - 10
 preemptive transfers, 18 - 10

 Process migration mechanisms, 18 - 3 – 7
 messages, 18 - 6 – 7
 migrated process, 18 - 5 – 6
 migration scenario, 18 - 7
 migration, initiation of, 18 - 3 – 5
 signals, 18 - 6 – 7

 Process operation latencies (μs), 168
 Processors, 8 . See also Central processing

unit (CPU); specific types of
 functions of, 9
 internal registers of, 9 – 10
 point of view, 53 – 54
 scheduling, types of, 397 – 400
 specific context, 187
 state information, 129 – 130 , 131
 utilization, 401

 Process state, 65 , 110 – 125
 changing of, 139
 five-state model, 116 – 120
 suspended processes, 121 – 125
 two-state process model, 112 – 114
 ULT, relationship with, 166
 UNIX System V Release 4 (SVR4),

 147 – 149
 Process-thread manager, Windows, 84
 Producer/consumer problem

 bounded-buffer, 229 , 238
 semaphores, 219 – 224

 Profile based detection, 655
 Program code, 109
 Program counter (PC), 11 , 20 , 109
 Program execution attributes, 57
 Program flow of control with/without

interrupts, 14 – 15
 Programmed input/output, 31 – 32 , 477
 Programming language, 663 – 664

 Priority inversion, 455 – 457
 priority ceiling, 457
 priority inheritance, 456 – 457
 unbounded, 455

 Privacy, 609
 Privileged instructions, batch systems, 55
 Privileges, 669
 Probability, 19 - 2 – 8

 axiomatic definition of, 19 - 2 – 5
 Bayes’s Theorem, 19 - 6 – 8
 classical definition of, 19 - 5 – 6
 conditional, and independence, 19 - 6
 definition of, 19 - 2 – 6
 relative frequency definition of, 19 - 5

 Problem statement, A- 8
 Procedure call, asynchronous, 514
 Process and channel graph, 18 - 15
 Process-based operating systems, 142 – 143
 Process control, 134 – 139

 execution, modes of, 134 – 136
 information, 129 – 130 , 131 , 133
 operating system, structures of, 126 – 128
 process attributes, 129 – 133
 process creation, 136
 process location, 128 – 129
 process switching, 137 – 139
 structures of, 128 – 134
 UNIX System V Release 4 (SVR4), 151 – 152

 Process control blocks, 109 – 110
 elements of, 129 – 130
 role of, 133 – 134
 simplified, 110

 Process(es), 72 , 98 , 106 – 152
 for addressing, requirements of, 308
 affinity, 464 , 466
 attributes of, 129 – 133
 characteristics of, 158
 components of, 64
 concept of, 62 – 66 , 108 – 109 , 158
 control (See Process control)
 creation of, 114 – 115 , 136
 definition of, 62 , 108 – 110
 description of, 126 – 134
 dispatching, 435
 elements of, 109 , 128
 errors in, causes of, 63 – 64
 execution of, mechanisms for interrupting, 137
 identification, 129 – 130 , 131
 identifier, 349
 image, 128 , 149 – 150
 implementation of, 65
 initiation denial, deadlock avoidance

strategy, 270 – 271
 input/output, 11
 isolation, 66 , 101
 with largest remaining execution window, 378
 location of, 128 – 129
 management of, 64 – 65
 memory, 11
 migration, 704
 of operating systems (OS), 62 – 66 , 140 – 143
 priorities, 466 – 468
 process control blocks and, 109 – 110 , 133 – 134
 processing time, 449
 processor affinity, 177
 queues, 242

760 INDEX

 level 1 , 499 – 500
 level 2 , 500
 level 3 , 500 – 501
 level 4 , 501 – 502
 level 5 , 502
 level 6 , 502
 proposal for, 495
 software, 514 – 515

 Random process. See Stochastic processes
 Random scanning, 632
 Random scheduling, 490
 Random variables, 19 - 8 – 14

 density function, 19 - 8 – 9
 distribution function, 19 - 8 – 9
 distributions, 19 - 9 – 12
 multiple, 19 - 12 – 14

 Rate halting, 662
 Rate limiting, 662
 Rate monotonic scheduling, 452 – 454
 Ratio close to 1 , 20 - 20
 Ratio greater then 1 , 20 - 21
 Ratio less than 1 , 20 - 20
 Raw sockets, 17 - 16
 Reactive operation, embedded systems, 577
 Read address, 67
 Read_control access, 671
 Readers/writers

 lock, 294
 mechanisms, 239 – 243
 priorities of, 240 – 243
 process queues, state of, 242
 semaphores, 290
 spinlocks, 288 – 289
 using semaphores, solution to, 240 , 241

 Reading access rights, 540
 Reading assignments, B- 6
 Reading files, 522
 Read operation, 29 – 30
 Ready : exit process, 119
 Ready process state, 122
 Ready : ready/suspend process, 123
 Ready : running process, 118
 Ready state, 117 , 179
 Ready/suspend process, 123
 Ready/suspend : ready process, 123
 Ready time, 448
 Real address, 341
 Real memory, 343
 Real time

 class (159-100), 461 – 462
 operating systems, 443 – 447 , 577
 priority classes, 467
 tasks, Linux, 461
 user, 463

 Real-time scheduling, 430 – 470
 algorithms for, 447
 deadline scheduling, 448 – 452
 history of, 442 – 443
 Linux, 457 – 458
 and multiprocessor, 430 – 470
 priority inversion, 455 – 457
 rate monotonic scheduling, 452 – 454
 real-time operating systems,

characteristics of, 443 – 447
 types of, 448

 Receive primitive, 233 – 235

 Programming projects, B-4–B- 6
 additional, B- 5
 small, B- 5 –B- 6
 textbook-defined projects, B- 4 –B- 5

 Program operation, 64
 Program status word (PSW), 19
 Project MAC, 60 , 90
 Propagation phase, 624
 Protection, 308 – 309

 access control and, 66
 sharing and, 359 – 360

 Protocol, 17 - 4
 Protocol data units (PDUs), 17 - 13
 Pseudocodes, 5
 Pthread libraries, 188
 Pull mechanism, 466
 Purpose-built embedded operating systems, 578 – 579
 Push mechanism, 466
 Pvmsync, 708

