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Preface

Not so long ago, anyone who had heard the word “algorithm” was
almost certainly a computer scientist or mathematician. With
computers having become prevalent in our modern lives, however, the
term is no longer esoteric. If you look around your home, you’ll find
algorithms running in the most mundane places: your microwave oven,
your washing machine, and, of course, your computer. You ask
algorithms to make recommendations to you: what music you might like
or what route to take when driving. Our society, for better or for worse,
asks algorithms to suggest sentences for convicted criminals. You even
rely on algorithms to keep you alive, or at least not to kill you: the

control systems in your car or in medical equiprnent.1 The word
“algorithm” appears somewhere in the news seemingly every day.

Therefore, it behooves you to understand algorithms not just as a
student or practitioner of computer science, but as a citizen of the
world. Once you understand algorithms, you can educate others about
what algorithms are, how they operate, and what their limitations are.

This book provides a comprehensive introduction to the modern
study of computer algorithms. It presents many algorithms and covers
them in considerable depth, yet makes their design accessible to all
levels of readers. All the analyses are laid out, some simple, some more
involved. We have tried to keep explanations clear without sacrificing
depth of coverage or mathematical rigor.

Each chapter presents an algorithm, a design technique, an
application area, or a related topic. Algorithms are described in English
and in a pseudocode designed to be readable by anyone who has done a



little programming. The book contains 231 figures—many with multiple
parts—illustrating how the algorithms work. Since we emphasize
efficiency as a design criterion, we include careful analyses of the
running times of the algorithms.

The text is intended primarily for use in undergraduate or graduate
courses 1In algorithms or data structures. Because it discusses
engineering issues in algorithm design, as well as mathematical aspects,
it is equally well suited for self-study by technical professionals.

In this, the fourth edition, we have once again updated the entire
book. The changes cover a broad spectrum, including new chapters and
sections, color illustrations, and what we hope you’ll find to be a more
engaging writing style.

To the teacher

We have designed this book to be both versatile and complete. You
should find it useful for a variety of courses, from an undergraduate
course in data structures up through a graduate course in algorithms.
Because we have provided considerably more material than can fit in a
typical one-term course, you can select the material that best supports
the course you wish to teach.

You should find it easy to organize your course around just the
chapters you need. We have made chapters relatively self-contained, so
that you need not worry about an unexpected and unnecessary
dependence of one chapter on another. Whereas in an undergraduate
course, you might use only some sections from a chapter, in a graduate
course, you might cover the entire chapter.

We have included 931 exercises and 162 problems. Each section ends
with exercises, and each chapter ends with problems. The exercises are
generally short questions that test basic mastery of the material. Some
are simple self-check thought exercises, but many are substantial and
suitable as assigned homework. The problems include more elaborate
case studies which often introduce new material. They often consist of
several parts that lead the student through the steps required to arrive
at a solution.
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As with the third edition of this book, we have made publicly
available solutions to some, but by no means all, of the problems and
exercises. You can find these solutions on our website,
http://mitpress.mit.edu/algorithms/. You will want to check this site to
see whether it contains the solution to an exercise or problem that you
plan to assign. Since the set of solutions that we post might grow over
time, we recommend that you check the site each time you teach the
course.

We have starred ( % ) the sections and exercises that are more
suitable for graduate students than for undergraduates. A starred
section i1s not necessarily more difficult than an unstarred one, but it
may require an understanding of more advanced mathematics. Likewise,
starred exercises may require an advanced background or more than
average creativity.

To the student

We hope that this textbook provides you with an enjoyable introduction
to the field of algorithms. We have attempted to make every algorithm
accessible and interesting. To help you when you encounter unfamiliar
or difficult algorithms, we describe each one in a step-by-step manner.
We also provide careful explanations of the mathematics needed to
understand the analysis of the algorithms and supporting figures to
help you visualize what is going on.

Since this book is large, your class will probably cover only a portion
of its material. Although we hope that you will find this book helpful to
you as a course textbook now, we have also tried to make it
comprehensive enough to warrant space on your future professional
bookshellf.

What are the prerequisites for reading this book?

e You need some programming experience. In particular, you
should understand recursive procedures and simple data
structures, such as arrays and linked lists (although Section 10.2
covers linked lists and a variant that you may find new).


http://mitpress.mit.edu/algorithms/

e You should have some facility with mathematical proofs, and
especially proofs by mathematical induction. A few portions of
the book rely on some knowledge of elementary calculus.
Although this book uses mathematics throughout, Part I and
Appendices A-D teach you all the mathematical techniques you
will need.

Our website, http://mitpress.mit.edu/algorithms/, links to solutions
for some of the problems and exercises. Feel free to check your
solutions against ours. We ask, however, that you not send your
solutions to us.

To the professional

The wide range of topics in this book makes it an excellent handbook
on algorithms. Because each chapter is relatively self-contained, you
can focus on the topics most relevant to you.

Since most of the algorithms we discuss have great practical utility,
we address implementation concerns and other engineering issues. We
often provide practical alternatives to the few algorithms that are
primarily of theoretical interest.

If you wish to implement any of the algorithms, you should find the
translation of our pseudocode into your favorite programming language
to be a fairly straightforward task. We have designed the pseudocode to
present each algorithm clearly and succinctly. Consequently, we do not
address error handling and other software-engineering issues that
require specific assumptions about your programming environment. We
attempt to present each algorithm simply and directly without allowing
the idiosyncrasies of a particular programming language to obscure its
essence. If you are used to 0-origin arrays, you might find our frequent
practice of indexing arrays from 1 a minor stumbling block. You can
always either subtract 1 from our indices or just overallocate the array
and leave position 0 unused.

We understand that if you are using this book outside of a course,
then you might be unable to check your solutions to problems and
exercises against solutions provided by an instructor. Our website,
http://mitpress.mit.edu/algorithms/, links to solutions for some of the
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problems and exercises so that you can check your work. Please do not
send your solutions to us.

To our colleagues

We have supplied an extensive bibliography and pointers to the current
literature. Each chapter ends with a set of chapter notes that give
historical details and references. The chapter notes do not provide a
complete reference to the whole field of algorithms, however. Though it
may be hard to believe for a book of this size, space constraints
prevented us from including many interesting algorithms.

Despite myriad requests from students for solutions to problems and
exercises, we have adopted the policy of not citing references for them,
removing the temptation for students to look up a solution rather than
to discover it themselves.

Changes for the fourth edition

As we said about the changes for the second and third editions,
depending on how you look at it, the book changed either not much or
quite a bit. A quick look at the table of contents shows that most of the
third-edition chapters and sections appear in the fourth edition. We
removed three chapters and several sections, but we have added three
new chapters and several new sections apart from these new chapters.

We kept the hybrid organization from the first three editions. Rather
than organizing chapters only by problem domains or only according to
techniques, this book incorporates elements of both. It contains
technique-based  chapters on  divide-and-conquer, = dynamic
programming, greedy algorithms, amortized analysis, augmenting data
structures, NP-completeness, and approximation algorithms. But it also
has entire parts on sorting, on data structures for dynamic sets, and on
algorithms for graph problems. We find that although you need to know
how to apply techniques for designing and analyzing algorithms,
problems seldom announce to you which techniques are most amenable
to solving them.

Some of the changes in the fourth edition apply generally across the
book, and some are specific to particular chapters or sections. Here is a



summary of the most significant general changes:

e We added 140 new exercises and 22 new problems. We also
improved many of the old exercises and problems, often as the
result of reader feedback. (Thanks to all readers who made
suggestions.)

e We have color! With designers from the MIT Press, we selected a
limited palette, devised to convey information and to be pleasing
to the eye. (We are delighted to display red-black trees in—get
this—red and black!) To enhance readability, defined terms,
pseudocode comments, and page numbers in the index are in
color.

e Pseudocode procedures appear on a tan background to make
them easier to spot, and they do not necessarily appear on the
page of their first reference. When they don’t, the text directs you
to the relevant page. In the same vein, nonlocal references to
numbered equations, theorems, lemmas, and corollaries include
the page number.

e We removed topics that were rarely taught. We dropped in their
entirety the chapters on Fibonacci heaps, van Emde Boas trees,
and computational geometry. In addition, the following material
was excised: the maximum-subarray problem, implementing
pointers and objects, perfect hashing, randomly built binary
search trees, matroids, push-relabel algorithms for maximum flow,
the iterative fast Fourier transform method, the details of the
simplex algorithm for linear programming, and integer
factorization. You can find all the removed material on our
website, http://mitpress.mit.edu/algorithms/.

o We reviewed the entire book and rewrote sentences, paragraphs,
and sections to make the writing clearer, more personal, and
gender neutral. For example, the “traveling-salesman problem” in
the previous editions is now called the “traveling-salesperson
problem.” We believe that it is critically important for engineering
and science, including our own field of computer science, to be
welcoming to everyone. (The one place that stumped us is in
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Chapter 13, which requires a term for a parent’s sibling. Because
the English language has no such gender-neutral term, we
regretfully stuck with “uncle.”)

e The chapter notes, bibliography, and index were updated,
reflecting the dramatic growth of the field of algorithms since the
third edition.

e We corrected errors, posting most corrections on our website of
third-edition errata. Those that were reported while we were in
full swing preparing this edition were not posted, but were
corrected in this edition. (Thanks again to all readers who helped
us identify issues.)

The specific changes for the fourth edition include the following:

e We renamed Chapter 3 and added a section giving an overview of
asymptotic notation before delving into the formal definitions.

o Chapter 4 underwent substantial changes to improve its
mathematical foundation and make it more robust and intuitive.
The notion of an algorithmic recurrence was introduced, and the
topic of ignoring floors and ceilings in recurrences was addressed
more rigorously. The second case of the master theorem
incorporates polylogarithmic factors, and a rigorous proof of a
“continuous” version of the master theorem 1s now provided. We
also present the powerful and general Akra-Bazzi method
(without proof).

e The deterministic order-statistic algorithm in Chapter 9 is slightly
different, and the analyses of both the randomized and
deterministic order-statistic algorithms have been revamped.

e In addition to stacks and queues, Section 10.1 discusses ways to
store arrays and matrices.

e Chapter 11 on hash tables includes a modern treatment of hash
functions. It also emphasizes linear probing as an efficient method
for resolving collisions when the underlying hardware implements
caching to favor local searches.



» To replace the sections on matroids in Chapter 15, we converted a
problem in the third edition about offline caching into a full
section.

e Section 16.4 now contains a more intuitive explanation of the
potential functions to analyze table doubling and halving.

e Chapter 17 on augmenting data structures was relocated from
Part III to Part V, reflecting our view that this technique goes
beyond basic material.

o Chapter 25 is a new chapter about matchings in bipartite graphs.
It presents algorithms to find a matching of maximum cardinality,
to solve the stable-marriage problem, and to find a maximum-
weight matching (known as the “assignment problem”).

e Chapter 26, on task-parallel computing, has been updated with
modern terminology, including the name of the chapter.

o Chapter 27, which covers online algorithms, is another new
chapter. In an online algorithm, the input arrives over time, rather
than being available in its entirety at the start of the algorithm.
The chapter describes several examples of online algorithms,
including determining how long to wait for an elevator before
taking the stairs, maintaining a linked list via the move-to-front
heuristic, and evaluating replacement policies for caches.

e In Chapter 29, we removed the detailed presentation of the
simplex algorithm, as it was math heavy without really conveying
many algorithmic ideas. The chapter now focuses on the key
aspect of how to model problems as linear programs, along with
the essential duality property of linear programming.

e Section 32.5 adds to the chapter on string matching the simple,
yet powerful, structure of suffix arrays.

e Chapter 33, on machine learning, is the third new chapter. It
introduces several basic methods used in machine learning:
clustering to group similar items together, weighted-majority
algorithms, and gradient descent to find the minimizer of a
function.
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e Section 34.5.6 summarizes strategies for polynomial-time
reductions to show that problems are NP-hard.

e The proof of the approximation algorithm for the set-covering
problem in Section 35.3 has been revised.

Website

You can use our website, http://mitpress.mit.edu/algorithms/, to obtain
supplementary information and to communicate with us. The website
links to a list of known errors, material from the third edition that is not
included in the fourth edition, solutions to selected exercises and
problems, Python implementations of many of the algorithms in this
book, a list explaining the corny professor jokes (of course), as well as
other content, which we may add to. The website also tells you how to
report errors or make suggestions.

How we produced this book

Like the previous three editions, the fourth edition was produced in
LATEX 2.. We used the Times font with mathematics typeset using the

MathTime Professional II fonts. As in all previous editions, we compiled
the index using Windex, a C program that we wrote, and produced the
bibliography using BIBTEX. The PDF files for this book were created

on a MacBook Pro running macOS 10.14.

Our plea to Apple in the preface of the third edition to update
MacDraw Pro for macOS 10 went for naught, and so we continued to
draw illustrations on pre-Intel Macs running MacDraw Pro under the
Classic environment of older versions of macOS 10. Many of the
mathematical expressions appearing in illustrations were laid in with the

psfrag package for LATEX 2.

Acknowledgments for the fourth edition

We have been working with the MIT Press since we started writing the
first edition in 1987, collaborating with several directors, editors, and
production staff. Throughout our association with the MIT Press, their
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support has always been outstanding. Special thanks to our editors
Marie Lee, who put up with us for far too long, and Elizabeth Swayze,
who pushed us over the finish line. Thanks also to Director Amy Brand
and to Alex Hoopes.

As in the third edition, we were geographically distributed while
producing the fourth edition, working in the Dartmouth College
Department of Computer Science; the MIT Computer Science and
Artificial Intelligence Laboratory and the MIT Department of
Electrical Engineering and Computer Science; and the Columbia
University Department of Industrial Engineering and Operations
Research, Department of Computer Science, and Data Science
Institute. During the COVID-19 pandemic, we worked largely from
home. We thank our respective universities and colleagues for providing
such supportive and stimulating environments. As we complete this
book, those of us who are not retired are eager to return to our
respective universities now that the pandemic seems to be abating.

Julie Sussman, PPA., came to our rescue once again with her
technical copy-editing under tremendous time pressure. If not for Julie,
this book would be riddled with errors (or, let’s say, many more errors
than it has) and would be far less readable. Julie, we will be forever
indebted to you. Errors that remain are the responsibility of the authors
(and probably were inserted after Julie read the material).

Dozens of errors in previous editions were corrected in the process
of creating this edition. We thank our readers—too many to list them
all—who have reported errors and suggested improvements over the
years.

We received considerable help in preparing some of the new material
in this edition. Neville Campbell (unaffiliated), Bill Kuszmaul of MIT,
and Chee Yap of NYU provided valuable advice regarding the
treatment of recurrences in Chapter 4. Yan Gu of the University of
California, Riverside, provided feedback on parallel algorithms in
Chapter 26. Rob Shapire of Microsoft Research altered our approach
to the material on machine learning with his detailed comments on
Chapter 33. Qi Qi of MIT helped with the analysis of the Monty Hall
problem (Problem C-1).
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Molly Seaman and Mary Reilly of the MIT Press helped us select
the color palette in the illustrations, and Wojciech Jarosz of Dartmouth
College suggested design improvements to our newly colored figures.
Yichen (Annie) Ke and Linda Xiao, who have since graduated from
Dartmouth, aided in colorizing the illustrations, and Linda also
produced many of the Python implementations that are available on the
book’s website.

Finally, we thank our wives—Wendy Leiserson, Gail Rivest, Rebecca
Ivry, and the late Nicole Cormen—and our families. The patience and
encouragement of those who love us made this project possible. We
affectionately dedicate this book to them.

THOMAS H. CORMEN Lebanon, New Hampshire
CHARLES E. LEISERSON Cambridge, Massachusetts
RONALD L. RIVEST Cambridge, Massachusetts
CLIFFORD STEIN New York, New York
June, 2021

! To understand many of the ways in which algorithms influence our daily lives, see the book
by Fry [162].



Part I Foundations
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Introduction

When you design and analyze algorithms, you need to be able to
describe how they operate and how to design them. You also need some
mathematical tools to show that your algorithms do the right thing and
do it efficiently. This part will get you started. Later parts of this book
will build upon this base.

Chapter 1 provides an overview of algorithms and their place in
modern computing systems. This chapter defines what an algorithm is
and lists some examples. It also makes a case for considering algorithms
as a technology, alongside technologies such as fast hardware, graphical
user interfaces, object-oriented systems, and networks.

In Chapter 2, we see our first algorithms, which solve the problem of
sorting a sequence of n numbers. They are written in a pseudocode
which, although not directly translatable to any conventional
programming language, conveys the structure of the algorithm clearly
enough that you should be able to implement it in the language of your
choice. The sorting algorithms we examine are insertion sort, which
uses an incremental approach, and merge sort, which uses a recursive
technique known as “divide-and-conquer.” Although the time each
requires increases with the value of n, the rate of increase differs
between the two algorithms. We determine these running times in
Chapter 2, and we develop a useful “asymptotic” notation to express
them.

Chapter 3 precisely defines asymptotic notation. We’ll use
asymptotic notation to bound the growth of functions—most often,



functions that describe the running time of algorithms—from above
and below. The chapter starts by informally defining the most
commonly used asymptotic notations and giving an example of how to
apply them. It then formally defines five asymptotic notations and
presents conventions for how to put them together. The rest of Chapter
3 is primarily a presentation of mathematical notation, more to ensure
that your use of notation matches that in this book than to teach you
new mathematical concepts.

Chapter 4 delves further into the divide-and-conquer method
introduced in Chapter 2. It provides two additional examples of divide-
and-conquer algorithms for multiplying square matrices, including
Strassen’s surprising method. Chapter 4 contains methods for solving
recurrences, which are useful for describing the running times of
recursive algorithms. In the substitution method, you guess an answer
and prove it correct. Recursion trees provide one way to generate a
guess. Chapter 4 also presents the powerful technique of the “master
method,” which you can often use to solve recurrences that arise from
divide-and-conquer algorithms. Although the chapter provides a proof
of a foundational theorem on which the master theorem depends, you
should feel free to employ the master method without delving into the
proof. Chapter 4 concludes with some advanced topics.

Chapter 5 introduces probabilistic analysis and randomized
algorithms. You typically use probabilistic analysis to determine the
running time of an algorithm in cases in which, due to the presence of
an inherent probability distribution, the running time may differ on
different inputs of the same size. In some cases, you might assume that
the inputs conform to a known probability distribution, so that you are
averaging the running time over all possible inputs. In other cases, the
probability distribution comes not from the inputs but from random
choices made during the course of the algorithm. An algorithm whose
behavior is determined not only by its input but by the values produced
by a random-number generator is a randomized algorithm. You can use
randomized algorithms to enforce a probability distribution on the
inputs—thereby ensuring that no particular input always causes poor
performance—or even to bound the error rate of algorithms that are
allowed to produce incorrect results on a limited basis.
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Appendices A-D contain other mathematical material that you will
find helpful as you read this book. You might have seen much of the
material in the appendix chapters before having read this book
(although the specific definitions and notational conventions we use
may differ in some cases from what you have seen in the past), and so
you should think of the appendices as reference material. On the other
hand, you probably have not already seen most of the material in Part 1.
All the chapters in Part I and the appendices are written with a tutorial
flavor.



1 The Role of Algorithms in Computing

What are algorithms? Why is the study of algorithms worthwhile? What
is the role of algorithms relative to other technologies used in
computers? This chapter will answer these questions.

1.1  Algorithms

Informally, an algorithm is any well-defined computational procedure
that takes some value, or set of values, as input and produces some
value, or set of values, as output n a finite amount of time. An
algorithm is thus a sequence of computational steps that transform the
input into the output.

You can also view an algorithm as a tool for solving a well-specified
computational problem. The statement of the problem specifies in
general terms the desired input/output relationship for problem
instances, typically of arbitrarily large size. The algorithm describes a
specific computational procedure for achieving that input/output
relationship for all problem instances.

As an example, suppose that you need to sort a sequence of numbers
into monotonically increasing order. This problem arises frequently in
practice and provides fertile ground for introducing many standard
design techniques and analysis tools. Here is how we formally define the
sorting problem:

Input: A sequence of n numbers (ay, ap, ... , ay).
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Output: A permutation (reordering) {(@1.@%. - ... a,} of the input sequence

such that @) = a5 = -+ = a,,
Thus, given the input sequence (31, 41, 59, 26, 41, 58), a correct sorting
algorithm returns as output the sequence (26, 31, 41, 41, 58, 59). Such
an mput sequence is called an instance of the sorting problem. In

general, an instance of a problem1 consists of the input (satisfying
whatever constraints are imposed in the problem statement) needed to
compute a solution to the problem.

Because many programs use it as an intermediate step, sorting is a
fundamental operation in computer science. As a result, you have a
large number of good sorting algorithms at your disposal. Which
algorithm is best for a given application depends on—among other
factors—the number of items to be sorted, the extent to which the
items are already somewhat sorted, possible restrictions on the item
values, the architecture of the computer, and the kind of storage
devices to be used: main memory, disks, or even—archaically—tapes.

An algorithm for a computational problem is correct if, for every
problem instance provided as input, it halts—finishes its computing in
finite time—and outputs the correct solution to the problem instance. A
correct algorithm solves the given computational problem. An incorrect
algorithm might not halt at all on some input instances, or it might halt
with an incorrect answer. Contrary to what you might expect, incorrect
algorithms can sometimes be useful, if you can control their error rate.
We’ll see an example of an algorithm with a controllable error rate in
Chapter 31 when we study algorithms for finding large prime numbers.
Ordinarily, however, we’ll concern ourselves only with correct
algorithms.

An algorithm can be specified in English, as a computer program, or
even as a hardware design. The only requirement is that the
specification must provide a precise description of the computational
procedure to be followed.

What kinds of problems are solved by algorithms?



Sorting is by no means the only computational problem for which
algorithms have been developed. (You probably suspected as much
when you saw the size of this book.) Practical applications of
algorithms are ubiquitous and include the following examples:

e The Human Genome Project has made great progress toward the
goals of identifying all the roughly 30,000 genes in human DNA,
determining the sequences of the roughly 3 billion chemical base
pairs that make up human DNA, storing this information in
databases, and developing tools for data analysis. Each of these
steps requires sophisticated algorithms. Although the solutions to
the various problems involved are beyond the scope of this book,
many methods to solve these biological problems use ideas
presented here, enabling scientists to accomplish tasks while using
resources efficiently. Dynamic programming, as in Chapter 14, is
an mmportant technique for solving several of these biological
problems, particularly ones that involve determining similarity
between DNA sequences. The savings realized are in time, both
human and machine, and in money, as more information can be
extracted by laboratory techniques.

e The internet enables people all around the world to quickly access
and retrieve large amounts of information. With the aid of clever
algorithms, sites on the internet are able to manage and
manipulate this large volume of data. Examples of problems that
make essential use of algorithms include finding good routes on
which the data travels (techniques for solving such problems
appear in Chapter 22), and using a search engine to quickly find
pages on which particular information resides (related techniques
are in Chapters 11 and 32).

e Electronic commerce enables goods and services to be negotiated
and exchanged electronically, and it depends on the privacy of
personal information such as credit card numbers, passwords, and
bank statements. The core technologies used in electronic
commerce include public-key cryptography and digital signatures
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(covered in Chapter 31), which are based on numerical algorithms
and number theory.

e Manufacturing and other commercial enterprises often need to
allocate scarce resources in the most beneficial way. An oil
company might wish to know where to place its wells in order to
maximize its expected profit. A political candidate might want to
determine where to spend money buying campaign advertising in
order to maximize the chances of winning an election. An airline
might wish to assign crews to flights in the least expensive way
possible, making sure that each flight is covered and that
government regulations regarding crew scheduling are met. An
internet service provider might wish to determine where to place
additional resources in order to serve its customers more
effectively. All of these are examples of problems that can be
solved by modeling them as linear programs, which Chapter 29
explores.

Although some of the details of these examples are beyond the scope
of this book, we do give underlying techniques that apply to these
problems and problem areas. We also show how to solve many specific
problems, including the following:

* You have a road map on which the distance between each pair of
adjacent intersections is marked, and you wish to determine the
shortest route from one intersection to another. The number of
possible routes can be huge, even if you disallow routes that cross
over themselves. How can you choose which of all possible routes
is the shortest? You can start by modeling the road map (which is
itself a model of the actual roads) as a graph (which we will meet
in Part VI and Appendix B). In this graph, you wish to find the
shortest path from one vertex to another. Chapter 22 shows how
to solve this problem efficiently.

e Given a mechanical design in terms of a library of parts, where
each part may include instances of other parts, list the parts in
order so that each part appears before any part that uses it. If the
design comprises n parts, then there are n! possible orders, where



n! denotes the factorial function. Because the factorial function
grows faster than even an exponential function, you cannot
feasibly generate each possible order and then verify that, within
that order, each part appears before the parts using it (unless you
have only a few parts). This problem is an instance of topological
sorting, and Chapter 20 shows how to solve this problem
efficiently.

e A doctor needs to determine whether an image represents a
cancerous tumor or a benign one. The doctor has available images
of many other tumors, some of which are known to be cancerous
and some of which are known to be benign. A cancerous tumor is
likely to be more similar to other cancerous tumors than to
benign tumors, and a benign tumor is more likely to be similar to
other benign tumors. By using a clustering algorithm, as in
Chapter 33, the doctor can identify which outcome is more likely.

e You need to compress a large file containing text so that it
occupies less space. Many ways to do so are known, including
“LZW compression,” which looks for repeating character
sequences. Chapter 15 studies a different approach, “Huffman
coding,” which encodes characters by bit sequences of various
lengths, with characters occurring more frequently encoded by
shorter bit sequences.

These lists are far from exhaustive (as you again have probably
surmised from this book’s heft), but they exhibit two characteristics
common to many interesting algorithmic problems:

1. They have many candidate solutions, the overwhelming majority
of which do not solve the problem at hand. Finding one that
does, or one that is “best,” without explicitly examining each
possible solution, can present quite a challenge.

2. They have practical applications. Of the problems in the above
list, finding the shortest path provides the easiest examples. A
transportation firm, such as a trucking or railroad company, has
a financial interest in finding shortest paths through a road or
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rail network because taking shorter paths results in lower labor
and fuel costs. Or a routing node on the internet might need to
find the shortest path through the network in order to route a
message quickly. Or a person wishing to drive from New York to
Boston might want to find driving directions using a navigation

app.

Not every problem solved by algorithms has an easily identified set
of candidate solutions. For example, given a set of numerical values
representing samples of a signal taken at regular time intervals, the
discrete Fourier transform converts the time domain to the frequency
domain. That is, it approximates the signal as a weighted sum of
sinusoids, producing the strength of various frequencies which, when
summed, approximate the sampled signal. In addition to lying at the
heart of signal processing, discrete Fourier transforms have applications
in data compression and multiplying large polynomials and integers.
Chapter 30 gives an efficient algorithm, the fast Fourier transform
(commonly called the FFT), for this problem. The chapter also sketches
out the design of a hardware FFT circuit.

Data structures

This book also presents several data structures. A data structure i1s a
way to store and organize data in order to facilitate access and
modifications. Using the appropriate data structure or structures is an
important part of algorithm design. No single data structure works well
for all purposes, and so you should know the strengths and limitations
of several of them.

Technique

Although you can use this book as a “cookbook™ for algorithms, you
might someday encounter a problem for which you cannot readily find a
published algorithm (many of the exercises and problems in this book,
for example). This book will teach you techniques of algorithm design
and analysis so that you can develop algorithms on your own, show that
they give the correct answer, and analyze their efficiency. Different



chapters address different aspects of algorithmic problem solving. Some
chapters address specific problems, such as finding medians and order
statistics in Chapter 9, computing minimum spanning trees in Chapter
21, and determining a maximum flow in a network in Chapter 24. Other
chapters introduce techniques, such as divide-and-conquer in Chapters
2 and 4, dynamic programming in Chapter 14, and amortized analysis in
Chapter 16.

Hard problems

Most of this book is about efficient algorithms. Our usual measure of
efficiency is speed: how long does an algorithm take to produce its
result? There are some problems, however, for which we know of no
algorithm that runs in a reasonable amount of time. Chapter 34 studies
an interesting subset of these problems, which are known as NP-
complete.

Why are NP-complete problems interesting? First, although no
efficient algorithm for an NP-complete problem has ever been found,
nobody has ever proven that an efficient algorithm for one cannot exist.
In other words, no one knows whether efficient algorithms exist for NP-
complete problems. Second, the set of NP-complete problems has the
remarkable property that if an efficient algorithm exists for any one of
them, then efficient algorithms exist for all of them. This relationship
among the NP-complete problems makes the lack of efficient solutions
all the more tantalizing. Third, several NP-complete problems are
similar, but not identical, to problems for which we do know of efficient
algorithms. Computer scientists are intrigued by how a small change to
the problem statement can cause a big change to the efficiency of the
best known algorithm.

