SYSTEMS ANALYSIS & DESIGN

th UML

ted Approach wi

ject-Orien

An Ob

WILEY

R N LY e

Visible:

SYSTEMS CORPORATION

Visible Analyst Student Edition

Educating tomorrow’s developers today

Visible Analyst is a “hands-on” tool for teaching students all aspects of analysis and design
including dynamic rules, consistency checking, managing change, and understanding the integration
issues across an IT project. Visible Analyst prepares students to enter the IT world as business or
data architects, analysts, designers, and modelers.

Visit us at www.visible.com to learn more.

YOU CAN Start Today EEMNDENNIS wixom | TEGARDEE

with the Visible Analyst!
)) SYSTEMS ANALYSIS & DESIGN
Only takes 2 minutes to install!

Save... 33‘% discount! An Object-Oriented Approach with UML

Please visit
http://store.visible.com/Wiley.aspx

to purchase and register with your
information (see below) and obtain a
valid license for your student edition of
the software. To purchase the discounted
software you will need to enter the
following code:

978112014

Email support is provided to all registered
students at support@visible.com. Your
registration includes

m the latest release of the Visible Analyst
Student Edition (software)

m the Visible Analyst eTutorial

m a preloaded Sample Instructional
Project

m access to Webcast “How to” and “Get WILEY
Started” Instructional Videos.

Disclaimer: The publisher of the textbook does not sponsor, review, or make decisions about Visible Analyst software,
and will not be responsible for, or involved in, any changes to the software.

System Analysis & Design

AN OBJECT-ORIENTED APPROACH WITH UML

Fifth Edition

Alan Dennis
Indiana University

Barbara Haley Wixom
Massachusetts Institute of Technology

David Tegarden
Virginia Tech
With contributions by Elaine Seeman,
East Carolina University

WILEY

VP & EXECUTIVE PUBLISHER: Don Fowley

EXECUTIVE EDITOR: Beth Lang Golub
CONTENT EDITOR: Mary O’Sullivan
ASSOCIATE EDITOR: Ellen Keohane
MARKETING MANAGER: Christopher Ruel
ASSOCIATE PRODUCTION MANAGER: Joyce Poh
DESIGNER: Wendy Lai

Cover Image: © Christopher Boswell/Shutterstock

This book was set in 10/12 Minion pro by Aptara and printed and bound by Courier Kendallville. The cover
was printed by Courier Kendallville.

This book is printed on acid-free paper.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more
than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is
built on a foundation of principles that include responsibility to the communities we serve and where we live
and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon
impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and
community and charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2015, 2012, 2009 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be repro-
duced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photo-
copying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of
the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923
(Web site: www.copyright.com). Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008,
or online at: www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in
their courses during the next academic year. These copies are licensed and may not be sold or transferred to a
third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instruc-
tions and a free of charge return shipping label are available at: www.wiley.com/go/returnlabel. If you have
chosen to adopt this textbook for use in your course, please accept this book as your complimentary desk copy.
Outside of the United States, please contact your local sales representative.

Library of Congress Cataloging-in-Publication Data

Dennis, Alan.

Systems analysis & design: an object-oriented approach with UML/Alan Dennis, Indiana University,
Barbara Haley Wixom, Massachusetts Institute of Technology, David Tegarden, Virginia Tech; with
contributions by Elaine Seeman, East Carolina University.~Fifth edition.

pages cm
Includes bibliographical references and index.
ISBN 978-1-118-80467-4 (pbk. : alk. paper)
1. System analysis. 2. System design. 3. UML (Computer science) 1. Wixom, Barbara Haley,
1969-1I. Tegarden, David Paul. III. Seeman, Elaine. IV. Title. V. Title: System analysis and design.
QA402.D395 2015
004.2’1-dc23

2014048338
Printed in the United States of America

10 9 8 7 6 5 4 3 21

PURPOSE OF THIS BOOK

Systems Analysis and Design (SAD) is an exciting, active field in which analysts continually
learn new techniques and approaches to develop systems more effectively and efficiently.
However, there is a core set of skills that all analysts need to know—no matter what
approach or methodology is used. All information systems projects move through the four
phases of planning, analysis, design, and implementation; all projects require analysts to
gather requirements, model the business needs, and create blueprints for how the system
should be built; and all projects require an understanding of organizational behavior con-
cepts like change management and team building. Today, the cost of developing modern
software is composed primarily of the cost associated with the developers themselves and
not the computers. As such, object-oriented approaches to developing information systems
hold much promise in controlling these costs.

Today, the most exciting change to systems analysis and design is the move to
object-oriented techniques, which view a system as a collection of self-contained objects
that have both data and processes. This change has been accelerated through the crea-
tion of the Unified Modeling Language (UML). UML provides a common vocabulary of
object-oriented terms and diagramming techniques that is rich enough to model any sys-
tems development project from analysis through implementation.

This book captures the dynamic aspects of the field by keeping students focused on
doing SAD while presenting the core set of skills that we feel every systems analyst needs to
know today and in the future. This book builds on our professional experience as systems
analysts and on our experience in teaching SAD in the classroom.

This book will be of particular interest to instructors who have students do a major
project as part of their course. Each chapter describes one part of the process, provides
clear explanations on how to do it, gives a detailed example, and then has exercises for the
students to practice. In this way, students can leave the course with experience that will
form a rich foundation for further work as a systems analyst.

OUTSTANDING FEATURES

A Focus on Doing SAD

The goal of this book is to enable students to do SAD—not just read about it, but under-
stand the issues so that they can actually analyze and design systems. The book introduces
each major technique, explains what it is, explains how to do it, presents an example, and
provides Your Turn opportunities with each chapter for students to practice each new tech-
nique before they do it for real in a project. The Your Turn boxes are posted online at www.
wiley.com/college/dennis. After reading each chapter, the student will be able to perform
that step in the system development process.

vi Preface

Rich Examples of Success and Failure

This book has a running online case study (accessible from www.wiley.com/go/dennis/
casestudy) about a fictitious health care company called Patterson Superstore. Each chapter of
the case study shows how the concepts are applied in situations at Patterson Superstore. In
this way, the running case serves as a template that students can apply to their own work.
Each chapter also includes numerous Concepts in Action boxes, which are posted online at
www.wiley.com/college/dennis. These boxes describe how real companies succeeded—and
failed—in performing the activities in the chapter. Many of these examples are drawn from
our own experiences as systems analysts.

Real World Focus

The skills that students learn in a systems analysis and design course should mirror
the work that they ultimately will do in real organizations. We have tried to make this
book as “real” as possible by building extensively on our experience as professional sys-
tems analysts for organizations, such as Arthur Andersen, IBM, the U.S. Department
of Defense, and the Australian Army. We have also worked with a diverse industry
advisory board of IS professionals and consultants in developing the book and have
incorporated their stories, feedback, and advice throughout. Many students who use
this book will eventually use the skills on the job in a business environment, and we
believe they will have a competitive edge in understanding what successful practition-
ers feel is relevant in the real world.

Project Approach

We have presented the topics in this book in the order in which an analyst encounters them
in a typical project. Although the presentation is necessarily linear (because students have
to learn concepts in the way in which they build on each other), we emphasize the iterative,
complex nature of SAD as the book unfolds. The presentation of the material should align
well with courses that encourage students to work on projects because it presents topics as
students need to apply them.

WHAT’S NEW IN THIS EDITION

B A completely new, expanded case study on an integrated health clinic delivery
system has been written to accompany the fifth edition. The entire case study is
posted online. At the end of each chapter in the text, a short synopsis of the case
is provided.

B The text has been streamlined to focus on the essentials and therefore, to enhance
student understanding. Selected materials like the “Your Turn” and “Concepts in
Action” boxes have been moved online and can be accessed at www.wiley.com/
college/dennis.

B Throughout the book, there is a greater emphasis on verifying, validating, and
testing, as well as the incremental and iterative development of systems.

B In Chapter 2, there is more content on Agile techniques, including scrum meet-
ings, product backlog, and sprints.

B In Chapter 3, we have increased focus on software quality and user stories.

B We have added new examples throughout the book and clarified explanations to
help students learn some of the more difficult concepts.

Preface vii

B Chapter 10 includes more coverage of mobile computing, including specifics on
navigation, input, and output. This chapter also has a new section on games,
multidimensional information visualization, augmented reality, and virtual reality.

B Chapter 11 includes new material on ubiquitous computing and the Internet of Things.

B Testing has been expanded in Chapter 12.

ORGANIZATION OF THIS BOOK

This book is loosely organized around the phases and workflows of the enhanced Unified
Process. Each chapter has been written to teach students specific tasks that analysts need
to accomplish over the course of a project, and the deliverables that will be produced from
the tasks. As students complete the chapters, they will realize the iterative and incremental
nature of the tasks in object-oriented systems development.

Chapter 1 introduces the SDLC, systems development methodologies, roles and
skills needed for a systems analyst, the basic characteristics of object-oriented systems,
object-oriented systems analysis, the Unified Process, and the UML. Chapter 2 presents
topics related to the project management workflow of the Unified Process, including pro-
ject identification, system request, feasibility analysis, project selection, traditional project
management tools (including work breakdown structures, network diagrams, and PERT
analysis), project effort estimation using use-case points, evolutionary work breakdown
structures, iterative workplans, scope management, timeboxing, risk management, and
staffing the project. Chapter 2 also addresses issues related to the Environment and Infra-
structure management workflows of the Unified Process.

Part One focuses on creating analysis models. Chapter 3 introduces students to an assort-
ment of requirements analysis strategies a variety of requirements-gathering techniques that
are used to determine the functional and nonfunctional requirements of the system, and to a
system proposal. Chapter 4 focuses on constructing business process and functional models
using use-case diagrams, activity diagrams, and use-case descriptions. Chapter 5 addresses
producing structural models using CRC cards, class diagrams, and object diagrams. Chapter 6
tackles creating behavioral models using sequence diagrams, communication diagrams,
behavioral state machines, and CRUDE analysis and matrices. Chapters 4 through 6 also
cover the verification and validation of the models described in each chapter.

Part Two addresses design modeling. In Chapter 7, students learn how to verify and
validate the analysis models created during analysis modeling and to evolve the analysis
models into design models via the use of factoring, partitions, and layers. The students also
learn to create an alternative matrix that can be used to compare custom, packaged, and
outsourcing alternatives. Chapter 8 concentrates on designing the individual classes and
their respective methods through the use of contracts and method specifications. Chapter 9
presents the issues involved in designing persistence for objects. These issues include the
different storage formats that can be used for object persistence, how to map an object-
oriented design into the chosen storage format, and how to design a set of data access and
manipulation classes that act as a translator between the classes in the application and
the object persistence. This chapter also focuses on the nonfunctional requirements that
impact the data management layer. Chapter 10 presents the design of the human-computer
interaction layer, where students learn how to design user interfaces using use scenarios,
windows navigation diagrams, storyboards, windows layout diagrams, user interface
prototypes, real use cases, interface standards, and user interface templates; to perform
user interface evaluations using heuristic evaluation, walkthrough evaluation, interactive
evaluation, and formal usability testing; and to address nonfunctional requirements such

viii

Preface

as user interface layout, content awareness, aesthetics, user experience, and consistency.
This chapter also addresses issues related to mobile computing, social media, games,
multidimensional information visualizations, immersive environments, and international
and cultural issues with regard to user interface design. Chapter 11 focuses on the phys-
ical architecture and infrastructure design, which includes deployment diagrams and
hardware/software specification. In today’s world, this also includes issues related to cloud
computing, ubiquitous computing, the Internet of things, and green IT. This chapter, like
the previous design chapters, covers the impact that nonfunctional requirements can have
on the physical architecture layer.

Part Three provides material that is related to the construction, installation, and operations
of the system. Chapter 12 focuses on system construction, where students learn how to build,
test, and document the system. Installation and operations are covered in Chapter 13, where
students learn about the conversion plan, change management plan, support plan, and project
assessment. Additionally, these chapters address the issues related to developing systems in a flat
world, where developers and users are distributed throughout the world.

SUPPLEMENTS www.wiley.com/college/dennis

Instructor Book Companion Website

Bl PowerPoint slides: Instructors can tailor the slides to their classroom needs.
Students can use them to guide their reading and studying activities.

B Test Bank: Includes a variety of questions ranging from multiple-choice, true/
false, and short answer questions. A computerized, Respondus version of the Test
Bank is also available.

B Instructor’s Manual: Provides resources to support the instructor both inside
and out of the classroom. The manual includes short experiential exercises that
instructors can use to help students experience and understand key topics in
each chapter. Short stories have been provided by people working in both corpo-
rate and consulting environments for instructors to insert into lectures to make
concepts more colorful and real. Additional minicases for every chapter allow
students to perform some of the key concepts that were learned in the chapter.
Solutions to end of chapter questions and exercises are provided.

Student Book Companion Website

B A collection of templates and worksheets consisting of electronic versions of
selected figures from the book.

B A completely new, expanded case study on an integrated health clinic delivery
system has been written to accompany the fifth edition. This case study is online
only. It can be accessed at www.wiley.com/go/dennis/casestudy.

B “Your Turn” and “Concepts in Action” boxes from the fourth edition have been
moved online and can be accessed from the student companion site.

Wiley E-Text: Powered by VitalSource

This Wiley e-text offers students continuing access to materials for their course. Your students
can access content on a mobile device, online from any Internet-connected computer, or by
a computer via download. With dynamic features built into this e-text, students can search
across content, highlight, and take notes that they can share with teachers and classmates.

Preface ix

Visible Analyst

Wiley has partnered with Visible Analyst to give students a discounted price for Visible
Analyst software, an intuitive modeling tool for all aspects of traditional or object-oriented
systems analysis and design. All new copies of the text will have a Key Code (printed on
a page near the front of this text) that will provide a discount on Visible Analyst software.
To obtain the software, students should visit http://store.visible.com/Wiley.aspx and enter
their Key Code. Students who buy a new print text or digital e-book will receive one-third
off the price of a downloadable edition of the software with a 6-month license. With the
software, they will also receive tutorials, how-to videos, and a sample project. Students who
buy used copies of this text may buy Visible Analyst at full price using the URL provided.

Project Management Software

You can download a 60-day trial of Microsoft Project Professional 2013 from the following
Website: www.microsoft.com/en-us/evalcenter/evaluate-project-professional-2013. Note
that Microsoft has changed its policy and no longer offers the 120-day trial previously
available.

Another option now available to education institutions adopting this Wiley title is a
free introductory 3-year membership for DreamSpark Premium. DreamSpark Premium
is designed to provide the easiest and most inexpensive way for academic departments
to make the latest Microsoft software available in labs, classrooms, and on student and
instructor PCs. Microsoft Project software is available through this Wiley and Microsoft
publishing partnership, free of charge with the adoption of any qualified Wiley title. Each
copy of Microsoft Project is the full version of the software, with no time limitation, and
can be used indefinitely for educational purposes. Contact your Wiley sales representative
for details. For more information about the DreamSpark Premium program, contact
drmspkna@Microsoft.com.

ACKNOWLEDGMENTS

Thanks to Elaine Seeman for her feedback on every chapter in this book as well as for her
work writing the new online case study. We would like to thank the following reviewers
for their helpful and insightful comments on the fifth edition: Mohammad Dadashzadeh,
Oakland University; Xiaodong Deng, Oakland University; Thomas W. Dillon, James
Madison University; Bryan Goda, University of Washington, Tacoma; Kathleen S. Hartzel,
Duquesne University; Rajkumar Kempaiah, Stevens Institute of Technology; Sung-kwan
Kim, University of Arkansas at Little Rock; Richard McCarthy, Quinnipiac University;
Donald McCracken, Grantham University; Osama A. Morad, Southern New Hampshire
University; Fred Niederman, Saint Louis University; Linda Plotnick, Jacksonville State
University; Vladimir V. Riabov, Rivier University; Richard Schilhavy, Guilford College;
Tod Sedbrook, University of Northern Colorado; Steven C. Shaffer, Penn State University;
Michael Smith, Georgia Institute of Technology; and John Wetsch, Southern New Hampshire
University.

We would also like to thank the following reviewers for their helpful and insight-
ful comments on the first, second, third, and fourth editions: Evans Adams, Fort Lewis
College; Murugan Anandarajon, Drexel University; Ron Anson, Boise State University;
Noushin Ashrafi, University of Massachusetts, Boston; Dirk Baldwin, University of
Wisconsin-Parkside; Robert Barker, University of Louisville; Qing Cao, University of
Missouri-Kansas City; David Champion, DeVry University, Columbus, OH campus; Jeff
Cummings, Indiana University; Junhua Ding, East Carolina University; Robert Dollinger,

X Preface

University of Wisconsin-Stevens Point; Abhijit Dutt, Carnegie Mellon University; Terry
Fox, Baylor University; Ahmad Ghafarian, North Georgia College & State University; Donald
Golden, Cleveland State University; Cleotilde Gonzalez, Carnegie Melon University;
Daniel V. Goulet, University of Wisconsin-Stevens Point; Harvey Hayashi, Loyalist College
of Applied Arts and Technology; Yujong Hwang, DePaul University; Scott James, Saginaw
Valley State University; Zongliang Jiang, North Carolina A&T State University; Raymond
Kirsch, La Salle University; Rajiv Kishore, State University of New York-Buffalo; Ravindra
Krovi, University of Akron; Jean-Piere Kuilboer, University of Massachusetts, Boston;
Gilliean Lee, Lander University; LeoLegorreta, California State University Sacramento;
Diane Lending, James Madison University; Steve Machon, DeVry University; Fernando
Maymi, West Point University; Daniel Mittleman, DePaulUniversity; Makoto Nakayama,
DePaul University; Fred Niederman, Saint Louis University; Parasuraman Nurani, DeVry
University; H. Robert Pajkowski, DeVry Institute of Technology, Scarborough, Ontario;
June S. Park, University of Iowa; Graham Peace, West Virginia University; Tom Pettay,
DeVry Institute of Technology, Columbus,Ohio; Selwyn Piramuthu, University of Florida;
J. Drew Procaccino, Rider University; Neil Ramiller, Portland State University; Eliot
Rich, University at Albany, State University of New York; Marcus Rothenberger, University
of Wisconsin-Milwaukee; Carl Scott, University of Houston; Keng Siau,University of
Nebraska-Lincoln; Iftikhar Sikder, Cleveland State University; Jonathan Trower, Baylor
University; June Verner, Drexel University; Anna Wachholz, Sheridan College; Bill Watson,
Indiana University-Purdue University Indianapolis; Randy S.Weinberg, Carnegie Mellon
University; Eli J.Weissman, DeVry Institute of Technology, Long Island City, NY; Heinz
Roland Weistroffer, Virginia Commonwealth University; Amy Wilson, DeVry Institute of
Technology, Decatur, GA; Amy Woszczynski, Kennesaw State University; Vincent C. Yen,
Wright State University; Fan Zhao, Florida Gulf Coast University; and Dan Zhu, Iowa State
University.

Preface v

Chapter 1
Introduction to Systems
Analysis and Design 1

INTRODUCTION 1
THE SYSTEMS DEVELOPMENT LIFE CYCLE 2

Planning 3
Analysis 3
Design 4

Implementation 4
SYSTEMS DEVELOPMENT METHODOLOGIES 5
Structured Design 6
Rapid Application Development (RAD) 8
Agile Development 12
Selecting the Appropriate Development
Methodology 15
TyPICAL SYSTEMS ANALYST ROLES AND SKILLS 17
Business Analyst 18
Systems Analyst 18
Infrastructure Analyst 18
Change Management Analyst 19
Project Manager 19
Basic CHARACTERISTICS OF OBJECT-ORIENTED
Systems 19
Classes and Objects 19
Methods and Messages 20
Encapsulation and Information Hiding 20
Inheritance 21
Polymorphism and Dynamic Binding 22
OBJECT-ORIENTED SYSTEMS ANALYSIS
AND DEsigN (OOSAD) 23
Use-Case Driven 24
Architecture-Centric 24
Iterative and Incremental 24
Benefits of Object-Oriented Systems
Analysis and Design 25
THE UNIFIED PROCESS 25
Phases 26
Workflows 28
Extensions to the Unified Process 30

THE UNIFIED MODELING LANGUAGE 34

APPLYING THE CONCEPTS AT PATTERSON
SUPERSTORE 36

CHAPTER REVIEW 36

Chapter 2
Project Management 41

INTRODUCTION 41
PROJECT IDENTIFICATION 43
System Request 44
FEasIBILITY ANALYSIS 45
Technical Feasibility 45
Economic Feasibility 46
Organizational Feasibility 51
PrOJECT SELECTION 53
TRADITIONAL PROJECT MANAGEMENT ToOLs 54
Work Breakdown Structures 55
Gantt Chart 56
Network Diagram 57
ProjecT EFFORT ESTIMATION 58
CREATING AND MANAGING THE WORKPLAN 63
Evolutionary Work Breakdown
Structures and Iterative Workplans 63
Managing Scope 67
Timeboxing 68
Refining Estimates 69
Managing Risk 70
STAFFING THE PrROJECT 71
Characteristics of a Jelled Team 71
Staffing Plan 73
Motivation 75
Handling Conflict 76
ENVIRONMENT AND INFRASTRUCTURE
MANAGEMENT 76
CASE Tools 77
Standards 77
Documentation 78
APPLYING THE CONCEPTS AT PATTERSON
SUPERSTORE 80
CHAPTER REVIEW 80

Xi

xii

Contents

PART ONE
ANALYSIS MODELING 85

Chapter 3
Requirements
Determination 86

INTRODUCTION 86
REQUIREMENTS DETERMINATION 87
Defining a Requirement 87
Requirements Definition 89
Determining Requirements 89
Creating a Requirements Definition 91
Real-World Problems with Requirements
Determination 91
REQUIREMENTS ANALYSIS STRATEGIES 92
Problem Analysis 92
Root Cause Analysis 92
Duration Analysis 93
Activity-Based Costing 94
Informal Benchmarking 94
Outcome Analysis 95
Technology Analysis 95
Activity Elimination 95
REQUIREMENTS-GATHERING TECHNIQUES 95
Interviews 96
Joint Application Development (JAD) 100
Questionnaires 104
Document Analysis 106
Observation 108
Selecting the Appropriate Techniques 108
ALTERNATIVE REQUIREMENTS DOCUMENTATION
TeECHNIQUES 110
Concept Maps 110
User Stories 112
THE SYSTEM PrOPOSAL 113
APPLYING THE CONCEPTS AT PATTERSON
SUPERSTORE 114
CHAPTER REVIEW 114

Chapter 4
Business Process and
Functional Modeling 119

INTRODUCTION 119
BUSINEsS PROCESS IDENTIFICATION WITH USE
Cases AND Use-CASE DiaGramMs 121
Elements of Use-Case Diagrams 121
Identifying the Major Use Cases 126

Creating a Use-Case Diagram 127
BUSINESS PROCESS MODELING WITH ACTIVITY
Diagrams 129
Elements of an Activity Diagram 131
Guidelines for Creating Activity
Diagrams 136
Creating Activity Diagrams 137
BUSINESS PROCESS DOCUMENTATION WITH USE
CASES AND USE-CASE DESCRIPTIONS 140
Types of Use Cases 141
Elements of a Use-Case Description 141
Guidelines for Creating Use-Case
Descriptions 145
Creating Use Case Descriptions 146
VERIFYING AND VALIDATING THE BUSINESS
PROCESSES AND FUNCTIONAL MODELS 153
Verification and Validation through
Walkthroughs 153
Functional Model Verification and
Validation 154
APPLYING THE CONCEPTS AT PATTERSON
SUPERSTORE 157
CHAPTER REVIEW 157

Chapter 5
Structural Modeling 163

INTRODUCTION 163

STRUCTURAL MODELS 164
Classes, Attributes, and

Operations 164

Relationships 165

OBJECT IDENTIFICATION 166
Textual Analysis 166
Brainstorming 167
Common Object Lists 169
Patterns 169

Crc CARDS 172
Responsibilities and Collaborations 172
Elements of a CRC Card 173
Role-Playing CRC Cards with

Use Cases 174

CrLass DIAGRAMS 176
Elements of a Class Diagram 176
Simplifying Class Diagrams 184
Object Diagrams 184

CREATING STRUCTURAL MODELS USING

CRC CARDS AND CLASS D1AGRAMS 185

Campus Housing Example 187
Library Example 187

VERIFYING AND VALIDATING THE STRUCTURAL
MobpEeL 194

APPLYING THE CONCEPTS AT PATTERSON
SUPERSTORE 197

CHAPTER REVIEW 198

Chapter 6
Behavioral Modeling 202

INTRODUCTION 202
BEHAVIORAL MODELS 203
INTERACTION DI1AGRAMS 204
Objects, Operations, and Messages 204
Sequence Diagrams 204
Communication Diagrams 216
BEHAVIORAL STATE MACHINES 221
States, Events, Transitions, Actions, and
Activities 221
Elements of a Behavioral State Machine 222
Creating a Behavioral State Machine 226
CRUDE ANALYSIS 229
VERIFYING AND VALIDATING THE BEHAVIORAL
MobDEL 233
APPLYING THE CONCEPTS AT PATTERSON
SUPERSTORE 235
CHAPTER REVIEW 235

PART TWO
DESIGN MODELING 239

Chapter 7
Moving on to Design 240

INTRODUCTION 240
VERIFYING AND VALIDATING THE ANALYSIS
MoDELS 242
Balancing Functional and Structural
Models 242
Balancing Functional and Behavioral
Models 243
Balancing Structural and Behavioral
Models 251
Summary 254
EVOLVING THE ANALYSIS MODELS INTO DESIGN
MobpEeLs 257
Factoring 257
Partitions and Collaborations 258
Layers 259

Contents xiii

PACKAGES AND PACKAGE DIAGRAMS 262
Guidelines for Creating Package
Diagrams 264
Creating Package Diagrams 266
Verifying and Validating Package
Diagrams 266
DESIGN STRATEGIES 268
Custom Development 268
Packaged Software 269
Outsourcing 270
Selecting a Design Strategy 272
SELECTING AN ACQUISITION STRATEGY 273
Alternative Matrix 274
APPLYING THE CONCEPTS AT PATTERSON
SUPERSTORE 276
CHAPTER REVIEW 276

Chapter 8
Class and Method Design 280

INTRODUCTION 280
REVIEW OF THE BASIC CHARACTERISTICS
OF OBJECT ORIENTATION 282
Classes, Objects, Methods, and Messages 282
Encapsulation and Information Hiding 282
Polymorphism and Dynamic Binding 282
Inheritance 284
DESIGN CRITERIA 286
Coupling 286
Cohesion 289
Connascence 292
OBJECT DESIGN ACTIVITIES 293
Adding Specifications 293
Identifying Opportunities for Reuse 294
Restructuring the Design 297
Optimizing the Design 298
Mapping Problem-Domain Classes to
Implementation Languages 300
CONSTRAINTS AND CONTRACTS 304
Types of Constraints 306
Elements of a Contract 306
METHOD SPECIFICATION 314
General Information 314
Events 314
Message Passing 315
Algorithm Specifications 316
Example 318
VERIFYING AND VALIDATING CLASS AND METHOD
Design 319

Xiv

Contents

APPLYING THE CONCEPTS AT PATTERSON
SUPERSTORE 322
CHAPTER REVIEW 322

Chapter 9
Data Management Layer
Design 326

INTRODUCTION 326
OBJECT PERSISTENCE FORMATS 327
Sequential and Random Access Files 327
Relational Databases 330
Object-Relational Databases 332
Object-Oriented Databases 332
NoSQL Data Stores 333
Selecting an Object Persistence Format 335
MAPPING PROBLEM DoMAIN OBJECTS TO OBJECT
PERSISTENCE FORMATS 337
Mapping Problem Domain Objects to an
OODBMS Format 338
Mapping Problem Domain Objects to an
ORDBMS Format 341
Mapping Problem Domain Objects to a
RDBMS Format 344
OPTIMIZING RDBMS-BASED OBJECT
STORAGE 346
Optimizing Storage Efficiency 347
Optimizing Data Access Speed 351
Estimating Data Storage Size 356
DESIGNING DATA ACCESS AND MANIPULATION
CLASSES 357
NONFUNCTIONAL REQUIREMENTS AND DATA
MANAGEMENT LAYER DESIGN 360
VERIFYING AND VALIDATING THE DATA
MANAGEMENT LAYER 361
APPLYING THE CONCEPTS AT PATTERSON
SUPERSTORE 362
CHAPTER REVIEW 362

Chapter 10

Human-Computer Interaction
Layer Design 367

[INTRODUCTION 367

PRINCIPLES FOR USER INTERFACE DESIGN 368
Layout 369
Content Awareness 369

Aesthetics 370
User Experience 371
Consistency 371
Minimizing User Effort 372
USER INTERFACE DESIGN PROCESs 372
Use Scenario Development 373
Navigation Structure Design 375
Interface Standards Design 376
Interface Design Prototyping 377
Interface Evaluation 380
Common Sense Approach to User
Interface Design 382
NAVIGATION DESIGN 383
Basic Principles 383
Types of Navigation Controls 384
Messages 386
Navigation Design Documentation 387
INpUT DESIGN 387
Basic Principles 387
Types of Inputs 390
Input Validation 391
Ourput DESIGN 392
Basic Principles 392
Types of Outputs 394
Media 394
MoBILE COMPUTING AND USER INTERFACE
DEsigN 395
SociAaL MEDIA AND USER INTERFACE
DEsiGN 398
GAMES, MULTI-DIMENSIONAL INFORMATION
VISUALIZATIONS, AND IMMERSIVE
ENVIRONMENTS 400
Games, Gamification, and User Interface

Design 400
Multidimensional Information Visualization
Design 402

User Interface Design and Immersive
Environments 404
INTERNATIONAL AND CULTURAL IsSSUES AND USER
INTERFACE DESIGN 406
Multilingual Requirements 406
Color 407
Cultural Differences 407
NONFUNCTIONAL REQUIREMENTS AND HUMAN-
COMPUTER INTERACTION LAYER
DEesign 410
APPLYING THE CONCEPTS AT PATTERSON
SUPERSTORE 411
CHAPTER REVIEW 411

Chapter 11

Physical Architecture Layer
Design 418

INTRODUCTION 418
ELEMENTS OF THE PHYSICAL ARCHITECTURE
LAYER 419
Architectural Components 419
Server-Based Architectures 420
Client-Based Architectures 420
Client-Server Architectures 421
Client-Server Tiers 422
Selecting a Physical Architecture 424
Croup COMPUTING 426
UBI1QuiTOUS COMPUTING AND THE INTERNET
OoF THINGS 428
GrReeN IT 431
INFRASTRUCTURE DESIGN 432
Deployment Diagram 432
Network Model 434
HARDWARE AND SYSTEM SOFTWARE
SPECIFICATIONS 438
NONFUNCTIONAL REQUIREMENTS AND PHYSICAL
ARCHITECTURE LAYER DESIGN 440
Operational Requirements 441
Performance Requirements 442
Security Requirements 444
Cultural and Political Requirements 447
Synopsis 448
VERIFYING AND VALIDATING THE PHYSICAL
ARCHITECTURE LAYER 449
APPLYING THE CONCEPTS AT PATTERSON
SUPERSTORE 450
CHAPTER REVIEW 450

PART THREE
CONSTRUCTION, INSTALLATION,
AND OPERATIONS 455

Chapter 12
Construction 456

INTRODUCTION 456

MANAGING PROGRAMMING 457
Assigning Programmers 457
Coordinating Activities 458

Contents Xv

Managing the Schedule 458
Cultural Issues 460
DEVELOPING DOCUMENTATION 462
Types of Documentation 463
Designing Documentation Structure 463
Writing Documentation Topics 465
Identifying Navigation Terms 465
DESIGNING TESTS 467
Testing and Object Orientation 468
Test Planning 469
Unit Tests 471
Integration Tests 475
System Tests 476
Acceptance Tests 477
APPLYING THE CONCEPTS AT PATTERSON
SUPERSTORE 478
CHAPTER REVIEW 478

Chapter 13
Installation and
Operations 481

INTRODUCTION 481
CULTURAL ISSUES AND INFORMATION
TECHNOLOGY ADOPTION 483

CONVERSION 485
Conversion Style 486
Conversion Location 486
Conversion Modules 487
Selecting the Appropriate Conversion

Strategy 488

CHANGE MANAGEMENT 489
Understanding Resistance to Change 490
Revising Management Policies 491
Assessing Costs and Benefits 492
Motivating Adoption 493
Enabling Adoption: Training 495

POST-IMPLEMENTATION ACTIVITIES 497
System Support 497
System Maintenance 498
Project Assessment 500

APPLYING THE CONCEPTS AT PATTERSON

SUPERSTORE 502
CHAPTER REVIEW 502

INDEX 507

INTRODUCTION TO SYSTEMS
ANALYSIS AND DESIGN

OBJECTIVES

Chapter 1 introduces the systems development life cycle (SDLC), the fundamental four-
phase model (planning, analysis, design, and implementation) common to all information
systems development projects. It describes the evolution of system development method-
ologies and discusses the roles and skills required of a systems analyst. The chapter then
overviews the basic characteristics of object-oriented systems and the fundamentals of
object-oriented systems analysis and design and closes with a description of the Unified
Process and its extensions and the Unified Modeling Language.

Understand the fundamental systems development life cycle and its four phases
Understand the evolution of systems development methodologies

Be familiar with the different roles played by and the skills of a systems analyst
Be familiar with the basic characteristics of object-oriented systems

Be familiar with the fundamental principles of object-oriented systems analysis
and design

Be familiar with the Unified Process, its extensions, and the Unified Modeling
Language

INTRODUCTION

The systems development life cycle (SDLC) is the process of understanding how an infor-
mation system (IS) can support business needs by designing a system, building it, and
delivering it to users. If you have taken a programming class or have programmed on
your own, this probably sounds pretty simple. Unfortunately, it is not. A 1996 survey by
the Standish Group found that 42 percent of all corporate IS projects were abandoned
before completion. A similar study conducted in 1996 by the General Accounting Office
found 53 percent of all U.S. government IS projects were abandoned. Unfortunately,
many of the systems that are not abandoned are delivered to the users significantly late,
cost far more than planned, and have fewer features than originally planned. For exam-
ple, IAG Consulting reports that 80 percent of the projects were over time, 72 percent
were over budget, and 55 percent contained less than the full functionality; Panorama
Consulting Solutions reports that 54 percent of the ERP projects were over time, 56 percent
were over budget, and 48 percent delivered less than 50 percent of the initial benefits;
and an IBM study reports that 59 percent of the projects missed one or more of on time,
within budget, and quality constraints.! Although we would like to promote this book as
a silver bullet that will keep you from IS failures, we readily admit that a silver bullet that
guarantees IS development success simply does not exist. Instead, this book provides you

1

2 Chapter 1 Introduction to Systems Analysis and Design

with several fundamental concepts and many practical techniques that you can use to
improve the probability of success.

The key person in the SDLC is the systems analyst, who analyzes the business situation,
identifies opportunities for improvements, and designs an information system to implement
them. Being a systems analyst is one of the most interesting, exciting, and challenging jobs
around. Systems analysts work with a variety of people and learn how they conduct business.
Specifically, they work with a team of systems analysts, programmers, and others on a com-
mon mission. Systems analysts feel the satisfaction of seeing systems that they designed and
developed make a significant business impact, knowing that they contributed unique skills to
make that happen.

However, the primary objective of a systems analyst is not to create a wonderful sys-
tem; instead, it is to create value for the organization, which for most companies means
increasing profits (government agencies and not-for-profit organizations measure value
differently). Many failed systems have been abandoned because the analysts tried to build a
wonderful system without clearly understanding how the system would fit with an organi-
zation’s goals, current business processes, and other information systems to provide value.
An investment in an information system is like any other investment. The goal is not to
acquire the tool, because the tool is simply a means to an end; the goal is to enable the
organization to perform work better so that it can earn greater profits or serve its constit-
uents more effectively.

This book introduces the fundamental skills a systems analyst needs. This pragmatic book
discusses best practices in systems development; it does not present a general survey of systems
development that covers everything about the topic. By definition, systems analysts do things
and challenge the current way that organizations work. To get the most out of this book, you
will need to actively apply to your own systems development project the ideas and concepts in
the examples. This book guides you through all the steps for delivering a successful informa-
tion system. By the time you finish the book, you won’t be an expert analyst, but you will be
ready to start building systems for real.

THE SYSTEMS DEVELOPMENT LIFE CYCLE

In many ways, building an information system is similar to building a house. First, the house
(or the information system) starts with a basic idea. Second, this idea is transformed into a
simple drawing that is shown to the customer and refined (often through several drawings,
each improving on the last) until the customer agrees that the picture depicts what he or she
wants. Third, a set of blueprints is designed that presents much more detailed information about
the house (e.g., the type of water faucets or where the telephone jacks will be placed). Finally,
the house is built following the blueprints, often with some changes directed by the customer
as the house is erected.

The SDLC has a similar set of four fundamental phases: planning, analysis, design, and
implementation. Different projects might emphasize different parts of the SDLC or approach the
SDLC phases in different ways, but all projects have elements of these four phases. Each phase is
itself composed of a series of steps, which rely upon techniques that produce deliverables (specific
documents and files that provide understanding about the project).

! For more information on the problem, see Capers Jones, Patterns of Software System Failure and Success (London:
International Thompson Computer Press, 1996); KeithEllis, Business Analysis Benchmark: The Impact of Business
Requirements on the Success of Technology Projects (2008). Retrieved May 2014 from IAG Consulting, www.iag.biz;
H. H. Jorgensen, L. Owen, and A. Neus, Making Change Work (2008). Retrieved May 2014 from IBM, www.ibm.
com; Panorama Consulting Solutions, 2012 ERP Report (2012). Retrieved May 2014 from Panorama-Consulting.com.

The Systems Development Life Cycle 3

For example, in applying for admission to a university, all students go through the same
phases: information gathering, applying, and accepting. Each of these phases has steps; for
example, information gathering includes steps such as searching for schools, requesting infor-
mation, and reading brochures. Students then use techniques (e.g., Internet searching) that
can be applied to steps (e.g., requesting information) to create deliverables (e.g., evaluations
of different aspects of universities).

In many projects, the SDLC phases and steps proceed in a logical path from start to fin-
ish. In other projects, the project teams move through the steps consecutively, incrementally,
iteratively, or in other patterns. In this section, we describe the phases, the actions, and some
of the techniques that are used to accomplish the steps at a very high level.

For now, there are two important points to understand about the SDLC. First, you should
get a general sense of the phases and steps through which IS projects move and some of the
techniques that produce certain deliverables. Second, it is important to understand that the
SDLC is a process of gradual refinement. The deliverables produced in the analysis phase pro-
vide a general idea of the shape of the new system. These deliverables are used as input to the
design phase, which then refines them to produce a set of deliverables that describes in much
more detailed terms exactly how the system will be built. These deliverables, in turn, are used
in the implementation phase to produce the actual system. Each phase refines and elaborates
on the work done previously.

Planning

The planning phase is the fundamental process of understanding why an information sys-
tem should be built and determining how the project team will go about building it. It has
two steps:
1. During project initiation, the system’s business value to the organization is identified:
How will it lower costs or increase revenues? Most ideas for new systems come from
outside the IS area (e.g., from the marketing department, accounting department) in
the form of a system request. A system request presents a brief summary of a business
need, and it explains how a system that supports the need will create business value.
The IS department works together with the person or department that generated the
request (called the project sponsor) to conduct a feasibility analysis.
The system request and feasibility analysis are presented to an information sys-
tems approval committee (sometimes called a steering committee), which decides
whether the project should be undertaken.

2. Once the project is approved, it enters project management. During project man-
agement, the project manager creates a workplan, staffs the project, and puts tech-
niques in place to help the project team control and direct the project through
the entire SDLC. The deliverable for project management is a project plan, which
describes how the project team will go about developing the system.

Analysis
The analysis phase answers the questions of who will use the system, what the system will
do, and where and when it will be used. During this phase, the project team investigates any
current system(s), identifies opportunities for improvement, and develops a concept for the
new system.
This phase has three steps:
1. An analysis strategy is developed to guide the project team’s efforts. Such a strategy
usually includes an analysis of the current system (called the as-is system) and its
problems and then ways to design a new system (called the to-be system).

4 Chapter 1 Introduction to Systems Analysis and Design

2. The next step is requirements gathering (e.g., through interviews or questionnaires).
The analysis of this information—in conjunction with input from the project
sponsor and many other people—leads to the development of a concept for a new
system. The system concept is then used as a basis to develop a set of business
analysis models, which describe how the business will operate if the new system
is developed.

3. The analyses, system concept, and models are combined into a document called
the system proposal, which is presented to the project sponsor and other key deci-
sion makers (e.g., members of the approval committee) who decide whether the
project should continue to move forward.

The system proposal is the initial deliverable that describes what business requirements the
new system should meet. Because it is really the first step in the design of the new system,
some experts argue that it is inappropriate to use the term “analysis” as the name for this
phase; some argue a better name would be “analysis and initial design.” Most organizations
continue to use the name analysis for this phase, however, so we use it in this book as well. Just
keep in mind that the deliverable from the analysis phase is both an analysis and a high-level
initial design for the new system.