 Q
 Quality of service (QoS), 20 - 13
 Queues

 behaviors, 20 - 3 – 7
 character, UNIX SVR 4 , 508
 dispatch, 462
 driver input/output, 507
 in tandem, 20 - 33
 networks of, 20 - 32 – 37
 parameters, 20 - 11 – 12
 process, 242
 single-server, formulas for, 416
 size, 20 - 13
 structure, 464
 with priorities, 20 - 30 – 32

 Queuing
 diagram for scheduling, 399
 discipline, 237
 priority, 402

 Queuing analysis, 415 – 418 , 20 - 1 – 41
 examples of, 20 - 24 – 30
 importance of, 20 - 8 – 10
 model parameters, estimating, 20 - 38 – 41
 multiserver queues, 20 - 22 – 24
 queue behaviors, example of, 20 - 3 – 7
 queues, 20 - 30 – 37
 queuing models, 20 - 10 – 19 , 20 - 37
 single-server queues, 20 - 20 – 22

 Queuing models, 20 - 10 – 19 , 20 - 37
 assumptions, 20 - 18 – 19
 multiserver queue, 20 - 16
 queuing relationships, basic, 20 - 16 – 18
 single-server queue, 20 - 10 – 15

 Queuing networks, elements of, 20 - 34
 Queuing relationships, basic, 20 - 16 – 18
 Queuing systems, notation for, 20 - 14
 QuickPath Interconnect (QPI), 35 – 36

 R
 Race conditions, 200, 204, A- 8 – 15

 problem statement, A- 8
 RAID (redundant array of independent disks), 494 – 502

 characteristics of, 494
 for high data transfer capacity, 498 – 499
 for high input/output request rate, 499
 level 0 , 495 – 499

INDEX 761

 Replay attacks, 615
 Report assignments, B- 6
 Repudiation, 612
 Research projects, B- 6
 Reserved state, 388
 Resident monitor, 53 , 54
 Resident set, 342

 size, 370
 Resident set management, 362 , 370 – 376

 fixed allocation, local scope, 371
 replacement scope, 371
 resident set size, 370
 variable allocation, 372 – 376

 Resiliency, 661
 Resource allocation, distributed deadlock in, 18 - 30 – 38

 deadlock avoidance, 18 - 33 – 34
 deadlock detection, 18 - 34 – 38
 deadlock prevention, 18 - 32 – 33

 Resources, 704 – 705
 balancing, 401
 competition among processes for, 206 – 207
 configure interface, 603
 interface, 603
 manager, 50 – 51 , 706
 of Microsoft Windows 7 , 176
 ownership, 158 (See also Process/processes)
 requested interface, 603
 requirements, 449
 utilization, 58

 Resources, allocation of
 denial, 271 – 275
 graphs, 266 – 267

 Resources, management of, 69 – 70
 elements of, major, 69 – 70
 factors of, 69
 functional description of, 70
 round-robin, 70

 Resource-specific interface, 603
 Resource-usage field, 656
 Response time, 401

 normalized, 417 – 418
 overall normalized, 417
 projected vs. actual, 20 - 9

 Responsiveness, 444
 Resume flag, 132
 Retinal pattern, 645
 Reusable resources, deadlock and, 263 – 264
 Robot. See Bots
 Role-based access control (RBAC),

 647 , 651 – 653
 Root isolation, 101
 Rootkits, 620 , 633 – 635

 classification of, 633
 countermeasures for, 662 – 663
 installation of, 633 – 634
 system-level call attacks, 634 – 635

 Rotational delay, 487 , 488 – 489
 Rotational positional sensing (RPS), 488
 Round-robin techniques, 70 , 116 , 407 – 410
 Router, 17 - 8
 RSX-11M, 80
 Running : blocked process, 119
 Running : exit process, 118
 Running process state, 109 , 117 , 180 , 184 , 187
 Running : ready process, 118 – 119
 Running : ready/suspend process, 124

 Record blocking, 541 – 543
 fixed blocking, 541
 methods of, 542
 variable-length spanned, 541
 variable-length unspanned, 542

 Records, 523
 audit, for intrusion detection, 655 – 657
 detection-specific audit, 655
 native audit, 655

 Recoverability, 564 – 565 , 568 – 569
 Recovery, 277 – 278
 Redundant array of independent disks. See RAID

(redundant array of independent disks)
 *refs, 97
 Registers

 address, 9 , 10
 context, 150
 control and status, 130 , 131
 index, 64 – 65
 input/output address, 10
 instruction, 11
 internal, of processor, 9 – 10
 for interrupt processing, changes in, 20 – 21
 memory address, 9
 memory buffer, 9 – 10
 Pentium EFLAGS, 131 – 132

 Regular file, 553
 Relational database, 679
 Relative address, 320
 Relative frequency definition of probability, 19 - 5
 Release of message contents attack, 615
 Reliability, 78 , 89 , 444 , 551 , 694 – 695
 Relocatable loading, 335 – 336
 Relocation, 307 – 308 , 319 – 321
 Remote control facility, 632
 Remote execution capability, 629
 Remote login (rlogin), 17 - 15
 Remote login capability, 629
 Remote procedure call (RPC), 163 , 695 – 698

 advantages of, 695
 asynchronous, 698
 client/server binding, 697
 mechanism for, 696
 object-oriented mechanisms, 698
 parameter passing, 697
 parameter representation, 697
 synchronous, 698

 Removal of virus, 657
 Rendering module, 174 – 175
 Replacement, frequency-based, 504
 Replacement algorithms, 30 , 31 , 317 , 363 – 369

 clock page, 368
 clock policy, 365 – 366
 first-in-first-out (FIFO) policy, 364
 fixed-allocation, local page, 367
 four page, behavior of, 364
 least recently used (LRU) policy, 363 – 364
 optimal policy, 363