You should know about NP-complete problems because some of
them arise surprisingly often in real applications. If you are called upon
to produce an efficient algorithm for an NP-complete problem, you are
likely to spend a lot of time in a fruitless search. If, instead, you can
show that the problem is NP-complete, you can spend your time
developing an efficient approximation algorithm, that is, an algorithm
that gives a good, but not necessarily the best possible, solution.
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As a concrete example, consider a delivery company with a central
depot. Each day, it loads up delivery trucks at the depot and sends them
around to deliver goods to several addresses. At the end of the day,
ecach truck must end up back at the depot so that it is ready to be
loaded for the next day. To reduce costs, the company wants to select an
order of delivery stops that yields the lowest overall distance traveled by
each truck. This problem is the well-known “traveling-salesperson

problem,” and it is NP-(:omplete.2 It has no known efficient algorithm.
Under certain assumptions, however, we know of efficient algorithms
that compute overall distances close to the smallest possible. Chapter 35
discusses such “approximation algorithms.”

Alternative computing models

For many years, we could count on processor clock speeds increasing at
a steady rate. Physical limitations present a fundamental roadblock to
ever-increasing clock speeds, however: because power density increases
superlinearly with clock speed, chips run the risk of melting once their
clock speeds become high enough. In order to perform more
computations per second, therefore, chips are being designed to contain
not just one but several processing “cores.” We can liken these
multicore computers to several sequential computers on a single chip.
In other words, they are a type of “parallel computer.” In order to elicit
the best performance from multicore computers, we need to design
algorithms with parallelism in mind. Chapter 26 presents a model for
“task-parallel” algorithms, which take advantage of multiple processing
cores. This model has advantages from both theoretical and practical
standpoints, and many modern parallel-programming platforms
embrace something similar to this model of parallelism.

Most of the examples in this book assume that all of the input data
are available when an algorithm begins running. Much of the work in
algorithm design makes the same assumption. For many important real-
world examples, however, the input actually arrives over time, and the
algorithm must decide how to proceed without knowing what data will
arrive in the future. In a data center, jobs are constantly arriving and
departing, and a scheduling algorithm must decide when and where to



run a job, without knowing what jobs will be arriving in the future.
Traffic must be routed in the internet based on the current state,
without knowing about where traffic will arrive in the future. Hospital
emergency rooms make triage decisions about which patients to treat
first without knowing when other patients will be arriving in the future
and what treatments they will need. Algorithms that receive their input
over time, rather than having all the input present at the start, are online
algorithms, which Chapter 27 examines.

Exercises

1.1-1
Describe your own real-world example that requires sorting. Describe
one that requires finding the shortest distance between two points.

1.1-2
Other than speed, what other measures of efficiency might you need to
consider in a real-world setting?

1.1-3
Select a data structure that you have seen, and discuss its strengths and
limitations.

1.1-4
How are the shortest-path and traveling-salesperson problems given
above similar? How are they different?

1.1-5

Suggest a real-world problem in which only the best solution will do.
Then come up with one in which “approximately” the best solution is
good enough.

1.1-6

Describe a real-world problem in which sometimes the entire input is
available before you need to solve the problem, but other times the
input is not entirely available in advance and arrives over time.
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1.2 Algorithms as a technology

If computers were infinitely fast and computer memory were free,
would you have any reason to study algorithms? The answer is yes, if for
no other reason than that you would still like to be certain that your
solution method terminates and does so with the correct answer.

If computers were infinitely fast, any correct method for solving a
problem would do. You would probably want your implementation to be
within the bounds of good software engineering practice (for example,
your implementation should be well designed and documented), but you
would most often use whichever method was the easiest to implement.

Of course, computers may be fast, but they are not infinitely fast.
Computing time is therefore a bounded resource, which makes it
precious. Although the saying goes, “Time 1s money,” time is even more
valuable than money: you can get back money after you spend it, but
once time 1S spent, you can never get it back. Memory may be
inexpensive, but it is neither infinite nor free. You should choose
algorithms that use the resources of time and space efficiently.

Efficiency

Different algorithms devised to solve the same problem often differ
dramatically in their efficiency. These differences can be much more
significant than differences due to hardware and software.

As an example, Chapter 2 introduces two algorithms for sorting. The

2

first, known as insertion sort, takes time roughly equal to c¢1n“ to sort n

items, where ¢ i1s a constant that does not depend on n. That is, it takes
time roughly proportional to n2. The second, merge sort, takes time
roughly equal to cyn Ig n, where Ig n stands for logy n and ¢ is another

constant that also does not depend on n. Insertion sort typically has a
smaller constant factor than merge sort, so that c¢1 < ¢p. We'll see that

the constant factors can have far less of an impact on the running time
than the dependence on the input size n. Let’s write insertion sort’s
running time as ¢z - n and merge sort’s running time as cpn - 1g n. Then

we see that where insertion sort has a factor of » in its running time,



merge sort has a factor of lg n, which is much smaller. For example,
when 7 is 1000, 1g n 1s approximately 10, and when 7 1s 1,000,000, Ig 7 1s
approximately only 20. Although insertion sort usually runs faster than
merge sort for small input sizes, once the input size n becomes large
enough, merge sort’s advantage of Ig n versus » more than compensates
for the difference in constant factors. No matter how much smaller cq is

than c), there is always a crossover point beyond which merge sort is

faster.

For a concrete example, let us pit a faster computer (computer A)
running insertion sort against a slower computer (computer B) running
merge sort. They each must sort an array of 10 million numbers.
(Although 10 million numbers might seem like a lot, if the numbers are
eight-byte integers, then the input occupies about 80 megabytes, which
fits in the memory of even an inexpensive laptop computer many times
over.) Suppose that computer A executes 10 billion instructions per
second (faster than any single sequential computer at the time of this
writing) and computer B executes only 10 million instructions per
second (much slower than most contemporary computers), so that
computer A is 1000 times faster than computer B in raw computing
power. To make the difference even more dramatic, suppose that the
world’s craftiest programmer codes insertion sort in machine language

for computer A, and the resulting code requires 212 instructions to sort
n numbers. Suppose further that just an average programmer
implements merge sort, using a high-level language with an inefficient
compiler, with the resulting code taking 50 » lg n instructions. To sort 10
million numbers, computer A takes

2 . (107)? instructions
10 instruections/second

= 20,000 seconds (more than 5.5 hours) ,

while computer B takes

50 - 107 1e 107 instructions :
= == 1163 seconds (under 20 minutes) .

107 instructions/second

By using an algorithm whose running time grows more slowly, even with
a poor compiler, computer B runs more than 17 times faster than
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computer A! The advantage of merge sort is even more pronounced
when sorting 100 million numbers: where insertion sort takes more than
23 days, merge sort takes under four hours. Although 100 million might
seem like a large number, there are more than 100 million web searches
every half hour, more than 100 million emails sent every minute, and
some of the smallest galaxies (known as ultra-compact dwarf galaxies)
contain about 100 million stars. In general, as the problem size
increases, so does the relative advantage of merge sort.

Algorithms and other technologies

The example above shows that you should consider algorithms, like
computer hardware, as a technology. Total system performance depends
on choosing efficient algorithms as much as on choosing fast hardware.
Just as rapid advances are being made in other computer technologies,
they are being made in algorithms as well.

You might wonder whether algorithms are truly that important on
contemporary computers in light of other advanced technologies, such
as

e advanced computer architectures and fabrication technologies,

e easy-to-use, intuitive, graphical user interfaces (GUIs),

e object-oriented systems,

e integrated web technologies,

» fast networking, both wired and wireless,

e machine learning,

e and mobile devices.
The answer is yes. Although some applications do not explicitly require
algorithmic content at the application level (such as some simple, web-
based applications), many do. For example, consider a web-based
service that determines how to travel from one location to another. Its
implementation would rely on fast hardware, a graphical user interface,

wide-area networking, and also possibly on object orientation. It would
also require algorithms for operations such as finding routes (probably



using a shortest-path algorithm), rendering maps, and interpolating
addresses.

Moreover, even an application that does not require algorithmic
content at the application level relies heavily upon algorithms. Does the
application rely on fast hardware? The hardware design used
algorithms. Does the application rely on graphical user interfaces? The
design of any GUI relies on algorithms. Does the application rely on
networking? Routing in networks relies heavily on algorithms. Was the
application written in a language other than machine code? Then it was
processed by a compiler, interpreter, or assembler, all of which make
extensive use of algorithms. Algorithms are at the core of most
technologies used in contemporary computers.

Machine learning can be thought of as a method for performing
algorithmic tasks without explicitly designing an algorithm, but instead
inferring patterns from data and thereby automatically learning a
solution. At first glance, machine learning, which automates the process
of algorithmic design, may seem to make learning about algorithms
obsolete. The opposite is true, however. Machine learning is itself a
collection of algorithms, just under a different name. Furthermore, it
currently seems that the successes of machine learning are mainly for
problems for which we, as humans, do not really understand what the
right algorithm is. Prominent examples include computer vision and
automatic language translation. For algorithmic problems that humans
understand well, such as most of the problems in this book, efficient
algorithms designed to solve a specific problem are typically more
successful than machine-learning approaches.

Data science is an interdisciplinary field with the goal of extracting
knowledge and insights from structured and unstructured data. Data
science uses methods from statistics, computer science, and
optimization. The design and analysis of algorithms is fundamental to
the field. The core techniques of data science, which overlap
significantly with those in machine learning, include many of the
algorithms in this book.

Furthermore, with the ever-increasing capacities of computers, we
use them to solve larger problems than ever before. As we saw in the
above comparison between insertion sort and merge sort, it is at larger
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problem sizes that the differences in efficiency between algorithms
become particularly prominent.

Having a solid base of algorithmic knowledge and technique is one
characteristic that defines the truly skilled programmer. With modern
computing technology, you can accomplish some tasks without knowing
much about algorithms, but with a good background in algorithms, you
can do much, much more.

Exercises

1.2-1

Give an example of an application that requires algorithmic content at
the application level, and discuss the function of the algorithms
involved.

1.2-2
Suppose that for inputs of size n on a particular computer, insertion

sort runs in 872 steps and merge sort runs in 64 n lg n steps. For which
values of n does insertion sort beat merge sort?

1.2-3
What is the smallest value of »n such that an algorithm whose running

time is 10072 runs faster than an algorithm whose running time is 2% on
the same machine?

Problems

1-1 Comparison of running times

For each function f(n) and time ¢ in the following table, determine the
largest size n of a problem that can be solved in time ¢, assuming that
the algorithm to solve the problem takes f (7) microseconds.



1 1 1 1 1 1 1
second | minute | hour day month | vear | century
lgn
n
n
nlen
n?
n’
o
n!
Chapter notes

There are many excellent texts on the general topic of algorithms,
including those by Aho, Hopcroft, and Ullman [5, 6], Dasgupta,
Papadimitriou, and Vazirani [107], Edmonds [133], Erickson [135],
Goodrich and Tamassia [195, 196], Kleinberg and Tardos [257], Knuth
[259, 260, 261, 262, 263], Levitin [298], Louridas [305], Mehlhorn and
Sanders [325], Mitzenmacher and Upfal [331], Neapolitan [342],
Roughgarden [385, 386, 387, 388], Sanders, Mehlhorn, Dietzfelbinger,
and Dementiev [393], Sedgewick and Wayne [402], Skiena [414], Soltys-
Kulinicz [419], Wilf [455], and Williamson and Shmoys [459]. Some of
the more practical aspects of algorithm design are discussed by Bentley
[49, 50, 51], Bhargava [54], Kochenderfer and Wheeler [268], and
McGeoch [321]. Surveys of the field of algorithms can also be found in
books by Atallah and Blanton [27, 28] and Mehta and Sahhi [326]. For
less technical material, see the books by Christian and Griffiths [92],
Cormen [104], Erwig [136], MacCormick [307], and Vocking et al. [448].
Overviews of the algorithms used in computational biology can be
found in books by Jones and Pevzner [240], Elloumi and Zomaya [134],
and Marchisio [315].
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1 Sometimes, when the problem context is known, problem instances are themselves simply

called “problems.”

2 To be precise, only decision problems—those with a “yes/no” answer—can be NP-complete.
The decision version of the traveling salesperson problem asks whether there exists an order of

stops whose distance totals at most a given amount.



2 Getting Started

This chapter will familiarize you with the framework we’ll use
throughout the book to think about the design and analysis of
algorithms. It is self-contained, but it does include several references to
material that will be introduced in Chapters 3 and 4. (It also contains
several summations, which Appendix A shows how to solve.)

We’ll begin by examining the insertion sort algorithm to solve the
sorting problem introduced in Chapter 1. We’ll specify algorithms using
a pseudocode that should be understandable to you if you have done
computer programming. We’ll see why insertion sort correctly sorts and
analyze its running time. The analysis introduces a notation that
describes how running time increases with the number of items to be
sorted. Following a discussion of insertion sort, we’ll use a method
called divide-and-conquer to develop a sorting algorithm called merge
sort. We’ll end with an analysis of merge sort’s running time.

2.1 Insertion sort

Our first algorithm, insertion sort, solves the sorting problem introduced
in Chapter 1:

Input: A sequence of n numbers (a{, ap, ..., ay).

Output: A permutation (reordering) (@i @5.---. @} of the input sequence
such that @} = a5 =+ =a,
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The numbers to be sorted are also known as the keys. Although the
problem is conceptually about sorting a sequence, the input comes in
the form of an array with n elements. When we want to sort numbers,
it’s often because they are the keys associated with other data, which we
call satellite data. Together, a key and satellite data form a record. For
example, consider a spreadsheet containing student records with many
associated pieces of data such as age, grade-point average, and number
of courses taken. Any one of these quantities could be a key, but when
the spreadsheet sorts, it moves the associated record (the satellite data)
with the key. When describing a sorting algorithm, we focus on the keys,
but it is important to remember that there usually is associated satellite
data.

In this book, we’ll typically describe algorithms as procedures
written in a pseudocode that is similar in many respects to C, C++, Java,

Python,1 or JavaScript. (Apologies if we’ve omitted your favorite
programming language. We can’t list them all.) If you have been
introduced to any of these languages, you should have little trouble
understanding algorithms “coded” in pseudocode. What separates
pseudocode from real code is that in pseudocode, we employ whatever
expressive method is most clear and concise to specify a given
algorithm. Sometimes the clearest method is English, so do not be
surprised if you come across an English phrase or sentence embedded
within a section that looks more like real code. Another difference
between pseudocode and real code is that pseudocode often ignores
aspects of software engineering—such as data abstraction, modularity,
and error handling—in order to convey the essence of the algorithm
more concisely.

We start with insertion sort, which i1s an efficient algorithm for
sorting a small number of elements. Insertion sort works the way you
might sort a hand of playing cards. Start with an empty left hand and
the cards in a pile on the table. Pick up the first card in the pile and hold
it with your left hand. Then, with your right hand, remove one card at a
time from the pile, and insert it into the correct position in your left
hand. As Figure 2.1 illustrates, you find the correct position for a card
by comparing it with each of the cards already in your left hand,



starting at the right and moving left. As soon as you see a card in your
left hand whose value is less than or equal to the card you’re holding in
your right hand, insert the card that youre holding in your right hand
just to the right of this card in your left hand. If all the cards in your
left hand have values greater than the card in your right hand, then
place this card as the leftmost card in your left hand. At all times, the
cards held in your left hand are sorted, and these cards were originally
the top cards of the pile on the table.

The pseudocode for insertion sort is given as the procedure
INSERTION-SORT on the facing page. It takes two parameters: an
array A containing the values to be sorted and the number n of values
of sort. The values occupy positions A[1] through A[n] of the array,
which we denote by A[1 : n]. When the INSERTION-SORT procedure is
finished, array A[1 : n] contains the original values, but in sorted order.

Figure 2.1 Sorting a hand of cards using insertion sort.

INSERTION-SORT (A4, n)
1 fori=2ton

2 key = A

3 [l Insert A[i] into the sorted subarray A[1 :i— 1].
4 J=i-1

5
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while j > 0 and A[j] > key
6 Alj + 1] = A[]]
7 j=j-1
8 Alj + 1] = key

Loop invariants and the correctness of insertion sort

Figure 2.2 shows how this algorithm works for an array A that starts
out with the sequence (5, 2, 4, 6, 1, 3). The index i indicates the “current
card” being inserted into the hand. At the beginning of each iteration of
the for loop, which is indexed by i, the subarray (a contiguous portion
of the array) consisting of elements A[l : i — 1] (that is, A[1] through A[i
— 1]) constitutes the currently sorted hand, and the remaining subarray
Ali + 1 : n] (elements A[i + 1] through A[n]) corresponds to the pile of
cards still on the table. In fact, elements A[l1 : i — 1] are the elements
originally in positions 1 through i — 1, but now in sorted order. We state
these properties of A[1 : i— 1] formally as a loop invariant:

I- 2 3 4 5 & E 2 5 i 2856 1 2 3 4 5 &6
Ea}|5|2|4|6|1|3| Eb)|2|j|4|6|1|3 {r:}|2|-1|5|6|l|3|

A ATA A

L R I Y . R [ b e T O I o | G R A T
@ [2[4]5]6[1]3] @ [1]2]4]5]6]3] @ [1]|2]3]4]5]s]

Y ] Y

Figure 2.2 The operation of INSERTION-SORT(A, n), where A initially contains the
sequence (5, 2, 4, 6, 1, 3) and n = 6. Array indices appear above the rectangles, and values
stored in the array positions appear within the rectangles. (a)—(e) The iterations of the for loop
of lines 1-8. In each iteration, the blue rectangle holds the key taken from A[i], which is
compared with the values in tan rectangles to its left in the test of line 5. Orange arrows show
array values moved one position to the right in line 6, and blue arrows indicate where the key
moves to in line 8. (f) The final sorted array.

At the start of each iteration of the for loop of lines 1-8, the
subarray A[l : i — 1] consists of the elements originally in A[1 : i
— 1], but in sorted order.



Loop invariants help us understand why an algorithm is correct.
When you’re using a loop invariant, you need to show three things:

Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true
before the next iteration.

Termination: The loop terminates, and when it terminates, the invariant
—usually along with the reason that the loop terminated—gives us a
useful property that helps show that the algorithm is correct.

When the first two properties hold, the loop invariant is true prior to
every iteration of the loop. (Of course, you are free to use established
facts other than the loop invariant itself to prove that the loop invariant
remains true before each iteration.) A loop-invariant proof is a form of
mathematical induction, where to prove that a property holds, you
prove a base case and an inductive step. Here, showing that the
invariant holds before the first iteration corresponds to the base case,
and showing that the invariant holds from iteration to iteration
corresponds to the inductive step.

The third property is perhaps the most important one, since you are
using the loop invariant to show correctness. Typically, you use the loop
invariant along with the condition that caused the loop to terminate.
Mathematical induction typically applies the inductive step infinitely,
but in a loop invariant the “induction” stops when the loop terminates.

Let’s see how these properties hold for insertion sort.

Initialization: We start by showing that the loop invariant holds before

the first loop iteration, when i = 2.2 The subarray A[l : i — 1] consists
of just the single element A[1], which is in fact the original element in
A[1]. Moreover, this subarray is sorted (after all, how could a
subarray with just one value not be sorted?), which shows that the
loop invariant holds prior to the first iteration of the loop.

Maintenance: Next, we tackle the second property: showing that each
iteration maintains the loop invariant. Informally, the body of the for
loop works by moving the values in A[i — 1], A[i — 2], A[i — 3], and so on
by one position to the right until it finds the proper position for A[i]
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(lines 4-7), at which point it inserts the value of A[i] (line 8). The
subarray A[1 : i] then consists of the elements originally in A[1 : 7], but
in sorted order. Incrementing i (increasing its value by 1) for the next
iteration of the for loop then preserves the loop invariant.

A more formal treatment of the second property would require us to
state and show a loop invariant for the while loop of lines 5-7. Let’s
not get bogged down in such formalism just yet. Instead, we’ll rely on
our informal analysis to show that the second property holds for the
outer loop.

Termination: Finally, we examine loop termination. The loop variable i
starts at 2 and increases by 1 in each iteration. Once i’s value exceeds
n in line 1, the loop terminates. That is, the loop terminates once i
equals n + 1. Substituting » + 1 for i in the wording of the loop
invariant yields that the subarray A[l : n] consists of the elements
originally in A[l : n], but in sorted order. Hence, the algorithm is
correct.

This method of loop imvariants is used to show correctness in
various places throughout this book.

Pseudocode conventions

We use the following conventions in our pseudocode.

e Indentation indicates block structure. For example, the body of
the for loop that begins on line 1 consists of lines 2-8, and the
body of the while loop that begins on line 5 contains lines 67 but

not line 8. Our indentation style applies to if-else statements> as
well. Using indentation instead of textual indicators of block

structure, such as begin and end statements or curly braces,

reduces clutter while preserving, or even enhancing, clarity.4

e The looping constructs while, for, and repeat-until and the if-else
conditional construct have interpretations similar to those in C,

C++, Java, Python, and JavaScript.5 In this book, the loop
counter retains its value after the loop is exited, unlike some



situations that arise in C++ and Java. Thus, immediately after a
for loop, the loop counter’s value is the value that first exceeded

the for loop bound.® We used this property in our correctness
argument for insertion sort. The for loop header in line 1 is for i =
2 to n, and so when this loop terminates, i equals n + 1. We use the
keyword to when a for loop increments its loop counter in each
iteration, and we use the keyword downto when a for loop
decrements its loop counter (reduces its value by 1 in each
iteration). When the loop counter changes by an amount greater
than 1, the amount of change follows the optional keyword by.

e The symbol “/I” indicates that the remainder of the line is a
comment.

e Variables (such as i, j, and key) are local to the given procedure.
We won'’t use global variables without explicit indication.

e We access array elements by specifying the array name followed
by the index in square brackets. For example, A[i] indicates the ith
element of the array A.

Although many programming languages enforce 0-origin indexing
for arrays (0 is the smallest valid index), we choose whichever
indexing scheme is clearest for human readers to understand.
Because people usually start counting at 1, not 0, most—but not
all—of the arrays in this book use 1-origin indexing. To be clear
about whether a particular algorithm assumes 0-origin or 1-origin
indexing, we’ll specify the bounds of the arrays explicitly. If you
are implementing an algorithm that we specify using 1-origin
indexing, but youre writing in a programming language that
enforces 0-origin indexing (such as C, C++, Java, Python, or
JavaScript), then give yourself credit for being able to adjust. You
can either always subtract 1 from each index or allocate each
array with one extra position and just ignore position 0.

The notation “:” denotes a subarray. Thus, A[i : j] indicates the
subarray of A consisting of the elements A[i], A[i + 1], ... , A[/].7
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We also use this notation to indicate the bounds of an array, as we
did earlier when discussing the array A[1 : n].

We typically organize compound data into objects, which are
composed of attributes. We access a particular attribute using the
syntax found in many object-oriented programming languages:
the object name, followed by a dot, followed by the attribute
name. For example, if an object x has attribute f, we denote this
attribute by x.f.

We treat a variable representing an array or object as a pointer
(known as a reference in some programming languages) to the
data representing the array or object. For all attributes f of an
object x, setting y = x causes ).f to equal x.f. Moreover, if we now
set x.f = 3, then afterward not only does x.f equal 3, but y.f equals
3 as well. In other words, x and y point to the same object after
the assignment y = x. This way of treating arrays and objects is
consistent with most contemporary programming languages.

Our attribute notation can “cascade.” For example, suppose that
the attribute f'is itself a pointer to some type of object that has an
attribute g. Then the notation x.f g is implicitly parenthesized as
(x.f).g. In other words, if we had assigned y = x.f, then x.f g is the
same as ).g.

Sometimes a pointer refers to no object at all. In this case, we give
it the special value NIL.

We pass parameters to a procedure by value: the called procedure
receives its own copy of the parameters, and if it assigns a value
to a parameter, the change is not seen by the calling procedure.
When objects are passed, the pointer to the data representing the
object 1s copied, but the object’s attributes are not. For example, if
x 1s a parameter of a called procedure, the assignment x = y
within the called procedure is not visible to the calling procedure.
The assignment x.f = 3, however, is visible if the calling procedure
has a pointer to the same object as x. Similarly, arrays are passed
by pointer, so that a pointer to the array is passed, rather than the
entire array, and changes to individual array elements are visible



to the calling procedure. Again, most contemporary programming
languages work this way.

e A return statement immediately transfers control back to the
point of call in the calling procedure. Most return statements also
take a value to pass back to the caller. Our pseudocode differs
from many programming languages in that we allow multiple

values to be returned in a single return statement without having

to create objects to package them together.8

e The boolean operators “and” and “or” are short circuiting. That
is, evaluate the expression “x and y” by first evaluating x. If x
evaluates to FALSE, then the entire expression cannot evaluate to
TRUE, and therefore y is not evaluated. If, on the other hand, x
evaluates to TRUE, y must be evaluated to determine the value of
the entire expression. Similarly, in the expression “x or y” the
expression y 1s evaluated only if x evaluates to FALSE. Short-
circuiting operators allow us to write boolean expressions such as
“x # NIL and x.f = »” without worrying about what happens
upon evaluating x.f when x is NIL.

e The keyword error indicates that an error occurred because
conditions were wrong for the procedure to have been called, and
the procedure immediately terminates. The calling procedure is
responsible for handling the error, and so we do not specify what
action to take.

Exercises

2.1-1

Using Figure 2.2 as a model, illustrate the operation of INSERTTION-
SORT on an array initially containing the sequence (31, 41, 59, 26, 41,
58).

2.1-2

Consider the procedure SUM-ARRAY on the facing page. It computes
the sum of the » numbers in array A[1 : n]. State a loop invariant for this
procedure, and use its initialization, maintenance, and termination
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properties to show that the SUM-ARRAY procedure returns the sum
of the numbers in A[1 : n].

SUM-ARRAY (A4, n)
1 sum=20

2 fori=1ton

3 sum = sum + Ali]
4 return sum

2.1-3
Rewrite the INSERTION-SORT procedure to sort into monotonically
decreasing instead of monotonically increasing order.

2.1-4
Consider the searching problem:

Input: A sequence of » numbers (a1, ay, ... , a,) stored in array A[l : n]
and a value x.

Output: An index i such that x equals A[i] or the special value NIL if x
does not appear in A.

Write pseudocode for linear search, which scans through the array
from beginning to end, looking for x. Using a loop invariant, prove that
your algorithm is correct. Make sure that your loop invariant fulfills the
three necessary properties.

2.1-5

Consider the problem of adding two n-bit binary integers a and b,
stored in two n-element arrays A[0 : n — 1] and B[O : n — 1], where each
element is either 0 or 1,9 = =0 Al]-2" and » = 2!y Bli]- 2" The sum
¢ = a + b of the two integers should be stored in binary form in an (n +
1)-element array C [0 : n], where ¢ = 2 Cli]-2". Write a procedure
ADD-BINARY-INTEGERS that takes as input arrays 4 and B, along
with the length n, and returns array C holding the sum.




2.2 Analyzing algorithms

Analyzing an algorithm has come to mean predicting the resources that
the algorithm requires. You might consider resources such as memory,
communication bandwidth, or energy consumption. Most often,
however, you’ll want to measure computational time. If you analyze
several candidate algorithms for a problem, you can identify the most
efficient one. There might be more than just one viable candidate, but
you can often rule out several inferior algorithms in the process.

Before you can analyze an algorithm, you need a model of the
technology that it runs on, including the resources of that technology
and a way to express their costs. Most of this book assumes a generic
one-processor, random-access machine (RAM) model of computation
as the implementation technology, with the understanding that
algorithms are implemented as computer programs. In the RAM model,
instructions execute one after another, with no concurrent operations.
The RAM model assumes that each instruction takes the same amount
of time as any other instruction and that each data access—using the
value of a variable or storing into a variable—takes the same amount of
time as any other data access. In other words, in the RAM model each
instruction or data access takes a constant amount of time—even

indexing into an array.9

Strictly speaking, we should precisely define the instructions of the
RAM model and their costs. To do so, however, would be tedious and
yield little insight into algorithm design and analysis. Yet we must be
careful not to abuse the RAM model. For example, what if a RAM had
an instruction that sorts? Then you could sort in just one step. Such a
RAM would be unrealistic, since such instructions do not appear in real
computers. Our guide, therefore, is how real computers are designed.
The RAM model contains instructions commonly found in real
computers: arithmetic (such as add, subtract, multiply, divide,
remainder, floor, ceiling), data movement (load, store, copy), and
control (conditional and unconditional branch, subroutine call and
return).
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The data types in the RAM model are integer, floating point (for
storing real-number approximations), and character. Real computers do
not usually have a separate data type for the boolean values TRUE and
FALSE. Instead, they often test whether an integer value is 0 (FALSE)
or nonzero (TRUE), as in C. Although we typically do not concern
ourselves with precision for floating-point values in this book (many
numbers cannot be represented exactly in floating point), precision is
crucial for most applications. We also assume that each word of data
has a limit on the number of bits. For example, when working with
inputs of size n, we typically assume that integers are represented by ¢
logy n bits for some constant ¢ > 1. We require ¢ > 1 so that each word

can hold the value of n, enabling us to index the individual input
elements, and we restrict ¢ to be a constant so that the word size does
not grow arbitrarily. (If the word size could grow arbitrarily, we could
store huge amounts of data in one word and operate on it all in
constant time—an unrealistic scenario.)