Design

The design phase decides how the system will operate, in terms of the hardware, software,
and network infrastructure; the user interface, forms, and reports; and the specific programs,
databases, and files that will be needed. Although most of the strategic decisions about the
system were made in the development of the system concept during the analysis phase, the
steps in the design phase determine exactly how the system will operate. The design phase
has four steps:

1. The design strategy is first developed. It clarifies whether the system will be devel-
oped by the company’s own programmers, whether the system will be outsourced
to another firm (usually a consulting firm), or whether the company will buy an
existing software package.

2. This leads to the development of the basic architecture design for the system, which
describes the hardware, software, and network infrastructure to be used. In most
cases, the system will add or change the infrastructure that already exists in the
organization. The interface design specifies how the users will move through the sys-
tem (e.g., navigation methods such as menus and on-screen buttons) and the forms
and reports that the system will use.

3. 'The database and file specifications are developed. These define exactly what data
will be stored and where they will be stored.

4. The analyst team develops the program design, which defines the programs that
need to be written and exactly what each program will do.

This collection of deliverables (architecture design, interface design, database and file specifica-
tions, and program design) is the system specification that is handed to the programming team
for implementation. At the end of the design phase, the feasibility analysis and project plan are
reexamined and revised, and another decision is made by the project sponsor and approval
committee about whether to terminate the project or continue.

Implementation

The final phase in the SDLC is the implementation phase, during which the system is actually
built (or purchased, in the case of a packaged software design). This is the phase that usually

Systems Development Methodologies 5

gets the most attention, because for most systems it is the longest and most expensive single
part of the development process. This phase has three steps:

1. System construction is the first step. The system is built and tested to ensure that it
performs as designed. Because the cost of bugs can be immense, testing is one of
the most critical steps in implementation. Most organizations give more time and
attention to testing than to writing the programs in the first place.

2. The system is installed. Installation is the process by which the old system is turned
off and the new one is turned on. One of the most important aspects of conversion
is the development of a training plan to teach users how to use the new system and
help manage the changes caused by the new system.

3. 'The analyst team establishes a support plan for the system. This plan usually
includes a formal or informal post-implementation review as well as a systematic
way for identifying major and minor changes needed for the system.

SYSTEMS DEVELOPMENT METHODOLOGIES

A methodology is a formalized approach to implementing the SDLC (i.e., it is a list of steps
and deliverables). There are many different systems development methodologies, and each
one is unique, based on the order and focus it places on each SDLC phase. Some methodolo-
gies are formal standards used by government agencies, whereas others have been developed
by consulting firms to sell to clients. Many organizations have internal methodologies that
have been honed over the years, and they explain exactly how each phase of the SDLC is to
be performed in that company.

There are many ways to categorize methodologies. One way is by looking at whether
they focus on business processes or the data that support the business. A process-centered
methodology emphasizes process models as the core of the system concept. In Figure 1-1, for
example, process-centered methodologies would focus first on defining the processes (e.g.,
assemble sandwich ingredients). Data-centered methodologies emphasize data models as the
core of the system concept. In Figure 1-1, data-centered methodologies would focus first on
defining the contents of the storage areas (e.g., refrigerator) and how the contents were organ-
ized.? By contrast, object-oriented methodologies attempt to balance the focus between process
and data by incorporating both into one model. In Figure 1-1, these methodologies would
focus first on defining the major elements of the system (e.g., sandwiches, lunches) and look
at the processes and data involved with each element.

Another important factor in categorizing methodologies is the sequencing of the SDLC
phases and the amount of time and effort devoted to each.? In the early days of computing,
programmers did not understand the need for formal and well-planned life-cycle meth-
odologies. They tended to move directly from a very simple planning phase right into the
construction step of the implementation phase—in other words, from a very fuzzy, not-well-
thought-out system request into writing code. This is the same approach that you sometimes
use when writing programs for a programming class. It can work for small programs that

2 The classic modern process-centered methodology is that by Edward Yourdon, Modern Structured Analysis
(Englewood Cliffs, NJ: Yourdon Press, 1989). An example of a data-centered methodology is information engi-
neering; see James Martin, Information Engineering, vols. 1-3 (Englewood Cliffs, NJ: Prentice Hall, 1989). A widely
accepted standardized non-object-oriented methodology that balances processes and data is IDEF; see FIPS 183,
Integration Definition for Function Modeling, Federal Information Processing Standards Publications, U.S. Depart-
ment of Commerce, 1993.

3 A good reference for comparing systems development methodologies is Steve McConnell, Rapid Development
(Redmond, WA: Microsoft Press, 1996).

6 Chapter 1 Introduction to Systems Analysis and Design

aParent

aRefrigerator aCupboard aSandwich alunch alunchBag

v

Getjelly

GetPeanutButter

il
a4

GetBread

A

CreateSandwich

v

Getl\E\

GetCookies

i

v

CreateLunch

GetLunchBag

i

A

PutLunchInBag

A

@

FIGURE 1-1 A Simple Behavioral Model for Making a Simple Lunch

require only one programmer, but if the requirements are complex or unclear, you might
miss important aspects of the problem and have to start all over again, throwing away part of
the program (and the time and effort spent writing it). This approach also makes teamwork
difficult because members have little idea about what needs to be accomplished and how to
work together to produce a final product. In this section, we describe three different classes of
system development methodologies: structured design, rapid application development, and
agile development.

Structured Design

The first category of systems development methodologies is called structured design.
These methodologies became dominant in the 1980s, replacing the previous ad hoc and

FIGURE 1-2

A Waterfall
Development-Based
Methodology

Systems Development Methodologies 7

-7\

»
Planning (NN
A\
_7 \
\
\
\
A\

. » -
Analysis \

>/
Design \

Implementation \
System)

undisciplined approach. Structured design methodologies adopt a formal step-by-step
approach to the SDLC that moves logically from one phase to the next. Numerous pro-
cess-centered and data-centered methodologies follow the basic approach of the two struc-
tured design categories outlined next.

Waterfall Development The original structured design methodology (still used today) is
waterfall development. With waterfall development-based methodologies, the analysts and
users proceed in sequence from one phase to the next (see Figure 1-2). The key deliverables
for each phase are typically very long (often hundreds of pages in length) and are presented to
the project sponsor for approval as the project moves from phase to phase. Once the sponsor
approves the work that was conducted for a phase, the phase ends and the next one begins.
This methodology is referred to as waterfall development because it moves forward from
phase to phase in the same manner as a waterfall. Although it is possible to go backward in
the SDLC (e.g., from design back to analysis), it is extremely difficult (imagine yourself as a
salmon trying to swim upstream against a waterfall, as shown in Figure 1-2).

Structured design also introduced the use of formal modeling or diagramming tech-
niques to describe the basic business processes and the data that support them. Traditional
structured design uses one set of diagrams to represent the processes and a separate set of
diagrams to represent data. Because two sets of diagrams are used, the systems analyst must
decide which set to develop first and use as the core of the system: process-model diagrams
or data-model diagrams.

The two key advantages of the structured design waterfall approach are that it identi-
fies system requirements long before programming begins and it minimizes changes to the
requirements as the project proceeds. The two key disadvantages are that the design must
be completely specified before programming begins and that a long time elapses between the
completion of the system proposal in the analysis phase and the delivery of the system (usu-
ally many months or years). If the project team misses important requirements, expensive
post-implementation programming may be needed (imagine yourself trying to design a car
on paper; how likely would you be to remember interior lights that come on when the doors
open or to specify the right number of valves on the engine?). A system can also require
significant rework because the business environment has changed from the time when the
analysis phase occurred.

8 Chapter 1 Introduction to Systems Analysis and Design

Planning

Analysis (U
\ 2N
N_/ N\
\
\\\ Design
Design
x
4
|
\
~
/ PN .
’// \\ _‘
\ \ VRN
AN N/ \
N \
N \
\ \
/l \ .
L. . % Subproject 2
: Implementatlon
\ v
Design N«.{

Parallel Development Parallel development methodology attempts to address the problem
of long delays between the analysis phase and the delivery of the system. Instead of doing
design and implementation in sequence, it performs a general design for the whole system
and then divides the project into a series of distinct subprojects that can be designed and
implemented in parallel. Once all subprojects are complete, the separate pieces are integrated
and the system is delivered (see Figure 1-3).

The primary advantage of this methodology is that it can reduce the time to deliver a
system; thus, there is less chance of changes in the business environment causing rework.
However, sometimes the subprojects are not completely independent; design decisions
made in one subproject can affect another, and the end of the project can require significant
integration efforts.

Rapid Application Development (RAD)

A second category of methodologies includes rapid application development (RAD)-based
methodologies. These are a newer class of systems development methodologies that emerged
in the 1990s. RAD-based methodologies attempt to address both weaknesses of structured
design methodologies by adjusting the SDLC phases to get some part of the system devel-
oped quickly and into the hands of the users. In this way, the users can better understand the
system and suggest revisions that bring the system closer to what is needed.*

Integration

Implementation)
/ Subproject 3

System)

FIGURE 1-3 A Parallel Development-Based Methodology

4 One of the best RAD books is Steve McConnell, Rapid Development (Redmond, WA: Microsoft Press, 1996).

Systems Development Methodologies 9

Most RAD-based methodologies recommend that analysts use special techniques
and computer tools to speed up the analysis, design, and implementation phases, such as
computer-aided software engineering (CASE) tools, joint application design (JAD) sessions,
fourth-generation or visual programming languages that simplify and speed up programming,
and code generators that automatically produce programs from design specifications. The
combination of the changed SDLC phases and the use of these tools and techniques improves
the speed and quality of systems development. However, there is one possible subtle problem
with RAD-based methodologies: managing user expectations. Owing to the use of the tools and
techniques that can improve the speed and quality of systems development, user expectations
of what is possible can change dramatically. As a user better understands the information tech-
nology (IT), the systems requirements tend to expand. This was less of a problem when using
methodologies that spent a lot of time thoroughly documenting requirements.

Phased Development A phased development-based methodology breaks an overall system into a
series of versions that are developed sequentially. The analysis phase identifies the overall system
concept, and the project team, users, and system sponsor then categorize the requirements into
a series of versions. The most important and fundamental requirements are bundled into the
first version of the system. The analysis phase then leads into design and implementation—but
only with the set of requirements identified for version 1 (see Figure 1-4).

Once version 1 is implemented, work begins on version 2. Additional analysis is per-
formed based on the previously identified requirements and combined with new ideas and
issues that arose from the users’ experience with version 1. Version 2 then is designed and
implemented, and work immediately begins on the next version. This process continues until
the system is complete or is no longer in use.

Phased development-based methodologies have the advantage of quickly getting a useful
system into the hands of the users. Although the system does not perform all the functions the
users need at first, it does begin to provide business value sooner than if the system were deliv-
ered after completion, as is the case with the waterfall and parallel methodologies. Likewise,
because users begin to work with the system sooner, they are more likely to identify important
additional requirements sooner than with structured design situations.

The major drawback to phased development is that users begin to work with systems that
are intentionally incomplete. It is critical to identify the most important and useful features
and include them in the first version and to manage users’ expectations along the way.

Prototyping A prototyping-based methodology performs the analysis, design, and imple-
mentation phases concurrently, and all three phases are performed repeatedly in a cycle until
the system is completed. With these methodologies, the basics of analysis and design are
performed, and work immediately begins on a system prototype, a quick-and-dirty program
that provides a minimal amount of features. The first prototype is usually the first part of the
system that is used. This is shown to the users and the project sponsor, who provide com-
ments. These comments are used to reanalyze, redesign, and reimplement a second prototype,
which provides a few more features. This process continues in a cycle until the analysts, users,
and sponsor agree that the prototype provides enough functionality to be installed and used in
the organization. After the prototype (now called the “system”) is installed, refinement occurs
until it is accepted as the new system (see Figure 1-5).

The key advantage of a prototyping-based methodology is that it very quickly provides a
system with which the users can interact, even if it is not ready for widespread organizational
use at first. Prototyping reassures the users that the project team is working on the system
(there are no long delays in which the users see little progress), and prototyping helps to more
quickly refine real requirements.

10 Chapter 1 Introduction to Systems Analysis and Design

¥
Analysis \

Planning

Analysis

Analysis

¥
Design \
e A span
“““ version 1
Analysis
\\
\
\\
RN
Design \
\
\ System)
A version 2
Implementation '
System)
version 3
FIGURE 1-4 A Phased Development-Based Methodology
FIGURE 1-5 s
Q -~
A Prototyping-Based Hlanning e
Methodology SN
\\
Analysis
Syst
Design " prgtso;'/‘;)e)_’ Implementation
Implementation l

T System)

Systems Development Methodologies 11

The major problem with prototyping is that its fast-paced system releases challenge
attempts to conduct careful, methodical analysis. Often the prototype undergoes such signif-
icant changes that many initial design decisions become poor ones. This can cause problems
in the development of complex systems because fundamental issues and problems are not rec-
ognized until well into the development process. Imagine building a car and discovering late in
the prototyping process that you have to take the whole engine out to change the oil (because
no one thought about the need to change the oil until after it had been driven 10,000 miles).

Throwaway Prototyping Throwaway prototyping-based methodologies are similar to
prototyping-based methodologies in that they include the development of prototypes; how-
ever, throwaway prototypes are done at a different point in the SDLC. These prototypes are
used for a very different purpose than those previously discussed, and they have a very differ-
ent appearance (see Figure 1-6).

The throwaway prototyping-based methodologies have a relatively thorough analy-
sis phase that is used to gather information and to develop ideas for the system concept.
However, users might not completely understand many of the features they suggest, and there
may be challenging technical issues to be solved. Each of these issues is examined by analyz-
ing, designing, and building a design prototype. A design prototype is not a working system;
it is a product that represents a part of the system that needs additional refinement, and it
contains only enough detail to enable users to understand the issues under consideration. For
example, suppose users are not completely clear on how an order-entry system should work.
In this case, a series of mock-up screens appear to be a system, but they really do nothing. Or
suppose that the project team needs to develop a sophisticated graphics program in Java. The
team could write a portion of the program with pretend data to ensure that they could do a
full-blown program successfully.

A system developed using this type of methodology relies on several design prototypes
during the analysis and design phases. Each of the prototypes is used to minimize the risk
associated with the system by confirming that important issues are understood before the real
system is built. Once the issues are resolved, the project moves into design and implementa-
tion. At this point, the design prototypes are thrown away, which is an important difference
between these methodologies and prototyping methodologies, in which the prototypes evolve
into the final system.

. -
Planning v
\\—/ \\
\
\
\
\
. >/’\\\//\
Analysis ool
\ Fa
\
N v\ o
\ Design A\
\ s
N_/ \\
. \
Analysis \\
R Design
Design i
g prototype Implementation
Implementation l

T System)

FIGURE 1-6 A Throwaway Prototyping-Based Methodology

12 Chapter 1 Introduction to Systems Analysis and Design

Throwaway prototyping-based methodologies balance the benefits of well-thought-out
analysis and design phases with the advantages of using prototypes to refine key issues before
a system is built. It can take longer to deliver the final system as compared to prototyping-
based methodologies, but this type of methodology usually produces more stable and reliable
systems.

Agile Development®

A third category of systems development methodologies is still emerging today: agile devel-
opment. All agile development methodologies are based on the agile manifesto and a set of
twelve principles. The emphasis of the manifesto is to focus the developers on the working
conditions of the developers, the working software, the customers, and addressing changing
requirements instead of focusing on detailed systems development processes, tools, all-
inclusive documentation, legal contracts, and detailed plans. These programming-centric
methodologies have few rules and practices, all of which are fairly easy to follow. These meth-
odologies are typically based only on the twelve principles of agile software. These principles
include the following:

m Software is delivered early and continuously through the development process, satis-
tying the customer.

® Changing requirements are embraced regardless of when they occur in the develop-
ment process.

m Working software is delivered frequently to the customer.
m Customers and developers work together to solve the business problem.

B Motivated individuals create solutions; provide them the tools and environment they
need, and trust them to deliver.

m Face-to-face communication within the development team is the most efficient and
effective method of gathering requirements.

m The primary measure of progress is working, executing software.

Both customers and developers should work at a pace that is sustainable. That is, the
level of work could be maintained indefinitely without any worker burnout.

Agility is heightened through attention to both technical excellence and good design.
Simplicity, the avoidance of unnecessary work, is essential.
Self-organizing teams develop the best architectures, requirements, and designs.

Development teams regularly reflect on how to improve their development
processes.

Based on these principles, agile methodologies focus on streamlining the system-development
process by eliminating much of the modeling and documentation overhead and the time
spent on those tasks. Instead, projects emphasize simple, iterative application development.®
All agile development methodologies follow a simple cycle through the traditional phases of
the systems development process (see Figure 1-7). Virtually all agile methodologies are used
in conjunction with object-oriented technologies.

> Three good sources of information on agile development and object-oriented systems are S. W. Ambler, Agile
Modeling: Effective Practices for Extreme Programming and the Unified Process (New York: Wiley, 2002); C. Larman,
Agile & Iterative Development: A Manager’s Guide (Boston: Addison-Wesley, 2004); R. C. Martin, Agile Software
Development: Principles, Patterns, and Practices (Upper Saddle River, NJ: Prentice Hall, 2003).

6 See Agile Alliance, www.agilealliance.com.

FIGURE 1-7
Typical Agile

Development
Methodology

Systems Development Methodologies 13

!

Planning

Analysis
System)

Design

b

Implementation

However, agile methodologies do have critics. One of the major criticisms deals with
today’s business environment, where much of the actual information systems development
is offshored, outsourced, and/or subcontracted. Given agile development methodologies
requiring co-location of the development team, this seems to be a very unrealistic assump-
tion. A second major criticism is that if agile development is not carefully managed, and by
definition it is not, the development process can devolve into a prototyping approach that
essentially becomes a “programmers gone wild” environment where programmers attempt
to hack together solutions. A third major criticism, based on the lack of actual documen-
tation created during the development of the software, raises issues regarding the auditability
of the systems being created. Without sufficient documentation, neither the system nor the
systems-development process can be assured. A fourth major criticism is based on whether
agile approaches can deliver large mission-critical systems.

Even with these criticisms, given the potential for agile approaches to address the
application backlog and to provide timely solutions to many business problems, agile
approaches should be considered in some circumstances. Furthermore, many of the tech-
niques encouraged by attending to the underlying purpose of the agile manifesto and the
set of twelve agile principles are very useful in object-oriented systems development. Two of
the more popular examples of agile development methodologies are extreme programming
(XP) and Scrum.

Extreme Programming’ Extreme programming (XP) is founded on four core values: com-
munication, simplicity, feedback, and courage. These four values provide a foundation that
XP developers use to create any system. First, the developers must provide rapid feedback
to the end users on a continuous basis. Second, XP requires developers to follow the KISS
principle.® Third, developers must make incremental changes to grow the system, and they
must not only accept change, they must embrace change. Fourth, developers must have a
quality-first mentality. XP also supports team members in developing their own skills. Three
of the key principles that XP uses to create successful systems are continuous testing, simple
coding performed by pairs of developers, and close interactions with end users to build sys-
tems very quickly.

7 For more information, see K. Beck, eXtreme Programming Explained: Embrace Change (Reading, MA: Addison-
Wesley, 2000); C. Larman, Agile & Iterative Development: A Manager’s Guide (Boston: Addison-Wesley, 2004); M.
Lippert, S. Roock, and H. Wolf, eXtreme Programming in Action: Practical Experiences from Real World Projects (New
York: Wiley, 2002); www.extremeprogramming.org.

8 Keep it simple, stupid.

14 Chapter 1 Introduction to Systems Analysis and Design

Testing and efficient coding practices are the core of XP. Code is tested each day and is
placed into an integrative testing environment. If bugs exist, the code is backed out until it
is completely free of errors.

An XP project begins with user stories that describe what the system needs to do. Then,
programmers code in small, simple modules and test to meet those needs. Users are required
to be available to clear up questions and issues as they arise. Standards are very important
to minimize confusion, so XP teams use a common set of names, descriptions, and coding
practices. XP projects deliver results sooner than even the RAD approaches, and they rarely
get bogged down in gathering requirements for the system.

XP adherents claim many strengths associated with developing software using XP.
Programmers work closely with all stakeholders, and communication among all stakehold-
ers is improved. Continuous testing of the evolving system is encouraged. The system is
developed in an evolutionary and incremental manner, which allows the requirements to
evolve as the stakeholders understand the potential that the technology has in providing a
solution to their problem. Estimation is task driven and is performed by the programmer
who will implement the solution for the task under consideration. Because all programming
is done in pairs, a shared responsibility for each software component develops among the
programmers. Finally, the quality of the final product increases during each iteration.

For small projects with highly motivated, cohesive, stable, and experienced teams, XP
should work just fine. However, if the project is not small or the teams aren’t jelled,’ the suc-
cess of an XP development effort is doubtful. This tends to throw into doubt the whole idea
of bringing outside contractors into an existing team environment using XP.1% The chance
of outsiders jelling with insiders might simply be too optimistic. XP requires a great deal of
discipline, otherwise projects will become unfocused and chaotic. XP is recommended only
for small groups of developers—no more than ten developers—and it is not advised for large
mission-critical applications. Owing to the lack of analysis and design documentation, there
is only code documentation associated with XP, so maintaining large systems built with XP
may be impossible. And because mission-critical business information systems tend to exist
for a long time, the utility of XP as a business information system development methodology
is in doubt. Finally, the methodology needs a lot of on-site user input, something to which
many business units cannot commit.!! However, some of the techniques associated with
XP are useful in object-oriented systems development. For example, user stories, pair pro-
gramming, and continuous testing are invaluable tools from which object-oriented systems
development could benefit.

Scrum!? Scrum is a term that is well known to rugby fans. In rugby, a scrum is used to
restart a game. In a nutshell, the creators of the Scrum method believe that no matter how
much you plan, as soon as the software begins to be developed, chaos breaks out and the

9 A jelled team is one that has low turnover, a strong sense of identity, a sense of eliteness, a feeling that they jointly
own the product being developed, and enjoyment in working together. For more information regarding jelled teams,
see T. DeMarco and T. Lister, Peopleware: Productive Projects and Teams (New York: Dorset/House, 1987).

10 Considering the tendency for offshore outsourcing, this is a major obstacle for XP to overcome. For more infor-
mation on offshore outsourcing, see P. Thibodeau, “ITAA Panel Debates Outsourcing Pros, Cons,” Computerworld
Morning Update (September 25, 2003); S. W. Ambler, “Chicken Little Was Right,” Software Development (October
2003).

11 Many of the observations on the utility of XP as a development approach were based on conversations with Brian
Henderson-Sellers.

12 For more information, see C. Larman, Agile & Iterative Development: A Manager’s Guide (Boston: Addison-
Wesley, 2004); K. Schwaber and M. Beedle, Agile Software Development with Scrum (Upper Saddle River, NJ:
Prentice Hall, 2001); R. Wysocki, Effective Project Management: Traditional, Agile, Extreme, 5th Ed. (Indianapolis,
IN: Wiley Publishing, 2009).

Systems Development Methodologies 15

plans go out the window.!3 The best you can do is to react to where the proverbial rugby
ball squirts out. You then sprint with the ball until the next scrum. In the case of the Scrum
methodology, a sprint lasts thirty working days. At the end of the sprint, a system is deliv-
ered to the customer.

Of all systems development approaches, on the surface, Scrum is the most chaotic. To
control some of the innate chaos, Scrum development focuses on a few key practices. Teams
are self-organized and self-directed. Unlike other approaches, Scrum teams do not have a des-
ignated team leader. Instead, teams organize themselves in a symbiotic manner and set their
own goals for each sprint (iteration). Once a sprint has begun, Scrum teams do not consider
any additional requirements. Any new requirements that are uncovered are placed on a back-
log of requirements that still need to be addressed. At the beginning of every workday, a Scrum
meeting takes place. At the end of each sprint, the team demonstrates the software to the client.
Based on the results of the sprint, a new plan is begun for the next sprint.

Scrum meetings are one of the most interesting aspects of the Scrum development pro-
cess. The team members attend the meetings, but anyone can attend. However, with very
few exceptions, only team members may speak. One prominent exception is management
providing feedback on the business relevance of the work being performed by the specific
team. In this meeting, all team members stand in a circle and report on what they accom-
plished during the previous day, state what they plan to do today, and describe anything
that blocked progress the previous day. To enable continuous progress, any block identified
is dealt with within one hour. From a Scrum point of view, it is better to make a “bad” deci-
sion about a block at this point in development than to not make a decision. Because the
meetings take place each day, a bad decision can easily be undone. Larman!4 suggests that
each team member should report any additional requirements that have been uncovered
during the sprint and anything that the team member learned that could be useful for other
team members to know.

One of the major criticisms of Scrum, as with all agile methodologies, is that it is ques-
tionable whether Scrum can scale up to develop very large, mission-critical systems. A typical
Scrum team size is no more than seven members. The only organizing principle put forth by
Scrum followers to address this criticism is to organize a scrum of scrums. Each team meets
every day, and after the team meeting takes place, a representative (not leader) of each team
attends a scrum-of-scrums meeting. This continues until the progress of entire system has
been determined. Depending on the number of teams involved, this approach to managing a
large project is doubtful. However, as in XP and other agile development approaches, many
of the ideas and techniques associated with Scrum development are useful in object-oriented
systems development, such as the focus of a Scrum meeting, the evolutionary and incremen-
tal approach to identifying requirements, and the incremental and iterative approach to the
development of the system.

Selecting the Appropriate Development Methodology

Because there are many methodologies, the first challenge faced by analysts is selecting which
methodology to use. Choosing a methodology is not simple, because no one methodology is
always best. (If it were, we’d simply use it everywhere!) Many organizations have standards
and policies to guide the choice of methodology. You will find that organizations range from

13 Scrum developers are not the first to question the use of plans. One of President Eisenhower’s favorite maxims
was, “In preparing for battle I have always found that plans are useless, but planning is indispensable.” M. Dobson,
Streetwise Project Management: How to Manage People, Processes, and Time to Achieve the Results You Need (Avon,
MA: F+W Publications, 2003), p. 43.

14 C. Larman, Agile & Iterative Development: A Manager’s Guide (Boston: Addison-Wesley, 2004).

16 Chapter 1 Introduction to Systems Analysis and Design

Structured Agile

Methodologies RAD Methodologies Methodologies
Ability to Develop Throwaway
Systems Waterfall Parallel Phased Prototyping Prototyping XP SCRUM
With Unclear User Requirements Poor Poor Good Excellent Excellent Excellent Excellent
With Unfamiliar Technology Poor Poor Good Poor Excellent Good Good
That Are Complex Good Good Good Poor Excellent Good Good
That Are Reliable Good Good Good Poor Excellent Excellent Excellent
With a Short Time Schedule Poor Good Excellent Excellent Good Excellent Excellent
With Schedule Visibility Poor Poor Excellent Excellent Good Excellent Excellent

FIGURE 1-8 Criteria for Selecting a Methodology

having one “approved” methodology to having several methodology options to having no
formal policies at all.

Figure 1-8 summarizes some important criteria for selecting a methodology. One impor-
tant item not discussed in this figure is the degree of experience of the analyst team. Many
of the RAD-based methodologies require the use of new tools and techniques that have a
significant learning curve. Often these tools and techniques increase the complexity of the
project and require extra time for learning. However, once they are adopted and the team
becomes experienced, the tools and techniques can significantly increase the speed at which
the methodology can deliver a final system.

Clarity of User Requirements When the user requirements for a system are unclear, it is
difficult to understand them by talking about them and explaining them with written reports.
Users normally need to interact with technology to really understand what a new system can
do and how to best apply it to their needs. RAD and agile methodologies are usually more
appropriate when user requirements are unclear.

Familiarity with Technology When the system will use new technology with which the ana-
lysts and programmers are not familiar, early application of the new technology in the meth-
odology will improve the chance of success. If the system is designed without some familiarity
with the base technology, risks increase because the tools might not be capable of doing what
is needed. Throwaway prototyping-based methodologies are particularly appropriate if users
lack familiarity with technology because they explicitly encourage the developers to develop
design prototypes for areas with high risks. Phased development-based methodologies create
opportunities to investigate the technology in some depth before the design is complete. Also,
owing to the programming-centric nature of agile methodologies, both XP and Scrum are
appropriate. Although you might think prototyping-based methodologies are also appropriate,
they are much less so because the early prototypes that are built usually only scratch the surface
of the new technology. It is generally only after several prototypes and several months that the
developers discover weaknesses or problems in the new technology.

System Complexity Complex systems require careful and detailed analysis and design.
Throwaway prototyping-based methodologies are particularly well suited to such detailed
analysis and design, but prototyping-based methodologies are not. The traditional structured

Typical Systems Analyst Roles and Skills 17

design-based methodologies can handle complex systems, but without the ability to get the
system or prototypes into the users’ hands early on, some key issues may be overlooked.
Although phased development-based methodologies enable users to interact with the system
early in the process, we have observed that project teams who follow these tend to devote less
attention to the analysis of the complete problem domain than they might using other meth-
odologies. Finally, agile methodologies are a mixed bag when it comes to system complexity.
If the system is going to be a large one, agile methodologies will perform poorly. However,
if the system is small to medium size, then agile approaches will be excellent. We rate them
good on these criteria.

System Reliability System reliability is usually an important factor in system development;
after all, who wants an unreliable system? However, reliability is just one factor among
several. For some applications, reliability is truly critical (e.g., medical equipment, mis-
sile-control systems), whereas for other applications (e.g., games, Internet video) it is merely
important. Because throwaway prototyping methodologies combine detailed analysis and
design phases with the ability for the project team to test many different approaches through
design prototypes before completing the design, they are appropriate when system reliability
is a high priority. Prototyping methodologies are generally not a good choice when reliability
is critical because it lacks the careful analysis and design phases that are essential for depend-
able systems. However, owing to the heavy focus on testing, evolutionary and incremental
identification of requirements, and iterative and incremental development, agile methods
may be the best overall approach.

Short Time Schedules RAD-based and agile methodologies are excellent choices when
timelines are short because they best enable the project team to adjust the functionality in
the system based on a specific delivery date, and if the project schedule starts to slip, it can
be readjusted by removing functionality from the version or prototype under development.
Waterfall-based methodologies are the worst choice when time is at a premium because they
do not allow easy schedule changes.

Schedule Visibility One of the greatest challenges in systems development is determining
whether a project is on schedule. This is particularly true of the structured design method-
ologies because design and implementation occur at the end of the project. The RAD-based
methodologies move many of the critical design decisions earlier in the project to help project
managers recognize and address risk factors and keep expectations in check. However, given
the daily progress meetings associated with Agile approaches, schedule visibility is always on
the proverbial front burner.

TYPICAL SYSTEMS ANALYST ROLES AND SKILLS

It is clear from the various phases and steps performed during the SDLC that the project team
needs a variety of skills. Project members are change agents who identify ways to improve an
organization, build an information system to support them, and train and motivate others to
use the system. Understanding what to change and how to change it—and convincing others
of the need for change—requires a wide range of skills. These skills can be broken down into
six major categories: technical, business, analytical, interpersonal, management, and ethical.
Analysts must have the technical skills to understand the organization’s existing techni-
cal environment, the technology that will make up the new system, and the way both can fit
into an integrated technical solution. Business skills are required to understand how IT can be

18 Chapter 1 Introduction to Systems Analysis and Design

applied to business situations and to ensure that the IT delivers real business value. Analysts
are continuous problem solvers at both the project and the organizational level, and they put
their analytical skills to the test regularly.

Analysts often need to communicate effectively one-on-one with users and business man-
agers (who often have little experience with technology) and with programmers (who often have
more technical expertise than the analyst). They must be able to give presentations to large and
small groups and write reports. Not only do they need to have strong interpersonal abilities, but
they also need to manage people with whom they work and they need to manage the pressure
and risks associated with unclear situations.

Finally, analysts must deal fairly, honestly, and ethically with other project team mem-
bers, managers, and system users. Analysts often deal with confidential information or infor-
mation that, if shared with others, could cause harm (e.g., dissent among employees); it is
important to maintain confidence and trust with all people.

In addition to these six general skill sets, analysts require many specific skills associated
with roles performed on a project. In the early days of systems development, most organiza-
tions expected one person, the analyst, to have all the specific skills needed to conduct a sys-
tems development project. Some small organizations still expect one person to perform many
roles, but because organizations and technology have become more complex, most large
organizations now build project teams containing several individuals with clearly defined
responsibilities. Different organizations divide the roles differently. Most IS teams include
many other individuals, such as the programmers, who actually write the programs that make
up the system, and technical writers, who prepare the help screens and other documentation
(e.g., users manuals and systems manuals).

Business Analyst

A business analyst focuses on the business issues surrounding the system. These issues include
identifying the business value that the system will create, developing ideas and suggestions for
how the business processes can be improved, and designing the new processes and policies in
conjunction with the systems analyst. This individual likely has business experience and some
type of professional training. He or she represents the interests of the project sponsor and the
ultimate users of the system. A business analyst assists in the planning and design phases but is
most active in the analysis phase.

Systems Analyst

A systems analyst focuses on the IS issues surrounding the system. This person develops ideas
and suggestions for how information technology can improve business processes, designs the
new business processes with help from the business analyst, designs the new information sys-
tem, and ensures that all IS standards are maintained. A systems analyst likely has significant
training and experience in analysis and design, programming, and even areas of the business.
He or she represents the interests of the IS department and works intensively through the pro-
ject but perhaps less so during the implementation phase.

Infrastructure Analyst

An infrastructure analyst focuses on the technical issues surrounding how the system will
interact with the organization’s technical infrastructure (e.g., hardware, software, networks,
and databases). An infrastructure analyst’s tasks include ensuring that the new information
system conforms to organizational standards and identifying infrastructure changes needed
to support the system. This individual probably has significant training and experience in

Basic Characteristics of Object-Oriented Systems 19

networking, database administration, and various hardware and software products. He or
she represents the interests of the organization and IS group that will ultimately have to
operate and support the new system once it has been installed. An infrastructure analyst
works throughout the project but perhaps less so during planning and analysis phases.

Change Management Analyst

A change management analyst focuses on the people and management issues surrounding
the system installation. The roles of this person include ensuring that the adequate docu-
mentation and support are available to users, providing user training on the new system, and
developing strategies to overcome resistance to change. This individual should have signifi-
cant training and experience in organizational behavior in general and change management
in particular. He or she represents the interests of the project sponsor and users for whom
the system is being designed. A change management analyst works most actively during the
implementation phase but begins laying the groundwork for change during the analysis and
design phases.

Project Manager

A project manager is responsible for ensuring that the project is completed on time and within
budget and that the system delivers all benefits intended by the project sponsor. The role
of the project manager includes managing the team members, developing the project plan,
assigning resources, and being the primary point of contact when people outside the team
have questions about the project. This individual likely has significant experience in project
management and has probably worked for many years as a systems analyst beforehand. He
or she represents the interests of the IS department and the project sponsor. The project man-
ager works intensely during all phases of the project.

BASIC CHARACTERISTICS OF OBJECT-ORIENTED SYSTEMS

Object-oriented systems focus on capturing the structure and behavior of information sys-
tems in little modules that encompass both data and process. These little modules are known
as objects. In this section, we describe the basic characteristics of object-oriented systems,
which include classes, objects, methods, messages, encapsulation, information hiding, inher-
itance, polymorphism, and dynamic binding.!>

Classes and Objects

A class is the general template we use to define and create specific instances, or objects. Every
object is associated with a class. For example, all the objects that capture information about
patients could fall into a class called Patient, because there are attributes (e.g., name, address,
birth date, phone, and insurance carrier) and methods (e.g., make appointment, calculate last
visit, change status, and provide medical history) that all patients share (see Figure 1-9).

An object is an instantiation of a class. In other words, an object is a person, place, or
thing about which we want to capture information. If we were building an appointment sys-
tem for a doctor’s office, classes might include Doctor, Patient, and Appointment. The specific
patients, such as Jim Maloney, Mary Wilson, and Theresa Marks, are considered instances, or
objects, of the patient class (see Figure 1-9).

15 In Chapter 8, we review the basic characteristics of object-oriented systems in more detail.

20 Chapter 1 Introduction to Systems Analysis and Design

FIGURE 1-9
Classes and Objects

Patient

-name
-address

-birthdate

-phone

-insurance carrier

+make appointment()
+calculate last visit()
+change status()

+provides medical history()
+create()

Jim Maloney : Patient Mary Wilson : Patient | [Theresa Marks : Patient

Each object has attributes that describe information about the object, such as a patient’s
name, birth date, address, and phone number. Attributes are also used to represent relation-
ships between objects; for example, there could be a department attribute in an employee
object with a value of a department object that captures in which department the employee
object works. The state of an object is defined by the value of its attributes and its relationships
with other objects at a particular point in time. For example, a patient might have a state of
new or current or former.

Each object also has behaviors. The behaviors specify what the object can do. For exam-
ple, an appointment object can probably schedule a new appointment, delete an appointment,
and locate the next available appointment. In object-oriented programming, behaviors are
implemented as methods (see the next section).

One of the more confusing aspects of object-oriented systems development is the fact
that in most object-oriented programming languages, both classes and instances of classes
can have attributes and methods. Class attributes and methods tend to be used to model
attributes (or methods) that deal with issues related to all instances of the class. For example,
to create a new patient object, a message is sent to the Patient class to create a new instance
of itself. However, in this book, we focus primarily on attributes and methods of objects and
not of classes.

Methods and Messages

Methods implement an object’s behavior. A method is nothing more than an action that an
object can perform. Messages are information sent to objects to trigger methods. A message
is essentially a function or procedure call from one object to another object. For example, if a
patient is new to the doctor’s office, the receptionist sends a create message to the application.
The patient class receives the create message and executes its create() method which then
creates a new object: aPatient (see Figure 1-10).

Encapsulation and Information Hiding

The ideas of encapsulation and information hiding are interrelated in object-oriented systems.
However, neither of the terms is new. Encapsulation is simply the combination of process
and data into a single entity. Information hiding was first promoted in structured systems
development. The principle of information hiding suggests that only the information

Basic Characteristics of Object-Oriented Systems 21

Messages and “neme
Methods -address
Create —» -birthdate
-phone

+calculate last visit()
+change status()

+provides medical history()
+create()

Q -insurance carrier -
.
A +make appointment()

Receptionist

required to use a software module be published to the user of the module. Typically, this
implies that the information required to be passed to the module and the information
returned from the module are published. Exactly how the module implements the required
functionality is not relevant. We really do not care how the object performs its functions,
as long as the functions occur. In object-oriented systems, combining encapsulation with the
information-hiding principle supports treating objects as black boxes.

The fact that we can use an object by calling methods is the key to reusability because it
shields the internal workings of the object from changes in the outside system, and it keeps
the system from being affected when changes are made to an object. In Figure 1-10, notice
how a message (create) is sent to an object, yet the internal algorithms needed to respond to
the message are hidden from other parts of the system. The only information that an object
needs to know is the set of operations, or methods, that other objects can perform and what
messages need to be sent to trigger them.

Inheritance

Inheritance, as an information systems development characteristic, was proposed in data
modeling in the late 1970s and the early 1980s. The data modeling literature suggests using
inheritance to identify higher-level, or more general, classes of objects. Common sets of
attributes and methods can be organized into superclasses. Typically, classes are arranged in
a hierarchy whereby the superclasses, or general classes, are at the top and the subclasses, or
specific classes, are at the bottom. In Figure 1-11, Person is a superclass to the classes Doctor
and Patient. Doctor, in turn, is a superclass to General Practitioner and Specialist. Notice how
a class (e.g., Doctor) can serve as a superclass and subclass concurrently. The relationship
between the class and its superclass is known as the a-kind-of relationship. For example in
Figure 1-11, a General Practitioner is a-kind-of Doctor, which is a-kind-of Person.
Subclasses inherit the appropriate attributes and methods from the superclasses above
them. That is, each subclass contains attributes and methods from its parent superclass. For
example, Figure 1-11 shows that both Doctor and Patient are subclasses of Person and there-
fore inherit the attributes and methods of the Person class. Inheritance makes it simpler to
define classes. Instead of repeating the attributes and methods in the Doctor and Patient classes
separately, the attributes and methods that are common to both are placed in the Person class
and inherited by the classes below it. Notice how much more efficient inheritance hierarchies
of object classes are than the same objects without an inheritance hierarchy (see Figure 1-12).
Most classes throughout a hierarchy lead to instances; any class that has instances
is called a concrete class. For example, if Mary Wilson and Jim Maloney are instances of
the Patient class, Patient would be considered a concrete class (see Figure 1-9). Some
classes do not produce instances because they are used merely as templates for other,

22 Chapter 1 Introduction to Systems Analysis and Design

FIGURE 1-11

Class Hierarchy
with Abstract and
Concrete Classes

Person
Abstract classes T
Doctor Patient
General Practitioner Specialist

~

Concrete classes

more-specific classes (especially classes located high up in a hierarchy). The classes are
referred to as abstract classes. Person is an example of an abstract class. Instead of creating
objects from Person, we create instances representing the more-specific classes of Specialist
and Patient, both types of Person (see Figure 1-11).