 Replacement policies, 361 , 362 – 370 . See also
specific types of

 algorithms for, basic, 363 – 369
 and cache size, 369 – 370
 concepts of, 362
 frame locking, 363
 page buffering, 369

 Replacement scope, 371

762 INDEX

 highest ratio next, 413
 round robin, 407 – 410
 shortest process next, 410 – 411
 shortest remaining time, 411 – 413

 S.count value, 219
 Search operation, 537
 Secondary memory, 27
 Secondary storage management, 543 – 551

 file allocation, 543 – 547
 free space management, 547 – 550
 reliability, 551
 volumes, 550

 Second moment, 19 - 9
 Second-order statistics, 19 - 15 – 17
 Sector, 565
 Security Descriptor (SD), 87
 Security ID (SID), 668
 Security reference monitor, 84
Security Requirements for Cryptographic

Modules, 651
 Security requirements triad, 609
 Security systems

 concepts of, 608 – 610
 in Microsoft Windows 7 , 89
 scope of, 613
 threats to, 607 – 635

 Security threats, 607 – 635 , 639 – 672
 access control, 646 – 653
 assets and, 613 – 616
 attacks and, 610 – 612
 authentication, 640 – 646
 bots, 631 – 633
 buffer overflow attacks, 663 – 667
 countermeasures for, 144 – 147
 intruders, 616 – 619
 intrusion detection, 616 , 619 , 653 – 657
 malicious software, 619 – 623
 malware defense, 657 – 663
 memory management, 326 – 330
 New Technology File System (NTFS), 565
 of process, 143 – 147
 rootkits, 633 – 635
 system access threats, 143 – 144
 viruses, 623 – 628
 Windows 7 security, 667 – 672
 worms, 628 – 630

 Seek time, 487, 488
 Segmentation, 325 – 326

 address translation in, 357 , 358
 advantages of, 356
 characteristics of, 343
 implications of, 356
 organization of, 356 – 357
 paging and, combining, 357 – 359
 segments, protection relationship between, 359
 simple, 343
 virtual memory, 343 , 356 – 357

 Segment pointers, 307 , 325 , 359
 Selection function, 403
 Semaphores, 213 – 226 , 283 – 284 , 289 – 290 , 293

 binary, 213 , 215 , 289 – 290
 counting, 215 , 222 , 289 – 290
 currency mechanisms, common, 213
 definition of, consequences of, 214 – 215
 dining philosophers problem, solutions using, 280
 eCos thread synchronization, 589

 Run-time defenses, 666 – 667
 address space randomization, 667
 executable address space protection, 666
 guard pages, 667

 Run-time dynamic linking, 339

 S
 Safe coding techniques, 664
 Safe libraries, 664 – 665
 Safe states, resource allocation, 271 – 272
 Salt value of passwords, 641
 Sample space, 19 - 3
 Sampling, 20 - 38 – 41

 distribution of the mean, 20 - 38
 errors, 20 - 41

 Saved thread context, 160
 Scaling, 72
 Scanning, 632
 SCAN policy, 493
 Scanrate, 381
 Scheduled blocks, 190
 Scheduler, 98
 Scheduling, 52 , 77 , 158

 control and, 482 – 483
 criteria for, 401
 deadline, 448 – 452
 disk, 474 – 516
 dynamic, 442
 dynamic best effort, 448
 dynamic planning-based, 448
 feedback, 414
 gang, 439
 input/output, 396
 levels of, 398
 Linux, 457 – 461
 Linux virtual machine process, 468 – 469
 long-term, 396 , 397 – 399
 medium-term, 396 , 399 – 400
 multiprocessor, 431 – 442
 non-real-time, 459 – 461
 process, 404 , 435 – 436
 processor, types of, 397 – 400
 and process state transitions, 396
 queuing diagram for, 399
 random, 490
 rate monotonic, 452 – 454
 real-time, 430 – 470
 short-term, 396 , 400
 static priority-driven preemptive, 448
 static table-driven, 447
 thread, 437 – 442
 types of, 396
 uniprocessor, 395 – 425
 UNIX, traditional, 422 – 424
 UNIX FreeBSD, 463 – 466
 UNIX SVR 4 , 461 – 463
 Windows, 466 – 468

 Scheduling algorithms, 400 – 422
 fair-share scheduling, 420 – 422
 performance comparison, 415 – 420
 priorities, use of, 402 – 403
 scheduling policies, alternative, 403 – 415
 short-term scheduling criteria, 400 – 402

 Scheduling policies, 403 – 415
 feedback, 413 – 415
 first-come-first-served (FCFS), 407

INDEX 763

 kernel mode, 56
 monitor, 53
 points of view of, 53 – 54
 user mode, 56

 Simple interrupt processing, 19
 Simple Mail Transfer Protocol (SMTP),

17 - 14 – 15
 Simple paging, 343
 Simple segmentation, 343
 Simulation modeling for scheduling, 418 – 420
 Simulation result, 419
 Simulations, B- 3 –B- 4
 Simultaneous access for file sharing, 541
 Simultaneous concurrent process, 77
 Simultaneous concurrent threads, 77
 Single buffer, 484 – 486
 Single control point, 703
 Single entry point, 703
 Single file hierarchy, 703
 Single input/output space, 704
 Single instance service, 691
 Single-Instruction Multiple Data (SIMD)

techniques, 10
 Single job-management system, 704
 Single memory space, 703
 Single process space, 704
 Single-server approach, 20 - 27
 Single-server model, 20 - 28
 Single-server queues, 416 , 20 - 20 – 22

 characteristics of, 20 - 13 – 15
 features of, 20 - 12 – 13
 formulas for, 20 - 19
 mean residence time for, 20 - 22
 parameters for, 20 - 10
 queue parameters of, 20 - 11 – 12
 queuing models, 20 - 10 – 15
 queuing system structure for, 20 - 10