Real computers contain instructions not listed above, and such
instructions represent a gray area in the RAM model. For example, is
exponentiation a constant-time instruction? In the general case, no: to

compute x’* when x and n are general integers typically takes time
logarithmic in 7 (see equation (31.34) on page 934), and you must worry
about whether the result fits into a computer word. If n is an exact
power of 2, however, exponentiation can usually be viewed as a
constant-time operation. Many computers have a “shift left”
instruction, which in constant time shifts the bits of an integer by =
positions to the left. In most computers, shifting the bits of an integer
by 1 position to the left is equivalent to multiplying by 2, so that
shifting the bits by n positions to the left is equivalent to multiplying by

2! Therefore, such computers can compute 2”7 in 1 constant-time
instruction by shifting the integer 1 by n positions to the left, as long as
n 1s no more than the number of bits in a computer word. We’ll try to

avoid such gray areas in the RAM model and treat computing 2’* and

multiplying by 2 as constant-time operations when the result is small
enough to fit in a computer word.



The RAM model does not account for the memory hierarchy that is
common in contemporary computers. It models neither caches nor
virtual memory. Several other computational models attempt to
account for memory-hierarchy effects, which are sometimes significant
in real programs on real machines. Section 11.5 and a handful of
problems in this book examine memory-hierarchy effects, but for the
most part, the analyses in this book do not consider them. Models that
include the memory hierarchy are quite a bit more complex than the
RAM model, and so they can be difficult to work with. Moreover,
RAM-model analyses are usually excellent predictors of performance
on actual machines.

Although it is often straightforward to analyze an algorithm in the
RAM model, sometimes it can be quite a challenge. You might need to
employ mathematical tools such as combinatorics, probability theory,
algebraic dexterity, and the ability to identify the most significant terms
in a formula. Because an algorithm might behave differently for each
possible input, we need a means for summarizing that behavior in
simple, easily understood formulas.

Analysis of insertion sort

How long does the INSERTION-SORT procedure take? One way to tell
would be for you to run it on your computer and time how long it takes
to run. Of course, you'd first have to implement it in a real
programming language, since you cannot run our pseudocode directly.
What would such a timing test tell you? You would find out how long
insertion sort takes to run on your particular computer, on that
particular input, under the particular implementation that you created,
with the particular compiler or interpreter that you ran, with the
particular libraries that you linked in, and with the particular
background tasks that were running on your computer concurrently
with your timing test (such as checking for incoming information over a
network). If you run insertion sort again on your computer with the
same input, you might even get a different timing result. From running
just one implementation of insertion sort on just one computer and on
just one input, what would you be able to determine about insertion
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sort’s running time if you were to give it a different input, if you were to
run it on a different computer, or if you were to implement it in a
different programming language? Not much. We need a way to predict,
given a new input, how long insertion sort will take.

Instead of timing a run, or even several runs, of insertion sort, we
can determine how long it takes by analyzing the algorithm itself. We’ll
examine how many times it executes each line of pseudocode and how
long each line of pseudocode takes to run. We'll first come up with a
precise but complicated formula for the running time. Then, we’ll distill
the important part of the formula using a convenient notation that can
help us compare the running times of different algorithms for the same
problem.

How do we analyze insertion sort? First, let’s acknowledge that the
running time depends on the input. You shouldn’t be terribly surprised
that sorting a thousand numbers takes longer than sorting three
numbers. Moreover, insertion sort can take different amounts of time to
sort two input arrays of the same size, depending on how nearly sorted
they already are. Even though the running time can depend on many
features of the input, we’ll focus on the one that has been shown to have
the greatest effect, namely the size of the mput, and describe the
running time of a program as a function of the size of its input. To do
so, we need to define the terms “running time” and “input size” more
carefully. We also need to be clear about whether we are discussing the
running time for an input that elicits the worst-case behavior, the best-
case behavior, or some other case.

The best notion for input size depends on the problem being studied.
For many problems, such as sorting or computing discrete Fourier
transforms, the most natural measure is the number of items in the input
—for example, the number n of items being sorted. For many other
problems, such as multiplying two integers, the best measure of input
size 1s the total number of bits needed to represent the input in ordinary
binary notation. Sometimes it is more appropriate to describe the size
of the input with more than just one number. For example, if the input
to an algorithm is a graph, we usually characterize the input size by
both the number of vertices and the number of edges in the graph. We’ll



indicate which input size measure is being used with each problem we
study.

The running time of an algorithm on a particular input is the number
of instructions and data accesses executed. How we account for these
costs should be independent of any particular computer, but within the
framework of the RAM model. For the moment, let us adopt the
following view. A constant amount of time is required to execute each
line of our pseudocode. One line might take more or less time than
another line, but we’ll assume that each execution of the kth line takes
cj. time, where cj 1s a constant. This viewpoint is in keeping with the

RAM model, and it also reflects how the pseudocode would be

implemented on most actual computers.lo

Let’s analyze the INSERTION-SORT procedure. As promised, we’ll
start by devising a precise formula that uses the mmput size and all the
statement costs cj. This formula turns out to be messy, however. We’ll

then switch to a simpler notation that is more concise and easier to use.
This simpler notation makes clear how to compare the running times of
algorithms, especially as the size of the input increases.

To analyze the INSERTION-SORT procedure, let’s view it on the
following page with the time cost of each statement and the number of
times each statement is executed. For each i = 2, 3, ... , n, let ¢; denote

the number of times the while loop test in line 5 is executed for that
value of i. When a for or while loop exits in the usual way—Dbecause the
test in the loop header comes up FALSE—the test is executed one time
more than the loop body. Because comments are not executable
statements, assume that they take no time.

The running time of the algorithm is the sum of running times for
each statement executed. A statement that takes cj steps to execute and

executes m times contributes cim to the total running time.!1 We

usually denote the running time of an algorithm on an input of size n by
T (n). To compute 7' (n), the running time of INSERTION-SORT on an
input of n values, we sum the products of the cost and times columns,
obtaining
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INSERTION-SORT (4, n) costtimes

1 fori=2ton cl1 n

2 key = A[i] ¢y n—1

3 Il Insert A[f] into the sorted subarray A[1 :i—1]. 0 n-1

4 j=i-1 cq n—1

5 while j > 0 and A[j] > key c5 Yiesh

6 A[j + 1] = A[]] c6 Liealti—1)
7 j=j—1 ¢7 Liati—1)
8  A[j+ 1] =key cg n—1

n "
Tn) = cin4+eca:(n—1)+eca(n—1) + cs Zr,- + s Z{r; - 1)

i=2 =2

+o7) (i—1)+cs(n—1).
i=2
Even for mputs of a given size, an algorithm’s running time may
depend on which input of that size 1s given. For example, in
INSERTION-SORT, the best case occurs when the array is already
sorted. In this case, each time that line 5 executes, the value of key—the
value originally in A[/}—is already greater than or equal to all values in
A[l :i— 1], so that the while loop of lines 5-7 always exits upon the first
test in line 5. Therefore, we have that #; =1 for i = 2, 3, ... , n, and the

best-case running time is given by
Tn) =cin+c;in—1)4cgn—1)4+cs(n—1)+cg(n—1)

= (e, + a4+ ¢4 +cs+cg)n—(ca + ¢y + 5+ cg) . (2.1)
We can express this running time as an + b for constants a and b that
depend on the statement costs cj (wWhere a = ¢y + ¢p + ¢4 + ¢5 + cg and
b =cp+ cq + c5+ cg). The running time is thus a linear function of n.

The worst case arises when the array is in reverse sorted order—that
1s, it starts out in decreasing order. The procedure must compare each
element A[i] with each element in the entire sorted subarray A[1 : i — 1],
and so ¢; =ifor i= 2,3, ..., n (The procedure finds that A[j] > key



every time in line 5, and the while loop exits only when j reaches 0.)
Noting that

5= ()

1
- ”{”; L 1 (by equation (A.2) on page 1141)

i n—1
Yi-n=>i
_ s

nin — 1 ; ;
= 5 ) (again, by equation (A.2)) .

we find that in the worst case, the running time of INSERTION-SORT
1s

1
T(n) = cyn+ca(n—1) + cq(n —]}+{~5(”{”2+ ) I)

B (n{f:—l} iy nin—1) + ool R
[E, T {—.. (T fa i }

P8 PR PR IE e e e 65 TBRL B
= (F+3+F)r+(atata+r=—=—Z+a)n
—(ca+cy+cs+cg). (2.2

We can express this worst-case running time as an? + bn + ¢ for
constants a, b, and ¢ that again depend on the statement costs cj (now,

a=cs5/2+cgl2+c7/2,b=c1+cr+cqtce5/2—cgl2—c7/2+ cg, and ¢
=—(cp + ¢4+ ¢5 + ¢g)). The running time is thus a quadratic function of

n.

Typically, as in insertion sort, the running time of an algorithm is
fixed for a given input, although we’ll also see some interesting
“randomized” algorithms whose behavior can vary even for a fixed
input.

Worst-case and average-case analysis
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Our analysis of insertion sort looked at both the best case, in which the
input array was already sorted, and the worst case, in which the input
array was reverse sorted. For the remainder of this book, though, we’ll
usually (but not always) concentrate on finding only the worst-case
running time, that is, the longest running time for any input of size n.
Why? Here are three reasons:

e The worst-case running time of an algorithm gives an upper
bound on the running time for any input. If you know it, then you
have a guarantee that the algorithm never takes any longer. You
need not make some educated guess about the running time and
hope that it never gets much worse. This feature is especially
important for real-time computing, in which operations must
complete by a deadline.

e For some algorithms, the worst case occurs fairly often. For
example, in searching a database for a particular piece of
information, the searching algorithm’s worst case often occurs
when the imformation is not present in the database. In some
applications, searches for absent information may be frequent.

o The “average case” is often roughly as bad as the worst case.
Suppose that you run insertion sort on an array of n randomly
chosen numbers. How long does it take to determine where in
subarray A[1 : i — 1] to insert element A[{]? On average, half the
elements in A[1l : i — 1] are less than A[i], and half the elements are
greater. On average, therefore, A[i] is compared with just half of
the subarray A[l : i — 1], and so ¢; 1s about #/2. The resulting

average-case running time turns out to be a quadratic function of
the input size, just like the worst-case running time.

In some particular cases, we’ll be interested in the average-case
running time of an algorithm. We’ll see the technique of probabilistic
analysis applied to various algorithms throughout this book. The scope
of average-case analysis is limited, because it may not be apparent what
constitutes an “average” input for a particular problem. Often, we’ll
assume that all inputs of a given size are equally likely. In practice, this



assumption may be violated, but we can sometimes use a randomized
algorithm, which makes random choices, to allow a probabilistic analysis
and yield an expected running time. We explore randomized algorithms
more in Chapter 5 and in several other subsequent chapters.

Order of growth

In order to ease our analysis of the INSERTION-SORT procedure, we
used some simplifying abstractions. First, we ignored the actual cost of
each statement, using the constants ¢ to represent these costs. Still, the

best-case and worst-case running times in equations (2.1) and (2.2) are
rather unwieldy. The constants in these expressions give us more detail
than we really need. That’s why we also expressed the best-case running
time as an + b for constants @ and b that depend on the statement costs

cj and why we expressed the worst-case running time as an’® + bn + ¢
for constants a, b, and ¢ that depend on the statement costs. We thus
ignored not only the actual statement costs, but also the abstract costs
C-

Let’s now make one more simplifying abstraction: it is the rate of
growth, or order of growth, of the running time that really interests us.

We therefore consider only the leading term of a formula (e.g., anz),
since the lower-order terms are relatively insignificant for large values
of n. We also ignore the leading term’s constant coefficient, since
constant factors are less significant than the rate of growth in
determining computational efficiency for large inputs. For insertion
sort’s worst-case running time, when we ignore the lower-order terms

and the leading term’s constant coefficient, only the factor of n? from

the leading term remains. That factor, nz, is by far the most important
part of the running time. For example, suppose that an algorithm

implemented on a particular machine takes n2/100 + 100n + 17
microseconds on an input of size n. Although the coefficients of 1/100

for the n? term and 100 for the n term differ by four orders of

magnitude, the n2/100 term dominates the 100n term once n exceeds
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10,000. Although 10,000 might seem large, it is smaller than the
population of an average town. Many real-world problems have much
larger input sizes.

To highlight the order of growth of the running time, we have a
special notation that uses the Greek letter ® (theta). We write that

insertion sort has a worst-case running time of ®(n2) (pronounced
“theta of mn-squared” or just “theta n-squared”). We also write that
insertion sort has a best-case running time of ®(n) (“theta of n” or
“theta n”). For now, think of ®-notation as saying “roughly

proportional when n is large,” so that @(nz) means “‘roughly

proportional to n? when n is large” and O(n) means “roughly
proportional to n when n i1s large” We’ll use ®-notation informally in
this chapter and define it precisely in Chapter 3.

We usually consider one algorithm to be more efficient than another
if its worst-case running time has a lower order of growth. Due to
constant factors and lower-order terms, an algorithm whose running
time has a higher order of growth might take less time for small inputs
than an algorithm whose running time has a lower order of growth. But
on large enough inputs, an algorithm whose worst-case running time is

@(nz), for example, takes less time in the worst case than an algorithm

whose worst-case running time is @(n3). Regardless of the constants
hidden by the ®-notation, there is always some number, say n(, such

that for all input sizes n > ng, the @(nz) algorithm beats the @(n3)
algorithm in the worst case.

Exercises

2.2-1

Express the function n3/1000 + 100n2 — 100n + 3 in terms of ©-
notation.

2.2-2
Consider sorting » numbers stored in array A[l : n] by first finding the
smallest element of A[l : n] and exchanging it with the element in A[1].



Then find the smallest element of A[2 : n], and exchange it with A[2].
Then find the smallest element of A[3 : n], and exchange it with A[3].
Continue in this manner for the first » — 1 elements of A. Write
pseudocode for this algorithm, which is known as selection sort. What
loop invariant does this algorithm maintain? Why does it need to run
for only the first n — 1 elements, rather than for all n elements? Give the
worst-case running time of selection sort in ®@-notation. Is the best-case
running time any better?

2.2-3

Consider linear search again (see Exercise 2.1-4). How many elements
of the input array need to be checked on the average, assuming that the
element being searched for is equally likely to be any element in the
array? How about in the worst case? Using ©®-notation, give the
average-case and worst-case running times of linear search. Justify your
answers.

2.2-4
How can you modify any sorting algorithm to have a good best-case
running time?

2.3  Designing algorithms

You can choose from a wide range of algorithm design techniques.
Insertion sort uses the incremental method: for each element A[7], insert
it into its proper place in the subarray A[1 : i], having already sorted the
subarray A[1 :i—1].

This section examines another design method, known as “divide-
and-conquer,” which we explore in more detail in Chapter 4. We’ll use
divide-and-conquer to design a sorting algorithm whose worst-case
running time is much less than that of insertion sort. One advantage of
using an algorithm that follows the divide-and-conquer method is that
analyzing its running time is often straightforward, using techniques
that we’ll explore in Chapter 4.

2.3.1 The divide-and-conquer method
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Many useful algorithms are recursive in structure: to solve a given
problem, they recurse (call themselves) one or more times to handle
closely related subproblems. These algorithms typically follow the
divide-and-conquer method: they break the problem into several
subproblems that are similar to the original problem but smaller in size,
solve the subproblems recursively, and then combine these solutions to
create a solution to the original problem.

In the divide-and-conquer method, if the problem is small enough—
the hase case—you just solve it directly without recursing. Otherwise—
the recursive case—you perform three characteristic steps:

Divide the problem into one or more subproblems that are smaller
instances of the same problem.

Conquer the subproblems by solving them recursively.

Combine the subproblem solutions to form a solution to the original
problem.

The merge sort algorithm closely follows the divide-and-conquer
method. In each step, it sorts a subarray A[p : r], starting with the entire
array A[l : n] and recursing down to smaller and smaller subarrays.
Here is how merge sort operates:

Divide the subarray A[p : r] to be sorted into two adjacent subarrays,
each of half the size. To do so, compute the midpoint ¢ of Alp : r]
(taking the average of p and r), and divide A[p : r] into subarrays A[p :
gland A[g + 1 :7].

Conquer by sorting each of the two subarrays A[p : ¢] and A[g + 1 : r]
recursively using merge sort.

Combine by merging the two sorted subarrays A[p : g] and A[g + 1 : r]
back into A[p : r], producing the sorted answer.

The recursion “bottoms out”—it reaches the base case—when the
subarray A[p : r] to be sorted has just 1 element, that is, when p equals r.
As we noted in the initialization argument for INSERTION-SORT’s
loop invariant, a subarray comprising just a single element is always
sorted.



The key operation of the merge sort algorithm occurs in the
“combine” step, which merges two adjacent, sorted subarrays. The
merge operation is performed by the auxiliary procedure MERGE(A, p,
g, r) on the following page, where 4 is an array and p, ¢, and r are
indices into the array such that p < g <r. The procedure assumes that
the adjacent subarrays A[p : ¢g] and A[g + 1 : r] were already recursively
sorted. It merges the two sorted subarrays to form a single sorted
subarray that replaces the current subarray A[p : r].

To understand how the MERGE procedure works, let’s return to our
card-playing motif. Suppose that you have two piles of cards face up on
a table. Each pile is sorted, with the smallest-value cards on top. You
wish to merge the two piles into a single sorted output pile, which is to
be face down on the table. The basic step consists of choosing the
smaller of the two cards on top of the face-up piles, removing it from its
pile—which exposes a new top card—and placing this card face down
onto the output pile. Repeat this step until one input pile is empty, at
which time you can just take the remaining input pile and flip over the
entire pile, placing it face down onto the output pile.

Let’s think about how long it takes to merge two sorted piles of
cards. Each basic step takes constant time, since you are comparing just
the two top cards. If the two sorted piles that you start with each have
n/2 cards, then the number of basic steps is at least n/2 (since in
whichever pile was emptied, every card was found to be smaller than
some card from the other pile) and at most n (actually, at most n — 1,
since after n — 1 basic steps, one of the piles must be empty). With each
basic step taking constant time and the total number of basic steps
being between n/2 and n, we can say that merging takes time roughly
proportional to n. That is, merging takes ®(n) time.

In detail, the MERGE procedure works as follows. It copies the two
subarrays A[p : g] and A[g + 1 : r] into temporary arrays L and R (“left”
and “right”), and then it merges the values in L and R back into A[p : r].
Lines 1 and 2 compute the lengths nj and ng of the subarrays A[p : ¢]

and A[q + 1 : r], respectively. Then line 3 creates arrays L[0 : ny — 1] and
R[0 : ng — 1] with respective lengths ny and n R-12 The for loop of lines
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4-5 copies the subarray A[p : ¢] into L, and the for loop of lines 6-7
copies the subarray A[g + 1 : r]into R.

MERGE((4, p, q, 1)

inf =q—p+1 Il length of A[p : q]

2NR=T—( Il length of A[g + 1 :7]

3let L[0 : ny — 1] and R[0 : ng — 1] be new arrays
4fori=0tony —1 Il copy A[p : gl into L[0: ny — 1]

s L[i]=Ap+1i]

6for j=0tong—1 Il copy A[g + 1 :r]into R[0:ng— 1]
7 R[j]=A[g +j+ 1]

8i=0 Il i indexes the smallest remaining element in L
97 =10 Il j indexes the smallest remaining element in R
10k =p Il k indexes the location in A to fill

11/] As long as each of the arrays L and R contains an unmerged
element,

I copy the smallest unmerged element back into A[p : r].
12while i <nj and j <npg
13 if L[{] < R[]
14 Alk] = LJi]
15 i=i+1
16 else A[k] = R[j]
17 j=j+1
18 k=k+1
19// Having gone through one of L and R entirely, copy the
I remainder of the other to the end of A[p : r].

20while i <nj
21 Al[k] = LJi]
2 i=i+1

23 k=k+1
24while j <npg
25 Al[k] = R[]

26 j=j+1



27 k=k+1

Lines 8-18, illustrated in Figure 2.3, perform the basic steps. The
while loop of lines 12-18 repeatedly identifies the smallest value in L
and R that has yet to be copied back into A[p : r] and copies it back in.
As the comments indicate, the index k gives the position of A that is
being filled in, and the indices i and j give the positions in L and R,
respectively, of the smallest remaining values. Eventually, either all of L
or all of R 1s copied back into A[p : r], and this loop terminates. If the
loop terminates because all of R has been copied back, that is, because j
equals n g, then 7 is still less than ny, so that some of L has yet to be

copied back, and these values are the greatest in both L and R. In this
case, the while loop of lines 20-23 copies these remaining values of L
into the last few positions of A[p : r]. Because j equals n g, the while loop

of lines 24-27 iterates 0 times. If instead the while loop of lines 1218
terminates because i equals nj, then all of L has already been copied

back into A[p : r], and the while loop of lines 2427 copies the remaining
values of R back into the end of A[p : r].

3 11 12 13 14 15 16 11 12 13 14 15 16 17
A | |4|ﬁ|?| 2 Iﬂ'lrl |1|4|6| [1]2]3]5]--
n‘l
1. 2 3 B -1 2 3_: g 1 2 3 1. 2 3
L|1|4|6|?| R[1]2]3]5] L[2]a]6]7] RI §2(3[5]
I H 1 .
(@ (b)
8 9 11 12 13 14 15 _6 17 3 11 12 13 14 15 16 17
A [ | Iﬁl?lll - Illﬂl [7]1]2]3]5]
'f N
[+] 2 Z 3 g 1 2 3 -:}_1_2%
L['--Hlﬁl?l Rlll—_’li*lbl cENele[7] RIEMEN3[5]
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Figure 2.3 The operation of the while loop in lines 8-18 in the call MERGE(A4, 9, 12, 16),
when the subarray A4[9 : 16] contains the values (2, 4, 6, 7, 1, 2, 3, 5). After allocating and
copying into the arrays L and R, the array L contains (2, 4, 6, 7), and the array R contains (I,
2, 3, 5). Tan positions in 4 contain their final values, and tan positions in L and R contain
values that have yet to be copied back into A. Taken together, the tan positions always
comprise the values originally in A[9 : 16]. Blue positions in 4 contain values that will be
copied over, and dark positions in L and R contain values that have already been copied back
into 4. (a)—(g) The arrays 4, L, and R, and their respective indices k, i, and j prior to each
iteration of the loop of lines 12—-18. At the point in part (g), all values in R have been copied
back into A (indicated by j equaling the length of R), and so the while loop in lines 12-18
terminates. (h) The arrays and indices at termination. The while loops of lines 20-23 and 24—
27 copied back into 4 the remaining values in L and R, which are the largest values originally
in A[9 : 16]. Here, lines 20-23 copied L[2 : 3] into A[15 : 16], and because all values in R had
already been copied back into A4, the while loop of lines 24-27 iterated 0 times. At this point,
the subarray in A[9 : 16] is sorted.

To see that the MERGE procedure runs in ®(n) time, where n = r — p
+ 1,13 observe that each of lines 1-3 and 8-10 takes constant time, and
the for loops of lines 4-7 take ®(ny + nR) = O(n) time.14 To account for

the three while loops of lines 12-18, 20-23, and 24-27, observe that
each iteration of these loops copies exactly one value from L or R back
into 4 and that every value is copied back into A exactly once.
Therefore, these three loops together make a total of » iterations. Since
each iteration of each of the three loops takes constant time, the total
time spent in these three loops is O(n).

We can now use the MERGE procedure as a subroutine in the merge
sort algorithm. The procedure MERGE-SORT(A4, p, r) on the facing
page sorts the elements in the subarray A[p : r]. If p equals r, the
subarray has just 1 element and is therefore already sorted. Otherwise,
we must have p < r, and MERGE-SORT runs the divide, conquer, and
combine steps. The divide step simply computes an index ¢ that



partitions A[p : r] into two adjacent subarrays: A[p : ¢], containing [#/2]

elements, and A[g + 1 : r], containing |n/2] elements.!2 The initial call
MERGE-SORT(4, 1, n) sorts the entire array A4[1 : n].

Figure 2.4 illustrates the operation of the procedure for n = 8,
showing also the sequence of divide and merge steps. The algorithm
recursively divides the array down to 1-element subarrays. The combine
steps merge pairs of l1-element subarrays to form sorted subarrays of
length 2, merges those to form sorted subarrays of length 4, and merges
those to form the final sorted subarray of length 8. If n is not an exact
power of 2, then some divide steps create subarrays whose lengths difter
by 1. (For example, when dividing a subarray of length 7, one subarray
has length 4 and the other has length 3.) Regardless of the lengths of
the two subarrays being merged, the time to merge a total of n items is
O(n).

MERGE-SORT(4, p, r)

1Lifp>r Il zero or one element?

2 return

3 g=1(p+r)/2] Il midpoint of A[p : r]

4 MERGE-SORT(A, p, q) Il recursively sort A[p : ]

5 MERGE-SORT (A4, g + 1, r) Il recursively sort A[g + 1 :r]
6 Il Merge A[p : gl and A[g + 1 : r]into A[p : r].

7 MERGE(A, p, q, r)

2.3.2 Analyzing divide-and-conquer algorithms

When an algorithm contains a recursive call, you can often describe its
running time by a recurrence equation or recurrence, which describes
the overall running time on a problem of size n in terms of the running
time of the same algorithm on smaller inputs. You can then use
mathematical tools to solve the recurrence and provide bounds on the
performance of the algorithm.

A recurrence for the running time of a divide-and-conquer
algorithm falls out from the three steps of the basic method. As we did
for insertion sort, let 7' (n) be the worst-case running time on a problem
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of size n. If the problem size is small enough, say n < ng for some
constant ng > 0, the straightforward solution takes constant time,

which we write as (**)(1).16 Suppose that the division of the problem
yields a subproblems, each with size n/b, that 1s, 1/b the size of the
original. For merge sort, both @ and b are 2, but we’ll see other divide-
and-conquer algorithms in which a = b. It takes T (n/b) time to solve
one subproblem of size n/b, and so it takes aT (n/b) time to solve all a of
them. If it takes D(n) time to divide the problem into subproblems and
(C(n) time to combine the solutions to the subproblems into the solution
to the original problem, we get the recurrence

&(1) ifn <mny.

Tin) = ; 0 :
D(n) 4+ aT(n/b) + C(n) otherwise .

Chapter 4 shows how to solve common recurrences of this form.
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Figure 2.4 The operation of merge sort on the array 4 with length 8 that initially contains the
sequence (12, 3, 7, 9, 14, 6, 11, 2). The indices p, ¢, and r into each subarray appear above
their values. Numbers in italics indicate the order in which the MERGE-SORT and MERGE
procedures are called following the initial call of MERGE-SORT(4, 1, 8).

Sometimes, the n/b size of the divide step isnt an integer. For
example, the MERGE-SORT procedure divides a problem of size n into
subproblems of sizes [n/2] and |n/2]. Since the difference between [n/2]
and [n/2] is at most 1, which for large n is much smaller than the effect
of dividing n by 2, we’ll squint a little and just call them both size n/2.
As Chapter 4 will discuss, this simplification of ignoring floors and
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ceilings does not generally affect the order of growth of a solution to a
divide-and-conquer recurrence.

Another convention we’ll adopt is to omit a statement of the base
cases of the recurrence, which we’ll also discuss in more detail in
Chapter 4. The reason is that the base cases are pretty much always T
(n) = O(1) if n < ng for some constant ny > 0. Thats because the

running time of an algorithm on an input of constant size is constant.
We save ourselves a lot of extra writing by adopting this convention.

Analysis of merge sort

Here’s how to set up the recurrence for 7 (n), the worst-case running
time of merge sort on n numbers.

Divide: The divide step just computes the middle of the subarray, which
takes constant time. Thus, D(n) = ©(1).

Conquer: Recursively solving two subproblems, each of size n/2,
contributes 27 (n/2) to the running time (ignoring the floors and
ceilings, as we discussed).

Combine: Since the MERGE procedure on an n-element subarray takes
®(n) time, we have C(n) = O(n).

When we add the functions D(n) and C(n) for the merge sort
analysis, we are adding a function that is ®(n) and a function that is
®(1). This sum is a linear function of n. That is, it 1s roughly
proportional to n when n is large, and so merge sort’s dividing and
combining times together are ®(n). Adding ®(n) to the 27 (n/2) term
from the conquer step gives the recurrence for the worst-case running
time 7" (n) of merge sort:

T(n)=2T(n/2) + &(n). (2.3)

Chapter 4 presents the “master theorem,” which shows that 7' (n) = O(n
Ig n).17 Compared with insertion sort, whose worst-case running time is

@(nz), merge sort trades away a factor of » for a factor of lIg n. Because
the logarithm function grows more slowly than any linear function,
that’s a good trade. For large enough inputs, merge sort, with its O(n Ig



n) worst-case running time, outperforms insertion sort, whose worst-

case running time is ®(n2).