Polymorphism and Dynamic Binding

Polymorphism means that the same message can be interpreted differently by different
classes of objects. For example, inserting a patient means something different than inserting
an appointment. Therefore, different pieces of information need to be collected and stored.
Luckily, we do not have to be concerned with how something is done when using objects.
We can simply send a message to an object, and that object will be responsible for interpret-
ing the message appropriately. For example, if an artist sent the message Draw yourself to a

Patient
Person

-name
-address -name
-birthdate -address
-phone -birthdate
-insurance carrier -phone
+updateBirthDate() +updateBirthDate()

+update|nsuranceCarrier()

VS.

Doctor

-name
-address

-birthdate

-phone
-medicalSchoolSpecialty

+updateBirthDate()

+updateMedicalSchoolSpecialty()

Patient

Doctor

-insurance carrier

-medicalSchoolSpecialty

+updatelnsuranceCarrier()

FIGURE 1-12 Inheritance Advantage?

+updateMedicalSchoolSpecialty()

Object-Oriented Systems Analysis and Design (OOSAD) 23

FIGURE 1-13 aSquare
Polymorphism

DrawYourself —» aCircle O

anArtist

aTriangle f

square object, a circle object, and a triangle object, the results would be very different, even
though the message is the same. Notice in Figure 1-13 how each object responds appropri-
ately (and differently) even though the messages are identical.

Polymorphism is made possible through dynamic binding. Dynamic, or late, binding is
a technique that delays typing the object until run-time. The specific method that is actu-
ally called is not chosen by the object-oriented system until the system is running. This is
in contrast to static binding. In a statically bound system, the type of object is determined
at compile-time. Therefore, the developer has to choose which method should be called
instead of allowing the system to do it. This is why most traditional programming lan-
guages have complicated decision logic based on the different types of objects in a system.
For example, in a traditional programming language, instead of sending the message Draw
yourself to the different types of graphical objects in Figure 1-13, we would have to write
decision logic using a case statement or a set of if statements to determine what kind of
graphical object we wanted to draw, and we would have to name each draw function dif-
ferently (e.g., draw square, draw circle, or draw triangle). This obviously makes the system
much more complicated and difficult to understand.

OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN (OOSAD)

Object-oriented approaches to developing information systems, technically speaking, can use
any of the traditional methodologies. However, the object-oriented approaches are most asso-
ciated with a phased development RAD or agile methodology. The primary difference between
a traditional approach like structured design and an object-oriented approach is how a prob-
lem is decomposed. In traditional approaches, the problem-decomposition process is either
process-centric or data-centric. However, processes and data are so closely related that it is
difficult to pick one or the other as the primary focus. Based on this lack of congruence with the
real world, new object-oriented methodologies have emerged that use the RAD-based sequence
of SDLC phases but attempt to balance the emphasis between process and data by focusing the
decomposition of problems on objects that contain both data and processes.

24 Chapter 1 Introduction to Systems Analysis and Design

According to the creators of the Unified Modeling Language (UML), Grady Booch, Ivar
Jacobson, and James Rumbaugh,'®any modern object-oriented approach to developing infor-
mation systems must be use-case driven, architecture-centric, and iterative and incremental.

Use-Case Driven

Use-case driven means that use cases are the primary modeling tools defining the behavior of
the system. A use case describes how the user interacts with the system to perform some activ-
ity, such as placing an order, making a reservation, or searching for information. The use cases
are used to identify and to communicate the requirements for the system to the programmers
who must write the system. Use cases are inherently simple because they focus on only one
business process at a time. In contrast, the process model diagrams used by traditional struc-
tured and RAD methodologies are far more complex because they require the systems analyst
and user to develop models of the entire system. With traditional methodologies, each system
is decomposed into a set of subsystems, which are, in turn, decomposed into further subsys-
tems, and so on. This goes on until no further process decomposition makes sense, and it often
requires dozens of pages of interlocking diagrams. In contrast, a use case focuses on only one
business process at a time, so developing models is much simpler.!”

Architecture-Centric

Any modern approach to systems analysis and design should be architecture-centric.
Architecture-centric means that the underlying software architecture of the evolving system
specification drives the specification, construction, and documentation of the system. Modern
object-oriented systems analysis and design approaches should support at least three separate
but interrelated architectural views of a system: functional, static, and dynamic. The functional,
or external, view describes the behavior of the system from the perspective of the user. The
structural, or static, view describes the system in terms of attributes, methods, classes, and
relationships. The behavioral, or dynamic, view describes the behavior of the system in terms
of messages passed among objects and state changes within an object.

Iterative and Incremental

Modern object-oriented systems analysis and design approaches emphasize iterative and
incremental development that undergoes continuous testing and refinement throughout the
life of the project. This implies that the systems analysts develop their understanding of a
user’s problem by building up the three architectural views little by little. The systems analyst
does this by working with the user to create a functional representation of the system under
study. Next, the analyst attempts to build a structural representation of the evolving system.
Using the structural representation of the system, the analyst distributes the functionality of
the system over the evolving structure to create a behavioral representation of the evolving
system. As an analyst works with the user in developing the three architectural views of the
evolving system, the analyst iterates over each of and among the views. That is, as the analyst
better understands the structural and behavioral views, the analyst uncovers missing require-
ments or misrepresentations in the functional view. This, in turn, can cause changes to be

16 Grady Booch, Ivar Jacobson, and James Rumbaugh, The Unified Modeling Language User Guide (Reading, MA:
Addison-Wesley, 1999).

17 For those of you who have experience with traditional structured analysis and design, this is one of the most unusual
aspects of object-oriented analysis and design using UML. Unlike structured approaches, object-oriented approaches
stress focusing on just one use case at a time and distributing that single use case over a set of communicating and
collaborating objects.

The Unified Process 25

FIGURE 1-14 Object-Oriented
Iterative and
Incremental :
Functional
Development -
Structural < » Behavioral
view view

cascaded back through the structural and behavioral views. All three architectural views of
the system are interlinked and dependent on each other (see Figure 1-14). As each increment
and iteration is completed, a more-complete representation of the user’s real functional
requirements is uncovered.

Benefits of Object-Oriented Systems Analysis and Design

Concepts in the object-oriented approach enable analysts to break a complex system into
smaller, more-manageable modules, work on the modules individually, and easily piece the
modules back together to form an information system. This modularity makes systems devel-
opment easier to grasp, easier to share among members of a project team, and easier to com-
municate to users, who are needed to provide requirements and confirm how well the system
meets the requirements throughout the systems development process. By modularizing systems
development, the project team actually is creating reusable pieces that can be plugged into
other systems efforts or used as starting points for other projects. Ultimately, this can save time
because new projects don’t have to start completely from scratch.

THE UNIFIED PROCESS

The Unified Process is a specific methodology that maps out when and how to use the var-
ious Unified Modeling Language (UML) techniques for object-oriented analysis and design.
The primary contributors were Grady Booch, Ivar Jacobsen, and James Rumbaugh. Whereas
the UML provides structural support for developing the structure and behavior of an infor-
mation system, the Unified Process provides the behavioral support. The Unified Process, of
course, is use-case driven, architecture-centric, and iterative and incremental. Furthermore,
the Unified Process is a two-dimensional systems development process described by a set of
phases and workflows. The phases are inception, elaboration, construction, and transition.
The workflows include business modeling, requirements, analysis, design, implementation,
test, deployment, configuration and change management, project management, and environ-
ment.!® Figure 1-15 depicts the Unified Process.

18 The material in this section is based on Khawar Zaman Ahmed and Cary E. Umrysh, Developing Enterprise Java
Applications with J2EE and UML (Boston, MA: Addison-Wesley, 2002); Jim Arlow and Ila Neustadt, UML and The
Unified Process: Practical Object-Oriented Analysis & Design (Boston, MA: Addison-Wesley, 2002); Peter Eeles,
Kelli Houston, and Wojtek Kozacynski, Building J2EE Applications with the Rational Unified Process (Boston, MA:
Addison-Wesley, 2003); Ivar Jacobson, Grady Booch, and James Rumbaugh, The Unified Software Development Process
(Reading, MA: Addison-Wesley, 1999); Phillipe Krutchten, The Rational Unified Process: An Introduction, 2nd Ed.
(Boston, MA: Addison-Wesley, 2000); “Rational Unified Process: Best Practices for Software Development Teams,”
Rational Software White Paper, TP026B, Rev 11/01.

26 Chapter 1 Introduction to Systems Analysis and Design

Phases

The phases of the Unified Process support an analyst in developing information systems in
an iterative and incremental manner. The phases describe how an information system evolves
through time. Depending on which development phase the evolving system is currently in,
the level of activity varies over the workflows. The curve in Figure 1-15 associated with each
workflow approximates the amount of activity that takes place during the specific phase. For
example, the inception phase primarily involves the business modeling and requirements work-
flows, while practically ignoring the test and deployment workflows. Each phase contains a set
of iterations, and each iteration uses the various workflows to create an incremental version of
the evolving system. As the system evolves through the phases, it improves and becomes more
complete. Each phase has objectives, a focus of activity over the workflows, and incremental
deliverables. Each of the phases is described next.

Inception In many ways, the inception phase is very similar to the planning phase of a tra-
ditional SDLC approach. In this phase, a business case is made for the proposed system. This
includes feasibility analysis that should answer questions such as the following:

Do we have the technical capability to build it (technical feasibility)?

If we build it, will it provide business value (economic feasibility)?

If we build it, will it be used by the organization (organizational feasibility)?

Engineering Workflows

Phases

Business Modeling

Inception Elaboration Construction Transition

Requirements

Analysis

Design

Implementation

Test

Deployment

Supporting Workflows

Phases

Configuration and
Change Management

Inception Elaboration Construction Transition

Project Management

Environment

Iter Iter Iter

k k+1

Iter

Iter Iter
p .

Iter Iter
i i+1 j

FIGURE 1-15 The Unified Process

The Unified Process 27

To answer these questions, the development team performs work related primarily to
the business modeling, requirements, and analysis workflows. In some cases, depending on
the technical difficulties that could be encountered during the development of the system,
a throwaway prototype is developed. This implies that the design, implementation, and test
workflows could also be involved. The project management and environment supporting
workflows are very relevant to this phase. The primary deliverables from the inception phase
are a vision document that sets the scope of the project; identifies the primary requirements
and constraints; sets up an initial project plan; and describes the feasibility of and risks asso-
ciated with the project, the adoption of the necessary environment to develop the system, and
some aspects of the problem domain classes being implemented and tested.

Elaboration When we typically think about object-oriented systems analysis and design,
the activities related to the elaboration phase of the Unified Process are the most relevant.
The analysis and design workflows are the primary focus during this phase. The elaboration
phase continues with developing the vision document, including finalizing the business
case, revising the risk assessment, and completing a project plan in sufficient detail to allow
the stakeholders to be able to agree with constructing the actual final system. It deals with
gathering the requirements, building the UML structural and behavioral models of the
problem domain, and detailing how the problem domain models fit into the evolving system
architecture. Developers are involved with all but the deployment engineering workflow in
this phase. As the developers iterate over the workflows, the importance of addressing
configuration and change management becomes apparent. Also, the development tools
acquired during the inception phase become critical to the success of the project during
this phase.! The primary deliverables of this phase include the UML structure and behavior
diagrams and an executable of a baseline version of the evolving information system. The
baseline version serves as the foundation for all later iterations. By providing a solid founda-
tion at this point, the developers have a basis for completing the system in the construction
and transition phases.

Construction The construction phase focuses heavily on programming the evolving infor-
mation system. This phase is primarily concerned with the implementation workflow. How-
ever, the requirements workflow and the analysis and design workflows also are involved
with this phase. It is during this phase that missing requirements are identified and the
analysis and design models are finally completed. Typically, there are iterations of the
workflows during this phase, and during the last iteration, the deployment workflow kicks
into high gear. The configuration and change management workflow, with its version-con-
trol activities, becomes extremely important during the construction phase. At times, an
iteration has to be rolled back. Without good version controls, rolling back to a previous
version (incremental implementation) of the system is nearly impossible. The primary
deliverable of this phase is an implementation of the system that can be released for beta
and acceptance testing.

Transition Like the construction phase, the transition phase addresses aspects typically
associated with the implementation phase of a traditional SDLC approach. Its primary
focus is on the testing and deployment workflows. Essentially, the business modeling,
requirements, and analysis workflows should have been completed in earlier iterations
of the evolving information system. Furthermore, the testing workflow will have been

19 With UML comprising fifteen different, related diagramming techniques, keeping the diagrams coordinated and the
different versions of the evolving system synchronized is typically beyond the capabilities of a mere mortal systems devel-
oper. These tools typically include project management and CASE tools. We describe the use of these tools in Chapter 2.

28 Chapter 1 Introduction to Systems Analysis and Design

executing during the earlier phases of the evolving system. Depending on the results
from the testing workflow, some redesign and programming activities on the design and
implementation workflows could be necessary, but they should be minimal at this point.
From a managerial perspective, the project management, configuration and change man-
agement, and environment are involved. Some of the activities that take place are beta and
acceptance testing, fine-tuning the design and implementation, user training, and rolling
out the final product onto a production platform. Obviously, the primary deliverable is
the actual executable information system. The other deliverables include user manuals, a
plan to support the users, and a plan for upgrading the information system in the future.

Workflows

The workflows describe the tasks or activities that a developer performs to evolve an infor-
mation system over time. The workflows of the Unified Process are grouped into two broad
categories: engineering and supporting.

Engineering Workflows Engineering workflows include business-modeling, requirements,
analysis, design, implementation, test, and deployment workflows. The engineering work-
flows deal with the activities that produce the technical product (i.e., the information system).

Business Modeling Workflow The business-modeling workflow uncovers problems and
identifies potential projects within a user organization. This workflow aids management in
understanding the scope of the projects that can improve the efficiency and effectiveness of a
user organization. The primary purpose of business modeling is to ensure that both developer
and user organizations understand where and how the to-be-developed information system
fits into the business processes of the user organization. This workflow is primarily exe-
cuted during the inception phase to ensure that we develop information systems that make
business sense. The activities that take place on this workflow are most closely associated with
the planning phase of the traditional SDLC; however, requirements gathering, and use-case
and business process modeling techniques also help us to understand the business situation.

Requirements Workflow In the Unified Process, the requirements workflow includes elic-
iting both functional and nonfunctional requirements. Typically, requirements are gathered
from project stakeholders, such as end users, managers within the end user organization, and
even customers. The requirements workflow is used the most during the inception and elab-
oration phases. The identified requirements are very helpful for developing the vision docu-
ment and the use cases used throughout the development process. Additional requirements
tend to be discovered throughout the development process. In fact, only the transition phase
tends to have few, if any, additional requirements identified.

Analysis Workflow The analysis workflow primarily addresses the creation of an analysis
model of the problem domain. In the Unified Process, the analyst begins designing the archi-
tecture associated with the problem domain; using the UML, the analyst creates structural and
behavior diagrams that depict a description of the problem domain classes and their inter-
actions. The primary purpose of the analysis workflow is to ensure that both the developer
and user organizations understand the underlying problem and its domain without overana-
lyzing. If they are not careful, analysts can create analysis paralysis, which occurs when the
project becomes so bogged down with analysis that the system is never actually designed or
implemented. A second purpose of the analysis workflow is to identify useful reusable classes
for class libraries. By reusing predefined classes, the analyst can avoid reinventing the wheel

The Unified Process 29

when creating the structural and behavior diagrams. The analysis workflow is predominantly
associated with the elaboration phase, but like the requirements workflow, it is possible that
additional analysis will be required throughout the development process.

Design Workflow The design workflow transitions the analysis model into a form that can
be used to implement the system: the design model. Whereas the analysis workflow concen-
trated on understanding the problem domain, the design workflow focuses on developing a
solution that will execute in a specific environment. Basically, the design workflow simply
enhances the description of the evolving system by adding classes that address the environ-
ment of the system to the evolving analysis model. The design workflow uses activities such
as detailed problem domain class design, optimization of the evolving information system,
database design, user-interface design, and physical architecture design. The design workflow
is associated primarily with the elaboration and construction phases of the Unified Process.

Implementation Workflow The primary purpose of the implementation workflow is to
create an executable solution based on the design model (i.e., programming). This includes
not only writing new classes but also incorporating reusable classes from executable class
libraries into the evolving solution. As with any programming activity, the new classes and
their interactions with the incorporated reusable classes must be tested. Finally, in the case of
multiple groups performing the implementation of the information system, the implementers
also must integrate the separate, individually tested modules to create an executable version
of the system. The implementation workflow is associated primarily with the elaboration and
construction phases.

Testing Workflow The primary purpose of the testing workflow is to increase the quality
of the evolving system. Testing goes beyond the simple unit testing associated with the
implementation workflow. In this case, testing also includes testing the integration of all
modules used to implement the system, user acceptance testing, and the actual alpha test-
ing of the software. Practically speaking, testing should go on throughout the development
of the system; testing of the analysis and design models occurs during the elaboration and
construction phases, whereas implementation testing is performed primarily during the
construction and, to some degree, transition phases. Basically, at the end of each iteration
during the development of the information system, some type of test should be performed.

Deployment Workflow The deployment workflow is most associated with the transition
phase of the Unified Process. The deployment workflow includes activities such as software
packaging, distribution, installation, and beta testing. When actually deploying the new sys-
tem into a user organization, the developers might have to convert the current data, interface
the new software with the existing software, and train the end user to use the new system.

Supporting Workflows The supporting workflows include the project management, con-
figuration and change management, and environment workflows. The supporting workflows
focus on the managerial aspects of information systems development.

Project Management Workflow Whereas the other workflows associated with the Unified
Process are technically active during all four phases, the project management workflow is
the only truly cross-phase workflow. The development process supports incremental and
iterative development, so information systems tend to grow or evolve over time. At the end
of each iteration, a new incremental version of the system is ready for delivery. The project
management workflow is quite important owing to the complexity of the two-dimensional

30 Chapter 1 Introduction to Systems Analysis and Design

development model of the Unified Process (workflows and phases). This workflow’s activities
include identifying and managing risks, managing scope, estimating the time to complete
each iteration and the entire project, estimating the cost of the individual iteration and the
whole project, and tracking the progress being made toward the final version of the evolving
information system.

Configuration and Change Management Workflow The primary purpose of the configu-
ration and change management workflow is to keep track of the state of the evolving system.
In a nutshell, the evolving information system comprises a set of artifacts (e.g., diagrams,
source code, and executables). During the development process, these artifacts are modified.
A substantial amount of work—and, hence, money—is involved in developing the artifacts.
The artifacts themselves should be handled as any expensive asset would be handled—access
controls must be put into place to safeguard the artifacts from being stolen or destroyed. Fur-
thermore, because the artifacts are modified on a regular, if not continuous, basis, good ver-
sion control mechanisms should be established. Finally, a good deal of project management
information needs to be captured (e.g., author, time, and location of each modification). The
configuration and change management workflow is associated mostly with the construction
and transition phases.

Environment Workflow During the development of an information system, the develop-
ment team needs to use different tools and processes. The environment workflow addresses
these needs. For example, a CASE tool that supports the development of an object-oriented
information system via the UML could be required. Other tools necessary include pro-
gramming environments, project management tools, and configuration management tools.
The environment workflow involves acquiring and installing these tools. Even though this
workflow can be active during all of the phases of the Unified Process, it should be involved
primarily with the inception phase.

Extensions to the Unified Process

As large and as complex as the Unified Process is, many authors have pointed out a set of
critical weaknesses. First, the Unified Process does not address staffing, budgeting, or contract
management issues. These activities were explicitly left out of the Unified Process. Second, the
Unified Process does not address issues relating to maintenance, operations, or support of
the product once it has been delivered. Thus, it is not a complete software process; it is only
a development process. Third, the Unified Process does not address cross- or inter-project
issues. Considering the importance of reuse in object-oriented systems development and the
fact that in many organizations employees work on many different projects at the same time,
leaving out inter-project issues is a major omission.

To address these omissions, Ambler and Constantine suggest adding a production phase
and two workflows: the operations and support workflow and the infrastructure management
workflow (see Figure 1-16).20 In addition to these new workflows, the test, deployment, and
environment workflows are modified, and the project management and the configuration
and change management workflows are extended into the production phase. These extensions

20'S. W. Ambler and L. L. Constantine, The Unified Process Inception Phase: Best Practices in Implementing the UP
(Lawrence, KS: CMP Books, 2000); S. W. Ambler and L. L. Constantine, The Unified Process Elaboration Phase:
Best Practices in Implementing the UP (Lawrence, KS: CMP Books, 2000); S. W. Ambler and L. L. Constantine, The
Unified Process Construction Phase: Best Practices in Implementing the UP (Lawrence, KS: CMP Books, 2000); S. W.
Ambler and L. L. Constantine, The Unified Process Transition and Production Phases: Best Practices in Implementing
the UP (Lawrence, KS: CMP Books, 2002).

The Unified Process 31

Engineering Workflows

Phases

Business Modeling

Inception Elaboration Construction Transition Production

Requirements

Analysis

Design

Implementation

Test

Deployment

Supporting Workflows

Phases

Configuration and
Change Management

Inception Elaboration Construction Transition Production

Project Management

Environment

Operations and Support

Infrastructure
Management

Iter Iter Iter

k k+1

Iter Iter
j j+1

Iter Iter
i i+1

Iter

FIGURE 1-16 The Enhanced Unified Process

are based on alternative object-oriented software processes: the OPEN process (Object-oriented
Process, Environment, and Notation) and the Object-Oriented Software Process.?!

Production Phase The production phase is concerned primarily with issues related to the
software product after it has been successfully deployed. This phase focuses on issues related
to updating, maintaining, and operating the software. Unlike the previous phases, there are
no iterations or incremental deliverables. If a new release of the software is to be developed,

21'S. W. Ambler, Process Patterns—Building Large-Scale Systems Using Object Technology (Cambridge, UK: SIGS
Books/Cambridge University Press, 1998); S. W. Ambler, More Process Patterns—Delivering Large-Scale Systems
Using Object Technology (Cambridge, UK: SIGS Books/Cambridge University Press, 1999); 1. Graham, B. Henderson-
Sellers, and H. Younessi, The OPEN Process Specification (Harlow, UK: Addison-Wesley, 1997); B. Henderson-Sellers and
B. Unhelkar, OPEN Modeling with UML (Harlow, UK: Addison-Wesley, 2000).

32 Chapter 1 Introduction to Systems Analysis and Design

then the developers must begin a new run through the first four phases. Based on the activi-
ties that take place during this phase, no engineering workflows are relevant. The supporting
workflows that are active during this phase include the configuration and change manage-
ment workflow, the project management workflow, the new operations and support work-
flow, and the infrastructure management workflow.

Operations and Support Workflow The operations and support workflow, as you might guess,
addresses issues related to supporting the current version of the software and operating the
software on a daily basis. Activities include creating plans for the operation and support of the
software product once it has been deployed, creating training and user documentation, putting
into place necessary backup procedures, monitoring and optimizing the performance of the
software, and performing corrective maintenance on the software. This workflow becomes
active during the construction phase; its level of activity increases throughout the transition
and, finally, the production phase. The workflow finally drops oft when the current version of
the software is replaced by a new version. Many developers are under the false impression that
once the software has been delivered to the customer, their work is finished. In most cases, the
work of supporting the software product is much more costly and time consuming than the
original development. At that point, the developer’s work may have just begun.

Infrastructure Management Workflow The infrastructure management workflow’s primary
purpose is to support the development of the infrastructure necessary to develop object-
oriented systems. Activities such as development and modification of libraries, standards,
and enterprise models are very important. When the development and maintenance of a
problem-domain architecture model goes beyond the scope of a single project and reuse
is going to occur, the infrastructure management workflow is essential. Another very impor-
tant set of cross-project activities is the improvement of the software development process.
Because the activities on this workflow tend to affect many projects and the Unified Process
focuses only on a specific project, the Unified Process tends to ignore these activities (i.e., they
are simply beyond the scope and purpose of the Unified Process).

Existing Workflow Modifications and Extensions In addition to the workflows that were
added to address deficiencies contained in the Unified Process, existing workflows had to
be modified and/or extended into the production phase. These workflows include the test,
deployment, environment, project management, and configuration and change management
workflows.

Test Workflow For high-quality information systems to be developed, testing should be
done on every deliverable, including those created during the inception phase. Otherwise, less
than high-quality systems will be delivered to the customer.

Deployment Workflow Legacy systems exist in most corporations today, and these systems
have databases associated with them that must be converted to interact with the new systems.
Owing to the complexity of deploying new systems, the conversion requires significant plan-
ning. Therefore, the activities on the deployment workflow need to begin in the inception phase
instead of waiting until the end of the construction phase, as suggested by the Unified Process.

Environment Workflow The environment workflow needs to be modified to include activ-
ities related to setting up the operations and production environment. The actual work per-
formed is similar to the work related to setting up the development environment that was
performed during the inception phase. In this case, the additional work is performed during
the transition phase.

The Unified Process 33

Project Management Workflow Even though the project management workflow does not
include staffing the project, managing the contracts among the customers and vendors, and
managing the project’s budget, these activities are crucial to the success of any software
development project. We suggest extending project management to include these activities.
This workflow should additionally occur in the production phase to address issues such as
training, staff management, and client relationship management.

Configuration and Change Management Workflow The configuration and change manage-
ment workflow is extended into the new production phase. Activities performed during the
production phase include identifying potential improvements to the operational system and
assessing the potential impact of the proposed changes. Once developers have identified these
changes and understood their impact, they can schedule the changes to be made and deployed
with future releases.

Figure 1-17 shows the chapters in which the Enhanced Unified Process’s phases and
workflows are covered. Given the offshore outsourcing and automation of information

Enhanced UP Phases Chapters
Inception 2-4
Elaboration 3-11
Construction 8,12
Transition 12-13
Production 13

Enhanced UP

Engineering Workflows Chapters
Business Modeling 2-5
Requirements 3-5,10
Analysis 3-7
Design 7-11
Implementation 9,12
Test 4-7,12
Deployment 13
Enhanced UP
Supporting Workflows Chapters
Project Management 2,13
Configuration and 13
Change Management
Environment 2
Operations and Support 13
Infrastructure 2
Management

FIGURE 1-17 The Enhanced Unified Process and the Textbook Organization

34 Chapter 1 Introduction to Systems Analysis and Design

technology,?? in this textbook, we focus primarily on the elaboration phase and the busi-
ness modeling, requirements, analysis, design, and project management workflows of the
Enhanced Unified Process. However, as Figure 1-17 shows, the other phases and workflows
are covered. In many object-oriented systems development environments today, code
generation is supported. Thus, from a business perspective, we believe the activities associated
with these workflows are the most important.

THE UNIFIED MODELING LANGUAGE

Until 1995, object concepts were popular but implemented in many different ways by
different developers. Each developer had his or her own methodology and notation (e.g.,
Booch, Coad, Moses, OMT, OOSE, SOMA).?* Then in 1995, Rational Software brought
three industry leaders together to create a single approach to object-oriented systems
development. Grady Booch, Ivar Jacobson, and James Rumbaugh worked with others to
create a standard set of diagramming techniques known as the Unified Modeling Language
(UML). The objective of UML was to provide a common vocabulary of object-oriented
terms and diagramming techniques rich enough to model any systems development pro-
ject from analysis through implementation. In November 1997, the Object Management
Group (OMG) formally accepted UML as the standard for all object developers. During the
following years, the UML has gone through multiple minor revisions. The current version
of UML is Version 2.5.

Version 2.5 of the UML defines a set of fifteen diagramming techniques used to model a
system. The diagrams are broken into two major groupings: one for modeling the structure
of a system and one for modeling behavior. Structure diagrams provide a way to represent
the data and static relationships in an information system. The structure diagrams include
class, object, package, deployment, component, composite structure, and profile diagrams.
Behavior diagrams provide the analyst with a way to depict the dynamic relationships among
the instances or objects that represent the business information system. They also allow mod-
eling of the dynamic behavior of individual objects throughout their lifetime. The behavior
diagrams support the analyst in modeling the functional requirements of an evolving infor-
mation system. The behavior modeling diagrams include activity, sequence, communication,
interaction overview, timing, behavior state machine, protocol state machine, and use-case
diagrams.?* Figure 1-18 provides an overview of these diagrams.

22 See Thomas L. Friedman, The World Is Flat: A Brief History of the Twenty-First Century, Updated and Expanded
Edition (New York: Farrar, Straus, and Giroux, 2006); Daniel H. Pink, A Whole New Mind: Why Right-Brainers Will
Rule the Future (New York: Riverhead Books, 2006).

23 See Grady Booch, Object-Oriented Analysis and Design with Applications, 2nd Ed. (Redwood City, CA: Benjamin/
Cummings, 1994); Peter Coad and Edward Yourdon, Object-Oriented Analysis, 2nd Ed. (Englewood Cliffs, NJ:
Yourdon Press, 1991); Peter Coad and Edward Yourdon, Object-Oriented Design (Englewood Cliffs, NJ: Yourdon
Press, 1991); Brian Henderson-Sellers and Julian Edwards, Book Two of Object-Oriented Knowledge: The Working
Object (Sydney, Australia: Prentice Hall, 1994); James Rumbaugh, Michael Blaha, William Premerlani, Frederick
Eddy, and William Lorensen, Object-Oriented Modeling and Design (Englewood Cliffs, NJ: Prentice Hall, 1991);
Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard, Object-Oriented Software Engineering:
A Use Case Approach (Wokingham, England: Addison-Wesley, 1992); Ian Graham, Migrating to Object Technology
(Wokingham, England: Addison-Wesley, 1994).

24 The material contained in this section is based on the Unified Modeling Language: Superstructure Version 2.4,
ptc/2010-11-14 (www.uml.org). Additional useful references include Michael Jesse Chonoles and James A. Schardt,
UML 2 for Dummies (Indianapolis, IN: Wiley, 2003); Hans-Erik Eriksson, Magnus Penker, Brian Lyons, and David
Fado, UML 2 Toolkit (Indianapolis, IN: Wiley, 2004); Kendall Scott, Fast Track UML 2.0 (Berkeley, CA: Apress,
2004). For a complete description of all diagrams, see www.uml.org.

The Unified Modeling Language 35

Diagram Name Used to... Primary Phase

Structure Diagrams

Class Illustrate the relationships between classes modeled
in the system

Analysis, Design

Object Illustrate the relationships between objects modeled
in the system; used when actual instances of the classes
will better communicate the model

Analysis, Design

Package Group other UML elements together to form
higher-level constructs

Analysis, Design,
Implementation

Deployment Show the physical architecture of the system; can also Physical Design,
be used to show software components being deployed Implementation
onto the physical architecture

Component Illustrate the physical relationships among the software Physical Design,

components Implementation

Illustrate the internal structure of a class, i.e., the
relationships among the parts of a class

Composite Structure Design Analysis, Design

Profile Used to develop extensions to the UML itself None

Behavioral Diagrams

Activity Illustrate business workflows independent of classes, the flow
of activities in a use case, or detailed design of a method

Analysis, Design

Sequence Model the behavior of objects within a use case;
focuses on the time-based ordering of an activity

Analysis, Design

Communication Model the behavior of objects within a use case;
focus on the communication among a set of

collaborating objects of an activity

Analysis, Design

Interaction Overview

Timing

Behavioral State Machine

Protocol State Machine

Illustrate an overview of the flow of control of a process

Illustrate the interaction among a set of objects and the state
changes they go through along a time axis

Examine the behavior of one class

Illustrate the dependencies among the different

Analysis, Design

Analysis, Design

Analysis, Design

Analysis, Design

interfaces of a class

Use-Case Capture business requirements for the system and illustrate Analysis
the interaction between the system and its environment

FIGURE 1-18 UML 2.5 Diagram Summary

Depending on where in the development process the system is, different diagrams play
a more important role. In some cases, the same diagramming technique is used throughout
the development process. In that case, the diagrams start off very conceptual and abstract.
As the system is developed, the diagrams evolve to include details that ultimately lead to
generating and developing code. In other words, the diagrams move from documenting the
requirements to laying out the design. Overall, the consistent notation, integration among
the diagramming techniques, and application of the diagrams across the entire development
process make the UML a powerful and flexible language for analysts and developers. Later
chapters provide more detail on using a subset of the UML in object-oriented systems analysis

36 Chapter 1 Introduction to Systems Analysis and Design

and design. In particular, these chapters describe activity, use-case, class, object, sequence,
communication, package, and deployment diagrams and the behavior state machines. We
also introduce an optional UML diagram, the windows navigation diagram, that is an exten-
sion to the behavioral state machine that is used to design user navigation through an infor-
mation system’s user interfaces.

APPLYING THE CONCEPTS AT PATTERSON
SUPERSTORE

This course will introduce many new concepts regarding object-oriented analysis and
design. To make these concepts more relevant and understandable, we will apply the
concepts, introduced in each chapter, to a fictitious company called Patterson Superstore.

Patterson is a retail chain established in Pittsburgh, PA, in 1985. Currently, Patterson
uses a mobile application to facilitate prescription order, notification, and auto refill ser-
vices. This service is widely used by Patterson’s client base, and Patterson has leveraged
this mobile app to gain an advantage over less technically advanced competitors.

Clients now want to use this technology to access health clinic services. The Vice
President of Pharmacy Services, Max Ross, would like to use this opportunity to position
Patterson as a leader in the use of technology use for clinic access. The system that he
envisions will enable real-time communication with medical personnel (audio, video,
and text), mobile appointment scheduling, telehealth assessment, and diagnosis of minor
problems through video house calls. Throughout the book, we will revisit Patterson
Superstore to see how the concepts introduced in each chapter affect this project.

You can find the rest of the case at: www.wiley.com/go/dennis/casestudy

CHAPTER REVIEW

After reading and studying this chapter, you should be able to:

I N O | N R B | I

KEY TERMS

Abstract classes
Agile development
A-kind-of
Analysis model
Analysis paralysis

Describe the four primary phases of the Systems Development Life Cycle (SDLC).

Explain the evolution of system development methodologies from process-centric to data-centric to RAD-based
methodologies.

Explain the different roles played by a systems analyst in the process of developing information systems.

Describe the basic characteristics of object-oriented systems: objects, attributes, methods, messages, encapsulation,
information hiding, polymorphism, dynamic binding, and inheritance.

Discuss the three basic characteristics of all object-oriented systems analysis and design approach: use-case driven,
architecture-centric, and iterative and incremental development.

Describe the Unified Process.

List and categorize, as to their primary purpose, the different diagrams associated with the Unified Modeling
Language (UML).

Analysis phase Architecture design Behavioral view
Analysis strategy As-is system Business analyst
Analysis workflow Attribute Business modeling
Approval committee Behavior workflow
Architecture-centric Behavior diagrams Change agent

Change management
analyst
Class
Concrete classes
Configuration and change
management workflow
Construction
Construction phase
Database and file
specification
Data-centered
methodology
Deliverable
Deployment workflow
Design model
Design phase
Design prototype
Design strategy
Design workflow
Dynamic binding
Dynamic view
Elaboration phase
Encapsulation
Engineering workflow
Environment
workflow

QUESTIONS

1. Compare and contrast phases, steps, techniques, and

deliverables.

External view

Extreme programming (XP)

Feasibility analysis

Functional view

Gradual refinement

Implementation phase

Implementation workflow

Inception phase

Incremental

Information hiding

Infrastructure analyst

Infrastructure management
workflow

Inherit

Inheritance

Instance

Interface design

Iterative

Message

Method

Methodology

Object

Object Management
Group (OMG)

Object-oriented
methodologies

Operations and support
workflow

Parallel development

Phased development

Phases

Planning phase

Polymorphism

Process-centered methodology

Production phase

Program design

Programmer

Project management

Project management
workflow

Project manager

Project plan

Project sponsor

Prototyping

Rapid application development

(RAD)
Requirements gathering
Requirements workflow
Scrum
State
Static binding
Static view

12. Describe the major elements in and issues with water-

fall development.

Questions 37

Structural view

Structure diagrams

Structured design

Subclass

Superclass

Support plan

System proposal

System prototype

System request

System specification

Systems analyst

Systems development life
cycle (SDLC)

Technical writer

Testing workflow

Throwaway prototyping

Training plan

Transition phase

Unified Modeling Language
(UML)

Use case

Use-case driven

Version

Waterfall development

Workflows

Workplan

10.

11.

. Describe the major phases in the SDLC.

. Describe the principal steps in the planning phase.
What are the major deliverables?

. Describe the principal steps in the analysis phase.
What are the major deliverables?

. Describe the principal steps in the design phase. What
are the major deliverables?

. Describe the principal steps in the implementation
phase. What are the major deliverables?

. What are the roles of a project sponsor and the
approval committee?

. What does gradual refinement mean in the context of
SDLC?

. Compare and contrast process-centered methodolo-
gies with data-centered methodologies.
Compare and contrast structured design-based meth-
odologies in general to RAD-based methodologies in
general.
Compare and contrast extreme programming and
throwaway prototyping.

13. Describe the major elements in and issues with parallel

14.

15.

16.

17.
18.

21.

22.
23.
24,

development.

Describe the major elements in and issues with phased
development.

Describe the major elements in and issues with
prototyping.

Describe the major elements in and issues with throw-
away prototyping.

Describe the major elements in and issues with XP.
Describe the major elements in and issues with
Scrum.

. What are the key factors in selecting a methodology?
20.

What are the major roles played by a systems analyst
on a project team?

Compare and contrast the role of a systems analyst,
business analyst, and infrastructure analyst.

What is the difference between classes and objects?
What are methods and messages?

Why are encapsulation and information hiding
important characteristics of object-oriented systems?

38

25.

26.
27.
28.
29.
30.
31.

32.

Chapter 1 Introduction to Systems Analysis and Design

What is meant by polymorphism when applied to
object-oriented systems?

Compare and contrast dynamic and static binding.
What is a use case?

What is meant by use-case driven?

What is the Unified Modeling Language?

Who is the Object Management Group?

What is the primary purpose of structure diagrams?
Give some examples of structure diagrams.

For what are behavior diagrams used? Give some
examples of behavior diagrams.

EXERCISES

A.

Suppose you are a project manager using a water-
fall development-based methodology on a large and
complex project. Your manager has just read the latest
article in Computerworld that advocates replacing
this methodology with prototyping and comes to you
requesting that you switch. What would you say?

The basic types of methodologies discussed in this
chapter can be combined and integrated to form new
hybrid methodologies. Suppose you were to com-
bine throwaway prototyping with the use of waterfall
development. What would the methodology look
like? Draw a picture (similar to those in Figures 1-2
through 1-7). How would this new methodology
compare to the others?

Look on the Web for different kinds of job opportu-
nities that are available for people who want analyst
positions? Compare and contrast the skills that the ads
ask for to the skills that we presented in this chapter.
Think about your ideal analyst position. Write an ad
to hire someone for that position. What requirements
would the job have? What skills and experience would
be required? How would an applicant be able to demon-
strate having the appropriate skills and experience?
Using your favorite Web search engine, find alterna-
tive descriptions of the basic characteristics of object-
oriented systems.

Look up object-oriented programming in Wikipedia.
Write a short report based on its entry.

Choose an object-oriented programming language,
such as C++, Java, Objective-C, Smalltalk, or VB.Net,
and use the Web to find out how the language supports
the basic characteristics of object-oriented systems.
Assume that you have been assigned the task of cre-
ating an object-oriented system that could be used to
support students in finding an appropriate apartment

33

34.

35.

36.

37.
38.

. Why is it important for an OOSAD approach to be
architecture-centric?

What does it mean for an OOSAD approach to be
incremental and iterative?

What are the phases and workflows of the Unified
Process?

Compare the phases of the Unified Process with the
phases of the waterfall model.

Which phase in the SDLC is most important? Why?
Describe the major elements and issues with an object-
oriented approach to developing information systems.

to live in next semester. What are the different types
of objects (i.e., classes) you would want to include in
your system? What attributes or methods would you
want to include in their definition? Is it possible to
arrange them into an inheritance hierarchy? If so, do
it. If not, why not?

Create an inheritance hierarchy that could be used to
represent the following classes: accountant, customer,
department, employee, manager, organization, and
salesperson.

Investigate IBM’s Rational Unified Process (RUP) on the
Web. RUP is a commercial version that extends aspects of
the Unified Process. Write a brief memo describing how it
is related to the Unified Process as described in this chapter.
(Hint: A good website with which to begin is www-01.
ibm.com/software/rational/rup/.)

Suppose you are a project manager who typically has
been using a waterfall development-based methodol-
ogy on a large and complex project. Your manager has
just read the latest article in Computerworld that advo-
cates replacing this methodology with the Unified
Process and comes to you requesting you to switch.
What do you say?

Suppose you are an analyst working for a small com-
pany to develop an accounting system. Would you use
the Unified Process to develop the system, or would
you prefer one of the other approaches? Why?
Suppose you are an analyst developing a new infor-
mation system to automate the sales transactions
and manage inventory for each retail store in a large
chain. The system would be installed at each store
and exchange data with a mainframe computer at the
company’s head office. Would you use the Unified
Process to develop the system, or would you prefer
one of the other approaches? Why?

N.

0.

Suppose you are an analyst working for a small com-
pany to develop an accounting system. What type of
methodology would you use? Why?