 Single-system image, 703
 Single-threaded process models, 160
 Single user interface, 704
 Single-user multiprocessing system, 161 – 162
 Single virtual networking, 703
 Size, 96
 Slab allocation, 386
 SLEEP state, 184
 Slim read-writer locks, 297
 Slots of memory, 28
 Smallest number of threads first, 438
 Small memory footprint, 583
 Small programming projects, B- 5 –B- 6
 Smart cards, 644 – 645
 SMP. See Symmetric multiprocessor (SMP)
 Snapshot, 18 - 13

 example of, 18 - 16
 Sniffing traffic, 631
 Sockets, 10 , 17 - 15 – 20

 application programming interface (API), 17 - 16
 communication, 17 - 18
 concept of, 17 - 15
 connection, 17 - 17 – 18
 datagram, 17 - 16
 interface calls, 17 - 16 – 20
 programming, 17 - 15
 raw, 17 - 16
 setup, 17 - 17
 stream, 17 - 16

 first-in-first-out (FIFO) process, 216
 general, 215 , 222
 implementation of, 224 – 226
 Linux, 290
 mechanism of, example of, 217
 mutex, 215 – 216
 mutual exclusion, 218 – 219
 object, Windows, 296
 producer/consumer problem, 219 – 224
 readers/writers, 240 , 241
 reader-writer, 290
 s.count, value of, 219
 shared data protected by, process accessing, 219
 strong, 216
 as variable, operations of, 214
 weak, 216

 Semantics, 17 - 4
 Semaphores, A- 8 – 15
 Sensors for intrusion detection, 145
 Separate servers, 701
 Sequential files, 530

 indexed, 530 – 531
 key field for, 530
 processing of, 523 – 524

 Sequential search, 530
 Serial processing, 52 – 53
 Server-based processing, 683
 Servers

 client/server computing, 678 – 679
 connected to disks, 701
 share disks, 701

 Service-oriented architecture (SOA), 689 – 691
 Service(s)

 broker, 690
 processes, Windows, 84
 provider, 690
 requestor, 690

 Set of data, 109
 Setup time, 52 – 53
 Shadow copies, volume, 515
 Shared data protected, 219
 Shared disk approach, 701
 Shared memory multiprocessor, 283
 Shared nothing, 701
 Shared resources, 602
 Sharing files, 207 – 208 , 309 , 522
 Shortest process next (SPN) scheduling,

 410 – 411
 Shortest remaining time (SRT) scheduling,

 411 – 413
 Shortest-service-time-first (SSTF) policy, 490 – 493
 Short memory process, 19 - 17
 Short-term scheduling, 396 , 400 – 402
 Siebel CRM (Customer Relationship Manager), 173
 Signaling/signals, 98 , 284 , 18 - 6 – 7

 event object, 514
 file object, 514
 monitors with, 227 – 230

 Signal-Wait, 168
 Signature, 646
 Signature-based worm scan filtering, 661
 Signature detection, 655
 Sign flag, 132
 Simple batch systems, 53 – 56

 hardware features of, 55 – 56
 job control language (JCL), 54

764 INDEX

 committed, 388
 execution, 186
 exit process, 117
 FREE, 184
 interruptible, 187
 new process, 117
 ONPROC, 184
 process, 65 , 110 – 125
 of processes, 65 , 110 – 125
 ready, 117 , 179
 ready process, 122
 reserved, 388
 running process, 109 , 117 , 180 , 184 , 187
 safe, resource allocation, 271 – 272
 SLEEP, 184
 spawn, 162
 standby, 179 – 180
 stopped, 184 , 188
 terminated, 180
 thread, 162 – 164
 thread execution, 160
 transition, 180
 uninterruptible, 187
 unsafe, 271
 waiting, 180
 zombie, 184 , 188

 Static biometrics, 146
 Static priority-driven preemptive

scheduling, 447 , 448
 Static protocol, 644
 Static table-driven scheduling, 447
 Stationary stochastic processes, 19 - 17
 Stealth viruses, 627
 Stochastic processes

 elementary concepts of, 19 - 14 – 26
 ergodicity, 19 - 24 – 26
 first-order statistics, 19 - 15 – 17
 independent increments, 19 - 19 – 24
 second-order statistics, 19 - 15 – 17
 spectral density, 19 - 17 – 19
 stationary, 19 - 17

 Stopped state, 184 , 188
 Storage management, 66

 access control, protection and, 66
 automatic allocation/management, 66
 long-term storage, 66
 modular programming, support of, 66
 process isolation, 66

 Store-and-forward deadlock, 18 - 42
 Stream communication, 17 - 18
 Streamlined protection mechanisms, 577
 Stream-oriented device, 484
 Stream sockets, 17 - 16
 Stripe, 498
 Strong semaphores, 216
 Structured applications, 199
 Structured programming (SAL), 40
 Structured query language (SQL),

 679 , 682 , 688
 Subject access rights, 553
 Subject field, 655
 Subtask structure, 449
 Sun Microsystems, 93 , 94
 SunOS, 93
 Superblock object, 562 – 563
 Superblocks, 557

 Sockets interface calls, 17 - 16 – 20
 for connection-oriented protocol, 17 - 19
 socket communication, 17 - 18
 socket connection, 17 - 17 – 18
 socket setup, 17 - 17

 Soft affinity policy, 181
 Soft real-time task, 443
 Software

 behavior-blocking, 659 – 661
 Beowulf, 707 – 708
 malicious, 144 , 619 – 623
 memory hierarchy in, 27
 RAID, 514 – 515
 security threats to, 613 – 614
 valve game, 174 – 175

 Solaris
 memory management, 379 – 384
 process structure of, 183
 10 , 94
 three-level thread structure of, 183

 Solaris threads
 SMP management of, 182 – 186
 states of, 184 – 185
 synchronization primitives, 292 – 294

 Spammer programs, 620
 Spamming, 631
 Spanned blocking, variable-length, 541 – 542
 SPARC, 579
 Sparks, Matt, B- 5
 Spatial locality, 42
 Spawn state, 162
 Special capabilities, utilization of, 18 - 3
 Special file, 554
 Special machine instructions, 210 – 213

 compare&swap instruction, 210 – 212
 disadvantages of, 212 – 213
 exchange instruction, 212
 properties of, 212 – 213