We do not need the master theorem, however, to understand
intuitively why the solution to recurrence (2.3) is 7' (n) = ®(n Ig n). For
simplicity, assume that # is an exact power of 2 and that the implicit
base case is n = 1. Then recurrence (2.3) is essentially

Cq ifn =1,
2T (n/2)+can ifn=1,

T(n)= (24)

where the constant ¢y > 0 represents the time required to solve a
problem of size 1, and ¢y > 0 is the time per array element of the divide

and combine steps.18

Figure 2.5 illustrates one way of figuring out the solution to
recurrence (2.4). Part (a) of the figure shows 7 (n), which part (b)
expands into an equivalent tree representing the recurrence. The con

term denotes the cost of dividing and combining at the top level of
recursion, and the two subtrees of the root are the two smaller
recurrences 1 (n/2). Part (c) shows this process carried one step further
by expanding 7T (n/2). The cost for dividing and combining at each of
the two nodes at the second level of recursion is cpn/2. Continue to
expand each node in the tree by breaking it into its constituent parts as
determined by the recurrence, until the problem sizes get down to 1,
each with a cost of ¢1. Part (d) shows the resulting recursion tree.

Next, add the costs across each level of the tree. The top level has
total cost cpn, the next level down has total cost ¢y(n/2) + ¢o(n/2) = con,

the level after that has total cost cp(n/4) + cr(n/4) + cr(n/4) + cr(n/4) =
con, and so on. Each level has twice as many nodes as the level above,

but each node contributes only half the cost of a node from the level
above. From one level to the next, doubling and halving cancel each
other out, so that the cost across each level is the same: cpn. In general,

the level that is i levels below the top has 2! nodes, each contributing a
cost of cz(n/2i), so that the ith level below the top has total cost 2.
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cz(n/2i) = con. The bottom level has n nodes, each contributing a cost
of c¢1, for a total cost of cqn.

The total number of levels of the recursion tree in Figure 2.51s Ign +
1, where n is the number of leaves, corresponding to the input size. An
informal inductive argument justifies this claim. The base case occurs
when n = 1, in which case the tree has only 1 level. Since Ig 1 = 0, we
have that Ig n + 1 gives the correct number of levels. Now assume as an
inductive hypothesis that the number of levels of a recursion tree with

2f leaves is Ig 2Di4l=i+1 (since for any value of i, we have that Ig 2 =
i). Because we assume that the input size is an exact power of 2, the

next input size to consider is 20+ 1 A tree with n = 2/ + 1 leaves has 1
more level than a tree with 2¢ leaves, and so the total number of levels is
G+ +1=1g2it 141
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Figure 2.5 How to construct a recursion tree for the recurrence (2.4). Part (a) shows T (n),
which progressively expands in (b)—(d) to form the recursion tree. The fully expanded tree in
part (d) has Ig n + 1 levels. Each level above the leaves contributes a total cost of ¢pn, and the
leaf level contributes cn. The total cost, therefore, is con 1g n + ¢ n = O(n Ig n).
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To compute the total cost represented by the recurrence (2.4),
simply add up the costs of all the levels. The recursion tree has Ign + 1
levels. The levels above the leaves each cost cpn, and the leaf level costs

cqn, for a total cost of conlgn + cyn = O(n lg n).

Exercises

2.3-1
Using Figure 2.4 as a model, illustrate the operation of merge sort on an
array initially containing the sequence (3, 41, 52, 26, 38, 57, 9, 49).

2.3-2

The test in line 1 of the MERGE-SORT procedure reads “if p > r”
rather than “if p # r.” If MERGE-SORT is called with p > r, then the
subarray A[p : r] is empty. Argue that as long as the initial call of
MERGE-SORT(4, 1, n) has n > 1, the test “if p # r” suffices to ensure
that no recursive call has p > r.

2.3-3
State a loop invariant for the while loop of lines 12-18 of the MERGE

procedure. Show how to use it, along with the while loops of lines 20-23
and 24-27, to prove that the MERGE procedure is correct.

2.3-4
Use mathematical induction to show that when n > 2 1s an exact power
of 2, the solution of the recurrence

ifn=2,
T(n) = ~
2T (n/2)+n ifn=2

1s T(n) = nlgn.

2.3-5

You can also think of insertion sort as a recursive algorithm. In order
to sort A[l : n], recursively sort the subarray A4[1 : n — 1] and then insert
A[n] into the sorted subarray A[l : n — 1]. Write pseudocode for this



recursive version of insertion sort. Give a recurrence for its worst-case
running time.

2.3-6

Referring back to the searching problem (see Exercise 2.1-4), observe
that if the subarray being searched is already sorted, the searching
algorithm can check the midpoint of the subarray against v and
eliminate half of the subarray from further consideration. The binary
search algorithm repeats this procedure, halving the size of the
remaining portion of the subarray each time. Write pseudocode, either
iterative or recursive, for binary search. Argue that the worst-case
running time of binary search is O(Ig n).

2.3-7

The while loop of lines 5-7 of the INSERTION-SORT procedure in
Section 2.1 uses a linear search to scan (backward) through the sorted
subarray A[l : j — 1]. What if insertion sort used a binary search (see
Exercise 2.3-6) instead of a linear search? Would that improve the
overall worst-case running time of insertion sort to ®(n Ig n)?

2.3-8

Describe an algorithm that, given a set S of n integers and another
integer x, determines whether S contains two elements that sum to
exactly x. Your algorithm should take ®(n Ig n) time in the worst case.

Problems

2-1 Insertion sort on small arrays in merge sort
Although merge sort runs in ®(n lIg n) worst-case time and insertion

sort runs in @(nz) worst-case time, the constant factors in insertion sort
can make it faster in practice for small problem sizes on many machines.
Thus it makes sense to coarsen the leaves of the recursion by using
insertion sort within merge sort when subproblems become sufficiently
small. Consider a modification to merge sort in which n/k sublists of

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] lk-'q-k!rP'E'ml:ﬁE m



https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

length k& are sorted using insertion sort and then merged using the
standard merging mechanism, where k is a value to be determined.

a. Show that insertion sort can sort the n/k sublists, each of length &, in
O(nk) worst-case time.

b. Show how to merge the sublists in ®(n 1g(n/k)) worst-case time.

c. Given that the modified algorithm runs in @(nk + n lg(n/k)) worst-
case time, what is the largest value of k as a function of n for which
the modified algorithm has the same running time as standard merge
sort, in terms of ®-notation?

d. How should you choose k in practice?

2-2  Correctness of bubblesort

Bubblesort is a popular, but inefficient, sorting algorithm. It works by
repeatedly swapping adjacent elements that are out of order. The
procedure BUBBLESORT sorts array A[l : n].

BUBBLESORT(A4, 1)

1fori=1ton—1

2 forj=ndowntoi+ 1

if A[j]< A[j-1]

4 exchange A[j] with A[j — 1]

W

a. Let A denote the array A after BUBBLESORT(A, n) is executed. To
prove that

ATl < A2 <. < A'[n]. (2.5)

In order to show that BUBBLESORT actually sorts, what else do you
need to prove?

The next two parts prove inequality (2.5).

b. State precisely a loop invariant for the for loop in lines 2-4, and prove
that this loop invariant holds. Your proof should use the structure of
the loop-invariant proof presented in this chapter.



¢. Using the termination condition of the loop invariant proved in part
(b), state a loop invariant for the for loop in lines 1-4 that allows you
to prove inequality (2.5). Your proof should use the structure of the
loop-invariant proof presented in this chapter.

d. What is the worst-case running time of BUBBLESORT? How does it
compare with the running time of INSERTION-SORT?

2-3  Correctness of Horner’s rule

You are given the coefficents aq, ay, ap, ... , ay of a polynomial
Pix) = Z apx”
k=0

2 —1
— g @x e x” Ay X X

and you want to evaluate this polynomial for a given value of x.
Horner’s rule says to evaluate the polynomial according to this
parenthesization:

P(x) =a, + .r(a] + x(ay + -+ x(ay_; + .x'a,,.}---}) :

The procedure HORNER implements Horner’s rule to evaluate P(x),
given the coefficients aq, ay, ap, ... , a; in an array A[0 : n] and the value

of x.

HORNER(4, n, x)

1 p=0

2 for i=n downto 0
3 p=Alil+x-p
4 returnp

a. In terms of ®-notation, what is the running time of this procedure?

b. Write pseudocode to implement the naive polynomial-evaluation
algorithm that computes each term of the polynomial from scratch.
What is the running time of this algorithm? How does it compare with
HORNER?
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¢. Consider the following loop invariant for the procedure HORNER:
At the start of each iteration of the for loop of lines 2-3,

n—{i+1)

= Z Ak +i+1]-x* .

=1l
Interpret a summation with no terms as equaling 0. Following the
structure of the loop-invariant proof presented in this chapter, use
this loop invariant to show that, at termination, P = k=0 4K]-x*,

2-4  Inversions

Let A[l : n] be an array of n distinct numbers. If i < j and A[i] > A[j],
then the pair (i, j) is called an inversion of A.

a. List the five inversions of the array (2, 3, §, 6, 1).

b. What array with elements from the set {1, 2, ... , n} has the most
inversions? How many does it have?

c. What is the relationship between the running time of insertion sort
and the number of inversions in the input array? Justify your answer.

d. Give an algorithm that determines the number of inversions in any
permutation on z elements in ®(n 1g n) worst-case time. (Hint. Modify
merge sort.)

Chapter notes

In 1968, Knuth published the first of three volumes with the general
title The Art of Computer Programming [259, 260, 261]. The first volume
ushered in the modern study of computer algorithms with a focus on
the analysis of running time. The full series remains an engaging and
worthwhile reference for many of the topics presented here. According
to Knuth, the word “algorithm” is derived from the name “al-
Khowarizmi,” a ninth-century Persian mathematician.

Aho, Hopcroft, and Ullman [5] advocated the asymptotic analysis of
algorithms—using notations that Chapter 3 introduces, including ®-
notation—as a means of comparing relative performance. They also



popularized the use of recurrence relations to describe the running
times of recursive algorithms.

Knuth [261] provides an encyclopedic treatment of many sorting
algorithms. His comparison of sorting algorithms (page 381) includes
exact step-counting analyses, like the one we performed here for
insertion sort. Knuth’s discussion of insertion sort encompasses several
variations of the algorithm. The most important of these is Shell’s sort,
introduced by D. L. Shell, which uses insertion sort on periodic
subarrays of the input to produce a faster sorting algorithm.

Merge sort i1s also described by Knuth. He mentions that a
mechanical collator capable of merging two decks of punched cards in a
single pass was invented in 1938. J. von Neumann, one of the pioneers
of computer science, apparently wrote a program for merge sort on the
EDVAC computer in 1945.

The early history of proving programs correct is described by Gries
[200], who credits P. Naur with the first article in this field. Gries
attributes loop invariants to R. W. Floyd. The textbook by Mitchell
[329] is a good reference on how to prove programs correct.

Ly you’re familiar with only Python, you can think of arrays as similar to Python lists.

2 When the loop is a for loop, the loop-invariant check just prior to the first iteration occurs
immediately after the initial assignment to the loop-counter variable and just before the first
test in the loop header. In the case of INSERTION-SORT, this time is after assigning 2 to the
variable i but before the first test of whether i < n.

3 In an if-else statement, we indent else at the same level as its matching if. The first
executable line of an else clause appears on the same line as the keyword else. For multiway
tests, we use elseif for tests after the first one. When it is the first line in an else clause, an if
statement appears on the line following else so that you do not misconstrue it as elseif.

4 Each pseudocode procedure in this book appears on one page so that you do not need to
discern levels of indentation in pseudocode that is split across pages.

5 Most block-structured languages have equivalent constructs, though the exact syntax may
differ. Python lacks repeat-until loops, and its for loops operate differently from the for loops
in this book. Think of the pseudocode line “for i = 1 to n” as equivalent to “for i in range(1,
n+1)” in Python.

% In Python, the loop counter retains its value after the loop is exited, but the value it retains is
the value it had during the final iteration of the for loop, rather than the value that exceeded
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the loop bound. That is because a Python for loop iterates through a list, which may contain
nonnumeric values.

T1f you’re used to programming in Python, bear in mind that in this book, the subarray A[i : j]
includes the element A[j]. In Python, the last element of A[i : j] is A[j — 1]. Python allows
negative indices, which count from the back end of the list. This book does not use negative
array indices.

8 Python’s tuple notation allows return statements to return multiple values without creating
objects from a programmer-defined class.

9 We assume that each element of a given array occupies the same number of bytes and that
the elements of a given array are stored in contiguous memory locations. For example, if array
A[l : n] starts at memory address 1000 and each element occupies four bytes, then element A[i]
is at address 1000 + 4(i — 1). In general, computing the address in memory of a particular
array element requires at most one subtraction (no subtraction for a 0-origin array), one
multiplication (often implemented as a shift operation if the element size is an exact power of
2), and one addition. Furthermore, for code that iterates through the elements of an array in
order, an optimizing compiler can generate the address of each element using just one
addition, by adding the element size to the address of the preceding element.

10 There are some subtleties here. Computational steps that we specify in English are often
variants of a procedure that requires more than just a constant amount of time. For example,
in the RADIX-SORT procedure on page 213, one line reads “use a stable sort to sort array A
on digit i,” which, as we shall see, takes more than a constant amount of time. Also, although a
statement that calls a subroutine takes only constant time, the subroutine itself, once invoked,
may take more. That is, we separate the process of calling the subroutine—passing parameters
to it, etc.—from the process of executing the subroutine.

'l This characteristic does not necessarily hold for a resource such as memory. A statement
that references m words of memory and is executed n times does not necessarily reference mn
distinct words of memory.

12 Ths procedure is the rare case that uses both 1-origin indexing (for array 4) and 0-origin
indexing (for arrays L and R). Using 0-origin indexing for L and R makes for a simpler loop
invariant in Exercise 2.3-3.

13 1¢ you’re wondering where the “+1” comes from, imagine that » = p + 1. Then the subarray
Alp : r] consists of two elements, andr —p + 1 = 2.

14 Chapter 3 shows how to formally interpret equations containing ®-notation.

15 The expression [x] denotes the least integer greater than or equal to x, and | x] denotes the
greatest integer less than or equal to x. These notations are defined in Section 3.3. The easiest
way to verify that setting g to | (p + r)/2] yields subarrays A[p : gl and A[g + 1 : r] of sizes [n/2]
and |n/2], respectively, is to examine the four cases that arise depending on whether each of p
and r is odd or even.

16 1¢ youre wondering where ®(1) comes from, think of it this way. When we say that n2/100

2

18 ®(n2), we are ignoring the coefficient 1/100 of the factor n“. Likewise, when we say that a



constant ¢ is (1), we are ignoring the coefficient ¢ of the factor 1 (which you can also think of
0
).

asn

17 The notation lg n stands for logy n, although the base of the logarithm doesn’t matter here,

but as computer scientists, we like logarithms base 2. Section 3.3 discusses other standard
notation.

18 1t is unlikely that ¢ is exactly the time to solve problems of size 1 and that cpn is exactly

the time of the divide and combine steps. We’ll look more closely at bounding recurrences in
Chapter 4, where we’ll be more careful about this kind of detail.
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|
3 Characterizing Running Times

The order of growth of the running time of an algorithm, defined in
Chapter 2, gives a simple way to characterize the algorithm’s efficiency
and also allows us to compare it with alternative algorithms. Once the
input size n becomes large enough, merge sort, with its @(n lg n) worst-
case running time, beats insertion sort, whose worst-case running time

18 @(nz). Although we can sometimes determine the exact running time
of an algorithm, as we did for insertion sort in Chapter 2, the extra
precision 1s rarely worth the effort of computing it. For large enough
inputs, the multiplicative constants and lower-order terms of an exact
running time are dominated by the effects of the input size itself.

When we look at input sizes large enough to make relevant only the
order of growth of the running time, we are studying the asymptotic
efficiency of algorithms. That is, we are concerned with how the running
time of an algorithm increases with the size of the input in the limit, as
the size of the input increases without bound. Usually, an algorithm
that is asymptotically more efficient is the best choice for all but very
small inputs.

This chapter gives several standard methods for simplifying the
asymptotic analysis of algorithms. The next section presents informally
the three most commonly used types of “asymptotic notation,” of
which we have already seen an example in ®-notation. It also shows one
way to use these asymptotic notations to reason about the worst-case
running time of insertion sort. Then we look at asymptotic notations
more formally and present several notational conventions used



throughout this book. The last section reviews the behavior of
functions that commonly arise when analyzing algorithms.

3.1  O-notation, Q-notation, and ®@-notation

When we analyzed the worst-case running time of insertion sort in
Chapter 2, we started with the complicated expression

(%"‘%—F;—T)”Z—I—((']+{~2+{~4+%_{3_§+(.&)”

= {{'] -+ Cy -+ Cs -+ {"3} ”

We then discarded the lower-order terms (c1 + ¢p + ¢4 + ¢5/2 — cg/2 -
¢7/2 + cg)n and ¢ + ¢4 + ¢5 + ¢g, and we also ignored the coefficient

c5/2 + cgl2 + ¢7/2 of n?. That left just the factor n?, which we put into

®-notation as G)(nz). We use this style to characterize running times of
algorithms: discard the lower-order terms and the coefficient of the
leading term, and use a notation that focuses on the rate of growth of
the running time.

®-notation is not the only such “asymptotic notation.” In this
section, we’ll see other forms of asymptotic notation as well. We start
with intuitive looks at these notations, revisiting insertion sort to see
how we can apply them. In the next section, we’ll see the formal
definitions of our asymptotic notations, along with conventions for
using them.

Before we get into specifics, bear in mind that the asymptotic
notations we’ll see are designed so that they characterize functions in
general. It so happens that the functions we are most interested in
denote the running times of algorithms. But asymptotic notation can
apply to functions that characterize some other aspect of algorithms
(the amount of space they use, for example), or even to functions that
have nothing whatsoever to do with algorithms.

O-notation
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O-notation characterizes an upper bound on the asymptotic behavior of
a function. In other words, it says that a function grows no faster than a
certain rate, based on the highest-order term. Consider, for example, the
function 7n3 + 100n2 — 201 + 6. Its highest-order term is 7n3, and so we
say that this function’s rate of growth is n3. Because this function grows
no faster than n>
that we can also write that the function 773 + 100n2 — 201 + 6 is 0(n4).

Why? Because the function grows more slowly than n4, we are correct
in saying that it grows no faster. As you might have guessed, this

, we can write that it is 0(n3). You might be surprised

function is also O(nS), 0(n6), and so on. More generally, it is O(n®) for
any constant ¢ > 3.

(Q-notation

()-notation characterizes a lower bound on the asymptotic behavior of a
function. In other words, it says that a function grows at least as fast as
a certain rate, based — as in O-notation—on the highest-order term.

Because the highest-order term in the function Tn3 + 10012 — 20n + 6

3

grows at least as fast as n-, this function is Q(n3). This function is also

Q(nz) and Q(n). More generally, it is Q(n¢) for any constant ¢ < 3.

O-notation

®-notation characterizes a tight bound on the asymptotic behavior of a
function. It says that a function grows precisely at a certain rate, based
—once again—on the highest-order term. Put another way, ®-notation
characterizes the rate of growth of the function to within a constant
factor from above and to within a constant factor from below. These
two constant factors need not be equal.

If you can show that a function is both O(f (n)) and Q(f (n)) for some
function f (n), then you have shown that the function is @(f (n)). (The
next section states this fact as a theorem.) For example, since the

function 7n3 + 10012 — 201 + 6 is both O(n3) and Q(n3), it 1s also @(n3).



Example: Insertion sort

Let’s revisit insertion sort and see how to work with asymptotic

notation to characterize its @(nz) worst-case running time without
evaluating summations as we did m Chapter 2. Here 1s the
INSERTION-SORT procedure once again:

INSERTION-SORT(4, 1)

1 fori=2ton

2 key = A[i]

3 Il Insert A[i] into the sorted subarray A4[1 :i— 1].
4  j=i-1

5 while j > 0 and A[j] > key

6 A[j + 1] = A[j]

7 j=j-1

8 Alj + 1] = key

What can we observe about how the pseudocode operates? The
procedure has nested loops. The outer loop is a for loop that runs n — 1
times, regardless of the values being sorted. The inner loop is a while
loop, but the number of iterations it makes depends on the values being
sorted. The loop variable j starts at i — 1 and decreases by 1 in each
iteration until either it reaches 0 or A[j] < key. For a given value of i, the
while loop might iterate O times, i — 1 times, or anywhere in between. The
body of the while loop (lines 6-7) takes constant time per iteration of
the while loop.
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| All:n/3] An/3 +1:2n/3] A2n/3 + 1:n] |

each of the through each to somewhere
n/3 largest of these in these
values moves 13 positions n/3 positions
e A L A

Figure 3.1 The Q(nz) lower bound for insertion sort. If the first n/3 positions contain the n/3
largest values, each of these values must move through each of the middle »n/3 positions, one
position at a time, to end up somewhere in the last n/3 positions. Since each of n/3 values
moves through at least each of #n/3 positions, the time taken in this case is at least proportional

to (n/3)(n/3) = n219, or Q(n?).

These observations suffice to deduce an O(nz) running time for any
case of INSERTION-SORT, giving us a blanket statement that covers
all inputs. The running time is dominated by the inner loop. Because
each of the n — 1 iterations of the outer loop causes the inner loop to
iterate at most i — 1 times, and because 7 1s at most 7, the total number
of iterations of the inner loop is at most (n — 1)(n — 1), which is less than

n?. Since each iteration of the inner loop takes constant time, the total

time spent in the inner loop is at most a constant times n2, or O(nz).
With a little creativity, we can also see that the worst-case running

time of INSERTION-SORT is Q(nz). By saying that the worst-case

running time of an algorithm is Q(nz), we mean that for every input size
n above a certain threshold, there is at least one input of size n for

2

which the algorithm takes at least cn“ time, for some positive constant

c. It does not necessarily mean that the algorithm takes at least cn? time
for all inputs.

Let’s now see why the worst-case running time of INSERTION-

SORT is Q(nz). For a value to end up to the right of where it started, it
must have been moved in line 6. In fact, for a value to end up &
positions to the right of where it started, line 6 must have executed k
times. As Figure 3.1 shows, let’s assume that » 1s a multiple of 3 so that

we can divide the array 4 into groups of n/3 positions. Suppose that in
the input to INSERTION-SORT, the n/3 largest values occupy the first



n/3 array positions A[l : n/3]. (It does not matter what relative order
they have within the first #/3 positions.) Once the array has been sorted,
each of these n/3 values ends up somewhere in the last n/3 positions
A[2n/3 + 1 : n]. For that to happen, each of these #n/3 values must pass
through each of the middle n/3 positions A[n/3 + 1 : 2n/3]. Each of these
n/3 values passes through these middle n/3 positions one position at a
time, by at least n/3 executions of line 6. Because at least n/3 values have
to pass through at least n/3 positions, the time taken by INSERTTON-

SORT in the worst case is at least proportional to (n/3)(n/3) = n2/9,
which is Q(n2).
Because we have shown that INSERTION-SORT runs in O(nz) time

in all cases and that there is an input that makes it take Q(nz) time, we
can conclude that the worst-case running time of INSERTION-SORT is

@(nz). It does not matter that the constant factors for upper and lower
bounds might differ. What matters is that we have characterized the
worst-case running time to within constant factors (discounting lower-
order terms). This argument does not show that INSERTION-SORT

runs in @(nz) time in all cases. Indeed, we saw in Chapter 2 that the
best-case running time is ®(n).

Exercises

3.1-1
Modify the lower-bound argument for insertion sort to handle input
sizes that are not necessarily a multiple of 3.

3.1-2
Using reasoning similar to what we used for insertion sort, analyze the
running time of the selection sort algorithm from Exercise 2.2-2.

3.1-3

Suppose that o is a fraction in the range 0 < o < 1. Show how to
generalize the lower-bound argument for insertion sort to consider an
input in which the an largest values start in the first an positions. What
additional restriction do you need to put on a? What value of a
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maximizes the number of times that the an largest values must pass
through each of the middle (1 — 2a)n array positions?

3.2  Asymptotic notation: formal definitions

Having seen asymptotic notation informally, let’s get more formal. The
notations we use to describe the asymptotic running time of an
algorithm are defined in terms of functions whose domains are typically
the set N of natural numbers or the set R of real numbers. Such
notations are convenient for describing a running-time function 7 (n).
This section defines the basic asymptotic notations and also introduces
some common “proper”’ notational abuses.

cglm) czg,r{ra}
fin) <2
i (1)
o fin) e !
/“"'f e i I F )
r ,-" v
R b} R
i Hg ) fi ;
fin) = Olgin)) fin)= &igin)) fin)= ©igin))
(a) () (c)

Figure 3.2 Graphic examples of the O, (), and ® notations. In each part, the value of ngy shown

is the minimum possible value, but any greater value also works. (a) O-notation gives an upper
bound for a function to within a constant factor. We write f'(n) = O(g(n)) if there are positive
constants ng and ¢ such that at and to the right of n(, the value of f'(n) always lies on or below

cg(n). (b) Q-notation gives a lower bound for a function to within a constant factor. We write f°
(n) = Q(g(n)) if there are positive constants n( and ¢ such that at and to the right of n(), the

value of f (n) always lies on or above cg(n). (¢) ®-notation bounds a function to within
constant factors. We write f(n) = ©(g(n)) if there exist positive constants n(, ¢, and ¢y such

that at and to the right of n(), the value of f'(n) always lies between ¢ g(n) and cg(n) inclusive.

O-notation

As we saw in Section 3.1, O-notation describes an asymptotic upper
bound. We use O-notation to give an upper bound on a function, to



within a constant factor.

Here is the formal definition of O-notation. For a given function
g(n), we denote by O(g(n)) (pronounced “big-oh of g of »n” or
sometimes just “oh of g of n”) the set of functions

O(g(n)) :there exist positive constants ¢ and ng such

=V hat0< £ (n) < cg(n) for all n 2 no-!

A function f (n) belongs to the set O(g(n)) if there exists a positive
constant ¢ such that f (n) < cg(n) for sufficiently large n. Figure 3.2(a)
shows the intuition behind O-notation. For all values n at and to the
right of n(, the value of the function f (n) is on or below cg(n).

The definition of O(g(n)) requires that every function f (n) in the set
O(g(n)) be asymptotically nonnegative: f (n) must be nonnegative
whenever n is sufficiently large. (An asymptotically positive function is
one that is positive for all sufficiently large n.) Consequently, the
function g(n) itself must be asymptotically nonnegative, or else the set
O(g(n)) is empty. We therefore assume that every function used within
O-notation 1s asymptotically nonnegative. This assumption holds for
the other asymptotic notations defined in this chapter as well.

You might be surprised that we define O-notation in terms of sets.
Indeed, you might expect that we would write “f (n) € O(g(n))” to
indicate that f (n) belongs to the set O(g(n)). Instead, we usually write “f
(n) = O(g(n))” and say “f (n) 1s big-oh of g(n)” to express the same
notion. Although it may seem confusing at first to abuse equality in this
way, we’ll see later in this section that doing so has its advantages.

Let’s explore an example of how to use the formal definition of O-
notation to justify our practice of discarding lower-order terms and
ignoring the constant coefficient of the highest-order term. We’ll show

that 42 + 1001 + 500 = O(nz), even though the lower-order terms have
much larger coefficients than the leading term. We need to find positive

constants ¢ and ng such that 4n2 + 100n + 500 < cn? for all n > n(.

Dividing both sides by 12 gives 4 + 100/n + 500/n2 < c. This inequality is
satisfied for many choices of ¢ and n(. For example, if we choose ng = 1,
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then this inequality holds for ¢ = 604. If we choose ng = 10, then ¢ = 19
works, and choosing ng = 100 allows us to use ¢ = 5.05.

We can also use the formal definition of O-notation to show that the
function 73 — 100n2 does not belong to the set 0(n2), even though the

coefficient of 72 is a large negative number. If we had n3 — 100n2 =

O(nz), then there would be positive constants ¢ and n( such that n

10012 < cn? for all n ng. Again, we divide both sides by nz, giving n —

100 < ¢. Regardless of what value we choose for the constant ¢, this
inequality does not hold for any value of n > ¢ + 100.

(Q-notation

Just as O-notation provides an asymptotic upper bound on a function,
()-notation provides an asymptotic lower bound. For a given function
g(n), we denote by Q(g(n)) (pronounced “big-omega of g of n” or
sometimes just “omega of g of n”’) the set of functions

QO (g(n)) :there exist positive constants ¢ and ng such
=1 (")  that 0 < cg(n) < f(n) for all n > ng}.