Suppose you are an analyst developing a new execu-
tive information system intended to provide key stra-
tegic information from existing corporate databases
to senior executives to help in their decision making.
What type of methodology would you use? Why?
Investigate the Unified Modeling Language on the
Web. Write a paragraph news brief describing the
current state of the UML. (Hint: A good website with
which to begin is www.uml.org.)

MINICASES

Barbara Singleton, manager of western regional sales
at the WAMAP Company, requested that the IS
department develop a sales force management and
tracking system that would enable her to better mon-
itor the performance of her sales staff. Unfortunately,
owing to the massive backlog of work facing the IS
department, her request was given a low priority.
After six months of inaction by the IS department,
Barbara decided to take matters into her own hands.
Based on the advice of friends, Barbara purchased
simple database software and constructed a sales force
management and tracking system on her own.
Although Barbara’s system has been “completed”
for about six weeks, it still has many features that
do not work correctly, and some functions are full
of errors. Barbara’s assistant is so mistrustful of the
system that she has secretly gone back to using her old
paper-based system, because it is much more reliable.
Over dinner one evening, Barbara complained to
a systems analyst friend, “I don’t know what went
wrong with this project. It seemed pretty simple to
me. Those IS guys wanted me to follow this elaborate
set of steps and tasks, but I didn’t think all that really
applied to a PC-based system. I just thought I could
build this system and tweak it around until I got what
I wanted without all the fuss and bother of the meth-
odology the IS guys were pushing. I mean, doesn’t
that just apply to their big, expensive systems?”
Assuming you are Barbara’s systems analyst friend,
how would you respond to her complaint?
Marcus Weber, IS project manager at ICAN Mutual
Insurance Co., is reviewing the staffing arrangements
for his next major project, the development of an
expert system-based underwriter’s assistant. This new

Q.

Minicases 39

Investigate the Object Management Group (OMG) on the
Web. Write a report describing the purpose of the OMG
and what it is involved with besides the UML. (Hint: A
good website with which to begin is www.omg.org.)
Using the Web, find a set of CASE tools that support
the UML. A couple of examples include Poseidon,
Rational Rose, and Visual Paradigm. Find at least two
more. Write a short report describing how well they
support the UML, and make a recommendation as to
which one you believe would be best for a project team
to use in developing an object-oriented information
system using the UML.

system will involve a whole new way for the under-
writers to perform their tasks. The underwriter’s assis-
tant system will function as sort of an underwriting
supervisor, reviewing key elements of each applica-
tion, checking for consistency in the underwriter’s
decisions, and ensuring that no critical factors have
been overlooked. The goal of the new system is to
improve the quality of the underwriters’ decisions and
to improve underwriters’ productivity. It is expected
that the new system will substantially change the way
the underwriting staff do their jobs.

Marcus is dismayed to learn that because of budget
constraints, he must choose between one of two availa-
ble staff members. Barry Filmore has had considerable
experience and training in individual and organiza-
tional behavior. Barry has worked on several other
projects in which the end users had to make significant
adjustments to the new system, and Barry seems to
have a knack for anticipating problems and smoothing
the transition to a new work environment. Marcus had
hoped to have Barry’s involvement in this project.

Marcus’s other potential staff member is Kim Dan-
ville. Prior to joining ICAN Mutual, Kim had con-
siderable work experience with the expert system
technologies that ICAN has chosen for this expert
system project. Marcus was counting on Kim to
help integrate the new expert system technology into
ICAN’s systems environment, and also to provide
on-the-job training and insights to the other develop-
ers on this team.

Given that Marcus’s budget will only permit him to
add Barry or Kim to this project team, but not both,
what choice do you recommend for him? Justify your
answer.

40 Chapter 1 Introduction to Systems Analysis and Design

Joe Brown, the president of Roanoke Manufacturing,
requested that Jack Jones, the MIS department man-
ager, investigate the viability of selling their products
over the Web. Currently, the MIS department is still
using an IBM mainframe as their primary deploy-
ment environment. As a first step, Jack contacted his
friends at IBM to see if they had any suggestions as to
how Roanoke Manufacturing could move toward sup-
porting sales in an electronic commerce environment
while keeping their mainframe as their main system.
His friends explained that IBM (www.ibm.com) now
supports Java and Linux on their mainframes. Jack has
also learned that IBM owns Rational (www-01.ibm.
com/software/rational/), the creator of the UML and
the Unified Process. Jack’s friends suggested that Jack
investigate using object-oriented systems as a basis for

developing the new system. They also suggested that
using the Rational Unified Process (RUP), Java, and vir-
tual Linux machines on his current mainframe as a way
to support the move toward a distributed electronic
commerce system would protect his current investment
in his legacy systems while allowing the new system to
be developed in a more modern manner. Even though
Jack’s IBM friends were very persuasive, Jack is still a
little wary about moving his operation from a struc-
tured systems approach to this new object-oriented
approach. Assuming that you are one of Jack’s IBM
friends, how would you convince him to move toward
using an object-oriented systems development method,
such as RUP, and using Java and Linux as a basis for
developing and deploying the new system on Roanoke
Manufacturing’s current mainframe?

PROJECT MANAGEMENT

OBJECTIVES

This chapter primarily describes the project management workflow of the Unified Process.
The first step in the process is to identify a project that will deliver value to the business
and to create a system request that provides basic information about the proposed system.
Second, the analysts perform a feasibility analysis to determine the technical, economic, and
organizational feasibility of the system; if appropriate, the system is selected and the develop-
ment project begins. Third, the project manager estimates the functionality of the project and
identifies the tasks that need to be performed. Fourth, the manager staffs the project. Finally,
the manager identifies the tools, standards, and process to be used; identifies opportunities for
reuse; determines how the current project fits into the portfolio of projects currently under
development; and identifies opportunities to update the overall structure of the firm’s port-
folio of systems current in use.

Understand the importance of linking the information system to business needs.
Be able to create a system request.

Understand how to assess technical, economic, and organizational feasibility.

Be able to perform a feasibility analysis.

Understand how projects are selected in some organizations.

Become familiar with work breakdown structures, Gantt charts, and network diagrams.
Become familiar with use-case-driven effort estimation.

Be able to create an iterative project workplan.

Understand how to manage the scope, refine the estimates, and manage the risk
of a project.

Become familiar with how to staff a project.

Understand how the environment and infrastructure workflows interact with
the project management workflow.

INTRODUCTION

Most projects occurring in people’s lives, such as weddings or graduation celebrations,
require planning and management. Months are spent in advance identifying and per-
forming all the tasks that need to get done, such as sending out invitations and selecting a
menu, and time and money are carefully allocated among them. Along the way, decisions
are recorded, problems are addressed, and changes are made. The increasing popularity of
the party planner, a person whose sole job is to coordinate a party, suggests how tough this
job can be. In the end, the success of any party has a lot to do with the effort that went into
planning along the way. System development projects can be much more complicated than
the projects we encounter in our personal lives—usually, more people are involved (e.g., the

41

42 Chapter 2 Project Management

organization), the costs are higher, and more tasks need to be completed. Owing to the
complexity of software and software development, it is virtually impossible to “know” all of
the possible things that could happen during system development projects. Therefore, it is
not surprising that “party planners” exist for information systems projects: They are called
project managers.

Project management is the process of planning and controlling the development of a
system within a specified time frame at a minimum cost with the right functionality.! In
general, a project is a set of activities with a starting point and an ending point meant to
create a system that brings value to the business. A project manager has the primary respon-
sibility for managing the hundreds of tasks and roles that need to be carefully coordinated.
Today, project management is an actual profession, and analysts spend years working on
projects before tackling the management of them. However, in many cases, unreasonable
demands set by project sponsors and business managers can make project management very
difficult. Too often, the approach of the holiday season, the chance at winning a proposal
with a low bid, or a funding opportunity pressures project managers to promise systems
long before they are able to deliver them. These overly optimistic timetables are thought to
be one of the biggest problems that projects face; instead of pushing a project forward faster,
they result in delays. Another source is the changing nature of information technology. An
innovation in information technology may look so attractive that organizations embrace
projects using this technology without assessing whether the technology adds value to the
organization; instead the technology itself seems important in its own right. Problems can
usually be traced back to the very beginning of the development of the system, where too
little attention was given to identifying the business value and understanding the risks asso-
ciated with the project.

During the inception phase of the Unified Process of a new systems development pro-
ject, someone—a manager, staff member, sales representative, or systems analyst—typically
identifies some business value that can be gained from using information technology. New
systems development projects should start from a business need or opportunity. Many ideas
for new systems or improvements to existing ones arise from the application of a new tech-
nology, but an understanding of technology is usually secondary to a solid understanding of
the business and its objectives. This does not mean that technical people should not recom-
mend new systems projects. In fact, the ideal situation is for both IT people (i.e., the experts
in systems) and business people (i.e., the experts in business) to work closely to find ways for
technology to support business needs. In this way, organizations can leverage the exciting
innovative technologies that are available while ensuring that projects are based upon real
business objectives, such as increasing sales, improving customer service, and decreasing
operating expenses. Ultimately, information systems need to affect the organization’s bot-
tom line (in a positive way!). To ensure that a real business need is being addressed, the
affected business organization (called the project sponsor), proposes the new systems devel-
opment project using a system request. The system request effectively kicks off the inception

! For a very good comprehensive description of project management for information systems, see R.K. Wysocki,
Effective Project Management: Traditional, Agile, Extreme, 5th Ed. (Indianapolis, IN: Wiley Publishing, 2009).
Also, the Project Management Institute (www.pmi.org) and the Information Systems Community of Practice
of the Project Management Institute (is.vc.pmi.org) have valuable resources on information systems pro-
ject management. Finally, the following are good books on project management for object-oriented projects:
G. Booch, Object Solutions: Managing the Object-Oriented Project (Menlo Park, CA: Addison-Wesley, 1996); M.
R. Cantor, Object-Oriented Project Management with UML (New York: Wiley, 1998); A. Cockburn, Surviving
Object-Oriented Projects: A Manager’s Guide (Reading, MA: Addison-Wesley, 1998); I. Jacobson, G. Booch, and J.
Rumbaugh, The Unified Software Development Process (Reading, MA: Addison-Wesley, 1999); W. Royce, Sofiware
Project Management: A Unified Framework (Reading, MA: Addison-Wesley, 1998).

Project Identification 43

phase for the new systems development project. The request is forwarded to an approval
committee for consideration. The approval committee reviews the request and makes an
initial determination of whether to investigate the proposal or not. If the committee initially
approves the request, the systems development team gathers more information to determine
the feasibility of the project.

A feasibility analysis plays an important role in deciding whether to proceed with an
information systems development project. It examines the technical, economic, and organi-
zational pros and cons of developing the system, and it gives the organization a slightly more
detailed picture of the advantages of investing in the system as well as any obstacles that could
arise. In most cases, the project sponsor works closely with the development team to develop
the feasibility analysis. Once the feasibility analysis has been completed, it is submitted to
the approval committee, along with a revised system request. The committee then decides
whether to approve the project, decline the project, or table it until additional information is
available. Projects are selected by weighing risks and returns and by making trade-offs at the
organizational level.

Once the committee has approved a project, the development team must carefully plan
for the actual development of the system. Because we are following a Unified Process-based
approach, the systems development workplan will evolve throughout the development pro-
cess. Given this evolutionary approach, one critical success factor for project management is
to start with a realistic assessment of the work that needs to be accomplished and then man-
age the project according to that assessment. This can be achieved by carefully creating and
managing the workplan, estimating the effort to develop the system, staffing the project, and
coordinating project activities.

In addition to covering the above material, this chapter also covers three traditional pro-
ject management tools that are very useful to manage object-oriented systems development
projects: work breakdown structures, Gantt charts, and network diagrams.

PROJECT IDENTIFICATION

A project is identified when someone in the organization identifies a business need to build
a system. This could occur within a business unit or IT, come from a steering committee
charged with identifying business opportunities, or evolve from a recommendation made
by external consultants. Examples of business needs include supporting a new marketing
campaign, reaching out to a new type of customer, or improving interactions with suppliers.
Sometimes, needs arise from some kind of “pain” within the organization, such as a drop in
market share, poor customer service levels, or increased competition. Other times, new busi-
ness initiatives and strategies are created, and a system is required to enable them.

Business needs also can surface when the organization identifies unique and compet-
itive ways of using IT. Many organizations keep an eye on emerging technology, which is
technology that is still being developed and is not yet viable for widespread business use. For
example, if companies stay abreast of technology such as the augmented reality, games, smart
cards, and mobile devices, they can develop business strategies that leverage the capabilities of
these technologies and introduce them into the marketplace as a first mover. Ideally, they can
take advantage of this first-mover advantage by making money and continuing to innovate
while competitors trail behind.

The project sponsor is someone who recognizes the strong business need for a system and
has an interest in seeing the system succeed. He or she will work throughout the development
process to make sure that the project is moving in the right direction from the perspective of the

44 Chapter 2 Project Management

business. The project sponsor serves as the primary point of contact for the system. Usually, the
sponsor of the project is from a business function, such as marketing, accounting, or finance;
however, members of the IT area also can sponsor or cosponsor a project.

The size or scope of a project determines the kind of sponsor needed. A small
departmental system might require sponsorship from only a single manager, whereas a
large organizational initiative might need support from the entire senior management
team and even the CEO. If a project is purely technical in nature (e.g., improvements to
the existing IT infrastructure or research into the viability of an emerging technology),
then sponsorship from IT is appropriate. When projects have great importance to the
business yet are technically complex, joint sponsorship by both the business and IT may
be necessary.

Thebusiness need drives the high-level business requirements for the system. Requirements
are what the information system will do, or the functionality it will contain. They need to be
explained at a high level so that the approval committee and, ultimately, the project team
understand what the business expects from the final product. Business requirements are the
features and capabilities the information system will have to include, such as the ability to
collect customer orders online or the ability for suppliers to receive inventory information as
orders are placed and sales are made.

The project sponsor also should have an idea of the business value to be gained from the
system, both in tangible and intangible ways. Tangible value can be quantified and measured
easily (e.g., 2 percent reduction in operating costs). An intangible value results from an intui-
tive belief that the system provides important, but hard-to-measure, benefits to the organiza-
tion (e.g., improved customer service or a better competitive position).

Once the project sponsor identifies a project that meets an important business need and
he or she can identify the system’s business requirements and value, it is time to formally
initiate the project. In most organizations, project initiation begins with a document called a
system request.

System Request

A system request is a document that describes the business reasons for building a system
and the value that the system is expected to provide. The project sponsor usually completes
this form as part of a formal system project selection process within the organization. Most
system requests include five elements: project sponsor, business need, business require-
ments, business value, and special issues. The sponsor describes the person who will serve as
the primary contact for the project, and the business need presents the reasons prompting
the project. The business requirements of the project refer to the business capabilities that the
system will need to have, and the business value describes the benefits that the organization
should expect from the system. Special issues are included on the document as a catch-all
for other information that should be considered in assessing the project. For example, the
project may need to be completed by a specific deadline. Project teams need to be aware of
any special circumstances that could affect the outcome of the system. Figure 2-1 shows a
template for a system request.

The completed system request is submitted to the approval committee for consideration.
This approval committee could be a company steering committee that meets regularly to
make information systems decisions, a senior executive who has control of organizational
resources, or any other decision-making body that governs the use of business investments.
The committee reviews the system request and makes an initial determination, based on the
information provided, of whether to investigate the proposal or not. If so, the next step is to
conduct a feasibility analysis.

Feasibility Analysis 45

FIGURE 2-1 System Request—Name of Project
System Request . :
Template Project Sponsor: Name of project sponsor
Business Need: Short description of business need
Business Requirements: Description of business requirements
Business Value: Expected value that the system will provide
Special Issues or Constraints: Any additional information that may be relevant
to the stakeholders
FEASIBILITY ANALYSIS
Once the need for the system and its business requirements have been defined, it is time to
create a more detailed business case to better understand the opportunities and limitations
associated with the proposed project. Feasibility analysis guides the organization in determin-
ing whether or not to proceed with a project. Feasibility analysis also identifies the important
risks associated with the project that must be addressed if the project is approved. As with the
system request, each organization has its own process and format for the feasibility analysis,
but most include three types: technical feasibility, economic feasibility, and organizational
feasibility. The results of these analyses are combined into a feasibility study, which is given to
the approval committee (see Figure 2-2).

Although we now discuss feasibility analysis within the context of initiating a project,
most project teams will revise their feasibility study throughout the development process and
revisit its contents at various checkpoints during the project. If at any point the project’s risks
and limitations outweigh its benefits, the project team may decide to cancel the project or
make necessary improvements.

Technical Feasibility
The first type of feasibility analysis addresses the technical feasibility of the project: the extent
to which the system can be successfully designed, developed, and installed by the IT group.
Technical Feasibility: Can We Build It?
e Familiarity with Functional area: Less familiarity generates more risk
e Familiarity with Technology: Less familiarity generates more risk
e Project Size: Large projects have more risk
o Compatibility: The harder it is to integrate the system with the company’s existing
technology, the higher the risk
Economic Feasibility: Should We Build 1t?
¢ Development costs
* Annual operating costs
¢ Annual benefits (cost savings and revenues)
e Intangible costs and benefits
Organizational Feasibility: If We Build It, Will They Come?
e Is the project strategically aligned with the business?
e Project champion(s)
FIGURE 2-2 e Senior management
o . ® Users
Feasibility Analysis « Other stakeholders
Assessment Factors

46 Chapter 2 Project Management

Technical feasibility analysis is in essence a technical risk analysis that strives to answer this
question: Can we build it??

Many risks can endanger the successful completion of a project. First is the users” and
analysts’ lack of familiarity with the functional area. When analysts are unfamiliar with
the business functional area, they have a greater chance of misunderstanding the users
or of missing opportunities for improvement. The risk increases dramatically when the
users themselves are less familiar with an application, such as with the development of
a system to support a business innovation. In general, developing new systems is riskier
than producing extensions to an existing system because existing systems tend to be better
understood.

Familiarity with the technology is another important source of technical risk. When
a system uses technology that has not been used before within the organization, there is
a greater chance that problems will occur and delays will be incurred because of the need
to learn how to use the technology. Risk increases dramatically when the technology itself
is new.

Project size is an important consideration, whether measured as the number of people on
the development team, the length of time it will take to complete the project, or the number of
distinct features in the system. Larger projects present more risk, both because they are more
complicated to manage and because there is a greater chance that important system require-
ments will be overlooked or misunderstood. Furthermore, the extent to which the project is
highly integrated with other systems can cause problems because complexity increases when
many systems must work together.

Finally, project teams need to consider the compatibility of the new system with the
technology that already exists in the organization. Systems are rarely built in a vacuum—they
are built in organizations that already have numerous systems in place. New technology and
applications need to integrate with the existing environment for many reasons. They might
rely on data from existing systems, they might produce data that feed other applications, and
they might have to use the company’s existing communications infrastructure.

The assessment of a project’s technical feasibility is not cut and dried because in many
cases, some interpretation of the underlying conditions is needed. One approach is to com-
pare the project under consideration with prior projects undertaken by the organization.
Another option is to consult with experienced IT professionals in the organization or exter-
nal IT consultants; often they are able to judge whether a project is feasible from a technical
perspective.

Economic Feasibility

The second element of a feasibility analysis is to perform an economic feasibility analy-
sis (also called a cost-benefit analysis), which identifies the financial risk associated with
the project. It attempts to answer the question, Should we build the system? Economic
feasibility is determined by identifying costs and benefits associated with the system, assign-
ing values to them, and then calculating the cash flow and return on investment for the
project. The more expensive the project, the more rigorous and detailed the analysis should
be. Figure 2-3 lists the steps in performing a cost-benefit analysis; each step is described in
the following sections.

2 We use build it in the broadest sense. Organizations can also choose to buy a commercial software package and
install it, in which case, the question might be, Can we select the right package and successfully install it?

FIGURE 2-3
Steps for Con-
ducting Economic
Feasibility

FIGURE 2-4
Example Costs and
Benefits for Eco-
nomic Feasibility

Feasibility Analysis 47

1. Identifing Costs and Benefits

2. Assigning Values to Costs and Benefits

3. Determining Cash Flow

4. Determining Net Present Value (NPV)

5. Determining Return on Investment (ROI)

6. Determining the Break-Even Point

7. Graphing the Break-Even Point

List the tangible costs and benefits for the project.
Include both one-time and recurring costs.

Work with business users and IT professionals to
create numbers for each of the costs and benefits.
Even intangibles should be valued if at all possible.

Project what the costs and benefits will be over a
period of time, usually three to five years. Apply a
growth rate to the numbers, if necessary.

Calculate what the value of future costs and ben-
efits are if measured by today’s standards. You will
need to select a rate of growth to apply the NPV
formula.

Calculate how much money the organization will
receive in return for the investment it will make
using the ROI formula.

Find the first year in which the system has greater
benefits than costs. Apply the break-even formula
using figures from that year. This will help you
understand how long it will take before the system
creates real value for the organization.

Plot the yearly costs and benefits on a line graph.
The point at which the lines cross is the break-even
point.

Identifying Costs and Benefits The first task when developing an economic feasibility anal-
ysis is to identify the kinds of costs and benefits the system will have and list them along the
left-hand column of a spreadsheet. Figure 2-4 lists examples of costs and benefits that may

be included.

Development Costs

Development Team Salaries
Consultant Fees
Development Training
Hardware and Software
Vendor Installation

Office Space and Equipment
Data Conversion Costs

Tangible Benefits

Increased Sales
Reductions in Staff
Reductions in Inventory
Reductions in IT Costs

Better Supplier Prices

Operational Costs

Software Upgrades
Software Licensing Fees
Hardware Repairs
Hardware Upgrades
Operational Team Salaries
Communications Charges
User Training

Intangible Benefits

Increased Market Share
Increased Brand Recognition
Higher Quality Products
Improved Customer Service
Better Supplier Relations

48 Chapter 2 Project Management

Costs and benefits can be broken down into four categories: development costs, oper-
ational costs, tangible benefits, and intangibles. Development costs are tangible expenses
incurred during the construction of the system, such as salaries for the project team, hard-
ware and software expenses, consultant fees, training, and office space and equipment.
Development costs are usually thought of as one-time costs. Operational costs are tangible
costs required to operate the system, such as the salaries for operations staff, software licens-
ing fees, equipment upgrades, and communications charges. Operational costs are usually
thought of as ongoing costs.

Revenues and cost savings are the tangible benefits the system enables the organization
to collect or the tangible expenses the system enables the organization to avoid. Tangible
benefits could include increased sales, reductions in staff, and reductions in inventory. Of
course, a project also can affect the organization’s bottom line by reaping intangible benefits
or incurring intangible costs. Intangible costs and benefits are more difficult to incorporate
into the economic feasibility because they are based on intuition and belief rather than
“hard numbers.” Nonetheless, they should be listed in the spreadsheet along with the tan-
gible items.

Assigning Values to Costs and Benefits Once the types of costs and benefits have been
identified, analysts assign specific dollar values to them. This might seem impossible; how
can someone quantify costs and benefits that haven’t happened yet? And how can those
predictions be realistic? Although this task is very difficult, analysts have to do the best they
can to come up with reasonable numbers for all the costs and benefits. Only then can the
approval committee make an educated decision about whether or not to move ahead with
the project.

The best strategy for estimating costs and benefits is to rely on the people who have the
clearest understanding of them. For example, costs and benefits related to the technology or
the project itself can be provided by the company’s IT group or external consultants, and
business users can develop the numbers associated with the business (e.g., sales projections,
order levels). Analysts can also consider past projects, industry reports, and vendor infor-
mation, although these approaches probably will be a bit less accurate. All the estimates will
probably be revised as the project proceeds.

Sometimes it is acceptable for analysts to list intangible benefits, such as improved
customer service, without assigning a dollar value, whereas other times they have to
make estimates regarding the value of an intangible benefit. If at all possible, they should
quantify intangible costs or benefits. Otherwise, it will not be apparent whether the costs
and benefits have been realized. Consider a system that is supposed to improve customer
service. This is intangible, but assume that the greater customer service will decrease the
number of customer complaints by 10 percent each year over three years and that $200,000
is spent on phone charges and phone operators who handle complaint calls. Suddenly
there are some very tangible numbers with which to set goals and measure the original
intangible benefit.

Figure 2-5 shows costs and benefits along with assigned dollar values. Notice that the
customer service intangible benefit has been quantified based on fewer customer complaint
phone calls. The intangible benefit of being able to offer services that competitors currently
offer was not quantified, but it was listed so that the approval committee will consider the
benefit when assessing the system’s economic feasibility.

Determining Cash Flow A formal cost-benefit analysis usually contains costs and benefits
over a selected number of years (usually three to five years) to show cash flow over time

FIGURE 2-5

Assigning Values to
Costs and Benefits

Feasibility Analysis 49

Benefits?
Increased sales 500,000
Improved customer serviceP 70,000
Reduced inventory costs 68,000
Total benefits 638,000
Development costs
2 servers @ $125,000 250,000
Printer 100,000
Software licenses 34,825
Server software 10,945
Development labor 1,236,525
Total development costs 1,632,295
Operational costs
Hardware 54,000
Software 20,000
Operational labor 111,788
Total operational costs 185,788
Total costs 1,818,083
2 An important yet intangible benefit will be the ability to offer
services that our competitors currently offer.
b Customer service numbers have been based on reduced costs for
customer complaint phone calls.

(see Figure 2-6). When using this cash-flow method, the years are listed across the top of the
spreadsheet to represent the time period for analysis, and numeric values are entered in the
appropriate cells within the spreadsheet’s body. Sometimes fixed amounts are entered into
the columns. For example, Figure 2-6 lists the same amount for customer complaint calls and
inventory costs for all five years. Usually amounts are augmented by some rate of growth to
adjust for inflation or business improvements, as shown by the 6 percent increase that is
added to the sales numbers in the sample spreadsheet. Finally, totals are added to determine
what the overall benefits will be; the higher the overall total, the greater the economic feasi-
bility of the solution.

Determining Net Present Value and Return on Investment There are several problems
with the cash-flow method—(1) it does not consider the time value of money (i.e., a dollar
today is not worth a dollar tomorrow), and (2) it does not show the overall “bang for the buck”
that the organization is receiving from its investment. Therefore, some project teams add
additional calculations to the spreadsheet to provide the approval committee with a more-
accurate picture of the project’s worth.

Net present value (NPV) is used to compare the present value of future cash flows with
the investment outlay required to implement the project. For example, if you have a friend
who owes you a dollar today but instead gives you a dollar three years from now, you’ve been
had! Given a 10 percent increase in value, you’ll be receiving the equivalent of 75 cents in
today’s terms.

NPV can be calculated in many different ways, some of which are extremely complex.
Figure 2-7 shows a basic calculation that can be used in your cash flow analysis to get more

50 Chapter 2 Project Management

2015 2016 2017 2018 2019 Total

Increased sales 500,000 530,000 561,800 595,508 631,238
Reduction in customer complaint calls 70,000 70,000 70,000 70,000 70,000
Reduced inventory costs 68,000 68,000 68,000 68,000 68,000
TOTAL BENEFITS: 638,000 668,000 699,800 733,508 769,238
PV OF BENEFITS: 619,417 629,654 640,416 651,712 663,552 3,204,752
PV OF ALL BENEFITS: 619,417 1,249,072 1,889,488 2,541,200 3,204,752
2 Servers @ $125,000 250,000 0 0 0 0
Printer 100,000 0 0 0 0
Software licenses 34,825 0 0 0 0
Server software 10,945 0 0 0 0
Development labor 1,236,525 0 0 0 0
TOTAL DEVELOPMENT COSTS: 1,632,295 0 0 0 0
Hardware 54,000 81,261 81,261 81,261 81,261
Software 20,000 20,000 20,000 20,000 20,000
Operational labor 111,788 116,260 120,910 125,746 130,776
TOTAL OPERATIONAL COSTS: 185,788 217,521 222,171 227,007 232,037
TOTAL COSTS: 1,818,083 217,521 222,171 227,007 232,037
PV OF COSTS: 1,765,129 205,034 203,318 201,693 200,157 2,575,331
PV OF ALL COSTS: 1,765,129 1,970,163 2,173,481 2,375,174 2,575,331
TOTAL PROJECT BENEFITS COSTS: (1,180,083) 450,479 477,629 506,501 537,201
YEARLY NPV: (1,145,712) 424,620 437,098 450,019 463,395 629,421
CUMULATIVE NPV: (1,145,712) (721,091) (283,993) 166,026 629,421
RETURN ON INVESTMENT: 24.44% (629,421/2,575,331)
BREAK-EVEN POINT: 3.63 years [break-even occurs in year 4; (450,019 — 166,026)/450,019 = 0.63]
INTANGIBLE BENEFITS: This service is currently provided by competitors

Improved customer satisfaction

FIGURE 2-6 Cost-Benefit Analysis

relevant values. In Figure 2-6, the present value of the costs and benefits are calculated first
(i.e., they are shown at a discounted rate). Then, net present value is calculated, and it shows
the discounted rate of the combined costs and benefits.

The return on investment (ROI) is a calculation listed somewhere on the spreadsheet that
measures the amount of money an organization receives in return for the money it spends.
A high ROI results when benefits far outweigh costs. ROI is determined by finding the total
benefits less the costs of the system and dividing that number by the total costs of the system
(see Figure 2-7). ROI can be determined per year or for the entire project over a period of
time. One drawback of ROl is that it considers only the end points of the investment, not the
cash flow in between, so it should not be used as the sole indicator of a project’s worth. The
spreadsheet in Figure 2-6 shows an ROI figure.

Determining the Break-Even Point If the project team needs to perform a rigorous cost-
benefit analysis, it might need to include information about the length of time before the
project will break even, or when the returns will match the amount invested in the project.

Calculation

Present Value (PV)

Net Present Value (NPV)

Break-Even Point

The present value of benefit less the present PV Benefits — PV Costs
value of costs.
Return on Investment (ROI) The amount of revenues or cost savings results Total benefits — Total costs
from a given investment. Total costs
The point in time at which the costs of the Yearly NPV* — Cumulative NPV
project equal the value it has delivered. Yearly NPV*

The amount of an investment today Amount

Feasibility Analysis 51

Definition Formula

compared to that same amount in the future,

S ; . . 1 + interest rate)"
taking into account inflation and time. ()

n = number of years in future

*Use the Yearly NPV amount from the first year in which
the project has a positive cash flow.

Add the above amount to the year in which the project
has a positive cash flow.

FIGURE 2-7 Financial Calculations Used for Cost-Benefit Analysis

FIGURE 2-8
Break-Even Graph

The greater the time it takes to break even, the riskier the project. The break-even point is
determined by looking at the cash flow over time and identifying the year in which the ben-
efits are larger than the costs (see Figure 2-6). Then, the difference between the yearly and
cumulative NPV for that year is divided by the yearly NPV to determine how far into the year
the break-even point will occur. See Figure 2-7 for the break-even calculation. The break-even
point also can be depicted graphically, as shown in Figure 2-8. The cumulative present value
of the costs and benefits for each year is plotted on a line graph; the point at which the lines
cross is the break-even point.

Organizational Feasibility

The final type of feasibility analysis is to assess the organizational feasibility of the system,
how well the system ultimately will be accepted by its users and incorporated into the ongo-
ing operations of the organization. There are many organizational factors that can have an

3,500,000

o Costs
e Benefits

3,000,000
2,500,000
2,000,000

Dollars

1,500,000
1,000,000

500,000
0

Years Break-even point

52 Chapter 2 Project Management

Champion

Organizational
Management

System Users

effect on the project, and seasoned developers know that organizational feasibility can be the
most difficult feasibility dimension to assess. In essence, an organizational feasibility analysis
attempts to answer the question, If we build it, will they come?

One way to assess the organizational feasibility of the project is to understand how well
the goals of the project align with business objectives. Strategic alignment is the fit between
the project and business strategy—the greater the alignment, the less risky the project will
be from an organizational feasibility perspective. For example, if the marketing department
has decided to become more customer focused, then a CRM project that produces integrated
customer information would have strong strategic alignment with marketing’s goal. Many IT
projects fail when the IT department initiates them, because there is little or no alignment
with business unit or organizational strategies.

A second way to assess organizational feasibility is to conduct a stakeholder analysis.> A
stakeholder is a person, group, or organization that can affect (or will be affected by) a new
system. In general, the most important stakeholders in the introduction of a new system are
the project champion, system users, and organizational management (see Figure 2-9), but
systems sometimes affect other stakeholders as well. For example, the IS department can
be a stakeholder of a system because IS jobs or roles may be changed significantly after its
implementation.

The champion is a high-level, non-information systems executive who is usually the
project sponsor who created the system request. The champion supports the project with
time, resources (e.g., money), and political support within the organization by communicat-
ing the importance of the system to other organizational decision makers. More than one
champion is preferable because if the champion leaves the organization, the support could
leave as well.

Whereas champions provide day-to-day support for the system, organizational manage-
ment support conveys to the rest of the organization the belief that the system will make a

Role Techniques for Improvement

A champion:

e Initiates the project

® Promotes the project

e Allocates his or her time to project
e Provides resources

Organizational managers:

¢ Know about the project

¢ Budget enough money for the project

e Encourage users to accept and use the system

Users:

¢ Make decisions that influence the project

¢ Perform hands-on activities for the project

e Ultimately determine whether the project is
successful by using or not using the system

* Make a presentation about the objectives of the

project and the proposed benefits to those executives

who will benefit directly from the system

e Create a prototype of the system to demonstrate its

potential value

* Make a presentation to management about the

objectives of the project and the proposed benefits
* Market the benefits of the system using memos and

organizational newsletters
¢ Encourage the champion to talk about the project
with his or her peers

¢ Assign users official roles on the project team

® Assign users specific tasks to perform with clear
deadlines

¢ Ask for regular feedback from users (e.g., at
weekly meetings)

FIGURE 2-9

3 A good book that presents a series of stakeholder analysis techniques is R. O. Mason and I. I. Mittroff, Challenging

Some Important Stakeholders for Organizational Feasibility

Strategic Planning Assumptions: Theory, Cases, and Techniques (New York: Wiley, 1981).

Project Selection 53

valuable contribution and that necessary resources will be made available. Ideally, manage-
ment should encourage people in the organization to use the system and to accept the many
changes that the system will likely create.

A third important group of stakeholders are the system users who ultimately use the
system once it has been installed in the organization. Too often, the project team meets
with users at the beginning of a project and then disappears until after the system is created.
In this situation, rarely does the final product meet the expectations and needs of those
who are supposed to use it because needs change and users become savvier as the project
progresses. User participation should be promoted throughout the development process by
getting users involved in the development of the system (e.g., performing tasks, providing
feedback, making decisions).

Finally, the feasibility study helps organizations make wiser investments by forcing pro-
ject teams to consider technical, economic, and organizational factors that can affect their
projects. It protects I'T professionals from criticism by keeping the business units educated
about decisions and positioned as the leaders in the decision-making process. Remember, the
feasibility study should be revised several times during the project at points where the project
team makes critical decisions about the system (e.g., before each iteration of the development
process).

PROJECT SELECTION

FIGURE 2-10

Ways to Classify
Projects

Once the feasibility analysis has been completed, it is submitted to the approval committee,
along with a revised system request. The committee then decides whether to approve the
project, decline the project, or table it until additional information is available. At the pro-
ject level, the committee considers the value of the project by examining the business need
(found in the system request) and the risks of building the system (presented in the feasibility
analysis).

Before approving the project, however, the committee also considers the project from an
organizational perspective; it has to keep in mind the company’s entire portfolio of projects.
This way of managing projects is called portfolio management. Portfolio management takes
into consideration the different kinds of projects that exist in an organization—large and
small, high risk and low risk, strategic and tactical. (See Figure 2-10 for the different ways of

Size What is the size? How many people are needed to work on the
project?

Cost How much will the project cost the organization?

Purpose What is the purpose of the project? Is it meant to improve the

technical infrastructure? Support a current business strategy?
Improve operations? Demonstrate a new innovation?

Length How long will the project take before completion? How much
time will go by before value is delivered to the business?

Risk How likely is it that the project will succeed or fail?

Scope How much of the organization is affected by the system? A

department? A division? The entire corporation?

Return on investment How much money does the organization expect to receive in

return for the amount the project costs?

54 Chapter 2 Project Management

classifying projects.) A good project portfolio has the most appropriate mix of projects for the
organization’s needs. The committee acts as portfolio manager with the goal of maximizing
the cost-benefit performance and other important factors of the projects in their portfolio.
For example, an organization might want to keep high-risk projects to less than 20 percent of
its total project portfolio.

The approval committee must be selective about where to allocate resources. This
involves trade-offs in which the organization must give up something in return for something
else to keep its portfolio well balanced. If there are three potentially high-payoff projects, yet
all have very high risk, then perhaps only one of the projects will be selected. Also, there are
times when a system at the project level makes good business sense, but it does not make
sense at the organization level. Thus, a project may show a very strong ROI and support
important business needs for a part of the company, but it is not selected. This could happen
for many reasons—because there is no money in the budget for another system, the organ-
ization is about to go through some kind of change (e.g., a merger), projects that meet the
same business requirements already are under way, or the system does not align well with the
current or future corporate strategy.

TRADITIONAL PROJECT MANAGEMENT TOOLS

FIGURE 2-11
Task Information

Before we get to actually creating a workplan that is suitable to manage and control an
object-oriented systems development project, we need to introduce a set of project man-
agement tools that have been used to successfully manage traditional software development
projects (and many other types of projects): a work-breakdown structure, a Gantt chart, and
a network diagram. To begin with, we must first understand what a task is. A task is a unit
of work that will be performed by a member or members of the development team, such as
feasibility analysis. Each task is described by information such as its name, start and com-
pletion dates, person assigned to complete the task, deliverables, completion status, priority,
resources needed, estimated time to complete the task, and the actual time it took to complete
the task (see Figure 2-11). The first thing a project manager must do is to identify the tasks
that need to be accomplished and determine how long each task will take. Tasks and their
identification and documentation are the basis of all three of these tools. Once the tasks have
been identified and documented, they are organized within a work breakdown structure that
is used to drive the creation of Gantt charts and network diagrams that can be used to graphi-
cally portray a traditional workplan. These techniques help a project manager understand and
manage the project’s progress over time.

Workplan Information

Name of the task

Start date

Completion date

Person assigned to the task
Deliverable(s)

Completion status

Priority

Resources that are needed
Estimated time

Actual time

Example

Perform economic feasibility
Jan 05, 2015

Jan 19, 2015

Project sponsor: Mary Smith
Cost-benefit analysis

Open

High

Spreadsheet software

16 hours

14.5 hours

FIGURE 2-12
Work Breakdown
Structure

Traditional Project Management Tools 55

Work Breakdown Structures

A project manager can use a structured, top-down approach whereby high-level tasks are first
defined and then broken down into subtasks. For example, Figure 2-12 shows a list of high-
level tasks needed to implement a new IT training class. Some of the main steps in the process
include identifying vendors, creating and administering a survey, and building new class-
rooms. Each step is then broken down in turn and numbered in a hierarchical fashion. There
are eight subtasks (i.e., 7.1-7.8) for creating and administering a survey, and there are three
subtasks (7.2.1-7.2.3) that make up the review initial survey task. A list of tasks hierarchically
numbered in this way is called a work breakdown structure (WBS). The number of tasks and
level of detail depend on the complexity and size of the project. At a minimum, the WBS must
include the duration of the task, the current status of the task (i.e., open, complete), and the
task dependencies, which occur when one task cannot be performed until another task is com-
pleted. For example, Figure 2-12 shows that incorporating changes to the survey (task 7.4)
takes a week to perform, but it cannot occur until after the survey is reviewed (task 7.2) and
pilot tested (task 7.3). Key milestones, or important dates, are also identified on the workplan.

There are two basic approaches to organizing a traditional WBS: by development phase
or by product. For example, if a firm decided that it needed to develop a website, the firm
could create a WBS based on the inception, elaboration, construction, and transition
phases of the Unified Process. In this case, a typical task that would take place during incep-
tion would be feasibility analysis. This task would be broken down into the different types of
feasibility analysis: technical, economic, and organizational. Each of these would be further
broken down into a set of subtasks. Alternatively, the firm could organize the workplan
along the lines of the different products to be developed. For example, in the case of a web-
site, the products could include applets, application servers, database servers, the various sets
of Web pages to be designed, a site map, and so on. Then these would be further decomposed

Task Duration
Number Task Name (in weeks) Dependency Status
1 Identify vendors 2 Complete
2 Review training materials 6 1 Complete
3 Compare vendors 2 2 In Progress
4 Negotiate with vendors 3 3 Open
5 Develop communications information 4 1 In Progress
6 Disseminate information 2 5 Open
7 Create and administer survey 4 6 Open
7.1 Create initial survey 1 Open
7.2 Review initial survey 1 7.1 Open
7.2.1 Review by Director of IT Training 1 Open
7.2.2 Review by Project Sponsor 1 Open
7.2.3 Review by Representative Trainee 1 Open
7.3 Pilot test initial survey 1 7.1 Open
7.4 Incorporate survey changes 1 72,73 Open
7.5 Create distribution list 0.5 Open
7.6 Send survey to distribution list 0.5 7.4,7.5 Open
7.7 Send follow-up message 0.5 7.6 Open
7.8 Collect completed surveys 1 7.6 Open
8 Analyze results and choose vendor 2 4,7 Open
9 Build new classrooms 11 1 In Progress
10 Develop course options 3 8,9 Open

56 Chapter 2 Project Management

into the different tasks associated with the phases of the development process. Either way,
once the overall structure is determined, tasks are identified and included in the WBS. We
return to the topic of WBSs and their use in iterative planning later in this chapter.