 Special reader, 644
 Special system processes, Windows, 84
 Specific user class, 541
 Spectral density, 19 - 17 – 19
 Spinlocks, 213 , 287 – 289

 basic, 287 – 288
 eCos thread synchronization, 593 – 594
 Linux, 288
 plain, 287
 reader-writer, 288 – 289

 Spin waiting, 212, A- 2
 Sprite, 686 – 687
 SQL Windows, 684
 SSH (Secure Shell), 17 - 15
 Stackable modules, Linux, 95 – 96
 Stacking protection mechanisms, 665 – 666
 Stack overflow, 327
 Stack values, 328
 Standard C Libraries, 586
 Standard deviation, 19 - 9
 Standby state, 179 – 180
 Starting deadline, 448
 Starvation, 200 , 206 , 213
 Starvation free, 18 - 26
 States, 271 , 18 - 13 . See also specific states

 available, 388
 blocked, 119 , 147 – 148
 blocked/waiting process, 117

INDEX 765

 T
 Tape drives, 509
 Tasks, 598 . See also Process/processes

 aperiodic, 451
 deadline scheduling for, 448 – 451
 hard real-time, 443
 Linux, 186 – 188
 periodic, 450
 real-time, Linux, 461
 soft real-time, 443

 TCP header, 17 - 9
 TCP segment, 17 - 14
 TCP/IP protocol architecture, 17 - 6 – 15

 applications of, 17 - 14 – 15
 concepts of, 17 - 12
 Internet Protocol (IP), and IPv 6 , 17 - 10 – 11
 layers, 17 - 7 – 8
 Linux kernel components of, 17 - 20
 operation of, 17 - 12 – 14
 protocol data units (PDUs) in, 17 - 13
 User Datagram Protocol (UDP) and, 17 - 8 – 10

 TELNET, 17 - 15
 Temporal locality, 42
 Terminals, 509
 Termination of process states, 180
 Textbook-defined projects, B- 4 –B- 5
 Thin client, 685
 Thrashing, load control, 344
 Threading granularity options, 174
 Threads, 66 , 157 – 192 , 585 . See also specific types of

 benefits of, 161
 bottom-half kernel, 463
 execution state, 160
 functionality of, 162 – 164
 interactive, 464
 kernel-level (KLT), 168 – 169 , 182
 Linux process and, management of, 186 – 189
 MAC OS Grand Central Dispatch (GCD), 189 – 192
 management of, 186 – 189
 many-to-many relationships of, 169 – 170
 Microsoft Windows 7, improvements in, 89
 migration, 466
 multithreaded process models, 160
 multithreading, 159 – 162 , 171 – 175
 objects, 177 – 179
 one-to-many relationships of, 170 – 171
 operations associated with change in, 162
 priorities, 466 – 468
 processes and, 158 – 164 , 169 , 182
 process operation latencies (μs), 168
 processor affinity, 177
 remote procedure call (RPC) using, 163
 single-threaded process models, 160
 in single-user multiprocessing system, 161 – 162
 for SMP, 86
 Solaris, and SMP management, 182 – 186
 states of, 162 – 164
 synchronization, 164 , 589 – 594
 top-half kernel, 463
 types of, 164 – 171
 user-level (ULT), 164 – 168 , 182
 Windows 7, and SMP management, 176 – 181

 Thread scheduling, 437 – 442
 approaches to, 437
 dedicated processor assignment, 440 – 441
 dynamic scheduling, 442

 Superior price performance, 699
 Supervisor call, 138
 Support functions, 135
 Suspended processes states, 121 – 125

 characteristics of, 124 – 125
 purposes of, 125
 states of, 122 – 123
 swapping, 121 – 124
 transitions of, 122 , 123 – 124

 SVR 4 . See UNIX System V Release 4 (SVR4)
 Swap, 211
 Swappable space, 278
 Swapping process states, 121 – 124
 Swap-use table entry, 380 – 381
 Switching process, 137 – 139
 Sybase Inc., 684
 Symbolic links file, 554 , 565
 Symmetric multiprocessor (SMP),

 33 – 35 , 72 – 73
 advantages of, 33 – 34
 availability, 72
 characteristics of, 33
 cluster, differentiating between, 704
 definition of, 33
 incremental growth, 72
 multicore support and, 464 – 466
 organization of, 34 – 35
 OS considerations of, 77 – 78
 scaling, 72
 threads for, 86

 *syms, 97
 Synchronization, 77 , 234 – 235

 design characteristics of, 233
 eCos thread, 589
 granularity, 432
 improper, 63
 lock-free, 297
 message passing, 233 – 235
 processes, 432
 Solaris, thread primitives, 292 – 294
 of threads, 164

 Synchronized access, 670
 Synchronous input/output, Windows, 513 – 514
 Synchronous RPC, 698
 Syntax, 17 - 4
 System call table

 modification of, 634
 redirecting, 635
 targets, 634

 System-level call attacks, 634 – 635
 System-level context, 150
 System on a Chip (SoC), 10
 System oriented, other criteria, 401
 System oriented, performance related criteria, 401
 System(s)

 access control list (SACL), 670
 access threats, 143 – 144
 bus, 9
 calls, Linux, 98
 files, 567
 integrity, 609
 ISA, 50
 mode, 135
 response time, 63
 utilization of, 56
 virtual machines (VM), 76

766 INDEX

 Tree representation of buddy system, 319
 Tree-structured file directory, 538 , 539
 Trial, 19 - 5
 Trigger, 623
 Triggering phase, 624
 Trivial File Transfer Protocol (TFTP), 17 - 5
 TRIX, 170
 Trojan horse, 620 , 621 – 622
 Turnaround time (TAT), 401 , 404 , 419
 Two-handed clock algorithm, 381
 Two-level hierarchical page table, 348
 Two-level memory

 characteristics of, 39 – 45
 locality, 40 – 42
 operation of, 42
 performance of, 25 – 26 , 42 – 45