Figure 3.2(b) shows the intuition behind Q-notation. For all values n at
or to the right of nq, the value of /' (n) is on or above cg(n).

We’ve already shown that 4n2 +100n + 500 = O(nz). Now let’s show
that 42 + 1001 + 500 = Q(nz). We need to find positive constants ¢ and
n( such that 4n2 + 100n + 500 > cn? for all n > ng. As before, we divide

both sides by 72, giving 4 + 100/n + 500/n2 > ¢. This inequality holds
when n() is any positive integer and ¢ = 4.

2 term

What if we had subtracted the lower-order terms from the 4n
instead of adding them? What if we had a small coefficient for the n?
term? The function would still be Q(nz). For example, let’s show that

#2100 — 1007 — 500 = Q(n2). Dividing by 12 gives 1/100 — 100/n — 500/n>



> ¢. We can choose any value for n( that is at least 10,005 and find a
positive value for c¢. For example, when ng = 10,005, we can choose ¢ =
2.49 x 1077, Yes, that’s a tiny value for ¢, but it is positive. If we select a
larger value for n(), we can also increase c¢. For example, if np = 100,000,
then we can choose ¢ = 0.0089. The higher the value of n(, the closer to
the coefficient 1/100 we can choose c.

®-notation

We use ®-notation for asymptotically tight bounds. For a given function
g(n), we denote by ®(g(n)) (“theta of g of n”) the set of functions

O(g(n)) :there exist positive constants cy, ¢p, and ng
=/ (") guch that 0 < c1g(n) < f (n) < cpg(n) for all n 2

noy .

Figure 3.2(c) shows the intuition behind ®-notation. For all values of n
at and to the right of n(, the value of f(n) lies at or above c1g(n) and at

or below cpg(n). In other words, for all n > ng, the function f (n) is equal

to g(n) to within constant factors.
The definitions of O-, -, and ®-notations lead to the following
theorem, whose proof we leave as Exercise 3.2-4.

Theorem 3.1
For any two functions f (n) and g(n), we have f (n) = ©(g(n)) if and only

if £ (n) = O(g(n)) and 1 (n) = Q(g(n)).

We typically apply Theorem 3.1 to prove asymptotically tight bounds
from asymptotic upper and lower bounds.
Asymptotic notation and running times

When you use asymptotic notation to characterize an algorithm’s
running time, make sure that the asymptotic notation you use is as
precise as possible without overstating which running time it applies to.
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Here are some examples of using asymptotic notation properly and
improperly to characterize running times.
Let’s start with insertion sort. We can correctly say that insertion

sort’s worst-case running time is O(nz), Q(nz), and—due to Theorem
3.1—®(n2). Although all three ways to characterize the worst-case

running times are correct, the ®(n2) bound is the most precise and
hence the most preferred. We can also correctly say that insertion sort’s
best-case running time 1s O(n), Q(n), and O(n), again with ®(n) the most
precise and therefore the most preferred.

Here is what we cannot correctly say: insertion sort’s running time is

G)(nz). That is an overstatement because by omitting “worst-case” from
the statement, we’re left with a blanket statement covering all cases. The

error here 1s that insertion sort does not run in G)(nz) time in all cases
since, as we’'ve seen, it runs in ®(n) time in the best case. We can

correctly say that insertion sort’s running time is O(nz), however,
because in all cases, its running time grows no faster than n?. When we
say O(nz) instead of @(nz), there is no problem in having cases whose

running time grows more slowly than n2. Likewise, we cannot correctly
say that insertion sort’s running time is ®(n), but we can say that its
running time is Q(n).

How about merge sort? Since merge sort runs in O(z Ig n) time in all
cases, we can just say that its running time is ®(n lg n) without
specifying worst-case, best-case, or any other case.

People occasionally conflate O-notation with ©-notation by
mistakenly using O-notation to indicate an asymptotically tight bound.
They say things like “an O(n lg n)-time algorithm runs faster than an

O(nz)-time algorithm.” Maybe it does, maybe it doesn’t. Since O-

notation denotes only an asymptotic upper bound, that so-called O(nz)-
time algorithm might actually run in ®(n) time. You should be careful to
choose the appropriate asymptotic notation. If you want to indicate an
asymptotically tight bound, use ®-notation.



We typically use asymptotic notation to provide the simplest and
most precise bounds possible. For example, if an algorithm has a

running time of 32 + 20n in all cases, we use asymptotic notation to
write that its running time is ®(n2). Strictly speaking, we are also
correct in writing that the running time is 0(n3) or @(3n2 + 20m).
Neither of these expressions is as useful as writing ®(n2) in this case,
however: 0(n3) is less precise than G)(nz) if the running time is 32 +
20n, and ®(3n2 + 20n) mmtroduces complexity that obscures the order of

growth. By writing the simplest and most precise bound, such as ®(n2),
we can categorize and compare different algorithms. Throughout the
book, you will see asymptotic running times that are almost always

based on polynomials and logarithms: functions such as n, n lg2 n, n? Ig
n, or n12_ You will also see some other functions, such as exponentials,

lg Ig n, and lg*n (see Section 3.3). It is usually fairly easy to compare the
rates of growth of these functions. Problem 3-3 gives you good practice.

Asymptotic notation in equations and inequalities

Although we formally define asymptotic notation in terms of sets, we
use the equal sign (=) instead of the set membership sign (€) within

formulas. For example, we wrote that 4n? + 100n + 500 = O(nz). We

might also write W2 +3n+1=2m2+ ®(n). How do we interpret such
formulas?

When the asymptotic notation stands alone (that is, not within a
larger formula) on the right-hand side of an equation (or inequality), as

in 4n2 + 1001 + 500 = O(nz), the equal sign means set membership: 4n?

+ 100n + 500 € O(nz). In general, however, when asymptotic notation
appears in a formula, we interpret it as standing for some anonymous

function that we do not care to name. For example, the formula m? +

3In+1=2n2+ ®(n) means that M2 +3n+1=2m2+ f(n), where f(n) €
O(n). In this case, we let f (n) = 3n + 1, which indeed belongs to O(n).
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Using asymptotic notation in this manner can help eliminate
inessential detail and clutter in an equation. For example, in Chapter 2
we expressed the worst-case running time of merge sort as the
recurrence

T (n) =2T (n/2) + O(n).

If we are interested only in the asymptotic behavior of T (n), there is no
point in specifying all the lower-order terms exactly, because they are all
understood to be included in the anonymous function denoted by the
term O(n).

The number of anonymous functions in an expression is understood
to be equal to the number of times the asymptotic notation appears.
For example, in the expression

n
.oy,
i=1

there i1s only a single anonymous function (a function of i). This
expression 1s thus not the same as O(1) + O(2) + -+ + O(n), which
doesn’t really have a clean interpretation.

In some cases, asymptotic notation appears on the left-hand side of
an equation, as in

2n? + O(n) = ®(n2).

Interpret such equations using the following rule: No matter how the
anonymous functions are chosen on the left of the equal sign, there is a
way to choose the anonymous functions on the right of the equal sign to
make the equation valid. Thus, our example means that for any function

f(n) € O(n), there is some function g(n) € @(nz) such that 2n? + f(n) =
g(n) for all n. In other words, the right-hand side of an equation
provides a coarser level of detail than the left-hand side.

We can chain together a number of such relationships, as in

2m2 +3n+1=2n2+ O(n)
= @(nz).



By the rules above, interpret each equation separately. The first
equation says that there is some function f (n) € ®(n) such that 212 + 3n

+1 =22+ f (n) for all n. The second equation says that for any
function g(n) € O©(n) (such as the f (n) just mentioned), there is some

function A(n) € ©(n2) such that 2n2 + g(n) = h(n) for all n. This

interpretation implies that W2+ 3n 41 = @(nz), which 1s what the
chaining of equations intuitively says.

Proper abuses of asymptotic notation

Besides the abuse of equality to mean set membership, which we now
see has a precise mathematical interpretation, another abuse of
asymptotic notation occurs when the variable tending toward o must
be inferred from context. For example, when we say O(g(n)), we can
assume that we’re interested in the growth of g(n) as n grows, and if we
say O(g(m)) we’re talking about the growth of g(m) as m grows. The free
variable in the expression indicates what variable is going to .

The most common situation requiring contextual knowledge of
which variable tends to o occurs when the function inside the
asymptotic notation is a constant, as in the expression O(1). We cannot
infer from the expression which variable is going to oo, because no
variable appears there. The context must disambiguate. For example, if
the equation using asymptotic notation is /' (n) = O(1), it’s apparent that
the variable we’re interested in is n. Knowing from context that the
variable of interest is n, however, allows us to make perfect sense of the
expression by using the formal definition of O-notation: the expression
f(n) = O(1) means that the function f (n) is bounded from above by a
constant as n goes to o. Technically, it might be less ambiguous if we
explicitly indicated the variable tending to « in the asymptotic notation
itself, but that would clutter the notation. Instead, we simply ensure
that the context makes it clear which variable (or variables) tend to oo.

When the function inside the asymptotic notation is bounded by a
positive constant, as m 7 (n) = O(l), we often abuse asymptotic
notation in yet another way, especially when stating recurrences. We
may write something like 7" (n) = O(1) for n < 3. According to the
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formal definition of O-notation, this statement is meaningless, because
the definition only says that 7 (n) is bounded above by a positive
constant ¢ for n 2 n( for some ng > 0. The value of T (n) for n < n need

not be so bounded. Thus, in the example 7 (n) = O(1) for n < 3, we
cannot infer any constraint on 7" (n) when n < 3, because it might be
that ng > 3.

What is conventionally meant when we say 7 (n) = O(1) for n < 3 is
that there exists a positive constant ¢ such that 7' (n) < ¢ for n < 3. This
convention saves us the trouble of naming the bounding constant,
allowing it to remain anonymous while we focus on more important
variables in an analysis. Similar abuses occur with the other asymptotic
notations. For example, 7' (n) = ®(1) for n < 3 means that 7 (n) is
bounded above and below by positive constants when n < 3.

Occasionally, the function describing an algorithm’ running time
may not be defined for certain mput sizes, for example, when an
algorithm assumes that the input size is an exact power of 2. We still use
asymptotic notation to describe the growth of the running time,
understanding that any constraints apply only when the function is
defined. For example, suppose that f (n) is defined only on a subset of
the natural or nonnegative real numbers. Then f (n) = O(g(n)) means
that the bound 0 < T'(n) < cg(n) in the definition of O-notation holds for
all n > ngp over the domain of f (n), that 1s, where f (n) 1s defined. This

abuse is rarely pointed out, since what is meant is generally clear from
context.

In mathematics, its okay — and often desirable — to abuse a
notation, as long as we don’t misuse it. If we understand precisely what
1s meant by the abuse and don’t draw incorrect conclusions, it can
simplify our mathematical language, contribute to our higher-level
understanding, and help us focus on what really matters.

o-notation

The asymptotic upper bound provided by O-notation may or may not
be asymptotically tight. The bound m? = O(nz) 1s asymptotically tight,

but the bound 2n = O(n2) 1s not. We use o-notation to denote an upper



bound that is not asymptotically tight. We formally define o(g(n))
(“Iittle-oh of g of n”) as the set

o(g(n)) = : for any positive constant ¢ > 0, there exists a constant ng > 0
{f (n) such that 0 < ' (n) < cg(n) for all n > ng}.

For example, 2n = 0(n2), but 212 * o(nz).

The definitions of O-notation and o-notation are similar. The main
difference is that in f'(n) = O(g(n)), the bound 0 < f(n) < cg(n) holds for
some constant ¢ > 0, but in f (n) = o(g(n)), the bound 0 < /' (n) < cg(n)
holds for all constants ¢ > 0. Intuitively, in o-notation, the function 1 (n)
becomes insignificant relative to g(n) as n gets large:

lim J ) =0
n—oo o(n)

Some authors use this limit as a definition of the o-notation, but the
definition in this book also restricts the anonymous functions to be
asymptotically nonnegative.

w-notation

By analogy, w-notation is to ()-notation as o-notation is to O-notation.
We use w-notation to denote a lower bound that is not asymptotically
tight. One way to define it is by

f(n) € w(g(n)) if and only if g(n) € o(f (n)).
Formally, however, we define w(g(n)) (“little-omega of g of n”) as the set

w(g(n)) :for any positive constant ¢ > 0, there exists a constant ng > 0
=1/ ()  such that 0 < cg(n) < f(n) for all n > ng}.

Where the definition of o-notation says that f (n) < cg(n), the definition
of w-notation says the opposite: that cg(n) < f (n). For examples of w-

notation, we have n?l2 = w(n), but n?l2 = a)(nz). The relation f (n) =
w(g(n)) implies that
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if the limit exists. That is, f (n) becomes arbitrarily large relative to g(n)
as n gets large.

Comparing functions

Many of the relational properties of real numbers apply to asymptotic
comparisons as well. For the following, assume that f (n) and g(n) are
asymptotically positive.

Transitivity:
f () =andgm) =imply f (n) =
O(g(n)) O(/(n)) O((n)),
S (m =andgm) =1imply /' (n)
O(g(n)) O(h(n)) O(h(n)),
f (m =andgm) =1imply f°  (n)
((g(n)) QO(h(n)) Q(h(n)),
S () =andgm) =1imply f  (n)
o(g(n)) o(h(n)) o(h(n)),
f (m =andgm) =1imply /°  (n)
w(g(n)) w(h(n)) w(h(n)).

Reflexivity:

f (n) = 6(f (n)),
J (m) = O(f (n)),
J (n) = Q(f (n)).

Symmetry:
f(n) =0O(g(n)) if and only if g(n) = O(f (n)).
Transpose symmetry:

f (n) =1if and onlyg(n) = Qf



O(g(n)) if (n)),
f(n)=o0(gn)) if and only g(n) = o(f
if (n)).

Because these properties hold for asymptotic notations, we can draw
an analogy between the asymptotic comparison of two functions f and
g and the comparison of two real numbers a and b:

f(n) = 0(g(n)) is like a < b,
f(n) =Q(g(n)) is like a > b,
f(n) =0(g(n)) is like a = b,
f(n) =o(g(n)) islike a < b,
f(n) = w(g(n)) is like a > b.

We say that f (n) is asymptotically smaller than g(n) if f (n) = o(g(n)),
and f (n) is asymptotically larger than g(n) if f (n) = w(g(n)).

One property of real numbers, however, does not carry over to
asymptotic notation:

Trichotomy: For any two real numbers ¢ and b, exactly one of the
following must hold: a < b, a = b, or a > b.

Although any two real numbers can be compared, not all functions are
asymptotically comparable. That 1s, for two functions f (n) and g(n), it
may be the case that neither f (n) = O(g(n)) nor f (n) = Q(g(n)) holds.

For example, we cannot compare the functions 7 and nl + 810 7 yging

asymptotic notation, since the value of the exponent in pl T sinn
oscillates between 0 and 2, taking on all values in between.

Exercises

3.2-1
Let f (n) and g(n) be asymptotically nonnegative functions. Using the
basic definition of ®-notation, prove that max {f (n), g(n)} = O(f (n) +

g(n)).

3.2-2
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Explain why the statement, “The running time of algorithm A is at least

0(n2) ,” 1S meaningless.

3.2-3
Is 2" T 1 = 022 1s 227 = 0(21)?

3.2-4
Prove Theorem 3.1.

3.2-5
Prove that the running time of an algorithm is ®(g(n)) if and only if its
worst-case running time is O(g(n)) and its best-case running time is

Q(g(n)).

3.2-6
Prove that o(g(n)) N w(g(n)) is the empty set.

3.2-7

We can extend our notation to the case of two parameters n and m that
can go to « independently at different rates. For a given function g(n,
m), we denote by O(g(n, m)) the set of functions

O(g(n, : there exist positive constants ¢, ng, and my

m)) = {f such that 0 < f (n, m) < cg(n, m) for all n > ng

(n, m) or m 2 m}.

Give corresponding definitions for Q(g(n, m)) and ®(g(n, m)).

3.3 Standard notations and common functions

This section reviews some standard mathematical functions and
notations and explores the relationships among them. It also illustrates
the use of the asymptotic notations.

Monotonicity



A function f(n) 1s monotonically increasing if m < n implies f (m) < f (n).
Similarly, it is monotonically decreasing if m < n implies f (m) > f (n). A
function f (n) is strictly increasing if m < n implies f (m) < f (n) and
strictly decreasing if m < n implies f (m) > f (n).

Floors and ceilings

For any real number x, we denote the greatest integer less than or equal
to x by |x] (read “the floor of x”) and the least integer greater than or
equal to x by [x] (read “the ceiling of x”). The floor function is
monotonically increasing, as is the ceiling function.

Floors and ceilings obey the following properties. For any integer n,
we have

|n] =n=[n]. (3.1)

For all real x, we have
x—1< |[x] =x =< [x] <x+1. (3.2)

We also have

— x| =[-xT, (3.3)
or equivalently,
—[x] = |—x] . (34
For any real number x > 0 and integers a, b > 0, we have
[ [x/a] ] [FoaE ™ .
= | — 3.5
b ab | ° ()
I
|x/a] _ | x ‘ (3.6)
| b ] L ab
[a] a+(b—1)
i i, 3.
p = 5 : (3.7)
a a—(b—-1)
il I ool 38
b T b =2

For any integer n and real number x, we have
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In+x| =n+|x]. (3.9)
[m4+x] = n4+ [x]. (3.10)

Modular arithmetic

For any integer a and any positive integer n, the value @ mod n is the
remainder (or residue) of the quotient a/n:

amodn=a—nl|a/n] . (3.11)

It follows that

O<amodn <n, (312

even when a is negative.

Given a well-defined notion of the remainder of one integer when
divided by another, it is convenient to provide special notation to
indicate equality of remainders. If (¢ mod »n) = (b mod n), we write a = b
(mod n) and say that a is equivalent to b, modulo n. In other words, a =
b (mod n) if a and b have the same remainder when divided by n.
Equivalently, a = b (mod ») if and only if 7 is a divisor of b — a. We write
a # b (mod n) if a is not equivalent to b, modulo 7.

Polynomials

Given a nonnegative integer d, a polynomial in n of degree d is a function
p(n) of the form

d
pn) = Z an'

i=0

where the constants aq, a{, ..., ag are the coefficients of the polynomial
and a4 # 0. A polynomial is asymptotically positive if and only if a7 > 0.
For an asymptotically positive polynomial p(n) of degree d, we have p(n)
= G)(nd). For any real constant a > 0, the function n¢ is monotonically

increasing, and for any real constant @ < 0, the function n¢ is

monotonically decreasing. We say that a function f (n) 1s polynomially
bounded if f (n) = O(nk) for some constant k.



Exponentials

For all real @ > 0, m, and n, we have the following identities:

AN =1
al =4
a1 =1a,

( an/Z)l/l - amn

(@™ = (a"™,

m,n =

Mgt = gNn,

For all n and a > 1, the function &’ is monotonically increasing in n.

When convenient, we assume that 00=1.
We can relate the rates of growth of polynomials and exponentials
by the following fact. For all real constants a > 1 and b, we have

h
. R
lim — =0,
n— oo g7

from which we can conclude that

n® = o(a"). (3.13)

Thus, any exponential function with a base strictly greater than 1 grows
faster than any polynomial function.
Using e to denote 2.71828 ..., the base of the natural-logarithm
function, we have for all real x,
a2 K
t"x:|+.l'+5+?+"': ﬁ~
i=0

(C'”

where denotes the factorial function defined later in this section. For
all real x, we have the inequality

l +x <e*, (3.14)

where equality holds only when x = 0. When |x| < 1, we have the
approximation
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| x2e 2 I 4xfxT: (3.15)

When x — 0, the approximation of eX by 1 + x is quite good:

eX =1+ x+0(x2).

(In this equation, the asymptotic notation is used to describe the
limiting behavior as x — 0 rather than as x — «.) We have for all x,

tim (1+ i) =, (3.16)

A— 00

Logarithms

We use the following notations:

lgn =logy n (binary logarithm),
Inn =log,n (natural logarithm),

lgk n= (g n)k (exponentiation),

lg Ig n = lg(lg n) (composition).

We adopt the following notational convention: in the absence of
parentheses, a logarithm function applies only to the next term in the
formula, so that Ig n + 1 means (Ign) + 1 and not Ig(n + 1).

For any constant b > 1, the function logp n i1s undefined if n < 0,

strictly increasing if n > 0, negative if 0 <n < 1, positive if » > 1, and 0 if
n=1.Forallreala>0,b>0, ¢ >0, and n, we have

a = b (3.17)
log.(ab) = log.a +log b, (3.18)
log,a" = nlog,a,
log. a
log,a = ——, 3.19
0g,d Tog, b (3.19)
log,(1/a) = —log,a, (3.20)
|
logpa = T

=

a¥et = M (321)



where, in each equation above, logarithm bases are not 1.

By equation (3.19), changing the base of a logarithm from one
constant to another changes the value of the logarithm by only a
constant factor. Consequently, we often use the notation “Ig n” when
we don’t care about constant factors, such as in O-notation. Computer
scientists find 2 to be the most natural base for logarithms because so
many algorithms and data structures involve splitting a problem into
two parts.

There is a simple series expansion for In(1 + x) when |x| < 1:

ol ol e B FE e (322
2 3 4 5
We also have the following inequalities for x > — 1:
X

T < h(l4x) = x, (3.23)

where equality holds only for x = 0.
We say that a function f (n) is polylogarithmically bounded if f (n) =

O(lgk n) for some constant k. We can relate the growth of polynomials

and polylogarithms by substituting lg n for n and 29 for a in equation
(3.13). For all real constants @ > 0 and b, we have

e’ n = o(n?). (3.24)
Thus, any positive polynomial function grows faster than any
polylogarithmic function.

Factorials

The notation n! (read “n factorial”) is defined for integers n > 0 as

l ifn=0,
n-(n—1) ifn=0.

n!l =

Thus,n!'=1-2-3 - n.

A weak upper bound on the factorial function is n! < n’?, since each
of the n terms in the factorial product is at most n. Stirling’s
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approximation,

nl = M(i—:)”(l+t~'>(1)) :

(3.25)
]

where e 1s the base of the natural logarithm, gives us a tighter upper

bound, and a lower bound as well. Exercise 3.3-4 asks you to prove the

three facts

n!' = o(n"), (3.20)
n! = w(2") , (3.27)
lg(n!) = Onlgn), (3.28)

where Stirling’s approximation is helpful in proving equation (3.28). The
following equation also holds for all n > 1:

n! = v2an (i) e (3.29)

{.?‘
where

| 1
< Oy <
12n + 1 :

S 12n

Functional iteration

We use the notation f(i) (n) to denote the function f (n) iteratively
applied i times to an initial value of n. Formally, let f (n) be a function
over the reals. For nonnegative integers i, we recursively define

n if i =10,

() = .
PN Sy a5t s

(3.30)

For example, if /' (n) = 2n, then j(i) (n) = 2in.
The iterated logarithm function

We use the notation lg*n (read “log star of n”) to denote the iterated
logarithm, defined as follows. Let lg(i) n be as defined above, with f'(n) =

lg n. Because the logarithm of a nonpositive number is undefined, lg(i)



n i1s defined only if lg(i_l) n > 0. Be sure to distinguish lg(i) n (the
logarithm function applied i times in succession, starting with argument

n) from lgi n (the logarithm of n raised to the ith power). Then we define
the iterated logarithm function as

lg*n = min {izO:lg(i)nS 1}.

The iterated logarithm is a very slowly growing function:

g 2=1
Ig"4=2

g 16 =3
lg" 65536 =4

lg* (265536) =5.

Since the number of atoms in the observable universe is estimated to be
about 1080, which is much less than 263936 = 1005536/1g 10 1019,728

we rarely encounter an input size n for which Ig »n > 5.

Fibonacci numbers
We define the Fibonacci numbers Fj, for i > 0, as follows:
E 0 ifi =0,
| e (3.31)

F =
P -E'—1+ .F:-'_] iff- iz.

Thus, after the first two, each Fibonacci number is the sum of the two
previous ones, yielding the sequence

0,1,1,2,3,5,8,13,21,34,55, ....

Fibonacci numbers are related to the golden ratio ¢ and its conjugate 5,
which are the two roots of the equation
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As Exercise 3.3-7 asks you to prove, the golden ratio is given by

I geidlS
g 3.32
¢ > (3.32)

= 1.61803...,

and its conjugate, by

1 —«f5

-

= —.61803... .

=

(3.33)

Specifically, we have

¢ — ¢

==

which can be proved by induction (Exercise 3.3-8). Since 6] < | we have

¢ _ 1
J5 5
1
3"

<

which implies that

F = L P lJ ~ (3.34)
V5 2

which is to say that the ith Fibonacci number Fj is equal to ¢'/V5

rounded to the nearest integer. Thus, Fibonacci numbers grow
exponentially.

Exercises

3.3-1

Show that if f(n) and g(n) are monotonically increasing functions, then
so are the functions f'(n) + g(n) and f (g(n)), and if f (n) and g(n) are in
addition nonnegative, then f'(n) - g(n) is monotonically increasing.

3.3-2



Prove that |an] + [(1 — a)n] = n for any integer n and real number « in
the range 0 <a < 1.

3.3-3
Use equation (3.14) or other means to show that (n + o(n))k = ®(nk) for
any real constant k. Conclude that [n]k = G)(nk) and ln]k = ®(nk).

3.3-4
Prove the following:

a. Equation (3.21).
b. Equations (3.26)—(3.28).

c. 1Ig(®(n)) = O(Ig n).

* 3.3-5
Is the function [Ig n]! polynomially bounded? Is the function [lIg Ig n]!
polynomially bounded?

* 3.3-6
Which i1s asymptotically larger: lg(lg* n) or lg*(lg n)?

3.3-7
Show that the golden ratio ¢ and its conjugate ¢ both satisfy the

equation 2=x+1.

3.3-8
Prove by induction that the ith Fibonacci number satisfies the equation

Fi=(¢'—¢")/V5,
where ¢ is the golden ratio and ¢ is its conjugate.

3.3-9
Show that k Ig k = ®(n) implies k = O(n/lg n).

Problems
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3-1 Asymptotic behavior of polynomials
Let

d
pln)= Z an'

i=0

where a7 > 0, be a degree-d polynomial in n, and let k be a constant.

Use the definitions of the asymptotic notations to prove the following
properties.

a. If k > d, then p(n) = O(n¥).
b. If k < d, then p(n) = Q(n%).
c. If k = d, then p(n) = O@X).
d. If k > d, then p(n) = o(n).
e. If k < d, then p(n) = w(n’).

3-2  Relative asymptotic growths

Indicate, for each pair of expressions (A, B) in the table below whether
A1s O, o0, Q, w, or ® of B. Assume that k > 1, € > 0, and ¢ > 1 are
constants. Write your answer in the form of the table with “yes” or
“no” written in each box.

A B Q 0 Q2 (0 e
a. 1g°n n*
b. n* o
e,  Jn p A
d 2" gni2
e. H]g-r Lxlgn
f. lg(n!) lg(n")

3-3  Ordering by asymptotic growth rates



a. Rank the following functions by order of growth. That is, find an
arrangement g1, g2, ... , 230 of the functions satisfying g1 = Q(g2), g2

=0(g3), --- » 829 = Q(g30). Partition your list into equivalence classes
such that functions f'(n) and g(n) belong to the same class if and only

if f(n) = O(g(n)).

lg(lg* n) 2lg*n (V2E" 20 ol Sﬁ

(3/2)11 I’l3 ngn lg(n!) a2 nl/lg
n

Inlnn lg*n n-on ylglg Inn 1

n

olgn (gl o 4lgn (nt Vign
n 1)!

lg*(lg n) 2».-"2_5 n 2n n lg n 22.'.1+L

b. Give an example of a single nonnegative function f (n) such that for
all functions gin) in part (a), f (n) is neither O(g;(n)) nor Q(gin)).

3-4  Asymptotic notation properties

Let f (n) and g(n) be asymptotically positive functions. Prove or
disprove each of the following conjectures.

a. f (n) = O(g(n)) implies g(n) = O(f (n)).
b. f (n) + g(n) = O(min {f (n), gn);).

c. f(n) = O(g(n)) implies lg 1 (n) = O(lg g(n)), where Ig g(n) > 1 and f (n)
> 1 for all sufficiently large n.

d. f (n) = O(g(n)) implies 2/ = 0 (28(1)).

e.f(n) =0 ((f (m)?).
f.f (n) = O(g(n)) implies g(n) = O(f (n)).

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] HoLOlS IS Q)



https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

g f(n) = O(f (n/2)).
h. [ (n) + o(f (n)) = O(f (n)).