Gantt Chart

A Gantt chart is a horizontal bar chart that shows the same task information as the
project WBS but in a graphical way. Sometimes a picture really is worth a thousand words,
and the Gantt chart can communicate the high-level status of a project much faster and
easier than the WBS. Creating a Gantt chart is simple and can be done using a spreadsheet
package, graphics software, or a project management package.

First, tasks are listed as rows in the chart, and time is listed across the top in increments
based on the needs of the projects (see Figure 2-13). A short project may be divided into

| January | February | March April M
Task . . .
ID N Duration | Start | Finish | Prede
ame 12/291/5 [1/12|1/19]1/26| 2/2 | 2/9 |2/16(2/23| 3/2 | 3/9 |3/16(3/23|3/30| 4/6 |4/13|4/20(4/27
1 [Identify 2 wks | Wed Tue
vendors 1115 | 1/14/15 — Alan
2 |Review 6 wks Wed Tue
training 1115 {2/11/15 — Barbara
materials
3 |Compare 2 wks Wed Tue |2
vendors 2/12/15 | 2/25/15
4 |Negotiate 3 wks Wed Tue |3
with 2/26/15 | 3/8/15 Barbara
vendors
5 |Develop 4 wks Wed Tue |1 +
communications 1/15/15 | 2/11/15 P | Alan
information
6 [Disseminate 2 wks Wed Tue |5
information 2/12/15 | 2/25/15 Alan
7 |Create and 4 wks Wed Tue |6
administer 2/26/15 | 3/25/15 Alan
survey
8 |Analyze results 2 wks | Wed Tue (4,7 A
and choose 3/26/15 | 4/8/15 Alan
9 |Build new 11 wks | Wed Tue 1 3 Bl
classroom 1/15/15 | 4/1/15 I —
10 |Develop 3 wks Wed Tue |8,9 X
course 4/9/15 |4/29/15 D
options
11 |Budget 1 day Wed Wed
Meeting 1/15/15 [1/15/15 & 1/15
12 |Software 1 day Tue Tue
Installation 4/1/15 | 4/1/15 @ 4/

FIGURE 2-13

Gantt Chart

Traditional Project Management Tools 57

hours or days, whereas a medium-sized project may be represented using weeks or months.
Horizontal bars are drawn to represent the duration of each task; the bar’s beginning and
end mark exactly when the task will begin and end. As people work on tasks, the appropriate
bars are filled in proportionately to how much of the task is finished. Too many tasks on a
Gantt chart can become confusing, so it’s best to limit the number of tasks to around twenty
or thirty. If there are more tasks, break them down into subtasks and create Gantt charts for
each level of detail.

There are many things a project manager can see quickly by looking at a Gantt chart. In
addition to seeing how long tasks are and how far along they are, the project manager also can
tell which tasks are sequential, which tasks occur at the same time, and which tasks overlap
in some way. He or she can get a quick view of tasks that are ahead of schedule and behind
schedule by drawing a vertical line on today’s date. If a bar is not filled in and is to the left of
the line, that task is behind schedule.

There are a few special notations that can be placed on a Gantt chart. Project mile-
stones are shown using upside-down triangles or diamonds. Arrows are drawn between
the task bars to show task dependencies. Sometimes, the names of people assigned to each
task are listed next to the task bars to show what human resources have been allocated to
the tasks.

Network Diagram

A second graphical way to look at project workplan information is the network diagram that
lays out the project tasks in a flowchart (see Figure 2-14).

Program Evaluation and Review Technique (PERT) is a network analysis technique that
can be used when the individual task time estimates are fairly uncertain. Instead of simply
putting a point estimate for the duration estimate, PERT uses three time estimates: optimistic,

lop communications Disseminate information Create and administer Analyze results and Develop course options
Informat N survey | choose vendor N
5 TrwdsTue | 6 [2 wks Tue 7 [4wksTue | "[8 [2wksTue |_3f10 [3 wks Tue
Wed 1/15/15 [Tue 271 Wed 2/12/15 | Tue 2/25/15 Wed 2/26/15 [Tue 3/25/15 | [Wed 3/26/15 Tue 4/8/15 Wed 4/9/15 [Tue 4/29/15

Wed 1/15/15 | Tue 4/1

Wing materials Compare vendors Negotiate with vendors
>

N
2 Todes Tue i [2 wks Tue 4 [3 wks Tue
Wed 1/1/15 [Tue 2745 Wed 2/12/15 | Tue 2/25/15 Wed 2/26/15 | Tue 3/18/15

Software installation

12 1 day Tue
Tue 4/1/15 | Tue 4/1/15

FIGURE 2-14 Network Diagram

58 Chapter 2 Project Management

most likely, and a pessimistic. It then combines the three estimates into a single weighted
average estimate using the following formula:

optimistic estimate + (4 * most likely estimate)
+ pessimistic estimate

6

PERT weighted average =

The network diagram is drawn as a node-and-arc type of graph that shows time estimates in
the nodes and task dependencies on the arcs. Each node represents an individual task, and a
line connecting two nodes represents the dependency between two tasks. Partially completed
tasks are usually displayed with a diagonal line through the node, and completed tasks con-
tain crossed lines.

Network diagrams are the best way to communicate task dependencies because they lay
out the tasks in the order in which they need to be completed. The critical path method (CPM)
simply allows the identification of the critical path in the network. The critical path is the longest
path from the project inception to completion. The critical path shows all the tasks that must be
completed on schedule for a project as a whole to finish on schedule. If any tasks on the critical
path take longer than expected, the entire project will fall behind. Each task on the critical path
is a critical task, and they are usually depicted in a unique way; in Figure 2-14 they are shown
with double borders (see tasks 5, 6, 7, 8, and 10). CPM can be used with or without PERT.

PROJECT EFFORT ESTIMATION

The science (or art) of project management is in making trade-offs among three important con-
cepts: the functionality of the system, the time to complete the project (when the project will be
finished), and the cost of the project. Think of these three things as interdependent levers that
the project manager controls throughout the development of the system. Whenever one lever is
pulled, the other two levers are affected in some way. For example, if a project manager needs to
readjust a deadline to an earlier date, then the only solutions are to decrease the functionality of
the system or to increase costs by adding more people or having them work overtime. Often, a
project manager has to work with the project sponsor to change the goals of the project, such as
developing a system with less functionality or extending the deadline for the final system, so that
the project has reasonable goals that can be met. In the beginning of the project, the manager
needs to estimate each of these levers and then continuously assess how to roll out the project
in a way that meets the organization’s needs. Estimation is the process of assigning projected
values for time and effort. The estimates developed at the start of a project are usually based on a
range of possible values and gradually become more specific as the project moves forward. That
is, the range of values for the inception phase will be much greater than for the transition phase.

The numbers used to calculate these estimates can be taken from projects with similar
tasks and technologies or provided by experienced developers. Generally speaking, the num-
bers should be conservative. A good practice is to keep track of the actual values for time and
effort during the development process so that numbers can be refined along the way and the
next project can benefit from real data.

There are a variety of ways to estimate the time required to build a system. Because the
Unified Process is use-case driven, we use an approach that is based on use cases: use-case
points.* Use-case points, originally developed by Gustav Karner of Objectory AB,” are based

4 The material in this section is based on descriptions of use-case points contained in Raul R. Reed, Jr., Developing
Applications with Java and UML (Reading, MA: Addison-Wesley, 2002); Geri Schneider and Jason P. Winters, Apply-
ing Use Cases: A Practical Guide (Reading, MA: Addison-Wesley, 1998); Kirsten Ribu, “Estimating Object-Oriented
Software Projects with Use Cases” (Master’s thesis, University of Oslo, 2001).

5 Objectory AB was acquired by Rational in 1995 and Rational is now part of IBM.

Project Effort Estimation 59

on unique features of use cases and object orientation. From a practical point of view, to
estimate effort using use-case points, the use cases and the use-case diagram must have
been created.®

Use-case models have two primary constructs: actors and use cases. An actor repre-
sents a role that a user of the system plays, not a specific user. For example, a role could be
secretary or manager. Actors can also represent other systems that will interact with the
system under development. For use-case point estimation purposes, actors can be classified
as simple, average, or complex. Simple actors are separate systems with which the current
system must communicate through a well-defined application program interface (API).
Average actors are separate systems that interact with the current system using standard
communication protocols, such as TCP/IP, FTP, or HTTP, or an external database that
can be accessed using standard SQL. Complex actors are typically end users commu-
nicating with the system. Once all of the actors have been categorized as being simple,
average, or complex, the project manager counts the number of actors in each category
and enters the values into the unadjusted actor-weighting table contained in the use-case
point-estimation worksheet (see Figure 2-15). The project manager then computes the
Unadjusted Actor Weight Total (UAW). This is computed by summing the individual
results that were computed by multiplying the weighting factor by the number of actors
of each type. For example, if we assume that the use-case diagram has zero simple, zero
average, and four complex actors that interact with the system being developed, the UAW
will equal 12 (see Figure 2-16).

A use case represents a major business process that the system will perform that benefits
the actor(s) in some manner. Depending on the number of unique transactions that the use
case must address, a use case can be categorized as being simple, average, or complex. A use
case is classified as simple if it supports one to three transactions, as average if it supports four
to seven transactions, or as complex if it supports more than seven transactions. Once all of
the use cases have been successfully categorized, the project manager enters the number of
each type of use case into the unadjusted use-case weighting table contained in the use-case
point-estimation worksheet (see Figure 2-15). By multiplying by the appropriate weights and
summing the results, we get the value for the unadjusted use-case weight total (UUCW). For
example, if we assume that we have three simple use cases, four average use cases, and one
complex use case, the value for the unadjusted use-case weight total is 70 (see Figure 2-16).
Next, the project manager computes the value of the unadjusted use-case points (UUCP) by
simply summing the unadjusted actor weight total and the unadjusted use-case weight total.
In this case the value of the UUCP equals 82 (see Figure 2-16).

Use-case point-based estimation also has a set of factors that are used to adjust the
use-case point value. In this case, there are two sets of factors: technical complexity factors
(TCFs) and environmental factors (EFs). There are thirteen separate technical factors and
eight separate environmental factors. The purpose of these factors is to allow the project
as a whole to be evaluated for the complexity of the system being developed and the expe-
rience levels of the development staff, respectively. Obviously, these types of factors can
affect the effort that a team requires to develop a system. Each of these factors is assigned
a value between 0 and 5, 0 indicating that the factor is irrelevant to the system under con-
sideration and 5 indicating that the factor is essential for the system to be successful. The
assigned values are then multiplied by their respective weights. These weighted values are
then summed up to create a technical factor value (TFactor) and an environmental factor
value (EFactor) (see Figure 2-15).

© We cover the details of use-case modeling in Chapter 4.

60 Chapter 2 Project Management

| Unadjusted Actor Weighting Table:

Actor Type Description Weighting Factor Number Result
Simple External System with well-defined API 1
Average External System using a protocol-based 2
interface, e.g., HTTP, TCT/IP, or a database
Complex Human 3
Unadjusted Actor Weight Total (UAW)
Unadjusted Use Case Weighting Table:
Use-Case Type Description Weighting Factor Number Result
Simple 1-3 transactions 5
Average 4-7 transactions 10
Complex >7 transactions 15
Unadjusted Use-Case Weight Total (UUCW)
Unadjusted Use Case Points (UUCP) = UAW + UUCW
Technical Complexity Factors:
Factor Number Description Weight Assigned Value (0-5) Weighted Value Notes
T1 Distributed system 2.0
T2 Response time or throughput 1.0
performance objectives
T3 End-user online efficiency 1.0
T4 Complex internal processing 1.0
15 Reusability of code 1.0
T6 Ease of installation 0.5
T7 Ease of use 0.5
T8 Portability 2.0
T9 Ease of change 1.0
T10 Concurrency 1.0
T11 Special security objectives included 1.0
T12 Direct access for third parties 1.0
T13 Special user training required 1.0
Technical Factor Value (TFactor)
Technical Complexity Factor (TCF) = 0.6 + (0.01 * TFactor)
Environmental Factors:
Factor Number Description Weight Assigned Value (0-5) Weighted Value Notes
E1 Familiarity with system 1.5
development process being used
E2 Application experience 0.5
E3 Object-oriented experience 1.0
E4 Lead analyst capability 0.5
E5 Motivation 1.0
E6 Requirements stability 2.0
E7 Part time staff -1.0
E8 Difficulty of programming language -1.0

Environmental Factor Value (EFactor)

Environmental Factor (EF) = 1.4 + (—0.03 * EFactor)
Adjusted Use Case Points (UCP) = UUCP * TCF * ECF
Effort in Person Hours = UCP * PHM

can be found at

FIGURE 2-15

Use-Case Point-Estimation Worksheet

www.wiley.com
/college/dennis

Project Effort Estimation 61

Unadjusted Actor Weighting Table:

Actor Type Description Weighting Factor Number Result
Simple External system with well-defined API 1 0 0
Average External system using a protocol-based 2 0 0
interface, e.g., HTTP, TCT/IP, or a database
Complex Human 3 4 12
Unadjusted Actor Weight Total (UAW) 12
Unadjusted Use-Case Weighting Table:
Use Case Type Description Weighting Factor Number Result
Simple 1-3 transactions 5 3 15
Average 4-7 transactions 10 4 40
Complex >7 transactions 15 1 15
Unadjusted Use Case Weight Total (UUCW) 70

Unadjusted Use-Case Points (UUCP) = UAW + UUCW 82 =12 + 70

Technical Complexity Factors:

Factor Number Description Weight Assigned Value (0-5) Weighted Value Notes
T1 Distributed system 2.0 0 0
T2 Response time or throughput 1.0 5 5
performance objectives
T3 End-user online efficiency 1.0 3 3
T4 Complex internal processing 1.0 1 1
T5 Reusability of code 1.0 1 1
T6 Ease of installation 0.5 2 1
17 Ease of use 0.5 4 2
T8 Portability 2.0 0 0
T9 Ease of change 1.0 2 2
T10 Concurrency 1.0 0 0
T11 Special security objectives included 1.0 0 0
T12 Direct access for third parties 1.0 0 0
T13 Special user training required 1.0 0 0
Technical Factor Value (TFactor) 15
Technical Complexity Factor (TCF) = 0.6 + (0.01 = TFactor) 0.75 = 0.6 + (0.01 * 15)
Environmental Factors:
Factor Number Description Weight Assigned Value (0-5) Weighted Value Notes
E1 Familiarity with system 1.5 4 6
development process being used
E2 Application experience 0.5 4 2
E3 Object-oriented experience 1.0 4 4
E4 Lead analyst capability 0.5 5 2.5
E5 Motivation 1.0 5 5
E6 Requirements stability 2.0 5 10
E7 Part-time staff -1.0 0 0
E8 Difficulty of programming language -1.0 4 -4.0
Environmental Factor Value (EFactor) 25.5
Environmental Factor (EF) = 1.4 + (—0.03 * EFactor) 0.635 = 1.4 + (—0.03 * 25.5)

Adjusted Use Case Points (UCP) = UUCP * TCF * ECF 33.3375 = 70 * 0.75 * 0.635
Effort in person-hours = UCP * PHM 666.75 = 20 * 33.3375

FIGURE 2-16 Use-Case Point Estimation for the Appointment System

62 Chapter 2 Project Management

The technical factors include the following (see Figure 2-15):

Whether the system is going to be a distributed system

The importance of response time

The efficiency level of the end user using the system

The complexity of the internal processing of the system

The importance of code reuse

How easy the installation process has to be

The importance of the ease of using the system

How important it is for the system to be able to be ported to another platform
Whether system maintenance is important

Whether the system is going to have to handle parallel and concurrent
processing

The level of special security required
m The level of system access by third parties
®m Whether special end user training is to be required.

Assuming the values for the technical factors are T1 (0), T2 (5), T3 (3), T4 (1), T5 (1),
T6 (2), T7 (4), T8 (0), T9 (2), T10 (0), T11 (0), T12 (0), and T13 (0), respectively, the
technical factor value (TFactor) is computed as the weighted sum of the individual technical
factors. In this case TFactor equals 15 (see Figure 2-16). Plugging this value into the technical
complexity factor (TCF) equation (0.6 + (.01 * TFactor)) of the use-case point worksheet gives
a value of .75 for the TCF of the system (see Figures 2-15 and 2-16).

The environmental factors include the following (see Figure 2-15):

m The level of experience the development staff has with the development process
being used

The application being developed

The level of object-oriented experience

The level of capability of the lead analyst

The level of motivation of the development team to deliver the system

The stability of the requirements

Whether part-time staff have to be included as part of the development team

The difficulty of the programming language being used to implement the system

Assuming the values for the environmental factors were E1 (4), E2 (4), E3 (4), E4 (5), E5 (5),
E6 (5), E7 (0), and E8 (4) gives an environmental factor value (EFactor) of 25.5 (see Figure
2-16). Like the TFactor, Efactor is simply the sum of the weighted values. Using the envi-
ronmental factor (EF) equation (1.4 + (—0.03 * EFactor)) of the use-case point worksheet
produces a value of .635 for the EF of the system (see Figures 2-15 and 2-16). Plugging the
TCF and EF values, along with the UUCP value computed earlier, into the adjusted use-case
points equation (UUCP * TCF * EF) of the worksheet yields a value of 33.3375 adjusted use-
case points (UCP) (see Figure 2-16).

Now that we know the estimated size of the system by means of the value of the adjusted
use-case points, we are ready to estimate the effort required to build the system. In Karner’s
original work, he suggested simply multiplying the number of use-case points by 20 to
estimate the number of person-hours required to build the system. However, based on
additional experiences using use-case points, a decision rule to determine the value of the

Creating and Managing the Workplan 63

person-hours multiplier (PHM) has been created that suggests using either 20 or 28, based on
the values assigned to the individual environmental factors. The decision rule is:

If the sum of (number of Efactors E1 through E6 assigned value < 3) and
(number of Efactors E7 and E8 assigned value > 3)
<2
PHM = 20
Else If the sum of (number of Efactors E1 through E6 assigned value < 3) and
(number of Efactors E7 and E8 assigned value > 3)
=3or4
PHM = 28
Else
Rethink project; it has too high of a risk for failure

Based on these rules, because none of Efactors E1 through E6 have a value less than 3
and only Efactor E8 has a value greater than 3, the sum of the number EFactors is 1. Thus, the
system should use a PHM of 20. Plugging the values for UCP (33.3375) and PHM (20) into
the effort equation (UCP * PHM) gives an estimated number of person-hours of 666.75 hours
(see Figures 2-15 and 2-16).

CREATING AND MANAGING THE WORKPLAN

Once a project manager has a general idea of the functionality and effort for the project, he
or she creates a workplan, which is a dynamic schedule that records and keeps track of all the
tasks that need to be accomplished over the course of the project. The workplan lists each
task, along with important information about it, such as when it needs to be completed, the
person assigned to do the work, and any deliverables that will result. The level of detail and
the amount of information captured by the workplan depend on the needs of the project, and
the detail usually increases as the project progresses.

The overall objectives for the system should be listed on the system request, and it is the
project manager’s job to identify all the tasks that need to be accomplished to meet those
objectives. This sounds like a daunting task. How can someone know everything that needs
to be done to build a system that has never been built before?

One approach for identifying tasks is to get a list of tasks that has already been devel-
oped and to modify it. There are standard lists of tasks, or methodologies, that are available
for use as a starting point. As we stated in Chapter 1, a methodology is a formalized approach
to implementing a systems development process (i.e., it is a list of steps and deliverables).
A project manager can take an existing methodology, select the steps and deliverables that
apply to the current project, and add them to the workplan. If an existing methodology is not
available within the organization, methodologies can be purchased from consultants or ven-
dors, or books such as this textbook can serve as a guide. Because most organizations have a
methodology they use for projects, using an existing methodology is the most popular way to
create a workplan. In our case, because we are using a Unified Process-based methodology,
we can use the phases, workflows, and iterations as a starting point to create an evolutionary
work breakdown structure and an iterative workplan.

Evolutionary Work Breakdown Structures and Iterative Workplans”
Because object-oriented systems approaches to systems analysis and design support incre-
mental and iterative development, any project planning approach for object-oriented systems

7 This material in this section is based on Walker Royce, Software Project Management: A Unified Framework (Read-
ing, MA: Addison-Wesley, 1998).

64 Chapter 2 Project Management

FIGURE 2-17
Evolutionary WBS
Template for the
Enhanced Unified
Process

development also requires an incremental and iterative process. In the description of the enhanced
Unified Process in Chapter 1, the development process was organized around iterations, phases,
and workflows. In many ways, a workplan for an incremental and iterative development process
is organized in a similar manner. For each iteration, there are different tasks executed on each
workflow. This section describes an incremental and iterative process using evolutionary WBSs
for project planning that can be used with object-oriented systems development.

Evolutionary WBSs allow the analyst to develop an iterative workplan. First, evolutionary
WBSs are organized in a standard manner across all projects: by workflows, phases, and then
the specific tasks that are accomplished during an individual iteration. Second, evolutionary
WBSs are created in an incremental and iterative manner. This encourages a more realistic
view of both cost and schedule estimation. Third, because the structure of an evolutionary
WBS is not tied to any specific project, evolutionary WBSs enable the comparison of the
current project to earlier projects. This supports learning from past successes and failures.

In the case of the enhanced Unified Process, the workflows are the major points listed
in the WBS. Next, each workflow is decomposed along the phases of the enhanced Unified
Process. After that, each phase is decomposed along the tasks that are to be completed to cre-
ate the deliverables associated with an individual iteration contained in each phase (see Figure
1-16). The template for the first two levels of an evolutionary WBS for the enhanced Unified
Process would look like Figure 2-17.

As each iteration through the development process is completed, additional iterations and
tasks are added to the WBS (i.e., the WBS evolves along with the evolving information system).8

I. Business Modeling V. Implementation IX. Project Management

VII. Deployment

a. Inception a. Inception a. Inception

b. Elaboration b. Elaboration b. Elaboration

c. Construction c. Construction c. Construction

d. Transition d. Transition d. Transition

e. Production e. Production e. Production
II. Requirements VI, Test] X. Environment

a. Inception a. Inception a. Inception

b. Elaboration b. E[aboratign b. Elaboration

c. Construction ¢ COnSt.I'l',ICtIOn c. Construction

d. Transition d. Transition d. Transition

e. Production e. Production e. Production

1. Analysis a. Inception XI. Operations and Support
a. Inception b. Elaboration a. Inception
b. Elaboration ¢. Construction b. Elaboration
c. Construction d. Transition c. Construction
d. Transition e. Production d. Transition
e. Production e. Production
VIII. Configuration and
IV. Design Change Management XII. Infrastructure Management
a. Inception a. Inception a. Inception
b. Elaboration b. Elaboration b. Elaboration
c. Construction c. Construction c. Construction
d. Transition d. Transition d. Transition
e. Production e. Production e. Production

8 Good sources that help explain this approach are Phillippe Krutchen, “Planning an Iterative Project,” The Rational
Edge (October 2002); Eric Lopes Cordoza and D. J. de Villiers, “Project Planning Best Practices,” The Rational Edge
(August 2003).

FIGURE 2-18
Evolutionary
WBS for a Single
Iteration-Based
Inception Phase

Creating and Managing the Workplan 65

For example, typical activities for the inception phase of the project management workflow
would include identifying the project, performing the feasibility analysis, selecting the project,
and estimating the effort. The inception phase of the requirements workflow would include
determining the requirements gathering and analysis techniques, identifying functional and
nonfunctional requirements, interviewing stakeholders, developing a vision document, and
developing use cases. Probably no tasks are associated with the inception phase of the operations
and support workflow. A sample evolutionary WBS for planning the inception phase of the
enhanced Unified Process, based on Figures 1-16 and 2-17, is shown in Figure 2-18. Notice the
last two tasks for the project management workflow are “create workplan for first iteration of
the elaboration phase” and “assess the inception phase”; the last two things to do are to plan for
the next iteration in the development of the evolving system and to assess the current iteration.
As the project moves through later phases, each workflow has tasks added to its iterations. For
example, the analysis workflow will have the creation of the functional, structural, and behav-
ioral models during the elaboration phase. Finally, when an iteration includes a lot of complex
tasks, traditional tools, such as Gantt charts and network diagrams, can be used to detail the
workplan for that specific iteration.

Duration Dependency

I. Business Modeling

a. Inception
1. Understand current business situation 0.50 days
2. Uncover business process problems 0.25 days
3. Identify potential projects 0.25 days

b. Elaboration
c. Construction
d. Transition

e. Production

1. Requirements

a. Inception
1. Identify appropriate requirements-analysis technique 0.25 days
2. Identify appropriate requirements-gathering techniques 0.25 days
3. Identify functional and nonfunctional requirements Il.a.1, l.a.2
A. Perform JAD sessions 3 days
B. Perform document analysis 5 days IlLa.3.A
C. Conduct interviews Il.a.3.A
1. Interview project sponsor 0.5 days
2. Interview inventory system contact 0.5 days
3. Interview special order system contact 0.5 days
4. Interview ISP contact 0.5 days
5. Interview CD Selection Web contact 0.5 days
6. Interview other personnel 1 day
D. Observe retail store processes 0.5 days Il.a.3.A
4. Analyze current systems 4 days Il.a.1, 1l.a.2
5. Create requirements definition Il.a.3, Il.a.4
A. Determine requirements to track 1 day
B. Compile requirements as they are elicited 5 days Il.a.5.A
C. Review requirements with sponsor 2 days Il.a.5.B

b. Elaboration
c. Construction
d. Transition

e. Production

66 Chapter 2 Project Management

FIGURE 2-18
Continued

1I. Analysis

a. Inception
1. Identify business processes
2. Identify use cases

b. Elaboration

c. Construction

d. Transition

e. Production

IV. Design
a. Inception
1. Identify potential classes
b. Elaboration
c. Construction
d. Transition
e. Production

V. Implementation
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

VI. Test
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

VII.

Deployment
a. Inception

b. Elaboration
c. Construction
d. Transition

e. Production

VIII. Configuration and Change Management

a. Inception
1. Identify necessary access controls for developed artifacts
2. Identify version control mechanisms for developed artifacts

b. Elaboration

c. Construction

d. Transition

e. Production

IX. Project Management
a. Inception

1. Create workplan for the inception phase

2. Create system request

3. Perform feasibility analysis
A. Perform technical feasibility analysis
B. Perform economic feasibility analysis
C. Perform organizational feasibility analysis

Duration

3 days
3 days

3 days

0.25 days
0.25 days

1 day
1 day

1 day
2 days
2 days

Dependency

ll.a.1

ll.a

IX.a.2

FIGURE 2-18
Continued

Creating and Managing the Workplan 67

Duration Dependency

4. Identify project effort 0.50 days IX.a.3

5. Identify staffing requirements 0.50 days IX.a.4

6. Compute cost estimate 0.50 days IX.a.5

7. Create workplan for first iteration of the

elaboration phase 1 day IX.a.1

8. Assess inception phase 1 day la, Il.a, lll.a
IV.a, V.a, Vl.a
Vll.a, Vlll.a,
1X.a, X.a, Xl.a
Xll.a

b. Elaboration
c. Construction
d. Transition

e. Production

X. Environment
a. Inception

1. Acquire and install CASE tool 0.25 days

2. Acquire and install programming environment 0.25 days

3. Acquire and install configuration and change
management tools 0.25 days

4. Acquire and install project management tools 0.25 days
. Elaboration
. Construction
. Transition

o o n o

. Production

XI. Operations and Support
a. Inception
b. Elaboration
c. Construction
d. Transition
e. Production

XII. Infrastructure Management

a. Inception
1. Identify appropriate standards and enterprise models 0.25 days
2. Identify reuse opportunities, such as patterns,

frameworks, and libraries 0.50 days

3. Identify similar past projects 0.25 days

b. Elaboration

c. Construction

d. Transition

e. Production

Managing Scope

An analyst may assume that a project will be safe from scheduling problems because he or she
carefully estimated and planned the project up front. However, the most common reason for
schedule and cost overruns—scope creep—occurs after the project is under way. Scope creep
happens when new requirements are added to the project after the original project scope was
defined and frozen. It can happen for many reasons: Users might suddenly understand the

68 Chapter 2 Project Management

potential of the new system and realize new functionality that would be useful; developers
might discover interesting capabilities to which they become very attached; a senior manager
might decide to let this system support a new strategy that was developed at a recent board
meeting.

Fortunately, using an iterative and incremental development process allows the team to
deal with changing requirements in an effective way. However, the more extensive the change
becomes, the greater the impact on cost and schedule. The keys are to identify the require-
ments as well as possible in the beginning of the project and to apply analysis techniques
effectively. For example, if needs are fuzzy at the project’s onset, a combination of intensive
meetings with the users and prototyping would allow users to “experience” the requirements
and better visualize how the system could support their needs.

Of course, some requirements may be missed no matter what precautions are taken.
However, the project manager should allow only absolutely necessary requirements to be
added after the project begins. Even at that point, members of the project team should care-
fully assess the ramifications of the addition and present the assessment to the users. Any
change that is implemented should be carefully tracked so that an audit trail exists to measure
the change’s impact.

Sometimes changes cannot be incorporated into the present system even though they
truly would be beneficial. In this case, these additions should be recorded as future enhance-
ments to the system. The project manager can offer to provide functionality in future releases
of the system, thus getting around telling someone “no.”

A couple of useful agile techniques to manage the scope of the project while attempting
to satisfy the client are daily scrum meetings and the product backlog used with Scrum.
Essentially a daily scrum meeting is a very short, typically fifteen minutes, meeting that keeps
the development team up to date as to the current status of the evolving system. The content
of the meeting typically only covers what has been accomplished since the previous meeting,
what will be accomplished before the next meeting, and what obstacles could come up that
could prevent progress from being made. Also, new requested features could be brought
up. However, all proposed additional features are simply added to the product backlog that
could be considered during the next iteration or timebox (sprint in Scrum’s nomenclature).
The product backlog is essentially a prioritized list of the functional requirements that will
be completed during the current iteration. In Scrum, only the client is allowed to modify the
product backlog. In this manner, the development team always has a list of the current set of
critical requirements. As long as the project is relatively small, this approach to scope man-
agement is very effective.

Timeboxing

Another approach to scope management is a technique called timeboxing. Up until now, we
have described task-oriented projects. In other words, we have described projects that have a
schedule driven by the tasks that need to be accomplished, so the greater number of tasks and
requirements, the longer the project will take. Some companies have little patience for devel-
opment projects that take a long time, and these companies take a time-oriented approach
that places meeting a deadline above delivering functionality.

Think about the use of word processing software. For 80 percent of the time, only 20 percent
of the features, such as the spelling checker, boldfacing, and cutting and pasting, are used. Other
features, such as document merging and creating mailing labels, may be nice to have, but they
are not a part of day-to-day needs. The same goes for other software applications; most users
rely on only a small subset of their capabilities. Ironically, most developers agree that typically
75 percent of a system can be provided relatively quickly, with the remaining 25 percent of the
functionality demanding most of the time.

Creating and Managing the Workplan 69

To resolve this incongruency, the technique of timeboxing has become quite popular,
especially when using RAD and agile methodologies. This technique sets a fixed deadline for
a project and delivers the system by that deadline no matter what, even if functionality needs
to be reduced. Timeboxing ensures that project teams don’t get hung up on the final finishing
touches that can drag out indefinitely, and it satisfies the business by providing a product
within a relatively short time frame.

Several steps are involved in implementing timeboxing on a project. First, set the date of
delivery for the proposed goals. The deadline should not be impossible to meet, so it is best
to let the project team determine a realistic due date. If you recall from Chapter 1, the Scrum
agile methodology sets all of its timeboxes (sprint) to thirty working days. Next, build the core
of the system to be delivered; you will find that timeboxing helps create a sense of urgency and
helps keep the focus on the most important features. Because the schedule is absolutely fixed,
functionality that cannot be completed needs to be postponed. It helps if the team prioritizes
a list of features beforehand to keep track of what functionality the users absolutely need.
Quality cannot be compromised, regardless of other constraints, so it is important that the
time allocated to activities is not shortened unless the requirements are changed (e.g., don’t
reduce the time allocated to testing without reducing features). At the end of the time period,
a high-quality system is delivered, but it is likely that future iterations will be needed to make
changes and enhancements. In that case, the timeboxing approach can be used once again.

Refining Estimates

The estimates that are produced during inception need to be refined as the project progresses.
This does not mean that estimates were poorly done at the start of the project; rather, it is
virtually impossible to develop an exact assessment of the project’s schedule at the beginning
of the development process. A project manager should expect to be satisfied with broad
ranges of estimates that become more and more specific as the project’s product becomes
better defined.

During planning, when a system is first requested, the project sponsor and project
manager attempt to predict how long the development process will take, how much it will
cost, and what it will ultimately do when it is delivered (i.e., its functionality). However, the
estimates are based on very little knowledge of the system. As the system moves into the
elaboration, more information is gathered, the system concept is developed, and the estimates
become even more accurate and precise. As the system moves closer to completion, the accu-
racy and precision increase, until it is delivered.

According to one of the leading experts in software development,® a well-done project
plan (prepared at the end of inception) has a 100 percent margin of error for project cost and
a 25 percent margin of error for schedule time. In other words, if a carefully done project plan
estimates that a project will cost $100,000 and take twenty weeks, the project will actually cost
between $0 and $200,000 and take between fifteen and twenty-five weeks.

What happens if you overshoot an estimate (e.g., analysis ends up lasting two weeks
longer than expected)? There are a number of ways to adjust future estimates. If the project
team finishes a step ahead of schedule, most project managers shift the deadlines sooner by
the same amount but do not adjust the promised completion date. The challenge, however,
occurs when the project team is late in meeting a scheduled date. Three possible responses to
missed schedule dates are presented in Figure 2-19. If, early in the project, an estimate proves
to be too optimistic, planners should not expect to make up for lost time—very few projects

9 Barry W. Boehm et al., “Cost Models for Future Software Life Cycle Processes: COCOMO 2.0,” in J. D. Arthur and
S. M. Henry (eds.), Annals of Software Engineering: Special Volume on Software Process and Product Measurement
(Amsterdam: J. C. Baltzer AG Science Publishers, 1995).

70 Chapter 2 Project Management

FIGURE 2-19
Possible Actions
When a Schedule
Date Is Missed

Assumptions

If you assume the rest of the project is
simpler than the part that was late
and is also simpler than believed
when the original schedule estimates

If you assume the rest of the project is
simpler than the part that was late
and is no more complex than the
original estimate assumed, you can’t
make up the lost time, but you will
not lose time on the rest of the

were made, you can make up lost time.

Actions

Do not change schedule.

Increase the entire schedule by the
total amount of time that you are
behind (e.g., if you missed the
scheduled date by two weeks, move
the rest of the schedule dates to two
weeks later). If you included padded

Level of Risk

High risk

Moderate risk

time at the end of the project in the
original schedule, you might not have
to change the promised system
delivery date; you'll just use up the
padded time.

project.

Increase the entire schedule by the Low risk
percentage of weeks that you are
behind (e.g., if you are two weeks
late on part of the project that was
supposed to take eight weeks, you
need to increase all remaining
time estimates by 25 percent). If
this moves the new delivery date
beyond what is acceptable to the
project sponsor, the scope of the
project must be reduced.

If you assume that the rest of the
project is as complex as the part
that was late (your original estimates
were too optimistic), then all the
scheduled dates in the future
underestimate the real time required
by the same percentage as the part
that was late.

end up doing this. Instead, they should change future estimates to include an increase similar
to the one that was experienced. For example, if the first phase was completed 10 percent over
schedule, planners should increase the rest of their estimates by 10 percent.

Managing Risk

One final facet of project management is risk management, the process of assessing and
addressing the risks that are associated with developing a project. Many things can cause
risks: weak personnel, scope creep, poor design, and overly optimistic estimates. The project
team must be aware of potential risks so that problems can be avoided or controlled well
ahead of time.

Typically, project teams create a risk assessment, or a document that tracks potential risks
along with an evaluation of the likelihood of each risk and its potential impact on the project
(Figure 2-20). A paragraph or two is also included to explain potential ways that the risk can
be addressed. There are many options: The risk could be publicized, avoided, or even elim-
inated by dealing with its root cause. For example, imagine that a project team plans to use
new technology but its members have identified a risk in the fact that its members do not have
the right technical skills. They believe that tasks may take much longer to perform because of
a high learning curve. One plan of attack could be to eliminate the root cause of the risk—the
lack of technical experience by team members—by finding the time and resources needed to
provide proper training to the team.

Most project managers keep abreast of potential risks, even prioritizing them according
to their magnitude and importance. Over time, the list of risks will change as some items are
removed and others surface. The best project managers, however, work hard to keep risks
from having an impact on the schedule and costs associated with the project.

FIGURE 2-20

Sample Risk
Assessment

Staffing the Project 71

Risk Assessment

RISK 1: The development of this system likely will be slowed
considerably because project team members have not
programmed in Java prior to this project.

Likelihood of risk: High probability of risk.

Potential impact on the project: This risk will probably increase the time to complete
programming tasks by 50 percent.

Ways to address this risk:

It is very important that time and resources are allocated to up-front training in Java for the
programmers who are used for this project. Adequate training will reduce the initial learning curve
for Java when programming begins. Additionally, outside Java expertise should be brought in for at
least some part of the early programming tasks. This person should be used to provide experiential
knowledge to the project team so that Java-related issues (of which novice Java programmers would
be unaware) are overcome.

RISK 2:

STAFFING THE PROJECT

Staffing the project includes determining how many people should be assigned to the project,
matching people’s skills with the needs of the project, motivating them to meet the project’s
objectives, and minimizing the conflict that will occur over time. The deliverables for this part
of project management are a staffing plan, which describes the number and kinds of people
who will work on the project, the overall reporting structure, and the project charter, which
describes the project’s objectives and rules. However, before describing the development of a
staffing plan, how to motivate people, and how to handle conflict, we describe a set of char-
acteristics of jelled teams.

Characteristics of a Jelled Team1?

The idea of a jelled team has existed for a long time. Most (if not all) student groups are not
representative of the idea of a jelled team, and you may have never had the opportunity to
appreciate the effectiveness of a true team. In fact, DeMarco and Lister point out that teams
are not created; they are grown. Typically, in class projects, students are assigned or asked to
form a group, which makes the ability to grow a team very limited. However, growing devel-
opment teams is crucial in information systems development. The whole set of agile software
development approaches hinges on growing jelled teams. Otherwise, agile development
approaches would totally fail.

According to DeMarco and Lister,!! “[a] jelled team is a group of people so strongly knit
that the whole is greater than the sum of the parts. The production of such a team is greater
than that of the same people working in unjelled form.” They go on to state that a jelled “team
can become almost unstoppable, a juggernaut for success.” When is the last time that you
worked with a group on a class project that could be described “a juggernaut for success”?
Demarco and Lister identify five characteristics of a jelled team.

10 The material in the section is based on T. DeMarco and T. Lister, Peopleware: Productive Projects and Teams,
2nd Ed. (New York: Dorset House, 1999); P. Lencioni, The Five Dysfunctions of a Team: A Leadership Fable (San
Francisco: Jossey-Bass, 2002).

I1'T. DeMarco and T. Lister, Peopleware: Productive Projects and Teams, 2nd Ed., p. 123.

72 Chapter 2 Project Management

First, jelled teams have a very low turnover during a project. Typically, members of
a jelled team feel a responsibility to the other team members. This responsibility is felt so
intensely that for a member to leave the team, the member would feel that they were letting
the team down and that they were breaking a bond of trust.

Second, jelled teams have a strong sense of identity. In many classes, when you are part of
a group, the group chooses some cute name to identify the group and differentiate it from the
other groups. However, in this case, it is not simply the choosing of a name. It is instead evolv-
ing every member into something that only exists within the team. This can be seen when
members of the team tend to do non-work-related activities together, e.g., do lunch together
as a team or form a basketball team composed of only members of the development team.

Third, the strong sense of identity tends to lead the team into feeling a sense of eliteness.
The members of a jelled development team almost have a swagger about the way they relate
to nonteam employees. Good examples that come to mind that possess this sense of eliteness
outside of the scope of information systems development teams are certain sports teams,
U.S. Navy Seal teams, or big city police force SWAT teams. In all three examples, each team
member is highly competent in his or her specialty area, and each other team member knows
(not thinks) that he or she can depend on the team members performing his or her individual
jobs with a very high-level of skill.

Fourth, during the development process, jelled teams feel that the team owns the infor-
mation system being developed and not any one individual member. In many ways, you could
almost say that jelled teams are a little communistic in nature. By this we mean that the individ-
ual contributions to the effort are not important to a true team. The only things that matter are
the output of the team. However, this is not to imply that a member who does not deliver his or
her fair share will not go unpunished. In a jelled team, any member who is not producing is actu-
ally breaking his or her bond of trust with the other team members (see the first characteristic).