 Two-priority categories, 416
 Two-state process model, 112 – 114

 U
 U area, 150 – 151
 ULT. See User-level threads (ULT)
 Ultrafast spreading, 630
 Unauthorized disclosure, 610
 Unblock state, 162
 Unbounded priority inversion, 455
 Unbuffered input/output, 508 – 509
 Uncorrelated, 19 - 13
 Underlying distribution, 20 - 38
 Uninterruptible state, 187
 Union, 19 - 3
 Uniprocessor

 multithreading on, 164
 scheduling, 395 – 425

 Uniprogramming systems, 58
 University of California at Berkeley, 495
 University of Illinois at Urbana-Champaign, B- 5
 UNIX BSD (Berkeley Software Distribution), 90
 UNIX FreeBSD, 94

 files, structure of, 555
 inodes, structure of, 555
 scheduling, 463 – 466

 UNIX systems, 90 – 92 , 553 – 560 . See also specific systems
 access control lists, 559 – 560
 architecture of, 91
 Berkeley Software Distribution (BSD), 94
 buffer cache, organization of, 508
 C implementation of, 90
 concurrency mechanisms of, 281 – 285
 description of, general, 91 – 92
 devices, types of, 509
 directories, 557
 file access control, 558 – 559
 file allocation, 556 – 557
 files, 553 – 555
 history of, 90
 inodes, 554 – 556
 input/output, structure of, 507
 kernel, 92 , 93
 license for, 90
 memory management, 379 – 384
 modern, 92 – 94
 password-based authentication in, implementation of,

 642 – 643
 process structure of, 183

 Thread scheduling (continued)
gang scheduling, 439
 load sharing, 437 – 439

 Thread states, 162 – 164
 of Microsoft Windows 7 , 179 – 180
 of Solaris, 184 – 185

 Three-level interrupt mode, 584 – 585
 Three-level thread structure, Solaris, 183
 Three-tier client-server architecture, 685 – 686
 Threshold detection, 655
 Threshold random walk (TRW) scan detection, 662
 Throughput, 401
 Tightly-coupled multiprocessor, 20 - 26 – 27
 Tightly coupled multiprocessor system, 431
 Time average, 19 - 25
 Time, creation of, 187
 Timeliness, 661
 Timer interrupts, 89 , 587
 Timers, batch systems, 55 , 187
 Time sequence of multiple interrupts, 23
 Time-shared (59-0) class, 462
 Time sharing, 60
 Time-sharing systems, 58 – 62

 batch multiprogramming, differentiating between, 60
 Compatible Time-Sharing System (CTSS), 60 – 61
 memory requirements of, 60 – 61
 time sharing, 60
 time slicing, 60

 Time-sharing user, 463
 Timeslices/timeslicing, 60 , 137 , 407 , 460 – 461
 Time-stamp field, 656
 Timestamping algorithm, 18 - 22 – 23
 Timing, 17 - 4
 Timing comparison, 489
 TinyOS, 594 – 603

 components of, 596 – 599
 configurations for, examples of, 600 – 601
 goals of, 595 – 596
 resource interface, 601 – 603
 scheduler, 599 – 600
 wireless sensor networks, 594 – 595

 TLB. See Translation lookaside buffer (TLB)
 Token, 146
 Token-based authentication, 643 – 645
 Token bucket filter (TBF), 468 – 469
 Token loss, 644
 Token-passing algorithm, 18 - 29
 Token-passing approach, 18 - 28 – 30
 Top-half kernel threads, 463
 Topological scanning, 633
 Torvalds, Linus, 94
 Trace of process, 111
 Traffic analysis attacks, 615
 Traffic streams, merging of, 20 - 33
 Transfer time, 487
 Transition of process state, 180
 Translation lookaside buffer (TLB), 349 – 354

 cache operation and, 353
 operation of, 352

 Transparency, 661
 Transport layer, 17 - 8
 Transport vehicles, 630
 Trapdoor. See Backdoor
 Trap flag, 132
 Traps, 100 , 138

INDEX 767

 Variable-allocation replacement
policy, 370

 global scope, 372
 local scope, 372 – 376

 Variable-interval sampled working set
(VSWS) policy, 375 – 376

 Variable-length spanned, 541
 Variable-length unspanned, 542
 Variable priority classes, 467
 Variant, 582
 Variance, 19 - 9
 VAX/VMS, 80
 Venn diagrams, 19 - 4
 Verification step of authentication, 145
 Very coarse-grained parallelism, 432 – 433
 VFS. See Linux virtual file system (VFS)
 Virtual addresses

 map, 387 – 388
 memory management, 67
 space, 160 , 341

 Virtual interrupt flag, 132
 Virtual interrupt pending, 132
 Virtualization, 74 – 75
 Virtualized resources, 602
 Virtual machine monitor (VMM), 74
 Virtual machines (VM), 74 – 76

 application of, 75
 architecture of, 75 – 76
 concept of, 74
 definition of, 341
 hosted, 76
 Java, 75
 Linux VServer architecture, differentiating

between, 100 – 101
 multicore computer, OS considerations of, 79
 operating system, 75
 process, 75
 system, 76
 terminology of, 341
 and virtualization, 74 – 75
 virtual machine monitor (VMM), 74

 Virtual memory, 40 , 67 , 98 , 340 – 389
 addressing, 68 , 384 – 385
 concepts of, 67
 hardware/control structures of, 348 – 360
 locality and, 344 – 345
 management, 384 – 389
 manager, 84 , 568
 operating system software, 360 – 379
 paging, 343 , 345 – 356
 protection, sharing and, 359 – 360
 segmentation, 356 – 357
 user-mode processes in, 133

 Virtual 8086 mode, 132
 Virtual platform, 101
 Virtual servers, 100 – 101
 Viruses, 620 , 623 – 628

 classification of, 626 – 627
 compression, 625
 e-mail, 628
 encrypted, 626
 initial infection, 626
 macro, 626 , 627 – 628
 metamorphic, 627
 nature of, 623 – 624

 scheduling, traditional, 422 – 424
 signals of, 285
 Solaris 10 , 94
 System III, 90
 System V, 90
 traditional, 90 – 92
 traditional, file access control, 558 – 559
 Version 6 , 90
 Version 7 , 90
 volume structure, 557