3-5 Manipulating asymptotic notation

Let f (n) and g(n) be asymptotically positive functions. Prove the
following identities:

a. ©(0(f (n))) = O(f (n)).

b. ©(f (n) + O(f (m)) = O(f (n)).

c. O(f (n) + O(g(n)) = O(f (n) + g(n)).
d. O(f (n)) - O(g(n)) = O(f (n) - g(n)).

e. Argue that for any real constants ay, b1 > 0 and integer constants k1,
k1, the following asymptotic bound holds:

(ayn)* lgh{ugr:} = @(n" lg""' n).

% f. Prove that for S € Z, we have
Y e(ftk)=6 (Z _,ﬁ'k}) ;
KeS keSS

assuming that both sums converge.

% g. Show that for S € Z, the following asymptotic bound does not
necessarily hold, even assuming that both products converge, by
giving a counterexample:

[[e(fn=0 (]_[ _f'{k}) .
k=S kes
3-6 Variations on O and ()

Some authors define (-notation in a slightly different way than this
textbook does. We’ll use the nomenclature £ (read “omega infinity”) for

this alternative definition. We say that /(1) = $(g(n) if there exists a



positive constant ¢ such that f'(n) > cg(n) > 0 for infinitely many integers
n.

a. Show that for any two asymptotically npnnegative functions f'(n) and
o(n), we have £ (n) = O(g(n)) or £(n) = &(g(n)) (or both).

b. Show that there exist two asymptotically nonnegative functions 1 (n)
and g(n) for which neither 1 (n) = O(g(n)) nor f (n) = Q(g(n)) holds.

¢. Describe the potential advantages and disadvantages of using $-
notation instead of ()-notation to characterize the running times of
programs.

Some authors also define O n a slightly different manner. We’ll use o

for the alternative definition: f (n) = Ol(g(n)) if and only if |f (n)| =

O(g(n)).

d. What happens to each direction of the “if and only if ” in Theorem
3.1 on page 56 if we substitute O for O but still use Q?

Some authors define O (read “soft-oh”) to mean O with logarithmic
factors ignored:

O(g(n)) = {f(n) : there exist positive constants ¢, k, and ny
such that 0 < £ () < cg(n) 1gX(n) for all n
210} .

e. Define @ and © in a similar manner. Prove the corresponding analog
to Theorem 3.1.

3-7 Iterated functions

We can apply the iteration operator used in the lg function to any
monotonically increasing function f (n) over the reals. For a given
constant ¢ € R, we define the iterated function /. by

frm)=min{i =0: fVn) <c} ,
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which need not be well defined in all cases. In other words, the quantity
f'(n) is the minimum number of iterated applications of the function f
required to reduce its argument down to ¢ or less.

For each of the functions f (n) and constants ¢ in the table below,

give as tight a bound as possible on /(). If there is no i such that #()
(n) < ¢, write “undefined” as your answer.

f(n) | [f')

a n-1 0
b. lgn 1
c n/2 1
d. nl2 2
e. Jn 2
f Vi
Chapter notes

Knuth [259] traces the origin of the O-notation to a number-theory text
by P. Bachmann in 1892. The o-notation was invented by E. Landau in
1909 for his discussion of the distribution of prime numbers. The Q) and
® notations were advocated by Knuth [265] to correct the popular, but
technically sloppy, practice in the literature of using O-notation for
both upper and lower bounds. As noted earlier in this chapter, many
people continue to use the O-notation where the ®-notation is more
technically precise. The soft-oh notation © in Problem 3-6 was
introduced by Babai, Luks, and Seress [31], although it was originally
written as O~. Some authors now define O(2(n)) as ignoring factors that
are logarith@ic in g(n), rather than in n. With this definition, we can say
that 72" = O(2") but with the definition in Problem 3-6, this statement
is not true. Further discussion of the history and development of
asymptotic notations appears in works by Knuth [259, 265] and
Brassard and Bratley [70].



Not all authors define the asymptotic notations in the same way,
although the various definitions agree in most common situations.
Some of the alternative definitions encompass functions that are not
asymptotically nonnegative, as long as their absolute values are
appropriately bounded.

Equation (3.29) is due to Robbins [381]. Other properties of
elementary mathematical functions can be found in any good
mathematical reference, such as Abramowitz and Stegun [1] or
Zwillinger [468], or in a calculus book, such as Apostol [19] or Thomas
et al. [433]. Knuth [259] and Graham, Knuth, and Patashnik [199]
contain a wealth of material on discrete mathematics as used in
computer science.

1 Within set notation, a colon means “such that.”
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4 Divide-and-Conquer

The divide-and-conquer method is a powerful strategy for designing
asymptotically efficient algorithms. We saw an example of divide-and-
conquer in Section 2.3.1 when learning about merge sort. In this
chapter, we’ll explore applications of the divide-and-conquer method
and acquire valuable mathematical tools that you can use to solve the
recurrences that arise when analyzing divide-and-conquer algorithms.

Recall that for divide-and-conquer, you solve a given problem
(instance) recursively. If the problem is small enough—the base case—
you just solve it directly without recursing. Otherwise—the recursive
case—you perform three characteristic steps:

Divide the problem into one or more subproblems that are smaller
instances of the same problem.

Conquer the subproblems by solving them recursively.

Combine the subproblem solutions to form a solution to the original
problem.

A divide-and-conquer algorithm breaks down a large problem into
smaller subproblems, which themselves may be broken down into even
smaller subproblems, and so forth. The recursion hottoms out when it
reaches a base case and the subproblem is small enough to solve
directly without further recursing.

Recurrences



To analyze recursive divide-and-conquer algorithms, we’ll need some
mathematical tools. A recurrence is an equation that describes a
function in terms of its value on other, typically smaller, arguments.
Recurrences go hand in hand with the divide-and-conquer method
because they give us a natural way to characterize the running times of
recursive algorithms mathematically. You saw an example of a
recurrence in Section 2.3.2 when we analyzed the worst-case running
time of merge sort.

For the divide-and-conquer matrix-multiplication algorithms
presented in Sections 4.1 and 4.2, we’ll derive recurrences that describe
their worst-case running times. To understand why these two divide-
and-conquer algorithms perform the way they do, you’ll need to learn
how to solve the recurrences that describe their running times. Sections
4.3-4.7 teach several methods for solving recurrences. These sections
also explore the mathematics behind recurrences, which can give you
stronger intuition for designing your own divide-and-conquer
algorithms.

We want to get to the algorithms as soon as possible. So, let’s just
cover a few recurrence basics now, and then we’ll look more deeply at
recurrences, especially how to solve them, after we see the matrix-
multiplication examples.

The general form of a recurrence is an equation or inequality that
describes a function over the integers or reals using the function itself.
It contains two or more cases, depending on the argument. If a case
involves the recursive invocation of the function on different (usually
smaller) mputs, it 1s a recursive case. If a case does not involve a
recursive invocation, it is a hase case. There may be zero, one, or many
functions that satisfy the statement of the recurrence. The recurrence is
well defined if there is at least one function that satisfies it, and ill defined
otherwise.

Algorithmic recurrences

We’ll be particularly interested in recurrences that describe the running
times of divide-and-conquer algorithms. A recurrence 7 (n) 1s
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algorithmic 1if, for every sufficiently large threshold constant ng > 0, the
following two properties hold:

1. For all n < ng, we have T (n) = O(1).

2. For all n 2 n(, every path of recursion terminates in a defined base
case within a finite number of recursive invocations.

Similar to how we sometimes abuse asymptotic notation (see page 60),
when a function is not defined for all arguments, we understand that
this definition is constrained to values of n for which T (n) is defined.
Why would a recurrence 7 (n) that represents a (correct) divide-and-
conquer algorithm’s worst-case running time satisfy these properties for
all sufficiently large threshold constants? The first property says that
there exist constants ¢, ¢p such that 0 < ¢y < T'(n) < ¢ for n < n(. For

every legal mput, the algorithm must output the solution to the
problem it’s solving in finite time (see Section 1.1). Thus we can let ¢ be

the minimum amount of time to call and return from a procedure,
which must be positive, because machine instructions need to be
executed to invoke a procedure. The running time of the algorithm may
not be defined for some values of n if there are no legal inputs of that
size, but it must be defined for at least one, or else the “algorithm”
doesn’t solve any problem. Thus we can let ¢p be the algorithm’

maximum running time on any input of size n < ng, where n( is

sufficiently large that the algorithm solves at least one problem of size
less than ngp. The maximum is well defined, since there are at most a

finite number of inputs of size less than n(, and there is at least one if n

1s sufficiently large. Consequently, 7" (n) satisfies the first property. If the
second property fails to hold for T (n), then the algorithm isn’t correct,
because it would end up in an infinite recursive loop or otherwise fail to
compute a solution. Thus, it stands to reason that a recurrence for the
worst-case running time of a correct divide-and-conquer algorithm
would be algorithmic.

Conventions for recurrences



We adopt the following convention:

Whenever a recurrence is stated without an explicit base case, we
assume that the recurrence is algorithmic.

That means you’re free to pick any sufficiently large threshold constant
no for the range of base cases where 7T (n) = ©O(1). Interestingly, the

asymptotic solutions of most algorithmic recurrences you’re likely to
see when analyzing algorithms don’t depend on the choice of threshold
constant, as long as it’s large enough to make the recurrence well
defined.

Asymptotic solutions of algorithmic divide-and-conquer recurrences
also dont tend to change when we drop any floors or ceilings in a
recurrence defined on the integers to convert it to a recurrence defined
on the reals. Section 4.7 gives a sufficient condition for ignoring floors
and ceilings that applies to most of the divide-and-conquer recurrences
youre likely to see. Consequently, we’ll frequently state algorithmic
recurrences without floors and ceilings. Doing so generally simplifies the
statement of the recurrences, as well as any math that we do with them.

You may sometimes see recurrences that are not equations, but
rather inequalities, such as T (n) < 2T (n/2) + ©(n). Because such a
recurrence states only an upper bound on 7 (n), we express its solution
using O-notation rather than ®-notation. Similarly, if the inequality is
reversed to 7T (n) > 2T (n/2) + O(n), then, because the recurrence gives
only a lower bound on 7' (n), we use ()-notation in its solution.

Divide-and-conquer and recurrences

This chapter illustrates the divide-and-conquer method by presenting
and using recurrences to analyze two divide-and-conquer algorithms
for multiplying n X n matrices. Section 4.1 presents a simple divide-and-
conquer algorithm that solves a matrix-multiplication problem of size n
by breaking it into four subproblems of size n/2, which it then solves
recursively. The running time of the algorithm can be characterized by
the recurrence

T (n) = 8T (n/2) + O(1),
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which turns out to have the solution 7 (n) = @(n3). Although this
divide-and-conquer algorithm is no faster than the straightforward
method that uses a triply nested loop, it leads to an asymptotically
faster divide-and-conquer algorithm due to V. Strassen, which we’ll
explore in Section 4.2. Strassen’s remarkable algorithm divides a
problem of size n into seven subproblems of size n/2 which it solves
recursively. The running time of Strassen’s algorithm can be described
by the recurrence

T (n) = 7T (n/2) + O©(n2),

which has the solution 7' (n) = @(nlg 7) = O(n2'81). Strassen’s algorithm
beats the straightforward looping method asymptotically.

These two divide-and-conquer algorithms both break a problem of
size n into several subproblems of size n/2. Although it is common when
using divide-and-conquer for all the subproblems to have the same size,
that isn’t always the case. Sometimes it’s productive to divide a problem
of size n nto subproblems of different sizes, and then the recurrence
describing the running time reflects the irregularity. For example,
consider a divide-and-conquer algorithm that divides a problem of size
n into one subproblem of size n/3 and another of size 2n/3, taking ®(n)
time to divide the problem and combine the solutions to the
subproblems. Then the algorithm’s running time can be described by the
recurrence

T (n) =T (n/3) + T (2n/3) + O(n),

which turns out to have solution 7 (n) = O(n lg n). We’ll even see an
algorithm in Chapter 9 that solves a problem of size n by recursively
solving a subproblem of size n/5 and another of size 7n/10, taking ®(n)
time for the divide and combine steps. Its performance satisfies the
recurrence

T (n) =T (n/5) + T (7n/10) + B(n),

which has solution 7' (n) = O(n).
Although divide-and-conquer algorithms usually create subproblems
with sizes a constant fraction of the original problem size, that’s not



always the case. For example, a recursive version of linear search (see
Exercise 2.1-4) creates just one subproblem, with one element less than
the original problem. Each recursive call takes constant time plus the
time to recursively solve a subproblem with one less element, leading to
the recurrence

T(n)y=Tnm-1)+06(1),

which has solution T (n) = ®(n). Nevertheless, the vast majority of
efficient divide-and-conquer algorithms solve subproblems that are a
constant fraction of the size of the original problem, which is where
we’ll focus our efforts.

Solving recurrences

After learning about divide-and-conquer algorithms for matrix
multiplication in Sections 4.1 and 4.2, we’ll explore several mathematical
tools for solving recurrences—that is, for obtaining asymptotic ®-, O-,
or ()-bounds on their solutions. We want simple-to-use tools that can
handle the most commonly occurring situations. But we also want
general tools that work, perhaps with a little more effort, for less
common cases. This chapter offers four methods for solving
recurrences:

o In the substitution method (Section 4.3), you guess the form of a
bound and then use mathematical induction to prove your guess
correct and solve for constants. This method is perhaps the most
robust method for solving recurrences, but it also requires you to
make a good guess and to produce an inductive proof.

o The recursion-tree method (Section 4.4) models the recurrence as
a tree whose nodes represent the costs incurred at various levels
of the recursion. To solve the recurrence, you determine the costs
at each level and add them up, perhaps using techniques for
bounding summations from Section A.2. Even if you don’t use this
method to formally prove a bound, it can be helpful in guessing
the form of the bound for use in the substitution method.
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e The master method (Sections 4.5 and 4.6) is the easiest method,
when it applies. It provides bounds for recurrences of the form

T'(n) =aT (nlb) + f (n),

where @ > 0 and b > 1 are constants and f (n) i1s a given “driving”
function. This type of recurrence tends to arise more frequently
in the study of algorithms than any other. It characterizes a
divide-and-conquer algorithm that creates a subproblems, each of
which is 1/b times the size of the original problem, using f'(n) time
for the divide and combine steps. To apply the master method,
you need to memorize three cases, but once you do, you can easily
determine asymptotic bounds on running times for many divide-
and-conquer algorithms.

o The Akra-Bazzi method (Section 4.7) is a general method for
solving divide-and-conquer recurrences. Although it involves
calculus, it can be used to attack more complicated recurrences
than those addressed by the master method.

4.1  Multiplying square matrices

We can use the divide-and-conquer method to multiply square matrices.
If you’ve seen matrices before, then you probably know how to multiply
them. (Otherwise, you should read Section D.1.) Let 4 = (a;;) and B =

(bjk) be square n X n matrices. The matrix product C= A4 - Bis also an n
X n matrix, where for i, j =1, 2, ... , n, the (i, j) entry of Cis given by

Ciyj = Z Aig 4|!]':'-:_.f 5 {41)
k=1

Generally, we’ll assume that the matrices are dense, meaning that most

of the n? entries are not 0, as opposed to sparse, where most of the n?
entries are 0 and the nonzero entries can be stored more compactly
than in an n X n array.



Computing the matrix C requires computing n? matrix entries, each
of which is the sum of n pairwise products of input elements from 4 and
B. The MATRIX-MULTIPLY procedure implements this strategy in a
straightforward manner, and it generalizes the problem slightly. It takes
as input three n X n matrices 4, B, and C, and it adds the matrix
product 4 - Bto C, storing the result in C. Thus, it computes C= C + 4
- B, instead of just C = 4 - B. If only the product 4 - B is needed, just

2

initialize all n“~ entries of C to 0 before calling the procedure, which

takes an additional @(nz) time. We’ll see that the cost of matrix
multiplication asymptotically dominates this initialization cost.

MATRIX-MULTIPLY (4, B, C, n)

1 fori=1ton Il compute entries in each of n rows

2 forj=1ton Il compute n entries in row i

3 fork=1ton

4 ¢cjj= cjjt ajk bij Il add in another term of equation
4.1)

The pseudocode for MATRIX-MULTIPLY works as follows. The
for loop of lines 1-4 computes the entries of each row i, and within a
given row i, the for loop of lines 2-4 computes each of the entries ¢jj for

each column j. Each iteration of the for loop of lines 3—4 adds in one
more term of equation (4.1).

Because each of the triply nested for loops runs for exactly n
iterations, and each execution of line 4 takes constant time, the

MATRIX-MULTIPLY procedure operates in @(n3) time. Even if we
add in the G)(nz) time for initializing C to 0, the running time is still
Q).

A simple divide-and-conquer algorithm

Let’s see how to compute the matrix product 4 - B using divide-and-
conquer. For n > 1, the divide step partitions the » X n matrices into
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four n/2 X n/2 submatrices. We’ll assume that » is an exact power of 2,
so that as the algorithm recurses, we are guaranteed that the submatrix
dimensions are integer. (Exercise 4.1-1 asks you to relax this
assumption.) As with MATRIX-MULTIPLY, we’ll actually compute C
= C+ A - B. But to simplify the math behind the algorithm, let’s assume
that C has been initialized to the zero matrix, so that we are indeed
computing C= A4 - B.

The divide step views each of the n X n matrices 4, B, and C as four
n/2 X n/2 submatrices:

"‘1[] "1]2 ) ( B]l B]Z ) ( Cll CI]Z )
A= ., B = N z . 42
( & Ae By B Ci Cn e
Then we can write the matrix product as
{_Ill Cl] ) ( "-1|.] -‘-1-11 )( Bll Bl] )
: = 4.3
((-'2] CZ] "-12] -‘4-22 BZ] BZ] |: }
- ("—1|.]'B]l+-‘41]'321 ‘411'312+‘41]'B]2) (44}
Az Buu+ An By Az -Bia+ Axa- By )7 :
which corresponds to the equations
CJ_] == ..-‘1.|_]'.B|_]+.:“I.]2'.B]l. (‘-1'.5}
Ciz2 = Ani-Bia+ 412+ Ba (4.0)
CZI = Ay - 311 T “122 ; le : (4-7}
ng = :‘12] " Bl] + ;"132 . B]z i (4.5}

Equations (4.5)—(4.8) involve eight n/2 X n/2 multiplications and four
additions of n/2 X n/2 submatrices.

As we look to transform these equations to an algorithm that can be
described with pseudocode, or even implemented for real, there are two
common approaches for implementing the matrix partitioning.

One strategy is to allocate temporary storage to hold As four
submatrices A1, A1, A21, and A>> and B’s four submatrices B 1, B2,

B>1, and Bp». Then copy each element in 4 and B to its corresponding

location in the appropriate submatrix. After the recursive conquer step,
copy the elements in each of Cs four submatrices C11, C12, (21, and



(C»7 to their corresponding locations in C. This approach takes ®(n2)
time, since 312 elements are copied.

The second approach uses index calculations and 1s faster and more
practical. A submatrix can be specified within a matrix by indicating
where within the matrix the submatrix lies without touching any matrix
elements. Partitioning a matrix (or recursively, a submatrix) only
mvolves arithmetic on this location information, which has constant size
independent of the size of the matrix. Changes to the submatrix
elements update the original matrix, since they occupy the same
storage.

Going forward, we’ll assume that index calculations are used and
that partitioning can be performed in ®(1) time. Exercise 4.1-3 asks you
to show that it makes no difference to the overall asymptotic running
time of matrix multiplication, however, whether the partitioning of
matrices uses the first method of copying or the second method of
index calculation. But for other divide-and-conquer matrix calculations,
such as matrix addition, it can make a difference, as Exercise 4.1-4 asks
you to show.

The procedure MATRIX-MULTIPLY-RECURSIVE uses equations
(4.5)—(4.8) to implement a divide-and-conquer strategy for square-
matrix multiplication. Like MATRIX-MULTIPLY, the procedure
MATRIX-MULTIPLY-RECURSIVE computes C = C + 4 - B since, if
necessary, C can be initialized to 0 before the procedure is called in
order to compute only C= 4 - B.

MATRIX-MULTIPLY-RECURSIVE(A, B, C, n)
1if n ==
2/l Base case.
3 c11=c11 tagy by
4  return

5/1 Divide.
6partition 4, B, and C into n/2 X n/2 submatrices

A11, A12, A21, A22; B11, B12, B21, B22;
and Cq1, C12, C21, C27; respectively
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71l Conquer.
$sMATRIX-MULTIPLY-RECURSIVE(A411, B11, C11,#/2)

9MATRIX-MULTIPLY-RECURSIVE(A11, By, C12, n/2)
10MATRIX-MULTIPLY-RECURSIVE(A4>1, B] 1, C21, n/2)
11MATRIX-MULTIPLY-RECURSIVE(A>1, B12, C22, nl2)
12MATRIX-MULTIPLY-RECURSIVE(A]2, B>1, C11, n/2)
13MATRIX-MULTIPLY-RECURSIVE(A]2, By), C12, nl2)
14MATRIX-MULTIPLY-RECURSIVE(427, Bo1, Cr1, nl2)
1SMATRIX-MULTIPLY-RECURSIVE(427, By, 27, nl2)

As we walk through the pseudocode, we’ll derive a recurrence to
characterize its running time. Let 7 (n) be the worst-case time to
multiply two n X n matrices using this procedure.

In the base case, when n = 1, line 3 performs just the one scalar
multiplication and one addition, which means that 7 (1) = ©(1). As is
our convention for constant base cases, we can omit this base case in
the statement of the recurrence.

The recursive case occurs when n > 1. As discussed, we’ll use index
calculations to partition the matrices in line 6, taking ®(1) time. Lines
8—15 recursively call MATRIX-MULTIPLY-RECURSIVE a total of
eight times. The first four recursive calls compute the first terms of
equations (4.5)—(4.8), and the subsequent four recursive calls compute
and add in the second terms. Each recursive call adds the product of a
submatrix of 4 and a submatrix of B to the appropriate submatrix of C
in place, thanks to index calculations. Because each recursive call
multiplies two n/2 X n/2 matrices, thereby contributing 7" (n/2) to the
overall running time, the time taken by all eight recursive calls i1s 87T
(n/2). There is no combine step, because the matrix C is updated in
place. The total time for the recursive case, therefore, is the sum of the
partitioning time and the time for all the recursive calls, or ©(1) + 8T
(n/2).

Thus, omitting the statement of the base case, our recurrence for the
running time of MATRIX-MULTIPLY-RECURSIVE is



T(n) =8T(n/2) + ©(1). (4.9)

As we’ll see from the master method in Section 4.5, recurrence (4.9) has

the solution 7' (n) = @(n3), which means that it has the same asymptotic
running time as the straightforward MATRIX-MULTIPLY procedure.

Why is the @(n3) solution to this recurrence so much larger than the
O(n g n) solution to the merge-sort recurrence (2.3) on page 41?7 After
all, the recurrence for merge sort contains a ®(n) term, whereas the
recurrence for recursive matrix multiplication contains only a O(1)
term.

Let’s think about what the recursion tree for recurrence (4.9) would
look like as compared with the recursion tree for merge sort, illustrated
in Figure 2.5 on page 43. The factor of 2 in the merge-sort recurrence
determines how many children each tree node has, which in turn
determines how many terms contribute to the sum at each level of the
tree. In comparison, for the recurrence (4.9) for MATRIX-
MULTIPLY-RECURSIVE, each internal node in the recursion tree has
eight children, not two, leading to a “bushier” recursion tree with many
more leaves, despite the fact that the internal nodes are each much
smaller. Consequently, the solution to recurrence (4.9) grows much
more quickly than the solution to recurrence (2.3), which is borne out

in the actual solutions: ®(n3) versus O(n Ig n).

Exercises

Note: You may wish to read Section 4.5 before attempting some of
these exercises.

4.1-1
Generalize MATRIX-MULTIPLY-RECURSIVE to multiply n X n
matrices for which n is not necessarily an exact power of 2. Give a

recurrence describing its running time. Argue that it runs in @(n3) time
in the worst case.

4.1-2
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How quickly can you multiply a k£ n X n matrix (k n rows and n columns)
by an n X k n matrix, where k > 1, using MATRIX-MULTIPLY-
RECURSIVE as a subroutine? Answer the same question for
multiplying an » X k n matrix by a £ n X n matrix. Which is
asymptotically faster, and by how much?

4.1-3

Suppose that instead of partitioning matrices by index calculation in
MATRIX-MULTIPLY-RECURSIVE, you copy the appropriate
elements of 4, B, and C into separate n/2 X n/2 submatrices 411, 412,

Ap1, A22; B11, B12, B21, Bpp; and Cq1, Cpp, (21, (2, respectively.
After the recursive calls, you copy the results from Cy1, C12, C21, and
(C>7 back into the appropriate places in C. How does recurrence (4.9)
change, and what is its solution?

4.1-4

Write pseudocode for a divide-and-conquer algorithm MATRIX-ADD-
RECURSIVE that sums two n X n matrices A and B by partitioning
each of them into four n/2 X n/2 submatrices and then recursively
summing corresponding pairs of submatrices. Assume that matrix

partitioning uses ®(1)-time index calculations. Write a recurrence for
the worst-case running time of MATRIX-ADD-RECURSIVE, and

solve your recurrence. What happens if you use G)(nz)-time copying to
implement the partitioning instead of index calculations?

4.2  Strassen’s algorithm for matrix multiplication

You might find it hard to imagine that any matrix multiplication
algorithm could take less than ®(n3) time, since the natural definition of

matrix multiplication requires n3 scalar multiplications. Indeed, many
mathematicians presumed that it was not possible to multiply matrices

n 0(n3) time until 1969, when V. Strassen [424] published a remarkable
recursive algorithm for multiplying n» X n matrices. Strassen’s algorithm



runs in G)(nlg 7) time. Since lg 7 = 2.8073549 ..., Strassen’s algorithm

runs in 0(n2°81) time, which is asymptotically better than the ®(n3)
MATRIX-MULTIPLY and MATRIX-MULTIPLY-RECURSIVE
procedures.

The key to Strassen’s method is to use the divide-and-conquer idea
from the MATRIX-MULTIPLY-RECURSIVE procedure, but make
the recursion tree less bushy. We’ll actually increase the work for each
divide and combine step by a constant factor, but the reduction in
bushiness will pay off. We won’t reduce the bushiness from the eight-
way branching of recurrence (4.9) all the way down to the two-way
branching of recurrence (2.3), but we’ll improve it just a little, and that
will make a big difference. Instead of performing eight recursive
multiplications of n/2 X n/2 matrices, Strassen’s algorithm performs only
seven. The cost of eliminating one matrix multiplication is several new
additions and subtractions of n/2 X n/2 matrices, but still only a
constant number. Rather than saying “additions and subtractions”
everywhere, we’ll adopt the common terminology of calling them both
“additions” because subtraction is structurally the same computation
as addition, except for a change of sign.

To get an inkling how the number of multiplications might be
reduced, as well as why reducing the number of multiplications might be
desirable for matrix calculations, suppose that you have two numbers x

and y, and you want to calculate the quantity 2 - y2. The
straightforward calculation requires two multiplications to square x and
y, followed by one subtraction (which you can think of as a “negative

addition”). But let’s recall the old algebra trick X2 y2 =x2_ Xy +xy-—

y2 =x(x—-y) +y(x—y) =(x + y)(x —p). Using this formulation of the
desired quantity, you could instead compute the sum x + y and the
difference x — y and then multiply them, requiring only a single
multiplication and two additions. At the cost of an extra addition, only
one multiplication is needed to compute an expression that looks as if it
requires two. If x and y are scalars, there’s not much difference: both
approaches require three scalar operations. If x and y are large
matrices, however, the cost of multiplying outweighs the cost of adding,

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] HoLOlS IS ()



https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

in which case the second method outperforms the first, although not
asymptotically.

Strassen’s strategy for reducing the number of matrix multiplications
at the expense of more matrix additions is not at all obvious—perhaps
the biggest understatement in this book! As with MATRIX-
MULTIPLY-RECURSIVE, Strassen’s algorithm uses the divide-and-
conquer method to compute C= C+ A4 - B, where A4, B, and C are all n
X n matrices and n 1s an exact power of 2. Strassen’s algorithm
computes the four submatrices Cq1, C12, C21, and (7 of C from

equations (4.5)—(4.8) on page 82 in four steps. We’ll analyze costs as we
go along to develop a recurrence 7T (n) for the overall running time.
Let’s see how it works:

1. If n = 1, the matrices each contain a single element. Perform a
single scalar multiplication and a single scalar addition, as in line
3 of MATRIX-MULTIPLY-RECURSIVE, taking ©(1) time,
and return. Otherwise, partition the mmput matrices 4 and B and
output matrix C into n/2 X n/2 submatrices, as in equation (4.2).

This step takes ©®(1) time by index calculation, just as in
MATRIX-MULTIPLY-RECURSIVE.