The final characteristic of a jelled team is that team members really enjoy (have fun)
doing their work. The members actually like to go to work and be with their team members.
Much of this can be attributed to the level of challenge they receive. If the project is challeng-
ing and the members of the team are going to learn something from completing the project,
the members of a jelled team will enjoy tackling the project.

When a team jells, they will avoid the five dysfunctions of a team defined by Lencioni.
Lack of trust is the primary cause of a team becoming dysfunctional. Lencioni describes four
other causes of a team becoming dysfunctional that can come from the lack of trust. First,
dysfunctional teams fear conflict, whereas members of a jelled team never fear conflict.!?
Going to a member of a jelled team and admitting that you do not know how to do something
is no big deal. In fact, it provides a method for the team member to help out, which would
increase the level of trust between the two members. Second, dysfunctional teams do not have
a commitment to the team from the individual members. Instead, they tend to focus on their
individual performance instead of the team’s performance. This can even be to the detriment
of the development team. Obviously, this is not an issue for jelled teams. Third, dysfunctional
teams try to avoid accountability. With jelled teams, accountability is not an issue. Members
of a jelled team feel a high level of responsibility to the other team members. No team mem-
ber ever wants to let down the team. Furthermore, owing to the bond that holds jelled teams
together, no member has any problem with holding other members accountable for their per-
formance (or lack of performance). Fourth, dysfunctional teams do not pay attention to the
team’s results. Again, in this case, the cause of this dysfunction is that the individual members
only focus on their individual goals. From a team management perspective, the team leader
should focus on getting the goals of the team aligned; a jelled team will attain the goals.

12 When conflict occurs, it is necessary to address it in an effective manner. We discuss how to handle conflict later
in the chapter.

Staffing the Project 73

Staffing Plan

The first step to staffing is determining the average number of staff needed for the project.
To calculate this figure, divide the total person-months of effort by the optimal schedule.
So to complete a forty-person-month project in ten months, a team should have an average
of four full-time staff members, although this may change over time as different specialists
enter and leave the team (e.g., business analysts, programmers, technical writers).

Many times, the temptation is to assign more staff to a project to shorten the project’s
length, but this is not a wise move. Adding staff resources does not translate into increased
productivity; staff size and productivity share a disproportionate relationship, mainly because
it is more difficult to coordinate a large number of staff members. The more a team grows,
the more difficult it becomes to manage. Imagine how easy it is to work on a two-person
project team: The team members share a single line of communication. But adding two peo-
ple increases the number of communication lines to six, and greater increases lead to more
dramatic gains in communication complexity. Figure 2-21 illustrates the impact of adding
team members to a project team.

One way to reduce efficiency losses on teams is to understand the complexity that is cre-
ated in numbers and to build in a reporting structure that tempers its effects. The general rule

2 s

i (

Two-person team Four-person team

4

FIGURE 2-21

) | | |
< % |
,
)
v
Increasing Com-
plexity with Larger

Teams Six-person team Eight-person team

74 Chapter 2 Project Management

FIGURE 2-22

Possible Reporting
Structure

is to keep team sizes to fewer than eight to ten people; therefore, if more people are needed,
create sub-teams. In this way, the project manager can keep the communication effective
within small teams, which, in turn, communicate to a contact at a higher level in the project.

After the project manager understands how many people are needed for the project,
he or she creates a staffing plan that lists the roles and the proposed reporting structure that
are required for the project. Typically, a project has one project manager who oversees the
overall progress of the development effort, with the core of the team comprising the various
types of analysts described in Chapter 1. A functional lead is usually assigned to manage
a group of analysts, and a technical lead oversees the progress of a group of programmers and
more technical staff members.

There are many structures for project teams; Figure 2-22 illustrates one possible config-
uration of a project team. After the roles are defined and the structure is in place, the project
manager needs to think about which people can fill each role. Often, one person fills more
than one role on a project team.

When you make assignments, remember that people have technical skills and interper-
sonal skills, and both are important on a project. Technical skills are useful when working
with technical tasks (e.g., programming in Java) and in trying to understand the various
roles that technology plays in the particular project (e.g., how a Web server should be con-
figured on the basis of a projected number of hits from customers). Interpersonal skills,
on the other hand, include interpersonal and communication abilities that are used when
dealing with business users, senior management executives, and other members of the
project team. They are particularly critical when performing the requirements-gathering
activities and when addressing organizational feasibility issues. Each project requires
unique technical and interpersonal skills.

Ideally, project roles are filled with people who have the right skills for the job. However,
the people who fit the roles best might not be available; they may be working on other projects,
or they might not exist in the company. Therefore, assigning project team members really is
a combination of finding people with the appropriate skill sets and finding people who are
available. When the skills of the available project team members do not match what is actually
required by the project, the project manager has several options to improve the situation. First,
people can be pulled off other projects, and resources can be shuffled around. This is the most
disruptive approach from the organization’s perspective. Another approach is to use outside
help—such as a consultant or contractor—to train team members and start them off on the
right foot. Mentoring may also be an option; a project team member can be sent to work on
another similar project so that he or she can return with skills to apply to the current job.

Project
manager
Functional Technical
lead lead
Analyst Analyst Analyst Programmer Programmer

Staffing the Project 75

Motivation

Assigning people to tasks isn’t enough; project managers need to motivate the people to
ensure a project’s success. Motivation has been found to be the number one influence on
people’s performance,!® but determining how to motivate the team can be quite difficult. You
might think that good project managers motivate their staff by rewarding them with money
and bonuses, but most project managers agree that this is the last thing that should be done.
The more often managers reward team members with money, the more they expect it—and
most times monetary motivation won’t work. Pink! has suggested a set of principles to follow
to motivate individuals in twenty-first century firms. In this section, we adapt his suggestions
to information systems development teams.

Pink suggests considering using some form of the 20 percent time rule to motivate
individuals. This rule suggests that 20 percent of an employee’s time should be spent on
some idea in which he or she believes. The project does not have to be related to the project
at hand. On the surface, this sounds like a colossal waste of time, but this idea should not be
discarded. Google’s Gmail and Google News were developed using the 20 percent time rule.
If 20 percent sounds too high, Pink suggests that you consider 10 percent to begin with.

He recommends that firms should be willing to fund small “Now That” awards. These awards
are given as small signs of appreciation for doing a great job. However, these awards are not given
by a manager to an employee but from an employee to a peer of the employee. The awards are
monetary, but they are very small, typically $50. As such, they really are not relevant from a mon-
etary perspective. However, they are very relevant because they are given by one of the employee’s
colleagues to show that some action that the employee did was appreciated.

Pink endorses the idea of applying Robert Reich’s (President’s Clinton’s Secretary of
Labor) pronoun test. If an employee (or team member) refers to the firm (the team) as “they,”
then there is the real possibility that the employee feels disengaged or possibly alienated. On
the other hand, when employees refer to the firm as “we,” they obviously feel like they are
part of the organization. From a team perspective, this could be an indication that the team
has begun to jell.

Pink suggests that management should periodically consider giving each employee a day
on which he or she can work on anything he or she wants. In some ways, this is related to
the 20 percent rule. It does not necessarily require one day a week (20 percent), but it does
require some deliverable. The deliverable can be a new utility program that could be used by
lots of different projects, it could be a new prototype of a new software product, or it could
be an improvement for a business process that is used internally. The goal is to provide team
members with the ability to focus on interesting and challenging problems that might (or
might not) provide results to the firm’s bottom line. Regardless, it demonstrates an amount
of trust and respect that the firm has for its employees.

He recommends that managers remove the issue of compensation from the motivation
equation. By this, he means that all employees should be paid a sufficient amount so that com-
pensation awards are not an issue. Technical employees on project teams are much more moti-
vated by recognition, achievement, the work itself, responsibility, advancement, and the chance
to learn new skills.!> Simplistic financial awards, such as raises that are perceived as being unjust,
can actually demotivate the overall team and lower overall performance.

13 Barry W. Boehm, Software Engineering Economics (Englewood Cliffs, NJ: Prentice Hall, 1981). One of the best
books on managing project teams is that by Tom DeMarco and Timothy Lister, Peopleware: Productive Projects and
Teams (New York: Dorset House, 1987).

14 D. H. Pink, Drive: The Surprising Truth About What Motivates Us (New York, NY: Riverhead Books, 2009).

15 F. H. Hertzberg, “One More Time: How Do You Motivate Employees?” Harvard Business Review (January-
February 1968).

76 Chapter 2 Project Management

He advocates that twenty-first century bosses (team leaders) need to be willing to give up
control. Many of the agile development approaches make similar suggestions. Appelo!® suggests
that an open door policy that is supported by a team leader actually can be self-defeating. In the
case of software development teams, an open door policy implies that the team leader has a door
that can be left open, whereas the poor individual team member does not have an office with a
door. In this case, Appelo suggests that the team leader move from the office with a door to the
same shared space in which the team resides. One of Pink’s other ideas is for the team leader to
not use controlling language such as telling the team member that he or she “must” do some-
thing. Instead, the team leader should ask the team member to “consider” or “think about” the
idea. In some ways, a true team leader should never receive credit for any ideas associated with
the team. Instead, a team leader should make suggestions and encourage the team members
to consider ideas and, most importantly, let the team member and the team receive the credit.

Pink provides evidence that intrinsic motivation is very important for twenty-first century
knowledge workers. Pink suggests that intrinsically motivating individuals requires providing
them with a degree of autonomy, supporting them in such a way that they can master their area
of expertise, and encouraging them to pursue projects with a purpose. Providing team members
with autonomy relates to the jelled team concept of trust. Team leaders need to trust the team
members to deliver the software for which they are responsible. Supporting team members so that
they can master their area of expertise can be as simple as providing support to attend confer-
ences, seminars, and training sessions that deal with the member’s area of expertise. It also could
imply providing the team member with a high-end development environment. For example,
when building information visualization and virtual reality applications, special hardware and
software environments can make it much easier to master the technology to develop the appli-
cation. Finally, today it is very important for team members to feel that what they are doing can
make a difference. A team leader should encourage the team members to tackle problems that
can impact people’s lives. This can easily be accomplished through the use of the 20 percent rule.

Handling Conflict

The third component of staffing is organizing the project to minimize conflict among group
members. Group cohesiveness (the attraction that members feel to the group and to other
members) contributes more to productivity than do project members’ individual capabil-
ities or experiences.!” Clearly defining the roles on the project and holding team members
accountable for their tasks are a good way to begin mitigating potential conflict on a project.
Some project managers develop a project charter, which lists the project’s norms and ground
rules. For example, the charter may describe when the project team should be at work, when
staff meetings will be held, how the group will communicate with each other, and what are
the procedures for updating the workplan as tasks are completed. Figure 2-23 lists additional
techniques that can be used at the start of a project to keep conflict to a minimum.

ENVIRONMENT AND INFRASTRUCTURE MANAGEMENT

The environment and infrastructure management workflows support the development
team throughout the development process. The environment workflow primarily deals with
choosing the correct set of tools that will be used throughout the development process and

16 J. Appelo, Management 3.0: Leading Agile Developers, Developing Agile Leaders (Upper Saddle River, NJ:
Addison-Wesley, 2011).

17 B. Lakhanpal, “Understanding the Factors Influencing the Performance of Software Development Groups: An
Exploratory Group-Level Analysis,” Information and Software Technology 35, no. 8 (1993): 468-473.

FIGURE 2-23

Conflict-Avoidance
Strategies

Environment and Infrastructure Management 77

e Clearly define plans for the project.

¢ Make sure that the team understands how the project is important to the organization.
¢ Develop detailed operating procedures and communicate these to the team members.
e Develop a project charter.

¢ Develop schedule commitments ahead of time.

e Forecast other priorities and their possible impact on the project.

Source: H. J. Thamhain and D. L. Wilemon, “Conflict Management in Project Life Cycles,” Sloan Manage-
ment Review (Spring 1975).

identifying the appropriate set of standards to be followed during the development process.
Infrastructure management workflow deals with choosing the appropriate level and type of
documentation that will be created during the development process. Other activities asso-
ciated with the infrastructure management workflow include developing, modifying, and
reusing predefined components, frameworks, libraries, and patterns. The topic of reuse is
discussed in later chapters (see Chapters 5 and 8).

CASE Tools

Computer-aided software engineering (CASE) is a category of software that automates all or
part of the development process. Some CASE software packages are used primarily to support
the analysis workflow to create integrated diagrams of the system and to store information
regarding the system components, whereas others support the design workflow that can be
used to generate code for database tables and system functionality. Other CASE tools contain
functionality that supports tasks throughout the system-development process. CASE comes
in a wide assortment of flavors in terms of complexity and functionality, and many good
tools are available in the marketplace to support object-oriented systems development (e.g.,
ArgoUml, Enterprise Architect, Poseidon, Visual Paradigm, and IBM’s Rational Rose).

The benefits of using CASE are numerous. With CASE tools, tasks can be completed
and altered faster, development documentation is centralized, and information is illustrated
through diagrams, which are typically easier to understand. Potentially, CASE can reduce
maintenance costs, improve software quality, and enforce discipline. Some project teams
even use CASE to assess the magnitude of changes to the project. Many modern CASE tools
that support object-oriented systems development support a development technique known
as round-trip engineering. Round-trip engineering supports not only code generation but also
the reverse engineering of UML diagrams from code. In this way, the system can evolve via
diagrams and via code in a round-trip manner.

Of course, like anything else, CASE should not be considered a silver bullet for project
development. The advanced CASE tools are complex applications that require significant
training and experience to achieve real benefits. Our experience has shown that CASE is a
helpful way to support the communication and sharing of project diagrams and technical
specifications as long as it is used by trained developers who have applied CASE on past pro-
jects. All CASE tools use a CASE repository to store diagrams, models, and I/O designs and to
ensure consistency across iterations.

Standards

Project team members need to work together, and most project management software and
CASE tools support them by providing access privileges to everyone working on the system.
However, without set procedures, collaboration can result in confusion. To make matters worse,

78 Chapter 2 Project Management

FIGURE 2-24
A Sampling of
Project Standards

people sometimes are reassigned in the middle of a project. It is important that their project
knowledge does not leave with them and that their replacements can get up to speed quickly.

One way to make certain that everyone is performing tasks in the same way and following
the same procedures is to create standards that the project team must follow. Standards can
include formal rules for naming files, forms that must be completed when goals are reached,
and programming guidelines. Figure 2-24 shows some examples of the types of standards that
a project can create. When a team forms standards and then follows them, the project can be
completed faster because task coordination becomes less complex.

Standards work best when they are created at the beginning of each major phase of the
project and communicated clearly to the entire project team. As the team moves forward, new
standards are added when necessary. Some standards (e.g., file naming conventions, status
reporting) are applied during the entire development process, whereas others (e.g., program-
ming guidelines) are appropriate only for certain tasks.

Documentation

Finally, during the inception phase of the infrastructure workflow, project teams establish
good documentation standards that include detailed information about the tasks of the Unified
Process. Typically, the standards for the required documentation are set by the development
organization. The development team only needs to ascertain which documentation standards
are appropriate for the current systems development project. Often, the documentation is
stored in a project binder(s) that contains all the deliverables and all the internal communication

Types of Standards Examples

Documentation standards The date and project name should appear as a header on
all documentation.

All margins should be set to 1 inch.
All deliverables should be added to the project binder and
recorded in its table of contents.

Coding standards All modules of code should include a header that lists the
programmer, last date of update, and a short description of the
purpose of the code.

Indentation should be used to indicate loops, if-then-else
statements, and case statements.

On average, every program should include one line of
comments for every five lines of code.
Procedural standards Record actual task progress in the work plan every Monday
morning by 10 Am.
Report to project update meeting on Fridays at 3:30 pm.
All changes to a requirements document must be approved
by the project manager.
Specification requirement standards ~ Name of program to be created
Description of the program’s purpose
Special calculations that need to be computed
Business rules that must be incorporated into the program
Pseudocode
Due date

User interface design standards Labels will appear in boldface text, left-justified, and followed by a colon.
The tab order of the screen will move from top left to bottom right.
Accelerator keys will be provided for all updatable fields.

Environment and Infrastructure Management 79

that takes place—the history of the project. The good news is that Unified Process has a set
of standard documentation that is expected. The documentation typically includes the system
request, the feasibility analysis, the original and later versions of the effort estimation, the
evolving workplan, and UML diagrams for the functional, structural, and behavioral models.

A poor project management practice is waiting until the last minute to create documentation;
this typically leads to an undocumented system that no one understands. Good project teams learn
to document a system’s history as it evolves while the details are still fresh in their memory. In most
CASE tools that support object-oriented systems development, some of the documentation can be
automated. For example, if the programming language chosen to implement the system in is Java,
then it is possible to automatically create HTML manual pages that will describe the classes being
implemented. This is accomplished through the javadoc!® tool that is part of the Java development
environment. Other tools enable the developer to automatically generate HTML documentation
for the UML diagrams, e.g., umldoc, which is part of the Poseidon for UML CASE tool.!” Even
though virtually all developers hate creating documentation and documentation takes valuable
time, it is a good investment that will pay off in the long run.

Avoiding Classic Planning Mistakes

TIP

As Seattle University’s David Umphress has pointed
out, watching most organizations develop systems is
like watching reruns of Gilligan’s Island. At the begin-
ning of each episode, someone comes up with a
cockamamie scheme to get off the island, and it seems
to work for a while, but something goes wrong and
the castaways find themselves right back where they
started—stuck on the island. Similarly, most companies
start new projects with grand ideas that seem to work,
only to make a classic mistake and deliver the project
behind schedule, over budget, or both. Here we sum-
marize four classic mistakes in the planning and project
management aspects of the project and discuss how to
avoid them:

1. Overly optimistic schedule: Wishful thinking can lead
to an overly optimistic schedule that causes analysis
and design to be cut short (missing key requirements)
and puts intense pressure on the programmers, who
produce poor code (full of bugs).

Solution: Don’t inflate time estimates; instead,
explicitly schedule slack time at the end of each
phase to account for the variability in estimates.

2. Failing to monitor the schedule: If the team does not
regularly report progress, no one knows if the project
is on schedule.

Solution: Require team members to report progress (or
the lack of progress) honestly every week. There is no
penalty for reporting a lack of progress, but there are
immediate sanctions for a misleading report.

3. Failing to update the schedule: When a part of the
schedule falls behind (e.g., information gathering
uses all the slack in item 1 plus 2 weeks), a project
team often thinks it can make up the time later by
working faster. It can’t. This is an early warning that
the entire schedule is too optimistic.

Solution: Immediately revise the schedule and inform
the project sponsor of the new end date or use time-
boxing to reduce functionality or move it into future
versions.

4. Adding people to a late project: When a project
misses a schedule, the temptation is to add more
people to speed it up. This makes the project take
longer because it increases coordination problems
and requires staff to take time to explain what has
already been done.

Solution: Revise the schedule, use timeboxing, throw
away bug-filled code, and add people only to work
on an isolated part of the project.

Based upon Steve McConnell, Rapid Development (Redmond, WA:
Microsoft Press, 1996), pp. 29-50.

18 See Oracle, Javadoc Tool. Retrieved May 2014 from www.oracle.com. www.oracle.com/technetwork/java/javase/

documentation/index-jsp-135444.html.

19 See Gentleware, umldoc, an overview, retrieved May 2014 from /www.gentleware.com. www.gentleware.com/

fileadmin/media/viewlets/text/UMLdoc.viewlet/UMLdoc_viewlet_swf.html.

80 Chapter 2 Project Management

APPLYING THE CONCEPTS AT PATTERSON
SUPERSTORE

In Chapter 2, we look more closely at the completed system request that Max Ross and
his team develop for the Integrated Health Clinic Delivery system, including the business
needs, business requirements, and business values and constraints. We will also examine
the feasibility analysis that accompanies and justifies the system request. Finally, we will
examine how the project effort was estimated, see how the project will be staffed and
managed, and look at the Evolutionary Work Breakdown Structure for Version 1 of the

Integrated Health Clinic Delivery System.

As we progress through the text, examining how Patterson navigates through the sys-
tems analysis and design and development processes will help us understand real-world
implementation of the concepts presented.

You can find the rest of the case at: www.wiley.com/go/dennis/casestudy

CHAPTER REVIEW

After reading and studying this chapter, you should be able to:

| Explain the ways that projects are identified and initiated.

| Explain why it is important to link the information system to business needs of the organization.

|| Describe the purpose of the systems request and explain the contents of its sections.

L] Createa systems request for a proposed project.

| Discuss the purpose of the feasibility study.

|| Describe the issues that are considered when evaluating a project’s technical feasibility.

| Develop an economic feasibility assessment for a project.

|| Understand and evaluate the organizational feasibility of a project.

| Explain how projects are selected.

| Describe a task.

|| Create a standard work breakdown structure, a Gantt Chart, and a Network Diagram.

] Perform PERT analysis and identify the critical path.

|| Estimate the system development effort using use-case points.

| Create an evolutionary work breakdown structure.

|| Describe how iterative and incremental development using timeboxing addresses scope management.

|| Describe the characteristics of a “jelled” team.

|| Describe issues relating to motivating software developers.

|| Describe the importance of CASE tools, standards, and documentation managing software development projects.

KEY TERMS

Actor Break-even point Complex use case Documentation

Adjusted use-case Business need Computer-aided software ~ Economic feasibility
points (UCP) Business requirement engineering (CASE) Effort

Application program Business value CASE repository Emerging Technology
interface (API) Cash flow method Cost-benefit analysis Environmental factor (EF)

Approval committee Champion Critical path method Environmental factor value

Average actors Compatibility Critical task (EFactor)

Average use case Complex actors Development costs Estimation

Evolutionary WBS
Familiarity with the
functional area
Familiarity with the
technology
Feasibility analysis
Feasibility study
First mover
Functional lead
Functionality
Gantt chart
Group cohesiveness
Intangible benefits
Intangible costs
Intangible value
Iterative workplan
Interpersonal skills
Methodology
Milestone
Motivation
Net present value (NPV)

Network Diagram

Node

Operational costs

Organizational feasibility

Organizational management

Person-hours multiplier
(PHM)

Program evaluation and
review technique (PERT)

Portfolio management

Project

Project binder

Project charter

Project initiation

Project management

Project management
software

Project manager

Project size

Project sponsor

Reporting structure

Return on investment
(ROI)

Risk assessment

Risk management

Risks

Round-trip engineering

Scope creep

Simple actors

Simple use case

Special issues

Staffing plan

Stakeholder

Stakeholder analysis

Standards

Strategic alignment

System request

System users

Questions 81

Technical complexity factor
(TCF)

Technical factor value
(TFactor)

Technical feasibility

Technical lead

Technical risk analysis

Technical skills

Timeboxing

Trade-offs

Unadjusted actor weight
total (UAW)

Unadjusted use-case points
(uucp)

Unadjusted use-case weight
total (UUCW)

Use case

QUESTIONS

1.

Give three examples of business needs for a system.

2. What is the purpose of an approval committee? Who

N

10.

11.

12.

is usually on this committee?

. Why should the system request be created by a busi-

ness person as opposed to an IS professional?

. What is the difference between intangible value and

tangible value? Give three examples of each.

. What are the purposes of the system request and the

feasibility analysis? How are they used in the project
selection process?

. Describe two special issues that may be important to

list on a system request.

. Describe the three techniques for feasibility analysis.
. Describe a risky project in terms of technical feasibil-

ity. Describe a project that would not be considered
risky.

. What are the steps for assessing economic feasibility?

Describe each step.

List two intangible benefits. Describe how these bene-
fits can be quantified.

List two tangible benefits and two operational costs for
a system. How would you determine the values that
should be assigned to each item?

Explain the net present value and return on invest-
ment for a cost-benefit analysis. Why would these
calculations be used?

Tangible benefits Use-case points
Tangible value Work breakdown structure
Task (WBS)
Task dependency Workplan
13. What is the break-even point for the project? How is

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.
25.

it calculated?

What is stakeholder analysis? Discuss three stakehold-
ers that would be relevant for most projects.

Why do many projects end up having unreasonable
deadlines? How should a project manager react to
unreasonable demands?

What are the trade-offs that project managers must
manage?

Compare and contrast the Gantt chart with the net-
work diagram.

Some companies hire consulting firms to develop the
initial project plans and manage the project but use
their own analysts and programmers to develop the
system. Why do you think some companies do this?
What is a use-case point? For what is it used?

What process do we use to estimate systems develop-
ment based on use cases?

Name two ways to identify the tasks that need to be
accomplished over the course of a project.

What are the problems associated with conventional
WBSs?

What is an evolutionary WBS? How does it address
the problems associated with a conventional WBS?
What is an iterative workplan?

What is scope creep, and how can it be managed?

82

26.
27.

28.

29.

Chapter 2 Project Management

What is timeboxing, and why is it used?

Create a list of potential risks that could affect the
outcome of a project.

Describe the differences between a technical lead and
a functional lead. How are they similar?

Describe three technical skills and three interpersonal
skills that are very important to have on any project.

EXERCISES

A.

Locate a news article in an IT trade magazine (e.g.,
Computerworld) about an organization that is imple-
menting a new computer system. Describe the tangi-
ble and intangible value that the organization is likely
to realize from the new system.

. Car dealers have realized how profitable it can be to

sell automobiles using the Web. Pretend that you work
for a local car dealership that is part of a large chain
such as CarMax. Create a system request you might
use to develop a Web-based sales system. Remember
to list special issues that are relevant to the project.

. Suppose that you are interested in buying a new com-

puter. Create a cost-benefit analysis that illustrates
the return on investment that you would receive
from making this purchase. Computer-related web-
sites (e.g., Apple, Dell, HP) should have real tangible
costs that you can include in your analysis. Project
your numbers out to include a three-year period and
provide the net present value of the final total.

. The Amazon.com website originally sold books; then

the management of the company decided to extend
their Web-based system to include other products.
How would you have assessed the feasibility of this
venture when the idea first came up? How risky would
you have considered the project that implemented this
idea? Why?

. Interview someone who works in a large organization

and ask him or her to describe the approval process
that exists for approving new development projects.
What do they think about the process? What are the
problems? What are the benefits?

. Visit a project management website, such as the Project

Management Institute (www.pmi.org). Most have links
to project management software products, white papers,
and research. Examine some of the links for project
management to better understand a variety of Internet
sites that contain information related to this chapter.

. Select a specific project management topic such as

CASE, project management software, or timeboxing
and search for information on that topic using the

30.

31.
32.

33.

What are the best ways to motivate a team? What are
the worst ways?

List three techniques to reduce conflict.

Describe three types of standards and provide exam-
ples of each.

What belongs in the project binder? How is the pro-
ject binder organized?

Web. Any search engine (e.g., Bing, Google) can pro-
vide a starting point for your efforts.

. Pretend that the career services office at your univer-

sity wants to develop a system that collects student
résumés and makes them available to students and
recruiters over the Web. Students should be able to
input their résumé information into a standard résumé
template. The information then is presented in a
résumé format, and it also is placed in a database that
can be queried using an online search form. You have
been put in charge of the project. Develop a plan for
estimating the project. How long do you think it would
take for you and three other students to complete the
project? Provide support for the schedule that you
propose.

. Refer to the situation in exercise H. You have been

told that recruiting season begins a month from today
and that the new system must be used. How would
you approach this situation? Describe what you can
do as the project manager to make sure that your team
does not burn out from unreasonable deadlines and
commitments.

. Consider the system described in exercise H. Create

a workplan listing the tasks that will need to be com-
pleted to meet the project’s objectives. Create a Gantt
chart and a network diagram in a project management
tool (e.g., Microsoft Project) or using a spreadsheet
package to graphically show the high-level tasks of the
project.

. Suppose that you are in charge of the project that is

described in exercise H and the project will be staffed
by members of your class. Do your classmates have
all the right skills to implement such a project? If not,
how will you go about making sure that the proper
skills are available to get the job done?

. Complete a use-case point worksheet to estimate the

effort to build the system described in exercises H, I,],
and K. You will need to make assumptions regarding
the actors, the use cases, and the technical complexity
and environmental factors.

M. Consider the application that is used at your school to

register for classes. Complete a use-case point work-
sheet to estimate the effort to build such an applica-
tion. You will need to make some assumptions about
the application’s interfaces and the various factors that
affect its complexity.

. Pretend that your instructor has asked you and two
friends to create a Web page to describe the course to
potential students and provide current class informa-
tion (e.g., syllabus, assignments, readings) to current
students. You have been assigned the role of leader, so
you will need to coordinate your activities and those
of your classmates until the project is completed.
Describe how you would apply the project manage-
ment techniques that you have learned in this chapter
in this situation. Include descriptions of how you
would create a workplan, staff the project, and coordi-
nate all activities—yours and those of your classmates.

MINICASES

1. The Amberssen Specialty Company is a chain of twelve

retail stores that sell a variety of imported gift items,
gourmet chocolates, cheeses, and wines in the Toronto
area. Amberssen has an IS staff of three people who
have created a simple but effective information system
of networked point-of-sale registers at the stores and
a centralized accounting system at the company head-
quarters. Harry Hilman, the head of Amberssens IS
group, has just received the following memo from Bill
Amberssen, Sales Director (and son of Amberssen’s
founder).

Harry—it’s time Amberssen Specialty launched
itself on the Internet. Many of our competitors
are already there, selling to customers without the
expense of a retail storefront, and we should be
there too. I project that we could double or triple
our annual revenues by selling our products on
the Internet. I'd like to have this ready by Thanks-
giving, in time for the prime holiday gift-shopping
season. Bill
After pondering this memo for several days, Harry

scheduled a meeting with Bill so that he could clarify
Bill’s vision of this venture. Using the standard con-
tent of a system request as your guide, prepare a list
of questions that Harry needs to have answered about
this project.

. The Decker Company maintains a fleet of ten service
trucks and crews that provide a variety of plumbing,
heating, and cooling repair services to residential cus-

Minicases 83

O. Select two project management software packages

and research them using the Web or trade magazines.
Describe the features of the two packages. If you were
a project manager, which one would you use to help
support your job? Why?

. In 1997, Oxford Health Plans had a computer problem

that caused the company to overestimate revenue and
underestimate medical costs. Problems were caused
by the migration of its claims processing system from
the Pick operating system to a UNIX-based system
that uses Oracle database software and hardware from
Pyramid Technology. As a result, Oxford’s stock price
plummeted, and fixing the system became the number
one priority for the company. Suppose that you have
been placed in charge of managing the repair of the
claims processing system. Obviously, the project team
will not be in good spirits. How will you motivate
team members to meet the project’s objectives?

tomers. Currently, it takes on average about six hours
before a service team responds to a service request.
Each truck and crew averages twelve service calls per
week, and the average revenue earned per service call
is $150. Each truck is in service fifty weeks per year.
Owing to the difficulty in scheduling and routing,
there is considerable slack time for each truck and
crew during a typical week.

In an effort to more efficiently schedule the trucks
and crews and improve their productivity, Decker
management is evaluating the purchase of a prewritten
routing and scheduling software package. The benefits
of the system will include reduced response time to
service requests and more productive service teams,
but management is having trouble quantifying these
benefits.

One approach is to make an estimate of how much
service response time will decrease with the new system,
which then can be used to project the increase in the
number of service calls made each week. For example, if
the system permits the average service response time to
fall to four hours, management believes that each truck
will be able to make sixteen service calls per week on
average—an increase of four calls per week. With each
truck making four additional calls per week and the
average revenue per call at $150, the revenue increase
per truck per week is $600 (4 X $150). With ten trucks in
service fifty weeks per year, the average annual revenue
increase will be $300,000 ($600 X 10 X 50).

84 Chapter 2 Project Management

Decker Company management is unsure whether
the new system will enable response time to fall to four
hours on average or if it will be some other number.
Therefore, management has developed the following
range of outcomes that may be possible outcomes of
the new system, along with probability estimates of
each outcome’s occurring.

New Response Time ~ # Calls/Truck/Week Likelihood

2 hours 20 20%
3 hours 18 30%
4 hours 16 50%

Given these figures, prepare a spreadsheet model that
computes the expected value of the annual revenues to
be produced by this new system.

. Emily Pemberton is an IS project manager facing a dif-
ficult situation. Emily works for the First Trust Bank,
which has recently acquired the City National Bank.
Before the acquisition, First Trust and City National
were bitter rivals, fiercely competing for market share
in the region. Following the acrimonious takeover,
numerous staff were laid off in many banking areas,
including IS. Key individuals were retained from both
banks’ IS areas, however, and were assigned to a new
consolidated IS department. Emily has been made pro-
ject manager for the first significant IS project since the
takeover, and she faces the task of integrating staffers
from both banks on her team. The project they are
undertaking will be highly visible within the organi-
zation, and the time frame for the project is somewhat
demanding. Emily believes that the team can meet the
project goals successfully, but success will require that
the team become cohesive quickly and that potential
conflicts be avoided. What strategies do you suggest
that Emily implement in order to help ensure a suc-
cessfully functioning project team?

. Tom, Jan, and Julie are IS majors at Great State Uni-
versity. These students have been assigned a class
project by one of their professors, requiring them
to develop a new Web-based system to collect and
update information on the IS program’s alumni. This
system will be used by the IS graduates to enter job
and address information as they graduate and then
make changes to that information as they change jobs
and/or addresses. Their professor also has a number
of queries that she is interested in being able to imple-
ment. Based on their preliminary discussions with

their professor, the students have determined that the
only actor is an IS graduate. They identified one sim-
ple use case, four average use cases, and two complex
use cases. You need to assign reasonable values to
each of the technical complexity and environmental
factors. Calculate the effort for this project.

. In looking for a capstone project for your final MIS

course, you found a possible project. The master gar-
deners in Blint County have created a database of all
of the plants in their arboretum. The database is actu-
ally a spreadsheet created by one of the volunteers.
Along with providing a plant inventory, it is used to
print labels of all of the plants that the other master
gardeners grow for the annual plant. More than
5,000 plants are supplied each year by 100 garden-
ers from their home gardens. Because the type and
numbers of plants change each year and because the
members e-mail the information in varying formats,
label printing has become an onerous task. Pam,
who prints the labels each year, wants help in mak-
ing this task manageable. She provided an example
of a typical email as well as the type of information
she needs.

E-mail

Lilies—labels needed 32—

Lilium lancifolium / lilium tigrinum
Tiger Lily perennial light shade 4’

Ice plant (pink)—labels needed 3
Delosperma cooperi Hardy Ice Plant succulent
full sun 2-5”

Information for Labels

Botanical Name
Common Name

Plant Type

Light Requirement

Height and Width

In order to have this accepted as your project, you
need to form a team with the necessary skills and to
create a systems request. How would you approach
this project? What additional information do you
need from Pam in order to begin estimating the scope
of this project? Assuming that you have received this
information, create a systems request. Also create a
list of skills needed, the number of team members
required, and a project plan.

PART ONE

ANALYSIS MODELING

Analysis modeling answers the questions of who will use the system,
what the system will do, and where and when it will be used. During
analysis, detailed requirements are identified and a system proposal
is created. The team then produces the functional model (use-case
diagram, activity diagrams, and use-case descriptions), structural
model (CRC cards and class diagram, and object diagrams), and
behavioral models (sequence diagrams, communication diagrams,
behavioral state machines, and a CRUDE matrix).

CHAPTER 3

Requirements
Determination

CHAPTER 4

Business Process
and Functional
Modeling

CHAPTER 5

Structural
Modeling

CHAPTER 6

Behavioral
Modeling

Jesodoay uonudQg
wI)sAs spudwainbay

X

sweideiq
ase)-asn

|

o
g
o ®
'_‘.h
=8
e m
-

w

sweageiq
AjAnoy

J\ spied DD J\

sweidelq
sse|D

I

sweigelq
3suanbag

)

XLyew
apni)

sweagelrq
uonedIuNWwWo

aulyoew dels
[edoireydg

t

)
5 Q
o =
i
a @
= =]
w

REQUIREMENTS DETERMINATION

OBJECTIVES

One of the first activities of an analyst is to determine the business requirements for a new
system. This chapter begins by presenting the requirements definition, a document that lists
the new system’s capabilities. It then describes how to analyze requirements using require-
ments analysis strategies and how to gather requirements using interviews, JAD sessions,
questionnaires, document analysis, and observation. The chapter also describes a set of alter-
native requirements-documentation techniques and describes the system proposal document
that pulls everything together.

Understand how to create a requirements definition

Become familiar with requirements-analysis techniques

Understand when to use each requirements-analysis technique

Understand how to gather requirements using interviews, JAD sessions, questionnaires,
document analysis, and observation

Understand the use of concept maps, story cards, and task lists as requirements-
documentation techniques

®m Understand when to use each requirements-gathering technique

B Be able to begin creating a system proposal

INTRODUCTION

86

The systems development process aids an organization in moving from the current system
(often called the as-is system) to the new system (often called the to-be system). The output of
planning, discussed in Chapter 2, is the system request, which provides general ideas for the
to-be system, defines the project’s scope, and provides the initial workplan. Analysis takes the
general ideas in the system request and refines them into a detailed requirements definition
(this chapter), functional models (Chapter 4), structural models (Chapter 5), and behavioral
models (Chapter 6) that together form the system proposal. The system proposal also includes
revised project management deliverables, such as the feasibility analysis and the workplan
(Chapter 2).

The output of analysis, the system proposal, is presented to the approval committee, who
decides if the project is to continue. If approved, the system proposal moves into design, and
its elements (requirements definition and functional, structural, and behavioral models) are
used as inputs to the steps in design. This further refines them and defines in much more
detail how the system will be built.

The line between analysis and design is very blurry. This is because the deliverables
created during analysis are really the first step in the design of the new system. Many of
the major design decisions for the new system are found in the analysis deliverables. It is

Requirements Determination 87

important to remember that the deliverables from analysis are really the first step in the
design of the new system.

In many ways, because it is here that the major elements of the system first emerge, the
requirements-determination step is the single most critical step of the entire system devel-
opment process. During requirements determination, the system is easy to change because
little work has been done yet. As the system moves through the system development process,
it becomes harder and harder to return to requirements determination and to make major
changes because of all of the rework that is involved. Several studies have shown that more
than half of all system failures are due to problems with the requirements.! This is why the
iterative approaches of object-oriented methodologies are so effective—small batches of
requirements can be identified and implemented in incremental stages, allowing the overall
system to evolve over time.

REQUIREMENTS DETERMINATION

The purpose of requirements determination is to turn the very high-level explanation of
the business requirements stated in the system request into a more precise list of require-
ments that can be used as inputs to the rest of analysis (creating functional, structural, and
behavioral models). This expansion of the requirements ultimately leads to the design of
the system.

Defining a Requirement

A requirement is simply a statement of what the system must do or what characteristic it
must have. During analysis, requirements are written from the perspective of the busi-
nessperson, and they focus on the “what” of the system. Because they focus on the needs
of the business user, they are usually called business requirements (and sometimes user
requirements). Later in design, business requirements evolve to become more technical,
and they describe how the system will be implemented. Requirements in design are writ-
ten from the developer’s perspective, and they are usually called system requirements.

We want to stress that there is no black-and-white line dividing a business requirement
and a system requirement—and some companies use the terms interchangeably. The impor-
tant thing to remember is that a requirement is a statement of what the system must do,
and requirements will change over time as the project moves from inception to elaboration
to construction. Requirements evolve from detailed statements of the business capabilities
that a system should have to detailed statements of the technical way the capabilities will be
implemented in the new system.

Requirements can be either functional or nonfunctional in nature. A functional require-
ment relates directly to a process a system has to perform or information it needs to contain.
For example, requirements stating that a system must have the ability to search for available
inventory or to report actual and budgeted expenses are functional requirements. Functional
requirements flow directly into the creation of functional, structural, and behavioral models
that represent the functionality of the evolving system (see Chapters 4, 5, and 6).

Nonfunctional requirements refer to behavioral properties that the system must have,
such as performance and usability. The ability to access the system using a Web browser is
considered a nonfunctional requirement. Nonfunctional requirements can influence the rest
of analysis (functional, structural, and behavioral models) but often do so only indirectly;
nonfunctional requirements are used primarily in design when decisions are made about the
database, the user interface, the hardware and software, and the system’s underlying physical
architecture.

I For example, see The Scope of Software Development Project Failures (Dennis, MA: The Standish Group, 1995).

88 Chapter 3 Requirements Determination

Nonfunctional requirements describe a variety of characteristics regarding the system:
operational, performance, security, and cultural and political. Operational requirements
address issues related to the physical and technical requirements in which the system will
operate. Performance requirements address issues related to the speed, capacity, and reli-
ability of the system. Security requirements deal with issues with regard to who has access
to the system and under what specific circumstances. Cultural and political requirements
deal with issues related to the cultural, political factors and legal requirements that affect the
system. These characteristics do not describe business processes or information, but they
are very important in understanding what the final system should be like. Nonfunctional
requirements primarily affect decisions that will be made during the design of a system. We
will return to this topic later in the book when we discuss design (see Chapters 9, 10, and 11).