 UNIX System V Release 4 (SVR4), 93 – 94
 buffer cache, 507 – 508
 character queue, 508
 devices, types of, 509
 dispatch queues, 462
 input/output, 506 – 509
 parameters of, 380 – 381
 process control of, 151 – 152
 process description of, 149 – 151
 process image of, 149 – 150
 process management, 147 – 152
 process states of, 147 – 149
 process table entry of, 150
 scheduling, 461 – 463
 U area, 150 – 151
 unbuffered input/output, 508 – 509

 Unreliability, 694 – 695
 Unsafe state, resource allocation, 271 , 274
 Unspanned blocking, variable-length, 542 – 543
 Update directory operation, 537
 Updating access rights, 540
 Usecount, 96
 User applications, Windows, 84
 User control, 444
 User Datagram Protocol (UDP), 17 - 8 – 10
 User dissatisfaction, 644
 User groups class, 541
 User identification (ID), 558
 User interfaces, 48 – 50 , 145
 User ISA, 50
 User-level context, 149 – 150
 User-level threads (ULT), 164 – 168

 advantages of, 167 – 168
 and KLT, combined with, 169
 occurrences of, 165 , 167
 process states, relationship with, 166

 User mode, 56 , 135
 User-mode processes, 84 – 85

 environmental subsystems, 84
 execution within, 141 – 142
 service processes, 84
 special system processes, 84
 user applications, 84
 in virtual memory, 133

 User mode rootkit, 633
 User-oriented, other criteria, 401
 User-oriented, performance related criteria, 401
 User’s identity authentication, 146
 User-visible registers, 130
 Usurpation, security threats of, 612
 Utilization histograms, 58 , 59

 V
 Valve game software, 174 – 175
 Variable, operations of, 214

768 INDEX

 Win 32 , 84
 Windowing/graphics system, 83
 Windows. See Microsoft Windows
 Windows shares, 623
 Wireless sensor networks (WSN), 594 – 595
 Working directories, 539
 Working set strategy, 372
 Worms, 620 , 628 – 630

 countermeasures for, 661 – 662
 functions of, 629
 network vehicles for, examples of, 629
 propagation model, 629
 technology for, state of, 630
 worm propagation model, 629

 Wound-wait method, 18 - 33
 WRITE call, 14 – 15 , 18
 Write_DAC access, 671
 WRITE instruction, 15
 Write_owner access, 670
 Write policy, cache memory, 30 , 31
 Writing Across the Curriculum (WAC), B- 6
 Writing assignments, B- 6 –B- 7
 Writing files, 522

 X
 XML (Extensible Markup Language), 689 – 690

 Z
 Zero, 20 - 20
 Zero-day exploit, 630
 ZF (zero flag), 132
 Zombies, 620 . See also Bots
 Zombie state, 184 , 188

 Viruses (continued)
phases of, 624
 polymorphic, 627
 simple, 625
 stealth, 627
 structure of, 623 , 624 – 626
 virus kits, 627

 Virus kits, 627
 Virus signature scanner, 657
 VM. See Virtual machines (VM)
 Voice, 646
 Volume, 550 , 565 – 567

 encryption, 515
 layout, 566 – 567
 master file table, 567
 shadow copies, 515
 structure, UNIX, 557
 volume layout, 566 – 567

 W
 Waitable timer object, Window, 296
 Wait-die method, 18 - 33
 Wait functions, Windows, 295
 Waiting state, 180
 Waiting time, 419
 Weak semaphores, 216
 Web clients, 623
 Weblogic, 173
 Web resources, 4 – 6
 Web servers, 623
 Websphere, 173
 While loops, 231
 Wide sense stationary, 19 - 17

	Cover
	Title Page
	Copyright Page
	Contents
	ONLINE CHAPTERS AND APPENDICES¹
	Online Resources
	Preface
	ACKNOWLEDGMENTS
	About the Author
	Chapter 0 Reader’s and Instructor’s Guide
	0.1 Outline of this Book
	0.2 Example Systems
	0.3 A Roadmap for Readers and Instructors
	0.4 Internet and Web Resources

	PART 1 BACKGROUND
	Chapter 1 Computer System Overview
	1.1 Basic Elements
	1.2 Evolution of the Microprocessor
	1.3 Instruction Execution
	1.4 Interrupts
	1.5 The Memory Hierarchy
	1.6 Cache Memory
	1.7 Direct Memory Access
	1.8 Multiprocessor and Multicore Organization
	1.9 Recommended Reading and Web Sites
	1.10 Key Terms, Review Questions, and Problems
	APPENDIX 1A PERFORMANCE CHARACTERISTICSOF TWO-LEVEL MEMORIES

	Chapter 2 Operating System Overview
	2.1 Operating System Objectives and Functions
	2.2 The Evolution of Operating Systems
	2.3 Major Achievements
	2.4 Developments Leading to Modern Operating Systems
	2.5 Virtual Machines
	2.6 OS Design Considerations for Multiprocessor and Multicore
	2.7 Microsoft Windows Overview
	2.8 Traditional UNIX Systems
	2.9 Modern UNIX Systems
	2.10 Linux
	2.11 Linux VServer Virtual Machine Architecture
	2.12 Recommended Reading and Web Sites
	2.13 Key Terms, Review Questions, and Problems

	PART 2 PROCESSES
	Chapter 3 Process Description and Control
	3.1 What Is a Process?
	3.2 Process States
	3.3 Process Description
	3.4 Process Control
	3.5 Execution of the Operating System
	3.6 Security Issues
	3.7 UNIX SVR4 Process Management
	3.8 Summary
	3.9 Recommended Reading
	3.10 Key Terms, Review Questions, and Problems