2. Create n/2 X n/2 matrices S1, S92, ... , S10, each of which 1s the

sum or difference of two submatrices from step 1. Create and
zero the entries of seven n/2 X n/2 matrices Pq, Py, ... , P7 to

hold seven n/2 X n/2 matrix products. All 17 matrices can be
created, and the P initialized, in ©(n?) time.
3. Using the submatrices from step 1 and the matrices S1, S9, ...,

S10 created in step 2, recursively compute each of the seven
matrix products Py, Py, ..., P7, taking 77 (n/2) time.

4. Update the four submatrices Cy1, C12, C21, C2o of the result
matrix C by adding or subtracting various P; matrices, which

takes ®(n2) time.



We'll see the details of steps 2—4 in a moment, but we already have
enough information to set up a recurrence for the running time of
Strassen’s method. As is common, the base case in step 1 takes O(1)
time, which we’ll omit when stating the recurrence. When n > 1, steps 1,

2, and 4 take a total of ®(n2) time, and step 3 requires seven
multiplications of n/2 X n/2 matrices. Hence, we obtain the following
recurrence for the running time of Strassen’s algorithm:

T(n) =7T(n/2) + O(n?). (4.10)

Compared with MATRIX-MULTIPLY-RECURSIVE, we have traded
off one recursive submatrix multiplication for a constant number of
submatrix additions. Once you understand recurrences and their
solutions, you’ll be able to see why this trade-oft actually leads to a
lower asymptotic running time. By the master method in Section 4.5,

recurrence (4.10) has the solution 7" (n) = @)(nlg 7) = 0(n2'81), beating

the @(n3)-time algorithms.
Now, let’s delve into the details. Step 2 creates the following 10
matrices:

S1 = B12—- B2,
Sy =411+ 412,
§3 =dp1 + A2,
S4 = Bp1-By],
S5 =411+ 422,
S¢ = B11+ B2,

S7 = A12- A2,
S8 = Bp1 + B2,
S9 =411 421,
S10 = B11 + B12.
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This step adds or subtracts n/2 X n/2 matrices 10 times, taking ®(n2)
time.

Step 3 recursively multiplies #/2 X n/2 matrices 7 times to compute
the following n/2 X n/2 matrices, each of which is the sum or difference
of products of 4 and B submatrices:

P1=A11"81 (=411 B1a— 411" B22),

Py =S8y Byy (=A11 " By + A1 Bp)),
P3 =83 B11 (=421 By1 + 422 Br1),

P4 = App -S4 (= Ay By1 —A22 - B11),
P5=S85-S¢ (=A11-B11+A11 By +Ap2- Byl + 422" B)),

Po=S87-Sg (=A12-Ba1 +A1p By — A3y Byl — A2 B))),
P7=389-810 (=411 B11 + 411 " B12 — 421 - B11 — 421 * B12).

The only multiplications that the algorithm performs are those in the
middle column of these equations. The right-hand column just shows
what these products equal in terms of the original submatrices created
in step 1, but the terms are never explicitly calculated by the algorithm.
Step 4 adds to and subtracts from the four n/2 X n/2 submatrices of
the product C the various P; matrices created in step 3. We start with

C11=C11+P5+Pg—Pr+ Pg.
Expanding the calculation on the right-hand side, with the expansion of
each P; on its own line and vertically aligning terms that cancel out, we
see that the update to Cj1 equals
"411 'B]l = ‘_1]1 'BZE + ".1]2 'B]l T ‘_12]'822

—."I.!:!'B]l +-"122'821

_‘—1]['322 _-“112'322
. -’—12]'322 o -"122'82] g Al!' BEE - f-ilE'BEJ

r{l]'B]l +‘-4'1].BE]"

which corresponds to equation (4.5). Similarly, setting



C1p=Cip+P1+P

means that the update to C1» equals

-"11]'812_ ;'11['822
+ J'1.11 'BE] + 1‘1.12 'B]E

Ay By + Ay Bas
corresponding to equation (4.6). Setting
Cr)1=Cr1+P3+ Py

means that the update to Cp1 equals

Az By + Az By
- "-1']2"8[] +“1‘2]'B]1

Ay By + Aoy - Bay

corresponding to equation (4.7). Finally, setting
Cyp=Cyp+ P5+ P1—P3— Py

means that the update to Cy» equals

An-Bii+ A1 -Baa+ A - Bl + Axa- Bas
— Ay By + Ay - By
— A+ By — A1+ By
— Ay - By — Ay B+ Az B+ As - By,

-’422'322 +"421'81] d

which corresponds to equation (4.8). Altogether, since we add or
subtract n/2xXn/2 matrices 12 times in step 4, this step indeed takes
@(nz) time.

We can see that Strassen’s remarkable algorithm, comprising steps
1-4, produces the correct matrix product using 7 submatrix
multiplications and 18 submatrix additions. We can also see that
recurrence (4.10) characterizes its running time. Since Section 4.5 shows

that this recurrence has the solution 7' (n) = @(nlg 7) = 0(n3), Strassen’s
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method asymptotically beats the ®(n3) MATRIX-MULTIPLY and
MATRIX-MULTIPLY-RECURSIVE procedures.

Exercises

Note: You may wish to read Section 4.5 before attempting some of
these exercises.

4.2-1
Use Strassen’s algorithm to compute the matrix product

1 3 6 8
(73)(%2)
Show your work.

4.2-2
Write pseudocode for Strassen’s algorithm.

4.2-3
What is the largest £ such that if you can multiply 3 X 3 matrices using k&
multiplications (not assuming commutativity of multiplication), then

you can multiply #» X n matrices in o(nlg 7) time? What is the running
time of this algorithm?

4.2-4

V. Pan discovered a way of multiplying 68 X 68 matrices using 132,464
multiplications, a way of multiplying 70 X 70 matrices using 143,640
multiplications, and a way of multiplying 72 X 72 matrices using 155,424
multiplications. Which method yields the best asymptotic running time
when used in a divide-and-conquer matrix-multiplication algorithm?
How does it compare with Strassen’s algorithm?

4.2-5

Show how to multiply the complex numbers a + bi and ¢ + d i using only
three multiplications of real numbers. The algorithm should take a, b, c,
and d as mput and produce the real component ac — bd and the
imaginary component ad + bc separately.



4.2-6

Suppose that you have a O(n%*)-time algorithm for squaring n X n
matrices, where a > 2. Show how to use that algorithm to multiply two

different n X n matrices in @(n%) time.

4.3  The substitution method for solving recurrences

Now that you have seen how recurrences characterize the running times
of divide-and-conquer algorithms, let’s learn how to solve them. We
start 1 this section with the substitution method, which is the most
general of the four methods in this chapter. The substitution method
comprises two steps:

1. Guess the form of the solution using symbolic constants.

2. Use mathematical induction to show that the solution works,
and find the constants.

To apply the inductive hypothesis, you substitute the guessed solution
for the function on smaller values—hence the name “substitution
method.” This method is powerful, but you must guess the form of the
answer. Although generating a good guess might seem difficult, a little
practice can quickly improve your intuition.

You can use the substitution method to establish either an upper or
a lower bound on a recurrence. It’s usually best not to try to do both at
the same time. That is, rather than trying to prove a ®-bound directly,
first prove an O-bound, and then prove an ()-bound. Together, they give
you a ®-bound (Theorem 3.1 on page 56).

As an example of the substitution method, let’s determine an
asymptotic upper bound on the recurrence:

T(n)=2T(|n/2]) + O(n) . (4.11)
This recurrence is similar to recurrence (2.3) on page 41 for merge sort,
except for the floor function, which ensures that 7" (n) is defined over

the integers. Let’s guess that the asymptotic upper bound is the same—
T (n) = O(n lg n)—and use the substitution method to prove it.
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We’ll adopt the inductive hypothesis that 7' (n) < ¢ n 1g n for all n >
n(, where we’ll choose the specific constants ¢ > 0 and ng > 0 later, after

we see what constraints they need to obey. If we can establish this
inductive hypothesis, we can conclude that 7' (n) = O(n Ig n). It would be
dangerous to use 7 (n) = O(n lg n) as the inductive hypothesis because
the constants matter, as we’ll see in a moment in our discussion of
pitfalls.

Assume by induction that this bound holds for all numbers at least
as big as ng and less than n. In particular, therefore, if n > 2n(, it holds
for |n/2], yielding T ([n/2 ]) < ¢ |n/2] 1g(ln/2]). Substituting into
recurrence (4.11)—hence the name “substitution” method—yields

T (n) < 2(c |n/2] 1g(1n/2])) + O(n)
< 2(c(nf2) 1g(nf2)) + O(n)
= cn lg(n/2) + O(n)
=cnlgn—-cnlg2+ 0(n)
=cnlgn—cn+ O(n)
< cnlgn,

where the last step holds if we constrain the constants ngp and ¢ to be
sufficiently large that for n > 2ng, the quantity c¢n dominates the

anonymous function hidden by the ®(n) term.

We’ve shown that the inductive hypothesis holds for the inductive
case, but we also need to prove that the inductive hypothesis holds for
the base cases of the induction, that is, that 7 (n) < cnlgn when ng < n <

2n(. As long as ng > 1 (a new constraint on ng), we have Ig n > 0, which
implies that n 1g n > 0. So lets pick ng = 2. Since the base case of

recurrence (4.11) is not stated explicitly, by our convention, 7" (n) is
algorithmic, which means that 7 (2) and T (3) are constant (as they
should be if they describe the worst-case running time of any real
program on inputs of size 2 or 3). Picking ¢ = max {7 (2), T (3)} yields
TR2)<sc<2lIg2)cand T (3) < ¢ <(31g 3)c, establishing the inductive
hypothesis for the base cases.



Thus, we have T (n) < cn lg n for all n > 2, which implies that the
solution to recurrence (4.11) is 7' (n) = O(n 1g n).

In the algorithms literature, people rarely carry out their
substitution proofs to this level of detail, especially in their treatment of
base cases. The reason is that for most algorithmic divide-and-conquer
recurrences, the base cases are all handled in pretty much the same way.
You ground the induction on a range of values from a convenient
positive constant nq up to some constant #o > "o such that for # = 1,

the recurrence always bottoms out in a constant-sized base case
between ng and "o. (This example used 7o = 270.) Then, it’s usually

apparent, without spelling out the details, that with a suitably large
choice of the leading constant (such as ¢ for this example), the inductive
hypothesis can be made to hold for all the values in the range from ng

to M,

Making a good guess

Unfortunately, there is no general way to correctly guess the tightest
asymptotic solution to an arbitrary recurrence. Making a good guess
takes experience and, occasionally, creativity. Fortunately, learning some
recurrence-solving heuristics, as well as playing around with recurrences
to gain experience, can help you become a good guesser. You can also
use recursion trees, which we’ll see in Section 4.4, to help generate good
guesses.

If a recurrence is similar to one you’ve seen before, then guessing a
similar solution is reasonable. As an example, consider the recurrence

T(n)=2T (/2 +17) + BO(n),

defined on the reals. This recurrence looks somewhat like the merge-
sort recurrence (2.3), but it’s more complicated because of the added
“17” in the argument to 7 on the right-hand side. Intuitively, however,
this additional term shouldn’t substantially affect the solution to the
recurrence. When # is large, the relative difference between n/2 and n/2
+ 17 1s not that large: both cut n nearly in half. Consequently, it makes
sense to guess that 7 (n) = O(n lg n), which you can verify is correct
using the substitution method (see Exercise 4.3-1).
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Another way to make a good guess is to determine loose upper and
lower bounds on the recurrence and then reduce your range of
uncertainty. For example, you might start with a lower bound of 7' (n) =
Q(n) for recurrence (4.11), since the recurrence includes the term ®(n),

and you can prove an initial upper bound of 7' (n) = O(nz). Then split
your time between trying to lower the upper bound and trying to raise
the lower bound until you converge on the correct, asymptotically tight
solution, which in this case is 7' (n) = O(n 1g n).

A trick of the trade: subtracting a low-order term

Sometimes, you might correctly guess a tight asymptotic bound on the
solution of a recurrence, but somehow the math fails to work out in the
induction proof. The problem frequently turns out to be that the
inductive assumption is not strong enough. The trick to resolving this
problem is to revise your guess by subtracting a lower-order term when
you hit such a snag. The math then often goes through.

Consider the recurrence

T(n) = 2T (n/2) + O(1) (4.12)

defined on the reals. Let’s guess that the solution 1s 7' (n) = O(n) and try
to show that 7' (n) < cn for n 2 n(, where we choose the constants ¢, ng >

0 suitably. Substituting our guess into the recurrence, we obtain

T (n) £ 2(c(nf2)) + (1)
=cn+ 0O(1),

which, unfortunately, does not imply that 7" (n) < cn for any choice of c.

We might be tempted to try a larger guess, say 7' (n) = O(nz). Although
this larger guess works, it provides only a loose upper bound. It turns
out that our original guess of 7' (n) = O(n) 1s correct and tight. In order
to show that it is correct, however, we must strengthen our inductive
hypothesis.

Intuitively, our guess is nearly right: we are off only by ®(1), a lower-
order term. Nevertheless, mathematical induction requires us to prove
the exact form of the inductive hypothesis. Let’s try our trick of



subtracting a lower-order term from our previous guess: 7 (n) < cn — d,
where d > 0 is a constant. We now have

T (n) < 2(c(nf2) —d) + O(1)

=cn-2d+ 0O(1)
<cen—d—(d—-0(1))
<cn-d

as long as we choose d to be larger than the anonymous upper-bound
constant hidden by the ®-notation. Subtracting a lower-order term
works! Of course, we must not forget to handle the base case, which is
to choose the constant ¢ large enough that cn — d dominates the implicit
base cases.

You might find the idea of subtracting a lower-order term to be
counterintuitive. After all, if the math doesn’t work out, shouldn’t you
increase your guess? Not necessarily! When the recurrence contains
more than one recursive invocation (recurrence (4.12) contains two), if
you add a lower-order term to the guess, then you end up adding it once
for each of the recursive invocations. Doing so takes you even further
away from the inductive hypothesis. On the other hand, if you subtract
a lower-order term from the guess, then you get to subtract it once for
each of the recursive invocations. In the above example, we subtracted
the constant d twice because the coefficient of 7T (n/2) 1s 2. We ended up
with the mequality 7T (n) < cn — d — (d — ©(1)), and we readily found a
suitable value for d.

Avoiding pitfalls

Avoid using asymptotic notation in the inductive hypothesis for the
substitution method because it’s error prone. For example, for
recurrence (4.11), we can falsely “prove” that 7 (n) = O(n) if we
unwisely adopt 7 (n) = O(n) as our inductive hypothesis:

T(n)<2-0(ln/2]) + O(n)
=2-0(n) + 6O(n)
= O(n). <= wrong!
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The problem with this reasoning is that the constant hidden by the O-
notation changes. We can expose the fallacy by repeating the “proof”™
using an explicit constant. For the inductive hypothesis, assume that 7T
(n) < cn for all n 2 n(, where ¢, ng > 0 are constants. Repeating the first

two steps in the inequality chain yields

T (n) < 2(c |n/2]) + O(n)
< cn + O(n).

Now, indeed cn + O(n) = O(n), but the constant hidden by the O-
notation must be larger than ¢ because the anonymous function hidden
by the ®(n) 1s asymptotically positive. We cannot take the third step to
conclude that cn + O(n) < cn, thus exposing the fallacy.

When wusing the substitution method, or more generally
mathematical induction, you must be careful that the constants hidden
by any asymptotic notation are the same constants throughout the
proof. Consequently, it’s best to avoid asymptotic notation in your
inductive hypothesis and to name constants explicitly.

Here’s another fallacious use of the substitution method to show
that the solution to recurrence (4.11) i1s T (n) = O(n). We guess T (n) <
cn and then argue

T (n) < 2(c|n/2]) + O(n)
< cn+ 0O(n)
= O(n), < wrong!

since ¢ 1S a positive constant. The mistake stems from the difference
between our goal—to prove that 7 (n) = O(n)—and our inductive
hypothesis—to prove that 7 (n) < cn. When using the substitution
method, or in any inductive proof, you must prove the exact statement
of the inductive hypothesis. In this case, we must explicitly prove that T
(n) < cn to show that T (n) = O(n).

Exercises

4.3-1



Use the substitution method to show that each of the following
recurrences defined on the reals has the asymptotic solution specified:

a. T (n) = T (n—1) + n has solution T (n) = O(n?).

b. T (n) = T (n/2) + O(1) has solution 7T (n) = O(lg n).

c. T (n) =2T (n/2) + n has solution 7' (n) = O(n Ig n).

d. T (n) =2T (n/2 + 17) + n has solution 7' (n) = O(n Ig n).
e. T (n) =2T (n/3) + O(n) has solution T (n) = O(n).

f. T(n) =4T (n/2) + O(n) has solution 7' (n) = ®(n2).
4.3-2

The solution to the recurrence 7' (n) = 47T (n/2)+n turns out to be 7 (n)

= @(nz). Show that a substitution proof with the assumption 7" (n) < cn?
fails. Then show how to subtract a lower-order term to make a
substitution proof work.

4.3-3
The recurrence T (n) = 2T (n — 1) + 1 has the solution T (n) = O2").

Show that a substitution proof fails with the assumption T (n) < ¢ 2",
where ¢ > 0 is constant. Then show how to subtract a lower-order term
to make a substitution proof work.

4.4  The recursion-tree method for solving recurrences

Although you can use the substitution method to prove that a solution
to a recurrence is correct, you might have trouble coming up with a
good guess. Drawing out a recursion tree, as we did in our analysis of
the merge-sort recurrence in Section 2.3.2, can help. In a recursion tree,
each node represents the cost of a single subproblem somewhere in the
set of recursive function invocations. You typically sum the costs within
each level of the tree to obtain the per-level costs, and then you sum all
the per-level costs to determine the total cost of all levels of the
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recursion. Sometimes, however, adding up the total cost takes more
creativity.

A recursion tree is best used to generate intuition for a good guess,
which you can then verify by the substitution method. If you are
meticulous when drawing out a recursion tree and summing the costs,
however, you can use a recursion tree as a direct proof of a solution to a
recurrence. But if you use it only to generate a good guess, you can
often tolerate a small amount of “sloppiness,” which can simplify the
math. When you verify your guess with the substitution method later
on, your math should be precise. This section demonstrates how you
can use recursion trees to solve recurrences, generate good guesses, and
gain intuition for recurrences.

An illustrative example

Let’s see how a recursion tree can provide a good guess for an upper-
bound solution to the recurrence

T(n) = 3T(n/4) + O#?). (4.13)

Figure 4.1 shows how to derive the recursion tree for 7' (n) = 3T (n/4) +
cnz, where the constant ¢ > 0 is the upper-bound constant in the @(n2)

term. Part (a) of the figure shows 7 (n), which part (b) expands into an

equivalent tree representing the recurrence. The cn? term at the root
represents the cost at the top level of recursion, and the three subtrees
of the root represent the costs incurred by the subproblems of size n/4.
Part (c) shows this process carried one step further by expanding each
node with cost 7' (n/4) from part (b). The cost for each of the three

children of the root is c(n/4)2. We continue expanding each node in the
tree by breaking it into its constituent parts as determined by the
recurrence.
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Figure 4.1 Constructing a recursion tree for the recurrence 7 (n) = 37 (n/4) + cn?. Part (a)

shows T (n), which progressively expands in (b)-(d) to form the recursion tree. The fully
expanded tree in (d) has height logg n.

Because subproblem sizes decrease by a factor of 4 every time we go
down one level, the recursion must eventually bottom out in a base case
where n < ng. By convention, the base case 1s 7' (n) = O(1) for n < n,

where ng > 0 is any threshold constant sufficiently large that the
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recurrence 1s well defined. For the purpose of intuition, however, let’s
simplify the math a little. Let’s assume that » is an exact power of 4 and
that the base case is 7' (1) = ©(1). As it turns out, these assumptions
don’t affect the asymptotic solution.

What’s the height of the recursion tree? The subproblem size for a

node at depth i is nl4l. As we descend the tree from the root, the
subproblem size hits » = 1 when nl4t = 1 or, equivalently, when i =
logg n. Thus, the tree has internal nodes at depths 0, 1, 2, ... ,loggn—1
and leaves at depth logg n.

Part (d) of Figure 4.1 shows the cost at each level of the tree. Each
level has three times as many nodes as the level above, and so the

number of nodes at depth i is 3!, Because subproblem sizes reduce by a
factor of 4 for each level further from the root, each internal node at

depthi=0,1, 2, ... ,logqg n — 1 has a cost of c(n/4i)2. Multiplying, we

see that the total cost of all nodes at a given depth i is 3ic(n/4i)2 =
(3/ 16)icn2. The bottom level, at depth logq n, contains 3" = p'oza3

leaves (using equation (3.21) on page 66). Each leaf contributes ©(1),
leading to a total leaf cost of @(1*+?),
Now we add up the costs over all levels to determine the cost for the
entire tree:
3 3

2 logyn
T(n) = cn?*+ I'—ﬁ('ﬂz -+ (E) en? 4+ (E) cn? + O(n'e )

log,n 23 ¢
o _ i 1024 3
s Z (E) cn® + G(n7)
i=0
[a70] 3 Fi
< Z (I_) cn’ + GO(noe )
=i

l ™ : e
= T=Gie cn? + O (n'esd) (by equation (A.7) on page 1142)

- ﬁc'f:] + O(nlea

= O(n?) (O = 0(n"*) = 0(n?)).



We’ve derived the guess of 7' (n) = O(nz) for the original recurrence. In

this example, the coefficients of cn? form a decreasing geometric series.
By equation (A.7), the sum of these coefficients is bounded from above
by the constant 16/13. Since the root’s contribution to the total cost is

cnz, the cost of the root dominates the total cost of the tree.

In fact, if O(nz) is indeed an upper bound for the recurrence (as we’ll
verify in a moment), then it must be a tight bound. Why? The first

recursive call contributes a cost of ®(n2), and so Q(nz) must be a lower
bound for the recurrence.
Let’s now use the substitution method to verify that our guess is

correct, namely, that 7' (n) = O(nz) 1s an upper bound for the recurrence

T (n) = 3T (n/4)+®(n2). We want to show that 7T (n) < dn? for some
constant d > 0. Using the same constant ¢ > 0 as before, we have

T(n) < 37 (n4) + cn?

< 3d(nl4)? + en?

'3 2 2
= —dn* +cn”
16 ‘

< dnz’

where the last step holds if we choose d > (16/13)c.
For the base case of the induction, let ng > 0 be a sufficiently large

threshold constant that the recurrence is well defined when 7' (n) = ©(1)
for n < ng. We can pick d large enough that d dominates the constant

hidden by the ©, in which case dn?>d>T (n) for 1 < n < ng, completing

the proof of the base case.

The substitution proof we just saw involves two named constants, ¢
and d. We named ¢ and used it to stand for the upper-bound constant
hidden and guaranteed to exist by the ®-notation. We cannot pick ¢

arbitrarily—it’s given to us—although, for any such ¢, any constant ¢ >
c also suffices. We also named d, but we were free to choose any value
for it that fit our needs. In this example, the value of 4 happened to
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depend on the value of ¢, which is fine, since d is constant if ¢ is
constant.

An irregular example

Let’s find an asymptotic upper bound for another, more irregular,
example. Figure 4.2 shows the recursion tree for the recurrence

Tn)y=Tn/3)+T2n/3)+6(n). (4.14)

This recursion tree is unbalanced, with different root-to-leaf paths
having different lengths. Going left at any node produces a subproblem
of one-third the size, and going right produces a subproblem of two-
thirds the size. Let ng > 0 be the mmplicit threshold constant such that 7

(n) = O(1) for 0 <n < n(q, and let ¢ represent the upper-bound constant
hidden by the ®(n) term for n > ng. There are actually two n( constants

here—one for the threshold in the recurrence, and the other for the
threshold in the ®-notation, so we’ll let np be the larger of the two

constants.
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Figure 4.2 A recursion tree for the recurrence 7' (n) = T (n/3) + T (2n/3) + cn.

The height of the tree runs down the right edge of the tree,
corresponding to subproblems of sizes n, (2/3)n, (4/9)n, ... , ©(1) with
costs bounded by cn, ¢(2n/3), c(4n/9), ... , O(1), respectively. We hit the

rightmost leaf when (2/3)hn <ng < (2/3)h_1n, which happens when & =
|log3/n(ning)] + 1 since, applying the floor bounds in equation (3.2) on

page 64 with x = log3/> (n/ng), we have (2/3)hn = (2/3)li+1n < (2/3)*n

= (ng/m)n = ng and (2/3)"1n = @3)X¥1n > (213)*n = (ng/myn = ng. Thus,
the height of the tree is 42 = O(Ig n).

We’re now in a position to understand the upper bound. Let’s
postpone dealing with the leaves for a moment. Summing the costs of
internal nodes across each level, we have at most cn per level times the
O(lg n) tree height for a total cost of O(n Ig n) for all internal nodes.

It remains to deal with the leaves of the recursion tree, which
represent base cases, each costing ®(1). How many leaves are there? It’s
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tempting to upper-bound their number by the number of leaves in a
complete binary tree of height & = [log3/p(n/ng)] + 1, since the

recursion tree is contained within such a complete binary tree. But this
approach turns out to give us a poor bound. The complete binary tree

has 1 node at the root, 2 nodes at depth 1, and generally 2k nodes at
depth k. Since the height is & = |log3/p nl + 1, there are

2h = gllesaanltt < gple322 Jegyes in the complete binary tree, which is
an upper bound on the number of leaves in the recursion tree. Because
the cost of each leaf is ®(1), this analysis says that the total cost of all
leaves in the recursion tree is O®™¥2%) = 0®@'"") which is an
asymptotically greater bound than the O(n lg n) cost of all internal
nodes. In fact, as we’re about to see, this bound is not tight. The cost of
all leaves in the recursion tree is O(n)—asymptotically less than O(n 1g
n). In other words, the cost of the internal nodes dominates the cost of
the leaves, not vice versa.

Rather than analyzing the leaves, we could quit right now and prove
by substitution that 7 (n) = ®(n lg n). This approach works (see
Exercise 4.4-3), but it’s instructive to understand how many leaves this
recursion tree has. You may see recurrences for which the cost of leaves
dominates the cost of internal nodes, and then you’ll be in better shape
if you’ve had some experience analyzing the number of leaves.

To figure out how many leaves there really are, let’s write a
recurrence L(n) for the number of leaves in the recursion tree for 7' (n).
Since all the leaves in 7' (n) belong either to the left subtree or the right
subtree of the root, we have

ifn < ng

A A * (4.15)
Lin/3)+L(2n/3) ifn=n,.

This recurrence is similar to recurrence (4.14), but it’s missing the ®(n)
term, and it contains an explicit base case. Because this recurrence
omits the ®(n) term, it is much easier to solve. Let’s apply the
substitution method to show that it has solution L(n) = O(n). Using the
inductive hypothesis L(n) < dn for some constant d > 0, and assuming
that the inductive hypothesis holds for all values less than n, we have



L(n) = L(n/3) + L(2n/3)
< dnl3 + 2(dn)/3

< dn,

which holds for any d > 0. We can now choose d large enough to handle
the base case L(n) = 1 for 0 < n < n(, for which d = 1 suffices, thereby

completing the substitution method for the upper bound on leaves.
(Exercise 4.4-2 asks you to prove that L(n) = O(n).)

Returning to recurrence (4.14) for 7T (n), it now becomes apparent
that the total cost of leaves over all levels must be L(n) - ©(1) = O(n).
Since we have derived the bound of O(n Ig n) on the cost of the internal
nodes, it follows that the solution to recurrence (4.14) 1s T (n) = O(n 1g
n) + O(n) = O(n lg n). (Exercise 4.4-3 asks you to prove that 7'(n) = O(n
g n).)

It’s wise to verify any bound obtained with a recursion tree by using
the substitution method, especially if you’ve made simplifying
assumptions. But another strategy altogether is to use more-powerful
mathematics, typically in the form of the master method in the next
section (which unfortunately doesn’t apply to recurrence (4.14)) or the
Akra-Bazzi method (which does, but requires calculus). Even if you use
a powerful method, a recursion tree can improve your intuition for
what’s going on beneath the heavy math.

Exercises

4.4-1

For each of the following recurrences, sketch its recursion tree, and
guess a good asymptotic upper bound on its solution. Then use the
substitution method to verify your answer.

a. T(n) =T (nl2) + n3.
b. T (n)=4T (n/3) + n.
c. T'(n)=4T (n/2) + n.
dT(n)=3T(n-1)+1.
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4.4-2
Use the substitution method to prove that recurrence (4.15) has the
asymptotic lower bound L(n) = Q(n). Conclude that L(n) = O(n).

4.4-3
Use the substitution method to prove that recurrence (4.14) has the
solution 7' (n) = Q(n Ig n). Conclude that 7' (n) = ®(n 1g n).

4.4-4

Use a recursion tree to justify a good guess for the solution to the
recurrence 7' (n) = T (an)+T ((1-a)n)+0O(n), where a is a constant in the
range 0 <a <1.