One area of information systems development that focused on differentiating functional
and nonfunctional requirements is software quality. There have been many different models
proposed to measure the quality of software. However, virtually all of them differentiate func-
tional and nonfunctional requirements. From a quality perspective, functional quality is related
to the degree that the software meets the functional requirements, i.e., how much of the actual
problem is solved by the software solution provided. Whereas, the nonfunctional requirements
are associated with the efficiency, maintainability, portability, reliability, reusability, testability,
and usability quality dimensions. As stated above, the nonfunctional related dimensions are
associated primarily with the actual detailed design and implementation of the system.

When considering ISO 9000 compliance, quality dimensions are further decomposed into
those that the user can see (external) and those that the user cannot see (internal). The external
nonfunctional dimensions include efficiency, reliability, and usability, whereas the internal
nonfunctional dimensions include maintainability, portability, reusability, and testability.
From a user perspective, the external dimensions are more important. If the system is simply
too difficult to use, regardless how well the system solves the problem, the user will simply
not use the system. In other words, from a user’s perspective, for an information system to be
successful, the system must not only meet the functional specification, but it must also meet
the external nonfunctional specifications. From a developer perspective, the internal dimen-
sions are also important. For example, given that successful systems tend to be long-lived and
multiplatform, both the maintainability and portability dimensions can have strategic implica-
tions for the system being developed. Also, given the agile development approaches being used
in industry today, the development of reusable and testable software is crucial.

Three additional topics that have influenced information system requirements are the
Sarbanes-Oxley Act, COBIT (Control OBjectives for Information and related Technology)
compliance and Capability Maturity Model compliance. Depending on the system being con-
sidered, these three topics could affect the definition of a system’s functional requirements,
nonfunctional requirements, or both. The Sarbanes-Oxley Act, for example, mandates addi-
tional functional and nonfunctional requirements. These include additional security concerns
(nonfunctional) and specific information requirements that management must now provide
(functional). When developing financial information systems, information system developers
should be sure to include Sarbanes-Oxley expertise in the development team. Moreover, a client
could insist on COBIT compliance or that a specific Capability Maturity Model level had been
reached in order for the firm to be considered as a possible vendor to supply the system under
consideration. Obviously, these types of requirements add to the nonfunctional requirements.
Further discussion of these topics is beyond the scope of this book.?

2 A concise discussion of the Sarbanes-Oxley Act is presented in G. P. Lander, What is Sarbanes-Oxley? (New York:
McGraw-Hill, 2004). A good reference for Sarbanes-Oxley Act-based security requirements is D. C. Brewer, Security
Controls for Sarbanes-Oxley Section 404 IT Compliance: Authorization, Authentication, and Access (Indianapolis, IN:
Wiley, 2006). For detailed information on COBIT, see www.isaca.org; for ISO 9000, see www.iso.org; and for details
on the Capability Maturity Model, see www.sei.cmu.edu/cmmi/.

Requirements Determination 89

Another recent topic that influences requirements for some systems is globalization. For
example, a global information supply chain generates a large number of additional nonfunc-
tional requirements. If the necessary operational environments do not exist for a mobile solu-
tion to be developed, it is important to adapt the solution to the local environment. Or, it may
not be reasonable to expect to deploy a high-technology-based solution in an area that does not
have the necessary power and communications infrastructure. In some cases, we may need to
consider supporting some parts of the global information supply chain with manual—rather
than automated—systems.

Manual systems have an entirely different set of requirements that create different per-
formance expectations and additional security concerns. Furthermore, cultural and political
concerns are potentially paramount. A simple example that affects the design of user inter-
faces is the proper use of color on forms (on a screen or paper). Different cultures interpret
different colors differently. In other words, in a global, multicultural business environment,
addressing cultural concerns goes well beyond simply having a multilingual user interface.
We must be able to adapt the global solution to the local realities. Friedman refers to these
concerns as glocalization.® Otherwise, we will simply create another example of a failed infor-
mation system development project.

Requirements Definition

The requirements definition report—usually just called the requirements definition—is a
straightforward text report that simply lists the functional and nonfunctional requirements
in an outline format. Figure 3-1 shows a sample requirements definition for an appointment
system for a typical doctor’s office. Notice it contains both functional and nonfunctional
requirements. The functional requirements include managing appointments, producing
schedules, and recording the availability of the individual doctors. The nonfunctional require-
ments include items such as the expected amount of time that it takes to store a new appoint-
ment, the need to support wireless printing, and which types of employees have access to the
different parts of the system.

The requirements are numbered in a legal or outline format so that each requirement
is clearly identified. The requirements are first grouped into functional and nonfunctional
requirements; within each of those headings, they are further grouped by the type of nonfunc-
tional requirement or by function.

Sometimes business requirements are prioritized on the requirements definition. They
can be ranked as having high, medium, or low importance in the new system, or they can
be labeled with the version of the system that will address the requirement (e.g., release 1,
release 2, release 3). This practice is particularly important when using object-oriented meth-
odologies since they deliver systems in an incremental manner.

The most obvious purpose of the requirements definition is to provide the information
needed by the other deliverables in analysis, which include functional, structural, and behav-
ioral models, and to support activities in design. The most important purpose of the require-
ments definition, however, is to define the scope of the system. The document describes to
the analysts exactly what the system needs to end up doing. When discrepancies arise, the
document serves as the place to go for clarification.

Determining Requirements

Determining requirements for the requirements definition is both a business task and an
information technology task. In the early days of computing, there was a presumption that

3T. L. Friedman, The World is Flat: A Brief History of the Twenty-First Century, Updated and Expanded Edition. (New
York: Farrar, Straus, and Giroux, 2006.)

90 Chapter 3 Requirements Determination

FIGURE 3-1

Sample Requirements
Definition

Nonfunctional Requirements

1. Operational Requirements
1.1. The system will operate in Windows environment.
1.2. The system should be able to connect to printers wirelessly.
1.3. The system should automatically back up at the end of each day.

2. Performance Requirements
2.1. The system will store a new appointment in 2 seconds or less.
2.2. The system will retrieve the daily appointment schedule in 2 seconds or less.

3. Security Requirements
3.1. Only doctors can set their availability.
3.2. Only a manager can produce a schedule.

4. Cultural and Political Requirements
4.1. No special cultural and political requirements are anticipated.

Functional Requirements

1. Manage Appointments
1.1. Patient makes new appointment.
1.2. Patient changes appointment.
1.3. Patient cancels appointment.

2. Produce Schedule
2.1. Office Manager checks daily schedule.
2.2. Office Manager prints daily schedule.

3. Record Doctor Availability
3.1. Doctor updates schedule

the systems analysts, as experts with computer systems, were in the best position to define
how a computer system should operate. Many systems failed because they did not adequately
address the true business needs of the users. Gradually, the presumption changed so that the
users, as the business experts, were seen as being the best position to define how a computer
system should operate. However, many systems failed to deliver performance benefits because
users simply automated an existing ineflicient system, and they failed to incorporate new
opportunities offered by technology.

Therefore, the most effective approach is to have both business people and analysts
working together to determine business requirements. Sometimes, however, users don’t
know exactly what they want, and analysts need to help them discover their needs. A set of
strategies has become popular to help analysts do problem analysis, root cause analysis, dura-
tion analysis, activity-based costing, informal benchmarking, outcome analysis, technology
analysis, and activity elimination. Analysts can use these tools when they need to guide the
users in explaining what is wanted from a system. These strategies work similarly. They help
users critically examine the current state of systems and processes (the as-is system), identify
exactly what needs to change, and develop a concept for a new system (the to-be system).

Requirements Determination 91

Although these strategies enable the analyst to help users create a vision for the new
system, they are not sufficient for extracting information about the detailed business require-
ments that are needed to build it. Therefore, analysts use a portfolio of requirements-gathering
techniques to acquire information from users. The analyst has many techniques from which
to choose: interviews, questionnaires, observation, joint application development (JAD), and
document analysis. The information gathered using these techniques is critically analyzed and
used to craft the requirements definition report.

Creating a Requirements Definition

Creating a requirements definition is an iterative and ongoing process whereby the analyst
collects information with requirements-gathering techniques (e.g., interviews, document
analysis), critically analyzes the information to identify appropriate business requirements
for the system, and adds the requirements to the requirements definition report. The require-
ments definition is kept up to date so that the project team and business users can refer to it
and get a clear understanding of the new system.

To create a requirements definition, the project team first determines the kinds of func-
tional and nonfunctional requirements that they will collect about the system (of course, these
may change over time). These become the main sections of the document. Next, the analysts
use a variety of requirements-gathering techniques to collect information, and they list the
business requirements that were identified from that information. Finally, the analysts work
with the entire project team and the business users to verify, change, and complete the list and
to help prioritize the importance of the requirements that were identified.

This process continues throughout analysis, and the requirements definition evolves
over time as new requirements are identified and as the project moves into later phases of the
Unified Process. Beware: The evolution of the requirements definition must be carefully man-
aged. The project team cannot keep adding to the requirements definition, or the system will
keep growing and growing and never get finished. Instead, the project team carefully identifies
requirements and evaluates which ones fit within the scope of the system. When a requirement
reflects a real business need but is not within the scope of the current system or current release,
it is either added on a list of future requirements or given a low priority. The management of
requirements (and system scope) is one of the hardest parts of managing a project.

Real-World Problems with Requirements Determination

Avison and Fitzgerald provide us with a set of problems that can arise with regard to deter-
mining the set of requirements with which to be dealt.# First, the analyst might not have
access to the correct set of users to uncover the complete set of requirements. This can lead to
requirements being missed, misrepresented, and/or overspecified. Second, the specification
of the requirements may be inadequate. This can be especially true with the lightweight tech-
niques associated with agile methodologies. Third, some requirements are simply unknowa-
ble at the beginning of a development process. However, as the system is developed, the users
and analysts will get a better understanding of both the domain issues and the applicable tech-
nology. This can cause new functional and nonfunctional requirements to be identified and
current requirements to evolve or be canceled. Iterative and incremental-based development
methodologies, such as the Unified Process and agile, can help in this case. Fourth, verifying
and validating of requirements can be very difficult. We take up this topic in the chapters
that deal with the creation of functional (Chapter 4), structural (Chapter 5), and behavioral
(Chapter 6) models.

4See D. Avison and G. Fitzgerald, Information Systems Development: Methodologies, Techniques, & Tools, 4th Ed.
(London: McGraw-Hill, 2006).

92 Chapter 3 Requirements Determination

REQUIREMENTS ANALYSIS STRATEGIES

Before the project team can determine what requirements are appropriate for a given system,
there needs to be a clear vision of the kind of system that will be created and the level of
change that it will bring to the organization. The basic process of analysis is divided into three
steps: understanding the as-is system, identifying improvements, and developing require-
ments for the to-be system.

Sometimes the first step (i.e., understanding the as-is system) is skipped or is performed in a
cursory manner. This happens when no current system exists, if the existing system and processes
are irrelevant to the future system, or if the project team is using a RAD or agile development
methodology in which the as-is system is not emphasized. Newer RAD, agile, and object-oriented
methodologies, such as phased development, prototyping, throwaway prototyping, extreme pro-
gramming, and Scrum (see Chapter 1) focus almost exclusively on improvements and the to-be
system requirements, and they spend little time investigating the current as-is system.

Requirements analysis strategies help the analyst lead users through the analysis steps
so that the vision of the system can be developed. Requirements analysis strategies and
requirements-gathering techniques go hand in hand. Analysts use requirements-gathering
techniques to collect information; requirements analysis strategies drive the kind of infor-
mation that is gathered and how it is ultimately analyzed. The requirements analysis strat-
egies and requirements gathering happen concurrently and are complementary activities.

To move the users from the as-is system to the to-be system, an analyst needs strong
critical thinking skills. Critical thinking is the ability to recognize strengths and weaknesses
and recast an idea in an improved form, and critical thinking skills are needed to really under-
stand issues and develop new business processes. These skills are also needed to thoroughly
examine the results of requirements gathering, to identify business requirements, and to
translate those requirements into a concept for the new system.

Problem Analysis

The most straightforward (and probably the most commonly used) requirements-analysis
technique is problem analysis. Problem analysis means asking the users and managers to
identify problems with the as-is system and to describe how to solve them in the to-be
system. Most users have a very good idea of the changes they would like to see, and most
are quite vocal about suggesting them. Most changes tend to solve problems rather than
capitalize on opportunities, but the latter is possible as well. Improvements from problem
analysis tend to be small and incremental (e.g., provide more space in which to type the
customer’s address; provide a new report that currently does not exist).

This type of improvement often is very effective at improving a system’s efficiency or
ease of use. However, it often provides only minor improvements in business value—the new
system is better than the old, but it may be hard to identify significant monetary benefits from
the new system.

Root Cause Analysis

The ideas produced by problem analysis tend to be solutions to problems. All solutions make
assumptions about the nature of the problem, assumptions that might or might not be valid.
In our experience, users (and most people in general) tend to quickly jump to solutions with-
out fully considering the nature of the problem. Sometimes the solutions are appropriate, but
many times they address a symptom of the problem, not the true problem or root cause itself.>

> Two good books that discuss the difficulty in finding the root causes to problems are: E. M. Goldratt and
J. Cox, The Goal (Croton-on-Hudson, NY: North River Press, 1986); E. M. Goldratt, The Haystack Syndrome
(Croton-on-Hudson, NY: North River Press, 1990).

Requirements Analysis Strategies 93

For example, suppose a firm notices that its users report inventory stock-outs. The cost of
inventory stock-outs can be quite significant. In this case, since they happen frequently, custom-
ers could find another source for the items that they are purchasing from the firm. It is in the
firm’s interest to determine the underlying cause and not simply provide a knee-jerk reaction
such as arbitrarily increasing the amount of inventory kept on hand. In the business world,
the challenge lies in identifying the root cause—few real-world problems are simple. The users
typically propose a set of causes for the problem under consideration. The solutions that users
propose can address either symptoms or root causes, but without a careful analysis, it is difficult
to tell which one is addressed.

Root cause analysis, therefore, focuses on problems, not solutions. The analyst starts by
having the users generate a list of problems with the current system and then prioritize the
problems in order of importance. Starting with the most important, the users and/or the
analysts then generate all the possible root causes for the problems. Each possible root cause
is investigated (starting with the most likely or easiest to check) until the true root causes
are identified. If any possible root causes are identified for several problems, those should
be investigated first, because there is a good chance they are the real root causes influencing
the symptom problems. In our example, there are several possible root causes:

m The firm’s supplier might not be delivering orders to the firm in a timely manner.
m There could be a problem with the firm’s inventory controls.
m The reorder level and quantities could be set wrong.

Sometimes, using a hierarchical chart to represent the causal relationships helps with the analysis.
As Figure 3-2 shows, there are many possible root causes that underlie the higher-level causes
identified. The key point in root cause analysis is always to challenge the obvious.

Duration Analysis

Duration analysis requires a detailed examination of the amount of time it takes to perform
each process in the current as-is system. The analysts begin by determining the total amount
of time it takes, on average, to perform a set of business processes for a typical input. They
then time each of the individual steps (or subprocesses) in the business process. The time to

Frequent
Inventory Stock-Outs

Delays in Order Problems with Incorrect Reorder
Processing Inventory Controls Level and Quantities
Order Approval Late Recording of Reorder point set
— Late — Sales too low
Identifying Vendor Late Recording of Reorder Quantity
B Delayed [~ Purchases Received (EOQ) set too low
Delay in Sending Infrequent Manual
| Order to Vendor — Inventory Reconciliation

FIGURE 3-2 Root Cause Analysis for Inventory Stock-Outs

94 Chapter 3 Requirements Determination

complete the basic step is then totaled and compared to the total for the overall process. A
significant difference between the two—and in our experience the total time often can be 10
or even 100 times longer than the sum of the parts—indicates that this part of the process is
badly in need of a major overhaul.

For example, suppose that the analysts are working on a home mortgage system and dis-
cover that on average, it takes thirty days for the bank to approve a mortgage. They then look
at each of the basic steps in the process (e.g., data entry, credit check, title search, appraisal)
and find that the total amount of time actually spent on each mortgage is about eight hours.
This is a strong indication that the overall process is badly broken, because it takes thirty days
to perform one day’s work.

These problems probably occur because the process is badly fragmented. Many different
people must perform different activities before the process finishes. In the mortgage exam-
ple, the application probably sits on many people’s desks for long periods of time before it
is processed.

Processes in which many different people work on small parts of the inputs are prime
candidates for process integration or parallelization. Process integration means changing the
fundamental process so that fewer people work on the input, which often requires changing
the processes and retraining staff to perform a wider range of duties. Process parallelization
means changing the process so that all the individual steps are performed at the same time.
For example, in the mortgage application case, there is probably no reason that the credit
check cannot be performed at the same time as the appraisal and title check.

Activity-Based Costing

Activity-based costing is a similar analysis; it examines the cost of each major process or step
in a business process rather than the time taken.® The analysts identify the costs associated
with each of the basic functional steps or processes, identify the most costly processes, and
focus their improvement efforts on them.

Assigning costs is conceptually simple. Analysts simply examine the direct cost of labor
and materials for each input. Materials costs are easily assigned in a manufacturing process,
whereas labor costs are usually calculated based on the amount of time spent on the input and
the hourly cost of the staff. However, as you may recall from a managerial accounting course,
there are indirect costs, such as rent, depreciation, and so on, that also can be included in
activity costs.

Informal Benchmarking

Benchmarking refers to studying how other organizations perform a business process in
order to learn how your organization can do something better. Benchmarking helps the
organization by introducing ideas that employees may never have considered but that have
the potential to add value.

Informal benchmarking is fairly common for customer-facing business processes (i.e.,
processes that interact with the customer). With informal benchmarking, the managers and
analysts think about other organizations or visit them as customers to watch how the business
process is performed. In many cases, the business studied may be a known leader in the indus-
try or simply a related firm.

©Many books have been written on activity-based costing. Useful ones include K. B. Burk and D. W. Webster,
Activity-Based Costing (Fairfax, VA: American Management Systems, 1994); D. T. Hicks, Activity-Based Costing:
Making It Work for Small and Mid-sized Companies (New York: Wiley, 1998). The two books by Eli Goldratt men-
tioned previously (The Goal and The Haystack Syndrome) also offer unique insights into costing.

Requirements-Gathering Techniques 95

Outcome Analysis

Outcome analysis focuses on understanding the fundamental outcomes that provide value to
customers. Although these outcomes sound as though they should be obvious, they often are
not. For example, consider an insurance company. One of its customers has just had a car
accident. What is the fundamental outcome from the customer’s perspective? Traditionally,
insurance companies have answered this question by assuming the customer wants to receive
the insurance payment quickly. To the customer, however, the payment is only a means to
the real outcome: a repaired car. The insurance company might benefit by extending its view
of the business process past its traditional boundaries to include not paying for repairs but
performing the repairs or contracting with an authorized body shop to do them.

With this approach, system analysts encourage the managers and project sponsor to
pretend they are customers and to think carefully about what the organization’s products and
services enable the customers to do—and what they could enable the customer to do.

Technology Analysis

Many major changes in business since the turn of the century have been enabled by new
technologies. Technology analysis starts by having the analysts and managers develop a list
of important and interesting technologies. Then the group systematically identifies how
every technology could be applied to the business process and identifies how the business
would benefit. It is important to note the technology analysis in no way implies adopting
technology for technology’s sake. Rather the focus is on using new technologies to meet the
goals of the organization.

Activity Elimination

Activity elimination is exactly what it sounds like. The analysts and managers work together
to identify how the organization could eliminate each activity in the business process, how the
function could operate without it, and what effects are likely to occur. Initially, managers are
reluctant to conclude that processes can be eliminated, but this is a force-fit exercise in that
they must eliminate each activity. In some cases, the results are silly; nonetheless, participants
must address every activity in the business process.

REQUIREMENTS-GATHERING TECHNIQUES

An analyst is very much like a detective (and business users are sometimes like elusive sus-
pects). He or she knows that there is a problem to be solved and therefore must look for clues
that uncover the solution. Unfortunately, the clues are not always obvious (and are often
missed), so the analyst needs to notice details, talk with witnesses, and follow leads just as
Sherlock Holmes would have done. The best analysts thoroughly gather requirements using a
variety of techniques and make sure that the current business processes and the needs for the
new system are well understood before moving into design. Analysts don’t want to discover
later that they have key requirements wrong—such surprises late in the development process
can cause all kinds of problems.

The requirements-gathering process is used for building political support for the pro-
ject and establishing trust and rapport between the project team building the system and
the users who ultimately will choose to use or not use the system. Involving someone in the
process implies that the project teams view that person as an important resource and value
his or her opinions. All the key stakeholders (the people who can affect the system or who
will be affected by the system) must be included in the requirements-gathering process. The

96 Chapter 3 Requirements Determination

1. Select
Interviewees

stakeholders might include managers, employees, staff members, and even some customers
and suppliers. If a key person is not involved, that individual might feel slighted, which can
cause problems during implementation (e.g., How could they have developed the system
without my input?).

The second challenge of requirements gathering is choosing the way(s) information is
collected. There are many techniques for gathering requirements that vary from asking people
questions to watching them work. In this section, we focus on the five most commonly used
techniques: interviews, JAD sessions (a special type of group meeting), questionnaires, docu-
ment analysis, and observation. Each technique has its own strengths and weaknesses, many of
which are complementary, so most projects use a combination of techniques.”

Interviews

An interview is the most commonly used requirements-gathering technique. After all, it is
natural—if you need to know something, you usually ask someone. In general, interviews are
conducted one-on-one (one interviewer and one interviewee), but sometimes, owing to time
constraints, several people are interviewed at the same time. There are five basic steps to the inter-
view process: selecting interviewees, designing interview questions, preparing for the interview,
conducting the interview, and postinterview follow-up.8

The first step in interviewing is to create an interview schedule listing who will be interviewed,
when, and for what purpose (see Figure 3-3). The schedule can be an informal list that is
used to help set up meeting times or a formal list that is incorporated into the workplan. The
people who appear on the interview schedule are selected based on the analyst’s information
needs. The project sponsor, key business users, and other members of the project team can
help the analyst determine who in the organization can best provide important information
about requirements. These people are listed on the interview schedule in the order in which
they should be interviewed.

People at different levels of the organization have varying perspectives on the system, so
it is important to include both managers who manage the processes and staff who actually
perform the processes to gain both high-level and low-level perspectives on an issue. Also,
the kinds of interview subjects needed can change over time. For example, at the start of the
project, the analyst has a limited understanding of the as-is business process. It is common
to begin by interviewing one or two senior managers to get a strategic view and then to move
to midlevel managers who can provide broad, overarching information about the business
process and the expected role of the system being developed. Once the analyst has a good
understanding of the big picture, lower-level managers and staff members can fill in the exact
details of how the process works. Like most other things about systems analysis, this is an
iterative process—starting with senior managers, moving to midlevel managers, then staff
members, back to midlevel managers, and so on, depending upon what information is needed
along the way.

It is quite common for the list of interviewees to grow, often by 50 to 75 percent. As peo-
ple are interviewed, more information that is needed and additional people who can provide
the information will probably be identified.

7 Some excellent books that address the importance of gathering requirements and various techniques include
Alan M. Davis, Software Requirements: Objects, Functions, & States, Revision (Englewood Cliffs, NJ: Prentice Hall,
1993); Gerald Kotonya and Ian Sommerville, Requirements Engineering (Chichester, England: Wiley, 1998); Dean
Leffingwell and Don Widrig, Managing Software Requirements: A Unified Approach (Reading, MA: Addison-Wesley,
2000).

8 A good book on interviewing is that by Brian James, The Systems Analysis Interview (Manchester, England: NCC
Blackwell, 1989).

FIGURE 3-3

Sample Interview
Schedule

Requirements-Gathering Techniques 97

Purpose of
Name Position Interview Meeting
Andria McClellan Director, Accounting Strategic vision for new Mon., March 1
accounting system 8:00-10:00 AM
Jennifer Draper Manager, Accounts Current problems with Mon., March 1
Receivable accounts receivable 2:00-3:15 pm
process; future goals
Mark Goodin Manager, Accounts Current problems with Mon., March 1
Payable accounts payable 4:00-5:15 pm
process; future goals
Anne Asher Supervisor, Data Entry Accounts receivable and Wed., March 3
payable processes 10:00-11:00 Am
Fernando Merce Data Entry Clerk Accounts receivable and Wed., March 3
payable processes 1:00-3:00 Pm

2. Design

Interview Questions

There are three types of interview questions: closed-ended questions, open-ended questions,
and probing questions. Closed-ended questions are those that require a specific answer. They
are similar to multiple-choice or arithmetic questions on an exam (see Figure 3-4). Closed-
ended questions are used when an analyst is looking for specific, precise information (e.g.,
how many credit card requests are received per day). In general, precise questions are best.
For example, rather than asking, Do you handle a lot of requests? it is better to ask, How many
requests do you process per day? Closed-ended questions enable analysts to control the inter-
view and obtain the information they need. However, these types of questions don’t uncover
why the answer is the way it is, nor do they uncover information that the interviewer does not
think to ask for ahead of time.

Open-ended questions are those that leave room for elaboration on the part of the inter-
viewee. They are similar in many ways to essay questions that you might find on an exam (see
Figure 3-4 for examples). Open-ended questions are designed to gather rich information and
give the interviewee more control over the information that is revealed during the interview.
Sometimes the information that the interviewee chooses to discuss uncovers information that is
just as important as the answer (e.g., if the interviewee talks only about other departments when
asked for problems, it may suggest that he or she is reluctant to admit his or her own problems).

The third type of question is the probing question. Probing questions follow up on what
has just been discussed in order to learn more, and they often are used when the interviewer is
unclear about an interviewee’s answer. They encourage the interviewee to expand on or to con-
firm information from a previous response, and they signal that the interviewer is listening and
is interested in the topic under discussion. Many beginning analysts are reluctant to use probing
questions because they are afraid that the interviewee might be offended at being challenged or
because they believe it shows that they didn’t understand what the interviewee said. When done
politely, probing questions can be a powerful tool in requirements gathering.

In general, an interviewer should not ask questions about information that is readily
available from other sources. For example, rather than asking what information is used to
perform to a task, it is simpler to show the interviewee a form or report (see the section on
document analysis) and ask what information on it is used. This helps focus the interviewee
on the task and saves time, because the interviewee does not need to describe the information
detail—he or she just needs to point it out on the form or report.

No type of question is better than another, and a combination of questions is usually used
during an interview. At the initial stage of an IS development project, the as-is process can

98 Chapter 3 Requirements Determination

FIGURE 3-4

Three Types of
Questions

be unclear, so the interview process begins with unstructured interviews, interviews that seek
broad and roughly defined information. In this case, the interviewer has a general sense of the
information needed but has few closed-ended questions to ask. These are the most challeng-
ing interviews to conduct because they require the interviewer to ask open-ended questions
and probe for important information on the fly.

As the project progresses, the analyst comes to understand the business process much better
and needs very specific information about how business processes are performed (e.g., exactly
how a customer credit card is approved). At this time, the analyst conducts structured interviews,
in which specific sets of questions are developed before the interviews. There usually are more
closed-ended questions in a structured interview than in the unstructured approach.

No matter what kind of interview is being conducted, interview questions must be
organized into a logical sequence so that the interview flows well. For example, when trying
to gather information about the current business process, it can be useful to move in logical
order through the process or from the most important issues to the least important.

There are two fundamental approaches to organizing the interview questions: top down
or bottom up (see Figure 3-5). With the top-down interview, the interviewer starts with broad,
general issues and gradually works toward more-specific ones. With the bottom-up interview,
the interviewer starts with very specific questions and moves to broad questions. In practice,
analysts mix the two approaches, starting with broad, general issues, moving to specific ques-
tions, and then returning to general issues.

The top-down approach is an appropriate strategy for most interviews (it is certainly the
most common approach). The top-down approach enables the interviewee to become accus-
tomed to the topic before he or she needs to provide specifics. It also enables the interviewer
to understand the issues before moving to the details because the interviewer might not have
sufficient information at the start of the interview to ask very specific questions. Perhaps most
importantly, the top-down approach enables the interviewee to raise a set of big-picture issues
before becoming enmeshed in details, so the interviewer is less likely to miss important issues.

One case in which the bottom-up strategy may be preferred is when the analyst already
has gathered a lot of information about issues and just needs to fill in some holes with details.
Bottom-up interviewing may be appropriate if lower-level staff members feel threatened or
unable to answer high-level questions. For example, How can we improve customer service?
might be too broad a question for a customer service clerk, whereas a specific question is readily
answerable (e.g., How can we speed up customer returns?). In any event, all interviews should
begin with noncontroversial questions and then gradually move into more contentious issues
after the interviewer has developed some rapport with the interviewee.

Types of Questions Examples

Closed-ended questions e How many telephone orders are received per day?
e How do customers place orders?
e What information is missing from the monthly sales report?

Open-ended questions e What do you think about the current system?
* What are some of the problems you face on a daily basis?
* What are some of the improvements you would like to see in a
new system?
Probing questions * Why?
e Can you give me an example?
e Can you explain that in a bit more detail?

3. Prepare for the
Interview

A4

4. Conduct the
Interview

Requirements-Gathering Techniques 99

Top-Down

How
can order
processing
be improved?

High-level:
Very general

How can we reduce
the number of times that
customers return items
they’ve ordered?

Medium-level:
Moderately specific

How can we reduce the number of
errors in order processing (e.g., shipping
the wrong products)?

Low-level:

Very specific

Bottom-Up
FIGURE 3-5 Top-Down and Bottom-Up Questioning Strategies

It is important to prepare for the interview in the same way that you would prepare to give
a presentation. The interviewer should have a general interview plan listing the questions to
be asked in the appropriate order, should anticipate possible answers and provide follow-up
with them, and should identify segues between related topics. The interviewer should con-
firm the areas in which the interviewee has knowledge so as not to ask questions that the
interviewee cannot answer. Review the topic areas, the questions, and the interview plan,
and clearly decide which have the greatest priority in case time runs short.

In general, structured interviews with closed-ended questions take more time to prepare
than unstructured interviews. Some beginning analysts prefer unstructured interviews, think-
ing that they can wing it. This is very dangerous and often counterproductive, because any
information not gathered in the first interview will require follow-up efforts, and most users
do not like to be interviewed repeatedly about the same issues.

The interviewer should be sure to prepare the interviewee as well. When the interview
is scheduled, the interviewee should be told the reason for the interview and the areas that
will be discussed far enough in advance so that he or she has time to think about the issues
and organize his or her thoughts. This is particularly important when the interviewer is
an outsider to the organization and for lower-level employees, who often are not asked for
their opinions and who may be uncertain about why they are being interviewed.

The first goal is to build rapport with the interviewee, so that he or she trusts the inter-
viewer and is willing to tell the whole truth, not just give the answers that he or she thinks
are wanted. The interviewer should appear to be a professional and unbiased, independent
seeker of information. The interview should start with an explanation of why the inter-
viewer is there and why he or she has chosen to interview the person; then the interviewer
should move into the planned interview questions.

It is critical to carefully record all the information that the interviewee provides. In our
experience, the best approach is to take careful notes—write down everything the interviewee
says, even if it does not appear immediately relevant. The interviewer shouldn’t be afraid to ask
the person to slow down or to pause while writing, because this is a clear indication that the
interviewee’s information is important. One potentially controversial issue is whether or not
to tape-record an interview. Recording ensures that the interviewer does not miss important

100 Chapter 3 Requirements Determination

A4

5. Post-Interview
Follow-up

points, but it can be intimidating for the interviewee. Most organizations have policies or
generally accepted practices about the recording of interviews, so they should be determined
before an interview. If the interviewer is worried about missing information and cannot tape
the interview, then he or she can bring along a second person to take detailed notes.

As the interview progresses, it is important to understand the issues that are discussed.
If the interviewer does not understand something, he or she should ask for clarification.
The interviewer should not be afraid to ask dumb questions, because the only thing worse
than appearing dumb is to be dumb by not understanding something. If the interviewer
doesn’t understand something during the interview, he or she certainly won’t understand it
afterwards. Jargon should be recognized and defined; any jargon not understood should be
clarified. One good strategy to increase understanding during an interview is to periodically
summarize the key points that the interviewee is communicating. This avoids misunder-
standings and also demonstrates that the interviewer is listening.

Finally, facts should be separated from opinion. The interviewee may say, for example,
We process too many credit card requests. This is an opinion, and it is useful to follow this
up with a probing question requesting support for the statement (e.g., Oh, how many do you
process in a day?). It is helpful to check the facts because any differences between the facts
and the interviewee’s opinions can point out key areas for improvement. Suppose the inter-
viewee complains about a high or increasing number of errors, but the logs show that errors
have been decreasing. This suggests that errors are viewed as a very important problem that
should be addressed by the new system, even if they are declining.

As the interview draws to a close, the interviewee should have time to ask questions or
provide information that he or she thinks is important but was not part of the interview plan.
In most cases, the interviewee has no additional concerns or information, but in some cases
this leads to unanticipated, but important, information. Likewise, it can be useful to ask the
interviewee if there are other people who should be interviewed. The interview should end on
time (if necessary, some topics can be omitted or another interview can be scheduled).

As a last step in the interview, the interviewer should briefly explain what will happen.
The interviewer shouldn’t prematurely promise certain features in the new system or a spe-
cific delivery date, but he or she should reassure the interviewee that his or her time was well
spent and very helpful to the project.

After the interview is over, the analyst needs to prepare an interview report that describes the
information from the interview (Figure 3-6). The report contains interview notes, information
that was collected over the course of the interview and is summarized in a useful format. In
general, the interview report should be written within forty-eight hours of the interview,
because the longer the interviewer waits, the more likely he or she is to forget information.

Often, the interview report is sent to the interviewee with a request to read it and inform
the analyst of clarifications or updates. The interviewee needs to be convinced that the inter-
viewer genuinely wants his or her corrections to the report. Usually there are few changes, but
the need for any significant changes suggests that a second interview will be required. Never
distribute someone’s information without prior approval.

Joint Application Development (JAD)

JAD is an information-gathering technique that allows the project team, users, and management
to work together to identify requirements for the system. IBM developed the JAD technique in
the late 1970s, and it is often the most useful method for collecting information from users.’

° More information on JAD can be found in J. Wood and D. Silver, Joint Application Development (New York:
Wiley, 1989); Alan Cline, “Joint Application Development for Requirements Collection and Management,” http://
www.carolla.com/wp-jad.htm.

Requirements-Gathering Techniques 101

Interview Notes Approved by: Linda Estey

Person Interviewed: Linda Estey,
Director, Human Resources

Interviewer: Barbara Wixom

Purpose of Interview:
e Understand reports produced for Human Resources by the current system
¢ Determine information requirements for future system

Summary of Interview:

e Sample reports of all current HR reports are attached to this report. The information that is not
used and missing information are noted on the reports.

¢ Two biggest problems with the current system are:

1. The data are too old (the HR Department needs information within two days of month end;
currently, information is provided to them after a three-week delay)

2. The data are of poor quality (often reports must be reconciled with departmental HR
database)

e The most common data errors found in the current system include incorrect job level information and
missing salary information.

Open Items:
¢ Get current employee roster report from Mary Skudrna (extension 4355).
o Verify calculations used to determine vacation time with Mary Skudrna.

¢ Schedule interview with Jim Wack (extension 2337) regarding the reasons for data quality
problems.

Detailed Notes: See attached transcript.

FIGURE 3-6 Interview Report

Capers Jones claims that JAD can reduce scope creep by 50 percent and prevent the system’s
requirements from being too specific or too vague, both of which cause trouble during later stages
of the development process.!?

JAD is a structured process in which ten to twenty users meet together under the direc-
tion of a facilitator skilled in JAD techniques. The facilitator sets the meeting agenda and
guides the discussion but does not join in the discussion as a participant. He or she does not
provide ideas or opinions on the topics under discussion so as to remain neutral during the
session. The facilitator must be an expert in both group-process techniques and systems-
analysis and design techniques. One or two scribes assist the facilitator by recording notes,
making copies, and so on. Often the scribes use computers and CASE tools to record infor-
mation as the JAD session proceedings.

The JAD group meets for several hours, several days, or several weeks until all the issues
have been discussed and the needed information is collected. Most JAD sessions take place
in a specially prepared meeting room, away from the participants’ offices so that they are not
interrupted. The meeting room is usually arranged in a U-shape so that all participants can
easily see each other. At the front of the room (the open part of the U), are a whiteboard, flip
chart, and/or overhead projector for use by the facilitator leading the discussion.

10 See Kevin Strehlo, “Catching up with the Jones and ‘Requirement’ Creep,” Infoworld (July 29, 1996); Kevin Strehlo,
“The Makings of a Happy Customer: Specifying Project X,” Infoworld (November 11, 1996).

102 Chapter 3 Requirements Determination

3-1 Developing Interpersonal Skills

TIP

Interpersonal skills are skills that enable you to develop
rapport with others, and they are very important for
interviewing. They help you to communicate with others
effectively. Some people develop good interpersonal

skills at an early age; they simply seem to know how to o
communicate and interact with others. Other people are

less lucky and need to work hard to develop their skills.

understand. The key issues are. . . .”). This demon-
strates that you consider the information important,
and it also forces you to pay attention (you can't
repeat what you didn’t hear).

Be succinct. When you speak, be succinct. The goal
in interviewing (and in much of life) is to learn, not to

Interpersonal skills, like most skills, can be learned.

Here are some tips:

e Don’t worry, be happy. Happy people radiate con-

fidence and project their feelings on others. Try inter-
viewing someone while smiling and then interviewing
someone else while frowning and see what happens.

Pay attention. Pay attention to what the other person
is saying (which is harder than you might think). See
how many times you catch yourself with your mind
on something other than the conversation at hand.

Summarize key points. At the end of each major
theme or idea that someone explains, repeat the key
points back to the speaker (e.g., Let me make sure |

impress. The more you speak, the less time you give
to others.

Be honest. Answer all questions truthfully, and if you
don’t know the answer, say so.

Watch body language (yours and theirs). The way a
person sits or stands conveys much information. In
general, a person who is interested in what you are
saying sits or leans forward, makes eye contact, and
often touches his or her face. A person leaning away
from you or with an arm over the back of a chair is
uninterested. Crossed arms indicate defensiveness or
uncertainty, and steepling (sitting with hands raised
in front of the body with fingertips touching) indi-
cates a feeling of superiority.

1. Select Participants

JAD suffers from the traditional problems associated with groups: Sometimes people
are reluctant to challenge the opinions of others (particularly their boss), a few people often
dominate the discussion, and not everyone participates. In a fifteen-member group, for exam-
ple, if everyone participates equally, then each person can talk for only four minutes each
hour and must listen for the remaining fifty-six minutes—not a very efficient way to collect
information.

A new form of JAD called electronic JAD, or e-JAD, attempts to overcome these prob-
lems by using groupware. In an e-JAD meeting room, each participant uses special software
on a networked computer to send anonymous ideas and opinions to everyone else. In this
way, all participants can contribute at the same time without fear of reprisal from people
with differing opinions. Initial research suggests that e-JAD can reduce the time required
to run JAD sessions by 50 to 80 percent.!! A good JAD approach follows a set of five steps.

JAD participants are selected in the same way as are interview participants, based on the
information they can contribute in order to provide a broad mix of organizational levels and
to build political support for the new system. The need for all JAD participants to be away
from their office at the same time can be a major problem. The office might need to be closed
or operate with a skeleton staff until the JAD sessions are complete.

I For more information on e-JAD, see A. R. Dennis, G. S. Hayes, and R. M. Daniels, “Business Process Modeling
with Groupware,” Journal of Management Information Systems 15, no. 4 (1999): 115-142.

A4

2. Design a JAD
Session

A4

3. Preparing for a
JAD Session

4. Conducting
a JAD Session

Requirements-Gathering Techniques 103

Ideally, the participants who are released from regular duties to attend the JAD sessions
should be the very best people in that business unit. However, without strong management
support, JAD sessions can fail because those selected to attend the JAD session are people who
are less likely to be missed (i.e., the least competent people).

The facilitator should be someone who is an expert in JAD or e-JAD techniques and,
ideally, someone who has experience with the business under discussion. In many cases, the
JAD facilitator is a consultant external to the organization because the organization might not
have a recurring need for JAD or e-JAD expertise. Developing and maintaining this expertise
in-house can be expensive.

JAD sessions can run from as little as half a day to several weeks, depending upon the size and
scope of the project. In our experience, most JAD sessions tend to last five to ten days, spread
over a three-week period. Most e-JAD sessions tend to last one to four days in a one-week
period. JAD and e-JAD sessions usually go beyond collecting information and move into anal-
ysis. For example, the users and the analysts collectively can create analysis deliverables, such as
the functional models or the requirements definition.

JAD sessions usually are designed and structured using the same principles as inter-
views. Most JAD sessions are designed to collect specific information from users, and this
requires developing a set of questions before the meeting. One difference between JAD
and interviewing is that all JAD sessions are structured—they must be carefully planned.
In general, closed-ended questions are seldom used because they do not spark the open
and frank discussion that is typical of JAD. In our experience, it is better to proceed top
down in JAD sessions when gathering information. Typically thirty minutes is allocated to
each separate agenda item, and frequent breaks are scheduled throughout the day because
participants tire easily.