	Chapter 4 Threads
	4.1 Processes and Threads
	4.2 Types of Threads
	4.3 Multicore and Multithreading
	4.4 Windows 7 Thread and SMP Management
	4.5 Solaris Thread and SMP Management
	4.6 Linux Process and Thread Management
	4.7 Mac OS X Grand Central Dispatch
	4.8 Summary
	4.9 Recommended Reading
	4.10 Key Terms, Review Questions, and Problems

	Chapter 5 Concurrency: Mutual Exclusion and Synchronization
	5.1 Principles of Concurrency
	5.2 Mutual Exclusion: Hardware Support
	5.3 Semaphores
	5.4 Monitors
	5.5 Message Passing
	5.6 Readers/Writers Problem
	5.7 Summary
	5.8 Recommended Reading
	5.9 Key Terms, Review Questions, and Problems

	Chapter 6 Concurrency: Deadlock and Starvation
	6.1 Principles of Deadlock
	6.2 Deadlock Prevention
	6.3 Deadlock Avoidance
	6.4 Deadlock Detection
	6.5 An Integrated Deadlock Strategy
	6.6 Dining Philosophers Problem
	6.7 UNIX Concurrency Mechanisms
	6.8 Linux Kernel Concurrency Mechanisms
	6.9 Solaris Thread Synchronization Primitives
	6.10 Windows 7 Concurrency Mechanisms
	6.11 Summary
	6.12 Recommended Reading
	6.13 Key Terms, Review Questions, and Problems

	PART 3 MEMORY
	Chapter 7 Memory Management
	7.1 Memory Management Requirements
	7.2 Memory Partitioning
	7.3 Paging
	7.4 Segmentation
	7.5 Security Issues
	7.6 Summary
	7.7 Recommended Reading
	7.8 Key Terms, Review Questions, and Problems
	APPENDIX 7A LOADING AND LINKING

	Chapter 8 Virtual Memory
	8.1 Hardware and Control Structures
	8.2 Operating System Software
	8.3 UNIX and Solaris Memory Management
	8.4 Linux Memory Management
	8.5 Windows Memory Management
	8.6 Summary
	8.7 Recommended Reading and Web Sites
	8.8 Key Terms, Review Questions, and Problems

	PART 4 SCHEDULING
	Chapter 9 Uniprocessor Scheduling
	9.1 Types of Processor Scheduling
	9.2 Scheduling Algorithms
	9.3 Traditional UNIX Scheduling
	9.4 Summary
	9.5 Recommended Reading
	9.6 Key Terms, Review Questions, and Problems

	Chapter 10 Multiprocessor and Real-Time Scheduling
	10.1 Multiprocessor Scheduling
	10.2 Real-Time Scheduling
	10.3 Linux Scheduling
	10.4 UNIX SVR4 Scheduling
	10.5 UNIX FreeBSD Scheduling
	10.6 Windows Scheduling
	10.7 Linux Virtual Machine Process Scheduling
	10.8 Summary
	10.9 Recommended Reading
	10.10 Key Terms, Review Questions, and Problems

	PART 5 INPUT/OUTPUT AND FILES
	Chapter 11 I/O Management and Disk Scheduling
	11.1 I/O Devices
	11.2 Organization of the I/O Function
	11.3 Operating System Design Issues
	11.4 I/O Buffering
	11.5 Disk Scheduling
	11.6 RAID
	11.7 Disk Cache
	11.8 UNIX SVR4 I/O
	11.9 Linux I/O
	11.10 Windows I/O
	11.11 Summary
	11.12 Recommended Reading
	11.13 Key Terms, Review Questions, and Problems

	Chapter 12 File Management
	12.1 Overview
	12.2 File Organization and Access
	12.3 B-Trees
	12.4 File Directories
	12.5 File Sharing
	12.6 Record Blocking
	12.7 Secondary Storage Management
	12.8 File System Security
	12.9 UNIX File Management
	12.10 Linux Virtual File System
	12.11 Windows File System
	12.12 Summary
	12.13 Recommended Reading
	12.14 Key Terms, Review Questions, and Problems

	PART 6 EMBEDDED SYSTEMS
	Chapter 13 Embedded Operating Systems
	13.1 Embedded Systems
	13.2 Characteristics of Embedded Operating Systems
	13.3 eCos
	13.4 TinyOS
	13.5 Recommended Reading and Web Sites
	13.6 Key Terms, Review Questions, and Problems

	PART 7 COMPUTER SECURITY
	Chapter 14 Computer Security Threats
	14.1 Computer Security Concepts
	14.2 Threats, Attacks, and Assets
	14.3 Intruders
	14.4 Malicious Software Overview
	14.5 Viruses, Worms, and Bots
	14.6 Rootkits
	14.7 Recommended Reading and Web Sites
	14.8 Key Terms, Review Questions, and Problems

	Chapter 15 Computer Security Techniques
	15.1 Authentication
	15.2 Access Control
	15.3 Intrusion Detection
	15.4 Malware Defense
	15.5 Dealing with Buffer Overflow Attacks³

	15.6 Windows 7 Security
	15.7 Recommended Reading and Web Sites
	15.8 Key Terms, Review Questions, and Problems

	PART 8 DISTRIBUTED SYSTEMS
	Chapter 16 Distributed Processing, Client/Server, and Clusters
	16.1 Client/Server Computing
	16.2 Service-Oriented Architecture
	16.3 Distributed Message Passing
	16.4 Remote Procedure Calls
	16.5 Clusters
	16.6 Windows Cluster Server
	16.7 Beowulf and Linux Clusters
	16.8 Summary
	16.9 Recommended Reading and Web Sites
	16.10 Key Terms, Review Questions, and Problems

	APPENDICES
	Appendix A: Topics in Concurrency
	A.1 Mutual Exclusion: Software Approaches
	A.2 Race Conditions and Semaphores
	A.3 A Barbershop Problem
	A.4 Problems

	Appendix B: Programming and Operating System Projects
	B.1 OS/161
	B.2 Simulations
	B.3 Programming Projects
	B.4 Research Projects
	B.5 Reading/Report Assignments
	B.6 Writing Assignments
	B.7 Discussion Topics
	B.8 BACI

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