As with interviewing, it is important to prepare the analysts and participants for a JAD
session. Because the sessions can go beyond the depth of a typical interview and are usually
conducted off-site, participants may be more concerned about how to prepare. It is impor-
tant that the participants understand what is expected of them. If the goal of the JAD session,
for example, is to develop an understanding of the current system, then participants can
bring procedure manuals and documents with them. If the goal is to identify improvements
for a system, then before they come to the JAD session they can think about how they would
improve the system.

Most JAD sessions follow a formal agenda, and most have formal ground rules that define appro-
priate behavior. Common ground rules include following the schedule, respecting others’” opin-
ions, accepting disagreement, and ensuring that only one person talks at a time.

The role of a JAD facilitator can be challenging. Many participants come to a JAD session
with strong feelings about the system to be discussed. Channeling these feelings so that the ses-
sion moves forward in a positive direction and getting participants to recognize and accept—but
not necessarily agree on—opinions and situations different from their own requires significant
expertise in systems analysis and design, JAD, and interpersonal skills. Few systems analysts
attempt to facilitate JAD sessions without being trained in JAD techniques, and most apprentice
with a skilled JAD facilitator before they attempt to lead their first session.

The JAD facilitator performs three key functions. First, he or she ensures that the group
sticks to the agenda. The only reason to digress from the agenda is when it becomes clear to
the facilitator, project leader, and project sponsor that the JAD session has produced some
new information that is unexpected and requires the JAD session (and perhaps the project)
to move in a new direction. When participants attempt to divert the discussion away from the

104 Chapter 3 Requirements Determination

V4

5. Post-JAD Follow-up

=

1. Select Participants

agenda, the facilitator must be firm but polite in leading discussion back to the agenda and
getting the group back on track.

Second, the facilitator must help the group understand the technical terms and jargon
that surround the system-development process and help the participants understand the
specific analysis techniques used. Participants are experts in their area, or their part of
the business, but they are not experts in systems analysis. The facilitator must, therefore,
minimize the learning required and teach participants how to effectively provide the right
information.

Third, the facilitator records the group’s input on a public display area, which can be a
whiteboard, flip chart, or computer display. He or she structures the information that the
group provides and helps the group recognize key issues and important solutions. The facil-
itator must remain neutral at all times and simply help the group through the process. The
moment the facilitator offers an opinion on an issue, the group will see him or her not as a
neutral party but rather as someone who could be attempting to sway the group into some
predetermined solution.

However, this does not mean that the facilitator should not try to help the group resolve
issues. For example, if two items appear to be the same to the facilitator, the facilitator should
not say, “I think these may be similar.” Instead, the facilitator should ask, “Are these similar?”
If the group decides they are, the facilitator can combine them and move on. However, if
the group decides they are not similar (despite what the facilitator believes), the facilitator
should accept the decision and move on. The group is always right, and the facilitator has
no opinion.

As with interviews, a JAD post-session report is prepared and circulated among session
attendees. The post-session report is essentially the same as the interview report in Figure 3-6.
Because the JAD sessions are longer and provide more information, it usually takes a week or
two after the JAD session before the report is complete.

Questionnaires

A questionnaire is a set of written questions used to obtain information from individ-
uals. Questionnaires are often used when there is a large number of people from whom
information and opinions are needed. In our experience, questionnaires are a common
technique with systems intended for use outside the organization (e.g., by customers or
vendors) or for systems with business users spread across many geographic locations.
Most people automatically think of paper when they think of questionnaires, but today
more questionnaires are being distributed in electronic form, either via e-mail or on the
Web. Electronic distribution can save a significant amount of money as compared to dis-
tributing paper questionnaires. A good process to use when using questionnaires follows
four steps.

As with interviews and JAD sessions, the first step is to identify the individuals to whom the
questionnaire will be sent. However, it is not usual to select every person who could provide
useful information. The standard approach is to select a sample, or subset, of people who
are representative of an entire group. Sampling guidelines are discussed in most statistics
books, and most business schools include courses that cover the topic, so we do not discuss it
here. The important point in selecting a sample, however, is to realize that not everyone who
receives a questionnaire will actually complete it. On average, only 30 to 50 percent of paper
and e-mail questionnaires are returned. Response rates for Web-based questionnaires tend to
be significantly lower (often only 5 to 30 percent).

Requirements-Gathering Techniques 105

PRA A Managing Problems in JAD Sessions

TIP

I have run more than a hundred JAD sessions and have
learned several standard “facilitator tricks.” Here are some
common problems and some ways to deal with them.

¢ Domination. The facilitator should ensure that no one
person dominates the group discussion. The only way
to deal with someone who dominates is head on. Dur-
ing a break, approach the person, thank him or her for
his or her insightful comments, and ask the person to
help you make sure that others also participate.

¢ Noncontributors. Drawing out people who have par-
ticipated very little is challenging because you want
to bring them into the conversation so that they will
contribute again. The best approach is to ask a direct
factual question that you are certain they can answer.
And it helps to ask the question in a long way to give
them time to think. For example, “Pat, | know you've
worked shipping orders a long time. You've probably
been in the shipping department longer than anyone
else. Could you help us understand exactly what hap-
pens when an order is received in shipping?”

e Side discussions. Sometimes participants engage in
side conversations and fail to pay attention to the
group. The easiest solution is simply to walk close
to the people and continue to facilitate right in front
of them. Few people will continue a side conversion
when you are two feet from them and the entire
group’s attention is on you and them.

¢ Agenda merry-go-round. The merry-go-round occurs
when a group member keeps returning to the same
issue every few minutes and won't let go. One solu-
tion is to let the person have five minutes to ramble
on about the issue while you carefully write down
every point on a flip chart or computer file. This flip
chart or file is then posted conspicuously on the
wall. When the person brings up the issue again, you
interrupt them, walk to the paper and ask them what
to add. If they mention something already on the list,

you quickly interrupt, point out that it is there, and
ask what other information to add. Don't let them
repeat the same point, but write any new information.
Violent agreement. Some of the worst disagreements
occur when participants really agree on the issues
but don't realize that they agree because they are
using different terms. An example is arguing whether
a glass is half empty or half full; they agree on the
facts but can’t agree on the words. In this case, the
facilitator has to translate the terms into different
words and find common ground so the parties rec-
ognize that they really agree.

Unresolved conflict. In some cases, participants
don’t agree and can't understand how to determine
what alternatives are better. You can help by structur-
ing the issue. Ask for criteria by which the group will
identify a good alternative (e.g., “Suppose this idea
really did improve customer service. How would |
recognize the improved customer service?”). Then
once you have a list of criteria, ask the group to
assess the alternatives using them.

True conflict. Sometimes, despite every attempt, par-
ticipants just can’t agree on an issue. The solution is
to postpone the discussion and move on. Document
the issue as an open issue and list it prominently on
a flip chart. Have the group return to the issue hours
later. Often the issue will have resolved itself by then
and you haven’t wasted time on it. If the issue cannot
be resolved later, move it to the list of issues to be
decided by the project sponsor or some other more
senior member of management.

Humor. Humor is one of the most powerful tools a
facilitator has and thus must be used judiciously. The
best JAD humor is always in context; never tell jokes
but take the opportunity to find the humor in the
situation.

Alan Dennis

2. Designing a
Questionnaire

Because the information on a questionnaire cannot be immediately clarified for a confused
respondent, developing good questions is critical for questionnaires. Questions on question-
naires must be very clearly written and leave little room for misunderstanding, so closed-ended

|

questions tend to be most commonly used. Questions must clearly enable the analyst to sep-
arate facts from opinions. Opinion questions often ask respondents the extent to which they
agree or disagree (e.g., Are network problems common?), whereas factual questions seek more

106 Chapter 3 Requirements Determination

N4

3. Administering
the Questionnaire

4. Questionnaire
Follow-up

FIGURE 3-7

Good Questionnaire
Design

precise values (e.g., How often does a network problem occur: once an hour, once a day, once
a week?). See Figure 3-7 for guidelines on questionnaire design.

Perhaps the most obvious issue—but one that is sometimes overlooked—is to have a
clear understanding of how the information collected from the questionnaire will be analyzed
and used. This issue must be addressed before the questionnaire is distributed, because it is
too late afterward.

Questions should be relatively consistent in style, so that the respondent does not have to
read instructions for each question before answering it. It is generally good practice to group
related questions together to make them simpler to answer. Some experts suggest that ques-
tionnaires should start with questions important to respondents, so that the questionnaire
immediately grabs their interest and induces them to answer it. Perhaps the most important
step is to have several colleagues review the questionnaire and then pretest it with a few people
drawn from the groups to whom it will be sent. It is surprising how often seemingly simple
questions can be misunderstood.

The key issue in administering the questionnaire is getting participants to complete the
questionnaire and send it back. Dozens of marketing research books have been written about
ways to improve response rates. Commonly used techniques include clearly explaining why
the questionnaire is being conducted and why the respondent has been selected, stating a date
by which the questionnaire is to be returned, offering an inducement to complete the ques-
tionnaire (e.g., a free pen), and offering to supply a summary of the questionnaire responses.
Systems analysts have additional techniques to improve response rates inside the organiza-
tion, such as personally handing out the questionnaire and personally contacting those who
have not returned them after a week or two, as well as requesting the respondents’ supervisors
to administer the questionnaires in a group meeting.

It is helpful to process the returned questionnaires and develop a questionnaire report soon after
the questionnaire deadline. This ensures that the analysis process proceeds in a timely fashion and
that respondents who requested copies of the results receive them promptly.

Document Analysis

Project teams often use document analysis to understand the as-is system. Under ideal cir-
cumstances, the project team that developed the existing system will have produced docu-
mentation that was then updated by all subsequent projects. In this case, the project team can
start by reviewing the documentation and examining the system itself.

Unfortunately, many systems are not well documented because project teams fail to
document their projects along the way, and when the projects are over, there is no time to
go back and document. Therefore, there might not be much technical documentation about
the current systems available, or it might not contain updated information about recent sys-
tem changes. However, many helpful documents do exist in an organization: paper reports,

e Begin with nonthreatening and interesting questions.

e Group items into logically coherent sections.

Do not put important items at the very end of the questionnaire.
Do not crowd a page with too many items.

* Avoid abbreviations.

e Avoid biased or suggestive items or terms.

e Number questions to avoid confusion.

e Pretest the questionnaire to identify confusing questions.

e Provide anonymity to respondents.

FIGURE 3-8

Performing a
Document Analysis

Requirements-Gathering Techniques 107

memorandums, policy manuals, user-training manuals, organization charts, forms, and, of
course, the user interface with the existing system.

But these documents tell only part of the story. They represent the formal system that the
organization uses. Quite often, the real, or informal, system differs from the formal one, and these
differences, particularly large ones, give strong indications of what needs to be changed. For
example, forms or reports that are never used should probably be eliminated. Likewise, boxes or
questions on forms that are never filled in (or are used for other purposes) should be rethought.
See Figure 3-8 for an example of how a document can be interpreted.

The most powerful indication that the system needs to be changed is when users
create their own forms or add additional information to existing ones. Such changes clearly
demonstrate the need for improvements to existing systems. Thus, it is useful to review both
blank and completed forms to identify these deviations. Likewise, when users access multiple
reports to satisfy their information needs, it is a clear sign that new information or new infor-
mation formats are needed.

The customer made a mistake. The staff had to add additional

This should be labeled information about the type of animal

Owner’s Name to prevent and the animal’s date of birth. This

confusion. information should be added to the
new form in the to-be system.

CENTRAL VETERINARY CLINIC
Patient Information Card

Name:; -Bufz= Pat Smith

Pet's Name: Bufty Collie 7/6/99

Address: 100 Central Court. Apartment 10

Toronto, Ontario K7L 3N6

416-

Phone Number: / 555-3400

Do you have insfirance: YES

Insurance Cpmpany: Pet’s Mutual

Policy Mumber: KA-5493243

The customer did not include
area code in the phone
number. This should be made
more clear.

108 Chapter 3 Requirements Determination

Type of information

Depth of information
Breadth of information
Integration of information
User involvement

Cost

Joint Application Document
Interviews Design Questionnaires Analysis Observation
As-is, improvements, As-is, improvements, As-is, improvements As-is As-is

to-be to-be

High High Medium Low Low

Low Medium High High Low

Low High Low Low Low
Medium High Low Low Low
Medium Low to Medium Low Low Low to Medium

Observation

Observation, the act of watching processes being performed, is a powerful tool for gathering
information about the as-is system because it enables the analyst to see the reality of a situa-
tion, rather than listening to others describe it in interviews or JAD sessions. Several research
studies have shown that many managers really do not remember how they work and how
they allocate their time. (Quick, how many hours did you spend last week on each of your
courses?) Observation is a good way to check the validity of information gathered from indi-
rect sources such as interviews and questionnaires.

In many ways, the analyst becomes an anthropologist as he or she walks through the
organization and observes the business system as it functions. The goal is to keep a low pro-
file, to not interrupt those working, and to not influence those being observed. Nonetheless,
it is important to understand that what analysts observe may not be the normal day-to-day
routine because people tend to be extremely careful in their behavior when they are being
watched. Even though normal practice may be to break formal organizational rules, the
observer is unlikely to see this. (Remember how you drove the last time a police car followed
you?) Thus, what you see might not be what you get.

Observation is often used to supplement interview information. The location of a person’s
office and its furnishings give clues to the person’s power and influence in the organization and
can be used to support or refute information given in an interview. For example, an analyst
might become skeptical of someone who claims to use the existing computer system exten-
sively if the computer is never turned on while the analyst visits. In most cases, observation
supports the information that users provide in interviews. When it does not, it is an important
signal that extra care must be taken in analyzing the business system.

Selecting the Appropriate Techniques

Each of the requirements-gathering techniques discussed earlier has strengths and weak-
nesses. No one technique is always better than the others, and in practice most projects use a
combination of techniques. Thus, it is important to understand the strengths and weaknesses
of each technique and when to use each (see Figure 3-9). One issue not discussed is that of the
analysts” experience. In general, document analysis and observation require the least amount
of training, whereas JAD sessions are the most challenging.

Type of Information The first characteristic is the type of information. Some techniques are
more suited for use at different stages of the analysis process, whether understanding the as-is
system, identifying improvements, or developing the to-be system. Interviews and JAD are
commonly used in all three stages. In contrast, document analysis and observation usually are
most helpful for understanding the as-is, although occasionally they provide information about

FIGURE 3-9 Table of Requirements-Gathering Techniques

Requirements-Gathering Techniques 109

current problems that need to be improved. Questionnaires are often used to gather informa-
tion about the as-is system as well as general information about improvements.

Depth of Information The depth of information refers to how rich and detailed the infor-
mation is that the technique usually produces and the extent to which the technique is useful
for obtaining not only facts and opinions but also an understanding of why those facts and
opinions exist. Interviews and JAD sessions are very useful for providing a good depth of rich
and detailed information and helping the analyst to understand the reasons behind them. At
the other extreme, document analysis and observation are useful for obtaining facts, but little
beyond that. Questionnaires can provide a medium depth of information, soliciting both facts
and opinions with little understanding of why they exist.

Breadth of Information Breadth of information refers to the range of information and infor-
mation sources that can be easily collected using the chosen technique. Questionnaires and
document analysis are both easily capable of soliciting a wide range of information from a large
number of information sources. In contrast, interviews and observation require the analyst to
visit each information source individually and, therefore, take more time. JAD sessions are in
the middle because many information sources are brought together at the same time.

Integration of Information One of the most challenging aspects of requirements gather-
ing is integrating the information from different sources. Simply put, different people can
provide conflicting information. Combining this information and attempting to resolve
differences in opinions or facts is usually very time consuming because it means contacting
each information source in turn, explaining the discrepancy, and attempting to refine the
information. In many cases, the individual wrongly perceives that the analyst is challenging
his or her information, when in fact it is another user in the organization who is doing so.
This can make the user defensive and make it hard to resolve the differences.

All techniques suffer integration problems to some degree, but JAD sessions are designed
to improve integration because all information is integrated when it is collected, not after-
ward. If two users provide conflicting information, the conflict becomes immediately obvi-
ous, as does the source of the conflict. The immediate integration of information is the single
most important benefit of JAD that distinguishes it from other techniques, and this is why
most organizations use JAD for important projects.

User Involvement User involvement refers to the amount of time and energy the intended
users of the new system must devote to the analysis process. It is generally agreed that as users
become more involved in the analysis process, the chance of success increases. However, user
involvement can have a significant cost, and not all users are willing to contribute valuable
time and energy. Questionnaires, document analysis, and observation place the least burden
on users, whereas JAD sessions require the greatest effort.

Cost Cost is always an important consideration. In general, questionnaires, document
analysis, and observation are low-cost techniques (although observation can be quite time
consuming). The low cost does not imply that they are more or less effective than the other
techniques. Interviews and JAD sessions generally have moderate costs. In general, JAD ses-
sions are much more expensive initially, because they require many users to be absent from
their offices for significant periods of time, and they often involve highly paid consultants.
However, JAD sessions significantly reduce the time spent in information integration and
thus can cost less in the long term.

Combining Techniques In practice, requirements gathering combines a series of different tech-
niques. Most analysts start by using interviews with senior manager(s) to gain an understanding
of the project and the big-picture issues. From these interviews, it becomes clear whether large
or small changes are anticipated. These interviews are often followed with analysis of documents

110 Chapter 3 Requirements Determination

and policies to gain some understanding of the as-is system. Usually interviews come next to
gather the rest of the information needed for the as-is picture.

In our experience, identifying improvements is most commonly done using JAD sessions
because the JAD session enables the users and key stakeholders to work together through an
analysis technique and come to a shared understanding of the possibilities for the to-be sys-
tem. Occasionally, these JAD sessions are followed by questionnaires sent to a much wider set
of users or potential users to see whether the opinions of those who participated in the JAD
sessions are widely shared.

Developing the concept for the to-be system is often done through interviews with senior
managers, followed by JAD sessions with users of all levels to make sure that the key needs of
the new system are well understood.

ALTERNATIVE REQUIREMENTS DOCUMENTATION TECHNIQUES

Some other very useful requirements-gathering and documentation techniques include
throwaway prototyping, use cases, role-playing CRC cards with use-case-based scenarios,
concept mapping, and recording user stories on story cards and task lists. Throwaway pro-
totyping was described in Chapter 1. In essence, throwaway prototypes are created to better
understand some aspect of the new system. In many cases, they are used to test out some
technical aspect of a nonfunctional requirement, such as connecting a client workstation to a
server. If you have never done this before, it will be a lot easier to develop a very small example
system to test out the necessary design of the connection from the client workstation to the
server instead of trying to do it the first time with the full-blown system. Throwaway proto-
typing is very useful in designing user interfaces (see Chapter 10).

Use cases, as described in Chapter 1, are the fundamental approach that the Unified Process
and Unified Modeling Language (UML) use to document and gather functional requirements.
We describe them in Chapter 4. Role-playing CRC cards with use-case-based scenarios are
very useful when creating functional (see Chapter 4), structural (see Chapter 5), and behavioral
(see Chapter 6) models. We describe this approach in Chapter 5. The remainder of this section
describes the use of concept mapping recording user stories on story cards and task lists.

Concept Maps

Concept maps represent meaningful relationships between concepts. They are useful for
focusing individuals on the small number of key ideas on which they should concentrate.
A concept map is essentially a node-and-arc representation, where the nodes represent the
individual requirements and the arcs represent the relationships among the requirements.
Each arc is labeled with a relationship name. Concept maps also have been recommended as
a possible technique to support modeling requirements for object-oriented systems develop-
ment and knowledge-management systems.'? Concept mapping is an educational psychology
technique that has been used in schools, corporations, and health care agencies to facilitate
learning, understanding, and knowledge creation.!3 The advantage of the concept-mapping
approach to representing requirements over the typical textual approach (see Figure 3-1) is
that a concept map is not limited to a hierarchical representation. Concept maps allow the rela-
tionships among the functional and nonfunctional requirements to be explicitly represented.
Figure 3-10 shows a concept map that portrays the information contained in the requirements

12 See B. Henderson-Sellers, A. Simons, and H. Younessi, The OPEN Toolbox of Techniques (Harlow, England:
Addison-Wesley, 1998).

13 For more information on concept mapping, see J. D. Novak and D. B. Gowin, Learning How to Learn (Cambridge,
UK: Cambridge University Press, 1984); J. D. Novak, Learning, Creating, and Using Knowledge: Concept Maps™ as
Facilitative Tools in Schools and Corporations (Mahwah, NJ: Lawrence Erlbaum Associates, Publishers, 1998). Also, a
free concept mapping tool is available from the Institute of Human and Machine Cognition at cmap.ihmc.us.

a[npayds YD

m juaunuioddy aSuey) u

9|npayds julid

3[npayos

yuaunuioddy ey

ayepdn
m. yuaunuioddy [2oue)

apnjoul

3|npayds 3dnpo.d

apnjoul

m sjuaunuioddy aSeuepy u

apnjoul

Anpiqejrery
10)20(p1023Yy

Anpqepreny

9
13§ s10300(Q AluQ

spedw

spedwi

syoedwi

dew 1doouo) syuswalinbay ajdwes oL-€ 3YNOIA

spedw

$S97 10 SPU0IS
T Ul 3npayds

yuaunuioddy

$537 40 SpPU0d3S Z ul Ajre@ anainay

juaunuioddy
MIN 240)§

JudWUOIIAUg
SMopulM ul djerddO

apnjoul

Sunurg
ssajaip Moddng

sjuswainbay
9dULULIOLIY

Area

3|npayds dnyjoeg

apnpul
I

m sjuawaiinbay jeuonesado u

3INpayds adnpoay
ue) siadeuey Ajluo
syuawidiinbay
[eantjod
pue [ein}n)

apnjoul

syuawainbay

m syuawaainbay Apanoag

sjuawainbay

Jeuonouny

opndul

syuawainbay

|euonduNjuoON

m

112 Chapter 3 Requirements Determination

definition shown in Figure 3-1. By using a concept map to represent the requirements instead
of the textual approach, the relationship between the functional and nonfunctional require-
ments can be made explicit. For example, the two security requirements Only Doctors Set
Availability and Only Managers Can Produce Schedule are explicitly linked to the Record
Doctor Availability and Produce Schedule functional requirements, respectively. This is very
difficult to represent in a text-only version of the requirements definition. Also, by having
the user and analyst focus on the graphical layout of the map, additional requirements can
be discovered. One obvious issue with this approach is that if the number of requirements
becomes many and the relationships between them become complex, then the number of
nodes and arcs will become so intertwined that the advantage of being able to explicitly see the
relationships will be lost. However, by combining both text and concept-map representations,
it is possible to leverage the strength of both textual and graphical representations to more
completely represent the requirements.

User Stories

User stories, along with their associated story cards and task lists, are associated with the
agile development approaches. User stories have been shown to be very useful in gathering
requirements in a nonthreatening manner that respects the user’s point of view. They are
typically captured using story cards (index cards) and are recorded on a task list (or from a
Scrum perspective, on the product backlog). Both story cards and task lists are considered
to be lightweight approaches to documenting and gathering requirements.!# Stories capture
both functional and nonfunctional requirements. For example, with regard to the doctor’s
office appointment example, a functional requirement-based story could be:

As a secretary, I want to be able to schedule appointments for our patients so that we can
meet our patients’ needs.

While an operational nonfunctional requirement-based story could be:

As a secretary, I want to be able to print the daily schedule using wireless technology so
that all printing can be performed using a shared printer without having to deal with
printer cables connecting all of the computers to the printer.

Once the story is written down, it is discussed to determine the amount of effort it will take
to implement it. During the discussion, a task list is created for the story. If the story is
deemed to be too large—e.g., there are too many tasks on the task list—the story is split up
into multiple stories each being recorded on its own story card and the tasks are allocated
across the new stories. In many shops, once a set of tasks has been identified with a story,
the story and its tasks are taped on a wall together so that all members of the development
team can see the requirements. The story can be prioritized by importance by placing a rat-
ing on the card. The story can also be evaluated for the level of risk associated with it. The
importance level and amount of risk associated with the story can be used to help choose
which requirements to implement first. The advantage of using story cards and task lists
to document requirements is that they are very low tech, high touch, easily updatable, and
very portable.

4 For more information on story cards and task lists see M. Cohn, User Stories Applied: For Agile Software
Development (Boston, MA: Addison-Wesley, 2004); B. Rinzler, Telling Stories: A Short Path to Writing Better
Software Requirements (Indianapolis, IN: Wiley, 2009); M. Lippert, S. Roock, H. Wolf, eXtreme Programming
in Action: Practical Experiences from Real World Projects (Chichester, England: Wiley & Sons, Ltd., 2002);
C. Larman, Agile ¢ Iterative Development: A Manager’s Guide (Boston, MA: Addison-Wesley, 2004).

The System Proposal 113

THE SYSTEM PROPOSAL

FIGURE 3-11

System Proposal
Template

A system proposal brings together into a single comprehensive document the material created
during planning and analysis. The system proposal typically includes an executive summary,
the system request, the workplan, the feasibility analysis, the requirements definition, and the
evolving models that describe the new system. The evolving models include functional models
(see Chapter 4), structural models (see Chapter 5), and behavioral models (see Chapter 6).1° The
executive summary provides all critical information in a very concise form. It can be thought
of as a summary of the complete proposal. Its purpose is to allow a busy executive to quickly
read through it and determine which parts of the proposal he or she needs to go through more
thoroughly. The executive summary is typically no more than a single page long. Figure 3-11
provides a template for a system proposal and references to where the other sections of the
proposal are described.

1. Table of Contents
2. Executive Summary

A summary of all the essential information in the proposal so that a busy executive can read it
quickly and decide what parts of the proposal to read in more depth.

3. System Request
The revised system request form (see Chapter 2).
4. Workplan
The original workplan, revised after having completed analysis (see Chapter 2).
5. Feasibility Analysis
A revised feasibility analysis, using the information from analysis (see Chapter 2).
6. Requirements Definition
A list of the functional and nonfunctional business requirements for the system (this chapter).
7. Functional Model

An activity diagram, a set of use-case descriptions, and a use-case diagram that illustrate the basic
processes or external functionality that the system needs to support (see Chapter 4).

8. Structural Models
A set of CRC cards, class diagram, and object diagrams that describe the structural aspects of the

to-be system (see Chapter 5). This may also include structural models of the current as-is system that
will be replaced.

9. Behavioral Models

A set of sequence diagrams, communication diagrams, behavioral-state machines, and a CRUDE
matrix that describe the internal behavior of the to-be system (see Chapter 6). This may include
behavioral models of the as-is system that will be replaced.

10. Appendices

These contain additional material relevant to the proposal, often used to support the recommended
system. This might include results of a questionnaire survey or interviews, industry reports and
statistics, and so on.

15 Depending on the client, much more detailed specifications may be required; for example the Department
of Defense, NASA, IEEE/ANSI, and the Naval Research Laboratory all have very specific formats that must be
followed. For more information on these more detailed specifications, see A. M Davis, Software Requirements,
Revision (Upper Saddle River, NJ: Prentice Hall, 1993); G. Kotonya and I. Sommerville, Requirements Engineering
(Chichester, England: Wiley, 1998); R. H. Thayer and M. Dorfman (eds.), Software Requirements Engineering, 2nd Ed.
(Los Alamitos, CA: IEEE Computer Society Press, 1997).

114 Chapter 3 Requirements Determination

APPLYING THE CONCEPTS AT PATTERSON
SUPERSTORE

Chapter 3 introduced requirements determination for object-oriented systems develop-
ment projects. Determining the system’s requirements is the most important activity in
the systems development process. A requirement is WHAT the system must do or WHAT
characteristics it must have. If the requirements are not fully or correctly defined, the sys-
tem developed is unlikely to meet the needs of the user. In other words, if the requirements
are wrong, the system will be wrong.

In this chapter’s installment of the Patterson Superstore case, we see the require-
ments analysis and requirement-gathering techniques that the analysts used to determine
requirements for Version 1 of the Integrated Health Clinic Delivery System. We also see the
functional and nonfunctional requirements that were developed and an initial draft of the
developing systems proposal for the project. This systems proposal will be finalized after
the functional (Chapter 4), structural (Chapter 5), and behavioral (Chapter 6) modeling of
the system has been completed.

You can find the rest of the case at: www.wiley.com/go/dennis/casestudy

CHAPTER REVIEW

After reading and studying this chapter, you should be able to:

N I A I o I |

KEY TERMS

Activity elimination
Activity-based costing
Analysis

As-is system
Benchmarking

Create a requirements definition.

Differentiate between a functional and a nonfunctional requirement.
Discuss the problem analysis requirements strategy.

Discuss the root cause analysis requirements strategy.

Discuss the duration analysis requirements strategy.

Discuss the activity-based costing analysis requirements strategy.
Discuss the informal benchmarking analysis requirements strategy.
Discuss the outcome analysis requirements strategy.

Discuss the technology analysis requirements strategy.

Discuss the activity elimination requirements strategy.

Discuss how to use interviews to gather requirements.

Discuss how to use joint application development to gather requirements.
Discuss how to use questionnaires to gather requirements.

Discuss how to use document analysis to gather requirements.

Discuss how to use observation to gather requirements.

Describe how to use concept maps to document requirements.

Describe how to use story cards and task lists to document requirements.
Describe the purpose and contents of system proposal.

Bottom-up interview
Breadth of analysis
Business requirements
Closed-ended question
Concept mapping

Concept maps

Critical thinking skills
Document analysis
Duration analysis
Electronic JAD (e-JAD)

Facilitator

Formal system
Functional requirements
Ground rules

Informal benchmarking

Informal system
Interpersonal skills
Interview
Interview notes
Interview report
Interview schedule
JAD (joint application
development)

Nonfunctional requirements

Observation

Open-ended question
Outcome analysis
Parallelization

Process Integration
Post-session report
Potential business value
Probing question
Problem analysis
Project cost
Questionnaire

Exercises 115

QUESTIONS

10.

11.

12.

E

A

. What are the key deliverables that are created during
analysis? What is the final deliverable from analysis,
and what does it contain?

. What is the difference between an as-is system and a
to-be system?

. What is the purpose of the requirements definition?

. What are the three basic steps of the analysis process?
Which step is sometimes skipped or done in a cursory
fashion? Why?

. Compare and contrast problem analysis and root
cause analysis. Under what conditions would you use
problem analysis? Under what conditions would you
use root cause analysis?

. Compare and contrast duration analysis and activity-
based costing.

. Describe the five major steps in conducting interviews.

. Explain the differences among a closed-ended ques-
tion, an open-ended question, and a probing question.
When would you use each?

. Explain the differences between unstructured inter-

views and structured interviews. When would you use

each approach?

Explain the difference between a top-down and

bottom-up interview approach. When would you use

each approach?

How are participants selected for interviews and JAD

sessions?

How can you differentiate between facts and opinions?

Why can both be useful?

XERCISES

. Review the Amazon.com website. Develop the
requirements definition for the site. Create a list
of functional business requirements that the system
meets. What different kinds of nonfunctional business

Requirement Structured interview

Requirements definition System proposal

Requirements System requirements
determination Task lists, 144

Risk Technology analysis

Root cause To-be system

Root cause analysis Top-down interview

Sample Unstructured interview

Scribe User stories

Story cards Walkthrough

13. Describe the five major steps in conducting JAD

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

sessions.

How does a JAD facilitator differ from a scribe?
What are the three primary things that a facilitator
does in conducting the JAD session?

What is e-JAD, and why might a company be inter-
ested in using it?

How does designing questions for questionnaires differ
from designing questions for interviews or JAD sessions?
What are typical response rates for questionnaires,
and how can you improve them?

What is document analysis?

How does the formal system differ from the informal
system? How does document analysis help you under-
stand both?

What are the key aspects of using observation in the
information-gathering process?

Explain factors that can be used to select information-
gathering techniques.

What is the primary advantage that concept maps
have over traditional textual requirements documents
techniques?

What are some of the advantages of using story cards
and task lists as a requirements-gathering and docu-
mentation technique?

What information is typically included in a system
proposal?

What is the purpose of the executive summary of the
system proposal?

requirements does the system meet? Provide exam-
ples for each kind.

. Suppose you are going to build a new system that auto-

mates or improves the interview process for the career

116 Chapter 3 Requirements Determination

services department of your school. Develop a require-
ments definition for the new system. Include both
functional and nonfunctional system requirements.
Pretend you will release the system in three different
versions. Prioritize the requirements accordingly.

. Describe in very general terms the as-is business
process for registering for classes at your university.
Collaborate with another student in your class, and
evaluate the process using problem analysis and root
cause analysis. Based on your work, list some improve-
ments that you have identified.

. Describe in very general terms the as-is business pro-
cess for applying for admission at your university.
Collaborate with another student in your class, and
evaluate the process using informal benchmarking.
Based on your work, list some improvements that you
have identified.

. Describe in very general terms the as-is business
process for registering for classes at your university.
Collaborate with another student in your class, and
evaluate the process using activity elimination. Based
on your work, list some improvements that you have
identified.

. Suppose your university is having a dramatic increase
in enrollment and is having difficulty finding enough
seats in courses for students. Perform a technology
analysis to identify new ways to help students com-
plete their studies and graduate.

. Suppose you are the analyst charged with developing a
new system for the university bookstore so that students
can order books online and have them delivered to their
dorms or off-campus housing. What requirements-
gathering techniques will you use? Describe in detail
how you would apply the techniques.

MINICASES

1. The State Firefighter’s Association has a membership
of 15,000. The purpose of the organization is to pro-
vide some financial support to the families of deceased
member firefighters and to organize a conference
each year bringing together firefighters from all over
the state. Members are billed dues and calls annually.
Calls are additional funds required to take care of
payments made to the families of deceased members.
The bookkeeping work for the association is handled
by the elected treasurer, Bob Smith, although it is
widely known that his wife, Laura, does all the work.

. Suppose you are the analyst charged with developing

a new system to help senior managers make bet-
ter strategic decisions. What requirements-gathering
techniques will you use? Describe in detail how you
would apply the techniques.

. Find a partner and interview each other about what

tasks each did in the last job you held (full-time,
part-time, past, or current). If you haven’t worked
before, then assume your job is being a student.
Before you do this, develop a brief interview plan.
After your partner interviews you, identify the type
of interview, interview approach, and types of ques-
tions used.

. Find a group of students and run a sixty-minute

JAD session on improving alumni relations at your
university. Develop a brief JAD plan, select two tech-
niques that will help identify improvements, and then
develop an agenda. Conduct the session using the
agenda, and write your post-session report.

. Find a questionnaire on the Web that has been created

to capture customer information. Describe the pur-
pose of the survey, the way questions are worded, and
how the questions have been organized. How can it be
improved? How will the responses be analyzed?

. Develop a questionnaire that will help gather infor-

mation regarding processes at a popular restaurant
or the college cafeteria (e.g., ordering, customer ser-
vice). Give the questionnaire to ten to fifteen students,
analyze the responses, and write a brief report that
describes the results.

. Contact the career services department at your uni-

versity, and find all the pertinent documents designed
to help students find permanent and/or part-time
jobs. Analyze the documents and write a brief report.

Bob runs unopposed each year at the election, because
no one wants to take over the tedious and time-
consuming job of tracking memberships. Bob is paid
a stipend of $8,000 per year, but his wife spends well
over twenty hours per week on the job. The organiza-
tion, however, is not happy with their performance.
A computer system is used to track the billing and
receipt of funds. This system was developed in 1984
by a computer science student and his father. The
system is a DOS-based system written using dBase 3.
The most immediate problem facing the treasurer and

his wife is the fact that the software package no longer
exists, and there is no one around who knows how to
maintain the system. One query, in particular, takes
seventeen hours to run. Over the years, they have just
avoided running this query, although the information
in it would be quite useful. Questions from mem-
bers concerning their statements cannot easily be
answered. Usually Bob or Laura just jots down the
inquiry and returns a call with the answer. Sometimes
it takes three to five hours to find the information
needed to answer the question. Often, they have to
perform calculations manually because the system
was not programmed to handle certain types of que-
ries. When member information is entered into the
system, each field is presented one at a time, which
makes it very difficult to return to a field and correct
a value that was entered. Sometimes a new member is
entered but disappears from the records. The report
of membership used in the conference materials does
not alphabetize members by city. Only cities are listed
in the correct order.

What requirements analysis strategy or strategies

would you recommend for this situation? Explain
your answer.
. Brian Callahan, IS project manager, is just about ready
to depart for an urgent meeting called by Joe Campbell,
manager of manufacturing operations. A major project
sponsored by Joe recently cleared the approval hurdle,
and Brian helped bring the project through project
initiation. Now that the approval committee has given
the go-ahead, Brian has been working on the project’s
analysis plan.

One evening, while playing golf with a friend who
works in the manufacturing operations department,
Brian learned that Joe wants to push the project’s time
frame up from Brian’s original estimate of thirteen
months. Brian’s friend overheard Joe say, “I can’t see
why that IS project team needs to spend all that time
analyzing things. They've got two weeks scheduled
just to look at the existing system! That seems like a
real waste. I want that team to get going on building
my system.”

Because Brian has a little inside knowledge about
Joe’s agenda for this meeting, he has been considering
how to handle Joe. What do you suggest Brian tell Joe?
. Barry has recently been assigned to a project team that
will be developing a new retail store management sys-
tem for a chain of submarine sandwich shops. Barry
has several years of experience in programming, but
he has not done much analysis in his career. He was a

Minicases 117

little nervous about the new work he would be doing,
but he was confident he could handle any assignment
he was given.

One of Barry’s first assignments was to visit one
of the submarine sandwich shops and prepare an
observation report on how the store operates. Barry
planned to arrive at the store around noon, but he
chose a store in an area of town he was unfamiliar
with, and due to traffic delays and difficulty in find-
ing the store, he did not arrive until 1:30. The store
manager was not expecting him and refused to let a
stranger behind the counter until Barry had her contact
the project sponsor (the director of store management)
at company headquarters to verify who he was and
what his purpose was.

After finally securing permission to observe, Barry
stationed himself prominently in the work area
behind the counter so that he could see everything.
The staff had to maneuver around him as they went
about their tasks, but there were only minor occa-
sional collisions. Barry noticed that the store staff
seemed to be going about their work very slowly and
deliberately, but he supposed that was because the
store wasn’t very busy. At first, Barry questioned each
worker about what he or she was doing, but the store
manager eventually asked him not to interrupt their
work so much—he was interfering with their service
to the customers.

By 3:30, Barry was a little bored. He decided to leave,
figuring he could get back to the office and prepare
his report before 5:00 that day. He was sure his team
leader would be pleased with his quick completion
of his assignment. As he drove, he reflected, “There
really won’t be much to say in this report. All they
do is take the order, make the sandwich, collect the
payment, and hand over the order. It’s really simple!”
Barry’s confidence in his analytical skills soared as he
anticipated his team leader’s praise.

Back at the store, the store manager shook her
head, commenting to her staff, “He comes here at the
slowest time of day on the slowest day of the week. He
never even looked at all the work I was doing in the
back room while he was here—summarizing yester-
day’s sales, checking inventory on hand, making up
resupply orders for the weekend . . . plus he never even
considered our store-opening and -closing procedures.
I hate to think that the new store management system
is going to be built by someone like that. I'd better
contact Chuck [the director of store management]
and let him know what went on here today.”

118 Chapter 3 Requirements Determination

Evaluate Barry’s conduct of the observation
assignment.
. Anne has been given the task of conducting a survey
of sales clerks who will be using a new order-entry sys-
tem being developed for a household products catalog
company. The goal of the survey is to identify the clerks’
opinions on the strengths and weaknesses of the current
system. There are about 50 clerks who work in three
different cities, so a survey seemed like an ideal way of
gathering the needed information from the clerks.

Anne developed the questionnaire carefully and
pretested it on several sales supervisors who were
available at corporate headquarters. After revising it
based on their suggestions, she sent a paper version
of the questionnaire to each clerk, asking that it be

returned within one week. After one week, she had
only three completed questionnaires returned. After
another week, Anne received just two more completed
questionnaires. Feeling somewhat desperate, Anne
then sent out an e-mail version of the questionnaire,
again to all the clerks, asking them to respond to
the questionnaire by e-mail as soon as possible. She
received two e-mail questionnaires and three mes-
sages from clerks who had completed the paper ver-
sion expressing annoyance at being bothered with the
same questionnaire a second time. At this point, Anne
has just a 14 percent response rate, which she is sure
will not please her team leader. What suggestions do
you have that could have improved Anne’s response
rate to the questionnaire?

CHAPTER 4

BUSINESS PROCESS AND
FUNCTIONAL MODELING

Functional models describe business processes and the interaction of an information sys-
tem with its environment. In object-oriented systems development, two types of models are
used to describe the functionality of an information system: use cases and activity diagrams.
Use cases are used to describe the basic functions of the information system. Activity dia-
grams support the logical modeling of business processes and workflows. Both can be used to
describe the current as-is system and the to-be system being developed. This chapter describes
business process and functional modeling as a means to document and understand require-
ments and to understand the functional or external behavior of the system.

OBJECTIVES

Understand the process used to identify business processes and use cases.
Understand the process used to create use-case diagrams.

Understand the process used to model business processes with activity diagrams.
Understand the rules and style guidelines for activity diagrams.

Understand the process used to create use-case descriptions.

Understand the rules and style guidelines for use-case descriptions.

Be able to create functional models of business processes using use-case diagrams,
activity diagrams, and use-case de