4.5  The master method for solving recurrences

The master method provides a “cookbook” method for solving
algorithmic recurrences of the form

T(n) =aT(n/b)+ f(n), (4.16)

where a > 0 and b > 1 are constants. We call f'(n) a driving function, and
we call a recurrence of this general form a master recurrence. To use the
master method, you need to memorize three cases, but then you’ll be
able to solve many master recurrences quite easily.

A master recurrence describes the running time of a divide-and-
conquer algorithm that divides a problem of size #n into a subproblems,
each of size n/b < n. The algorithm solves the a subproblems recursively,
each in 7 (n/b) time. The driving function f (n) encompasses the cost of
dividing the problem before the recursion, as well as the cost of
combining the results of the recursive solutions to subproblems. For
example, the recurrence arising from Strassen’s algorithm is a master

recurrence with a = 7, b = 2, and driving function f'(n) = @(nz).

As we have mentioned, in solving a recurrence that describes the
running time of an algorithm, one technicality that we’d often prefer to
ignore is the requirement that the input size n be an integer. For
example, we saw that the running time of merge sort can be described



by recurrence (2.3), T (n) = 2T (n/2) + O(n), on page 41. But if n is an
odd number, we really don’t have two problems of exactly half the size.
Rather, to ensure that the problem sizes are integers, we round one
subproblem down to size |n/2] and the other up to size [n/2], so the
true recurrence is 7 (n) = T ([n/2] + T (In/2]) + ©(n). But this floors-
and-ceilings recurrence is longer to write and messier to deal with than
recurrence (2.3), which is defined on the reals. We’d rather not worry
about floors and ceilings, if we don’t have to, especially since the two
recurrences have the same ®(n lg n) solution.

The master method allows you to state a master recurrence without
floors and ceilings and mmplicitly infer them. No matter how the
arguments are rounded up or down to the nearest integer, the
asymptotic bounds that it provides remain the same. Moreover, as we’ll
see in Section 4.6, if you define your master recurrence on the reals,
without mmplicit floors and ceilings, the asymptotic bounds still don’t
change. Thus you can ignore floors and ceilings for master recurrences.
Section 4.7 gives sufficient conditions for ignoring floors and ceilings in
more general divide-and-conquer recurrences.

The master theorem

The master method depends upon the following theorem.

Theorem 4.1 (Master theorem)

Let a > 0 and b > 1 be constants, and let f (n) be a driving function that
is defined and nonnegative on all sufficiently large reals. Define the
recurrence 7 (n) on n € N by

T(n)y=aT(n/b)+ f(n). (4.17)

where aT (n/b) actually means aT (Ln/b]) + aT ([n/b]) for some

constantsa >0 and a >0 satisfying a = d +a . Then the asymptotic
behavior of T (n) can be characterized as follows:

1. If there exists a constant € > 0 such that /() = 01" ™) then
T(n) = G(no2a)
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2. If there exists a constant k > 0 such that /(1) = ©('*=*1g" n)
then T(n) = @ (n'° ¢ 18" 1 )

3. If there exists a constant € > 0 such that f(n) = Q(n*= ") and if
f(n) additionally satisfies the regularity condition af (n/b) < cf (n)
for some constant ¢ < 1 and all sufficiently large n, then T (n) =

O(f (n)).
|

Before applying the master theorem to some examples, let’s spend a
few moments to understand broadly what it says. The function »' @ 1s
called the watershed function. In each of the three cases, we compare
the driving function f (n) to the watershed function »™2 ¢, Intuitively, if
the watershed function grows asymptotically faster than the driving
function, then case 1 applies. Case 2 applies if the two functions grow at
nearly the same asymptotic rate. Case 3 is the “opposite” of case 1,
where the driving function grows asymptotically faster than the
watershed function. But the technical details matter.

In case 1, not only must the watershed function grow asymptotically
faster than the driving function, it must grow polynomially faster. That
1s, the watershed function »'°»¢ must be asymptotically larger than the

driving function f (n) by at least a factor of ®(n€) for some constant €
> (0. The master theorem then says that the solution is 7(7) = ©(n'* ),
In this case, if we look at the recursion tree for the recurrence, the cost
per level grows at least geometrically from root to leaves, and the total
cost of leaves dominates the total cost of the internal nodes.

In case 2, the watershed and driving functions grow at nearly the
same asymptotic rate. But more specifically, the driving function grows

faster than the watershed function by a factor of G)(lgk n), where k > 0.
The master theorem says that we tack on an extra lg n factor to f (n),
yielding the solution T(7) = ©(n**“1e" ' n) In this case, each level of
the recursion tree costs approximately the same—© ("% “1g" 1) _and
there are ©(lg n) levels. In practice, the most common situation for case
2 occurs when k = 0, in which case the watershed and driving functions



have the same asymptotic growth, and the solution is 7 () = ©(n'*=r“1zn)

Case 3 mirrors case 1. Not only must the driving function grow
asymptotically faster than the watershed function, it must grow
polynomially faster. That 1s, the driving function f (n) must be
asymptotically larger than the watershed function »*¢ by at least a

factor of @(n€) for some constant € > 0. Moreover, the driving function
must satisfy the regularity condition that af (n/b) < c¢f (n). This
condition is satisfied by most of the polynomially bounded functions
that youre likely to encounter when applying case 3. The regularity
condition might not be satisfied if the driving function grows slowly in
local areas, yet relatively quickly overall. (Exercise 4.5-5 gives an
example of such a function.) For case 3, the master theorem says that
the solution is 7' (n) = O(f (n)). If we look at the recursion tree, the cost
per level drops at least geometrically from the root to the leaves, and the
root cost dominates the cost of all other nodes.

It’s worth looking again at the requirement that there be polynomial
separation between the watershed function and the driving function for
either case 1 or case 3 to apply. The separation doesn’t need to be much,
but it must be there, and it must grow polynomially. For example, for

the recurrence 7 (n) = 4T (n/2) + nl-99 (admittedly not a recurrence
youre likely to see when analyzing an algorithm), the watershed

function is »"#“ = n? Hence the driving function [ (n) = nl99 s

polynomially smaller by a factor of n0-01 Thus case 1 applies with € =
0.01.

Using the master method

To use the master method, you determine which case (if any) of the
master theorem applies and write down the answer.

As a first example, consider the recurrence 7' (n) = 9T (n/3) + n. For
this recurrence, we have a = 9 and b = 3, which implies that

nE e = ni%a? = @(n?), Since £ (n) = n = O(n?~€) for any constant € < 1,
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we can apply case 1 of the master theorem to conclude that the solution

is T (n) = ©(n?).
Now consider the recurrence 7' (n) = T (2n/3) + 1, which has a = 1

and b = 3/2, which means that the watershed function 1is
nPE 8 = Pyl = p® = |, Case 2 applies since
fln) = 1= 6@**1e"n) = O(1), The solution to the recurrence is 7 (n)
= Q(Ig n).

For the recurrence T (n) = 3T (n/4) + nlg n, we have a = 3 and b = 4,
which means that nd = plead = 0(n*7%?), Since
fn) = nlgn = Qn™+**¢) where € can be as large as approximately 0.2,
case 3 applies as long as the regularity condition holds for f(n). It does,
because for sufficiently large n, we have that af (n/b) = 3(n/4) 1g(n/4) <
(3/4)n 1g n = cf (n) for ¢ = 3/4. By case 3, the solution to the recurrence
is T (n) = O(n 1g n).

Next, let’s look at the recurrence 7' (n) = 27 (n/2) + n lg n, where we

have a = 2, b = 2, and n"®® = p*:22 =5 Case 2 applies since
f(n) = nlgn =Om° 1" n) We conclude that the solution is T (n) = O(n
1g2 n).

We can use the master method to solve the recurrences we saw in
Sections 2.3.2, 4.1, and 4.2.

Recurrence (2.3), T (n) = 2T (n/2) + ®(n), on page 41, characterizes
the running time of merge sort. Since a = 2 and b = 2, the watershed
function is n™e ¢ = p*222 = 5, Case 2 applies because f (n) = O(n), and
the solution 1s 7' (n) = O(n 1g n).

Recurrence (4.9), T (n) = 8T (n/2) + ©(1), on page 84, describes the
running time of the simple recursive algorithm for matrix multiplication.
We have a = 8 and b = 2, which means that the watershed function is

3

ned = ple2® = p Since n
function f (n) = ©(1)—indeed, we have f (n) = 0(n3_€) for any positive
€ < 3—-case 1 applies. We conclude that 7" (n) = ®(n3).

Finally, recurrence (4.10), T'(n) = 7T (n/2) + ®(n2), on page 87, arose
from the analysis of Strassen’s algorithm for matrix multiplication. For
this recurrence, we have ¢ = 7 and b = 2, and the watershed function i1s
noge @ = p'7 QObserving that g 7 = 2.807355 ..., we can let € = 0.8 and

is polynomially larger than the driving



bound the driving function f (n) = ®(n2) = O(nlg 7—6). Case 1 applies
with solution T (1) = ©#!g 7).

When the master method doesn’t apply

There are situations where you can’t use the master theorem. For
example, it can be that the watershed function and the driving function
cannot be asymptotically compared. We might have that f(n) > n'¢
for an infinite number of values of n but also that /(1) < n°* for an
infinite number of different values of n. As a practical matter, however,
most of the driving functions that arise in the study of algorithms can
be meaningfully compared with the watershed function. If you
encounter a master recurrence for which that’s not the case, you’ll have
to resort to substitution or other methods.

Even when the relative growths of the driving and watershed
functions can be compared, the master theorem does not cover all the
possibilities. There is a gap between cases 1 and 2 when f (1) = o(n'*# ),
yet the watershed function does not grow polynomially faster than the
driving function. Similarly, there is a gap between cases 2 and 3 when
fn) = 0™ ®) and the driving function grows more than
polylogarithmically faster than the watershed function, but it does not
grow polynomially faster. If the driving function falls into one of these
gaps, or if the regularity condition in case 3 fails to hold, you’ll need to
use something other than the master method to solve the recurrence.

As an example of a driving function falling into a gap, consider the
recurrence 7 (n) = 2T (n/2) + n/lg n. Since a = 2 and b = 2, the
watershed function is n®#¢ = p*222 = »! = », The driving function is
n/lg n = o(n), which means that it grows asymptotically more slowly
than the watershed function n. But n/lg n grows only logarithmically
slower than n, not polynomially slower. More precisely, equation (3.24)

on page 67 says that lg n = o(n€) for any constant € > 0, which means

that 1/lg n = w(n €) and #/1en = @(n'™) = @(n™* ) Thus no constant
€ > 0 exists such that #/lgn = 0™ “™%) which is required for case 1 to
apply. Case 2 fails to apply as well, since #/1gn = O “1g" n) where k
= -1, but k must be nonnegative for case 2 to apply.
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To solve this kind of recurrence, you must use another method, such
as the substitution method (Section 4.3) or the Akra-Bazzi method
(Section 4.7). (Exercise 4.6-3 asks you to show that the answer is O(n Ig
lg n).) Although the master theorem doesnt handle this particular
recurrence, it does handle the overwhelming majority of recurrences
that tend to arise in practice.

Exercises

4.5-1
Use the master method to give tight asymptotic bounds for the
following recurrences.

a. T (n) =2T (n/4) + 1.

b. T (n) =2T (n/4) + V7.

¢. T(n) =2T (nld) + Vnlg' n,
d T (n)=2Tn/4) + n.

e. T (n) = 2T (n/4) + n?.

4.5-2

Professor Caesar wants to develop a matrix-multiplication algorithm
that 1s asymptotically faster than Strassen’s algorithm. His algorithm
will use the divide-and-conquer method, dividing each matrix into #n/4 X
n/4 submatrices, and the divide and combine steps together will take

@(nz) time. Suppose that the professor’s algorithm creates a recursive
subproblems of size n/4. What is the largest integer value of a for which
his algorithm could possibly run asymptotically faster than Strassen’s?

4.5-3

Use the master method to show that the solution to the binary-search
recurrence 7 (n) = T (n/2) + ©(1) is T (n) = O(lg n). (See Exercise 2.3-6
for a description of binary search.)

4.5-4



Consider the function f (n) = lg n. Argue that although f (n/2) < f (n),
the regularity condition af (n/b) < ¢f (n) with @ = 1 and b = 2 does not
hold for any constant ¢ < 1. Argue further that for any € > 0, the
condition in case 3 that /(1) = Q(n"**“*) does not hold.

4.5-5

Show that for suitable constants a, b, and €, the function f (n) = 2[lg nl
satisfies all the conditions in case 3 of the master theorem except the
regularity condition.

% 4.6 Proof of the continuous master theorem

Proving the master theorem (Theorem 4.1) in its full generality,
especially dealing with the knotty technical issue of floors and ceilings,
is beyond the scope of this book. This section, however, states and
proves a variant of the master theorem, called the continuous master

theorem! in which the master recurrence (4.17) is defined over
sufficiently large positive real numbers. The proof of this version,
uncomplicated by floors and ceilings, contains the main ideas needed to
understand how master recurrences behave. Section 4.7 discusses floors
and ceilings in divide-and-conquer recurrences at greater length,
presenting sufficient conditions for them not to affect the asymptotic
solutions.

Of course, since you need not understand the proof of the master
theorem in order to apply the master method, you may choose to skip
this section. But if you wish to study more-advanced algorithms beyond
the scope of this textbook, you may appreciate a better understanding
of the underlying mathematics, which the proof of the continuous
master theorem provides.

Although we usually assume that recurrences are algorithmic and
don’t require an explicit statement of a base case, we must be much
more careful for proofs that justify the practice. The lemmas and
theorem in this section explicitly state the base cases, because the
inductive proofs require mathematical grounding. It is common in the
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world of mathematics to be extraordinarily careful proving theorems
that justify acting more casually in practice.

The proof of the continuous master theorem involves two lemmas.
Lemma 4.2 uses a slightly simplified master recurrence with a threshold
constant of np = 1, rather than the more general ny > 0 threshold

constant implied by the unstated base case. The lemma employs a
recursion tree to reduce the solution of the simplified master recurrence
to that of evaluating a summation. Lemma 4.3 then provides asymptotic
bounds for the summation, mirroring the three cases of the master
theorem. Finally, the continuous master theorem itself (Theorem 4.4)
gives asymptotic bounds for master recurrences, while generalizing to
an arbitrary threshold constant ng > 0 as implied by the unstated base

case.
Some of the proofs use the properties described in Problem 3-5 on
pages 72-73 to combine and simplify complicated asymptotic
expressions. Although Problem 3-5 addresses only ®-notation, the
properties enumerated there can be extended to O-notation and (-
notation as well.
Here’s the first lemma.

Lemma 4.2
Let @ >0 and b > 1 be constants, and let f (n) be a function defined over
real numbers n > 1. Then the recurrence

. & (1) if0<n<l,
T{H} == . : .
al(n/b)+ fin) ifn=1

has solution
[logs 7|

T(n) = O(n"e") + Z a’ f(n/b'). (4.18)

j=0

Proof Consider the recursion tree in Figure 4.3. Let’s look first at its
internal nodes. The root of the tree has cost f(n), and it has a children,
each with cost f'(n/b). (It 1s convenient to think of @ as being an integer,
especially when visualizing the recursion tree, but the mathematics does



2 nodes

at depth 2, and each of the a children has cost f (n/bz). In general, there

are & nodes at depth j, and each node has cost f (n/bf).
Now, lets move on to understanding the leaves. The tree grows

not require it.) Each of these children has a children, making a

downward until n/b/ becomes less than 1. Thus, the tree has height [logy,
VlJ + 1’ because H,-"f.'r [logg, | > j”.-blegh "o and ”;;b[]c-g,-, nl+1 < ”j.-blc.gh no_ |.

Since, as we have observed, the number of nodes at depth j is @ and all
the leaves are at depth |logy n] + 1, the tree contains a2 ™"*! Jeaves.

Using the identity (3.21) on page 66, we  have
alezs Il < glantl = gpltd = O™ ) gince @ is constant, and
). Consequently, the total number of
leaves is @1 “)_asymptotically, the watershed function.

We are now in a position to derive equation (4.18) by summing the
costs of the nodes at each depth in the tree, as shown in the figure. The
first term in the equation is the total costs of the leaves. Since each leaf
is at depth [logpn] + 1 and /6" ™' < 1 the base case of the

recurrence gives the cost of a leaf: ©(n**#“) Hence the cost of all
O ™) Jeaves is O™ ) -O(1) = (") by Problem 3-5(d). The
second term in equation (4.18) is the cost of the internal nodes, which,
in the underlying divide-and-conquer algorithm, represents the costs of
dividing problems into subproblems and then recombining the

ﬁl_lcng,a nl+1l - u]ag,an — ”]-:lg.r;a — Q{”ll}g.ﬁt.’

subproblems. Since the cost for all the internal nodes at depth j is a f

(n/bj), the total cost of all internal nodes is

L1ogp,

Z u-"_f'{nfb"'} :

=0
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find - Fim)

Flnfb) Fin/h) . finfby ———— > af(n/b)

| [ % |y
' [N | A
. |
| Hjl_-fz.&\ — X 4
llog, n) + 1 I\ [\ P

Finib2) Fin/b2y- £y F(n/b2) Fnib2y--f(nfb?) Fnid2) fin/b2y-Fin/b®) —= a® f(n/b?)
|'I i II'. fl \ .'I I\ TR il .II { |I -.II 1A I \ /1 |II

) \ | ! L | 1 [ \ / 1 i 1 1 41 { 1
s s U3 s S S s 0 O o O 2 O 2 W 2t
e(1) ®(1) \(1) (1) B(l) &) 8(1) B(l) B(l) B(l) ... () B() B(1)—= O*=a)
Hll.ogbnj+]
legen] _
Total: @(n"=e9) + E a’ fin/bly
i=0

Figure 4.3 The recursion tree generated by 7 (n) = aT (n/b) + f (n). The tree is a complete a-
ary tree with al®2s "1 +1 leaves and height llogp n] + 1. The cost of the nodes at each depth is

shown at the right, and their sum is given in equation (4.18).

As we’ll see, the three cases of the master theorem depend on the
distribution of the total cost across levels of the recursion tree:

Case 1: The costs increase geometrically from the root to the leaves,
growing by a constant factor with each level.

Case 2: The costs depend on the value of &k in the theorem. With £ = 0,
the costs are equal for each level; with k£ = 1, the costs grow linearly
from the root to the leaves; with k = 2, the growth is quadratic; and in
general, the costs grow polynomially in k.

Case 3: The costs decrease geometrically from the root to the leaves,
shrinking by a constant factor with each level.

The summation in equation (4.18) describes the cost of the dividing
and combining steps in the underlying divide-and-conquer algorithm.
The next lemma provides asymptotic bounds on the summation’s
growth.



Lemma 4.3
Let @ > 0 and b > 1 be constants, and let f (n) be a function defined over
real numbers n > 1. Then the asymptotic behavior of the function

[logg n]
gy = > "a’ f(n/b)), (4.19)

i=0
defined for n > 1, can be characterized as follows:

1. If there exists a constant € > 0 such that f(7) = O(n*97%) then
g(n) = O(n'29)

2. If there exists a constant k > 0 such that f(n) = On*“1g" n),
then g(n) =@ (ples e lgk +1 n)

3. If there exists a constant ¢ in the range 0 < ¢ < 1 such that 0 < af
(n/b) < ¢f (n) for all n > 1, then g(n) = O(f (n)).

Proof  For case 1, we have f(n) = O™ )" which implies that
fn/bl) = O((n/b))™“™%) SQubstituting into equation (4.19) yields

UDE'B ”J B IEI:".r —E
T — -"; ——n =
g(n) Z a G((bi) )
J=0
' |logg m ] o R
— 18 Bt . 3 & ’ g
O ( Z i ( bf') ) (by Problem 3-5(¢). repeatedly)
=i
d llogs n | P i
_ logp a—e ab
=0 (” ’ Z (;]]a_el.-,d) )
J=0 '
f [logg, n |
= 0 (n]“?f' HE Z (b%)’ ) (by equation (3.17) on page 66)
J=0

he[[]u:-g,-.nj+t] — 1
= 0 (;;]"5’* Lz ( : 1 )) (by equation (A.0) on page 1142) .

the last series being geometric. Since b and € are constants, the b€ — 1
denominator doesn’t affect the asymptotic growth of g(n), and neither
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does the -1 n the numerator. Since
el [logp n]+1) logp R+135 _ LEge — £ .
pe(llogs < (pleeently = hépe = O(n ), we obtain

g(n) = O(n% ¢ . O(n%)) = G(H]Dg"’“}, thereby proving case 1.

Case 2 assumes that f(n) = ©(n°se1g" n). from which we can
conclude that [f(n/b)) = ©((n/b/)*1g" (n/b7)).  Substituting into
equation (4.19) and repeatedly applying Problem 3-5(c) yields

I'l{lg'h ”J H ]DE a H oo
— i i o4 R B
gln) = “h Z a’ (b) lg (b;‘))
I"( [logg n ] -
R - ]l:.‘-E a e
- oS et ()
I'( [logg n ]
—_ = ]C-E a £
S e B ))
l". J=0
[ ] llogs n] lo C'bl’ﬁ,f'rhj} _
= @[n"" 2 ( ) (by equation (3.19) on page 66)
\ = IDEIJ
l,-’ [logp n ] i ) s
— @[ yoesa Z og, N — j (by equations (3.17), (3.18),
' \ log, and (3.20))
=
I'( logy, a L!c:-eh n|
- ] ﬂoebﬂ — }*)
I.\logb?_ im0
[logg 1]
= @[ n' Z (log,n —j s (b = 1 and k are constants) .
ll\ J=0

The summation within the ®-notation can be bounded from above as
follows:



[lozg & | [logp n ]

Z (log,n — j)* < Z ([logpn| +1—j)F

f=u J=u
[logp m]+1

_ Z i (reindexing —pages 1143-1144)
=1

= O((|log, n]| + 1)**Y) (by Exercise A.1-5 on page 1144)
= Oﬂngi“ n) (by Exercise 3.3-3 on page 70) .

Exercise 4.6-1 asks you to show that the summation can similarly be
bounded from below by (025" 7). Since we have tight upper and lower
bounds, the summation is ©(1og; ' 7). from which we can conclude that
g(n) = © (1 ¢ logy ™" n) thereby completing the proof of case 2.

For case 3, observe that f (n) appears in the definition (4.19) of g(n)
(when j = 0) and that all terms of g(n) are positive. Therefore, we must
have g(n) = Q(f (n)), and it only remains to prove that g(n) = O(f (n)).

Performing j iterations of the inequality af (n/b) < cf (n) yields a f (n/bj)
<d f(n). Substituting into equation (4.19), we obtain

[legs n]
g(n) = Z a’ f(n/b’)
J=0

[legs n]

< Y ¢ fm)

J=0
= f(n) Z c’
J=i

1
= fn) (—) (by equation (A.7) on page 1142 since |¢| < 1)

l—¢

= O(f(n)).

Thus, we can conclude that g(n) = O(f (n)). With case 3 proved, the
entire proof of the lemma is complete.
|

We can now state and prove the continuous master theorem.
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Theorem 4.4 ( Continuous master theorem)

Let a > 0 and b > 1 be constants, and let /(n) be a driving function that
is defined and nonnegative on all sufficiently large reals. Define the
algorithmic recurrence 7 (n) on the positive real numbers by

T (n) =aT (nlb) + f (n).
Then the asymptotic behavior of 7T (n) can be characterized as follows:

1. If there exists a constant € > 0 such that /(1) = O™ “™) then
T(n) = ®(n'es4 )

2. If there exists a constant k > 0 such that f(n) = O(n*®) then
T(n) =

3. If there exists a constant € > 0 such that /(1) = Qn"*% %) and if
f (n) additionally satisfies the regularity condition af (n/b) < cf
(n) for some constant ¢ < 1 and all sufficiently large », then T (n)

= 0(f (n)).

Proof The idea is to bound the summation (4.18) from Lemma 4.2 by
applying Lemma 4.3. But we must account for Lemma 4.2 using a base
case for 0 <n < 1, whereas this theorem uses an implicit base case for 0
< n < ng, where ng > 0 is an arbitrary threshold constant. Since the

recurrence is algorithmic, we can assume that f () 1s defined for n > n.

For n > 0, let us define two auxiliary functions 7° ’(n) =T (ngn)and f ’
(n) = f (ng n). We have

T'(n) = T(ngn)

) eq) ifngn < ny,
B aT(non/b)+ f(non) ifnpn = ng

% ®(1) T R o) (4.20)

aT'(n/b) + f'(n) i g

We have obtained a recurrence for T° ’(n) that satisfies the conditions of
Lemma 4.2, and by that lemma, the solution is



[logs n]
T'(n) = ®(n'2 ) + Z a’ f'(n/b7) . (4.21)

J=0

To solve T ’(n), we first need to bound f '(n). Let’s examine the
individual cases in the theorem.

The condition for case 1 is f{(n) = Oln
We have

f'(n) = fngn)
= {){{H:j H}l-:lg;._,a—t'}
— G{Hl-:lg,r:. u—e‘*} .

log

247%) for some constant € > 0.

since a, b, ng, and € are all constant. The function f '(n) satisfies the
conditions of case 1 of Lemma 4.3, and the summation in equation
(4.18) of Lemma 4.2 evaluates to @), Because a, b and n are all
constants, we have
T(n) = T'(n/ny)

= O((n/no)***) + O((n/ng)"***)

= Q%) + O(n°E )

= O(n'= ) (by Problem 3-3(b)) ,

thereby completing case 1 of the theorem.
The condition for case 2 is /(1) = G (n'ee
0. We have

f'(n) = fnon)
= H{{nun}l"gﬁ“lgj‘{nun}]

= O(n" 1" n) (by eliminating the constant terms) .

Ig" n) for some constant k >

Similar to the proof of case 1, the function f (n) satisfies the conditions
of case 2 of Lemma 4.3. The summation in equation (4.18) of Lemma

4.2 is therefore ©@(n“ 12" ™" n) which implies that
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Tn) =T (n/ng)
= O((n/ng)8 %) + O((n/ny)*= 1" (n/ny))
- EH'){”]DE.F- i Yk {__‘}{”leghu lgr'c+1 ”}
= O@(n"**"1g" " n) (by Problem 3-5(c)) ,

which proves case 2 of the theorem.

Finally, the condition for case 3 is /(1) = Q™ “™) for some
constant € > 0 and f (n) additionally satisfies the regularity condition af
(n/b) < ¢f (n) for all n > np and some constants ¢ < 1 and ng > 1. The

logp,

first part of case 3 is like case 1:

f'(n) = fngn)
= Q((ngn) e 21¢)

- ﬂ{”]ﬂlgﬁ -:£+E} :

Using the definition of f '(n) and the fact that ngn 2 ng for alln > 1, we
have for n > 1 that

af'(n/b) = le(l’l() I’l/b)
< of (no n)

= ¢f (n).

Thus f '(n) satisfies the requirements for case 3 of Lemma 4.3, and the

summation in equation (4.18) of Lemma 4.2 evaluates to O(f '(n)),
yielding
T(n)=r7 '(n/n())

= O((n/ne)% %) + O(f"(n/no))
= O(f (n/ng))
= 0(f (n)),

which completes the proof of case 3 of the theorem and thus the whole
theorem.
m



Exercises

4.6-1
[log, 1] Y S T = o
Show that 2j=0 ~(ogyn —j)* = Slog,™ n),
* 4.6-2
Show that case 3 of the master theorem is overstated (which is also why
case 3 of Lemma 4.3 does not require that f(n) = Q%)) in the

sense that the regularity condition af (n/b) < c¢f (n) for some constant ¢
< 1 implies that there exists a constant € > 0 such that f(#) = (n*=F<),

* 4.6-3

For f(n) = ®®"“/1gn) prove that the summation in equation (4.19)
has solution £ () = ©(n**“1glgn) Conclude that a master recurrence T
(n) using f (n) as its driving function has solution 7 (#) = ©(n* % “1glgn),

* 4.7 Akra-Bazzi recurrences

This section provides an overview of two advanced topics related to
divide-and-conquer recurrences. The first deals with technicalities
arising from the use of floors and ceilings, and the second discusses the
Akra-Bazzi method, which involves a little calculus, for solving
complicated divide-and-conquer recurrences.

In particular, we’ll look at the class of algorithmic divide-and-
conquer recurrences originally studied by M. Akra and L. Bazzi [13].
These Akra-Bazzi recurrences take the form

T(n)= f(n)+ ) aT(n/b;), (422
i=1

where k is a positive integer; all the constants aq, a, ... , aj € R are
strictly positive; all the constants b1, by, ... , b, € R are strictly greater

than 1; and the driving function f (n) is defined on sufficiently large
nonnegative reals and is itself nonnegative.

Akra-Bazzi recurrences generalize the class of recurrences
addressed by the master theorem. Whereas master recurrences
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characterize the running times of divide-and-conquer algorithms that
break a problem into equal-sized subproblems (modulo floors and
ceilings), Akra-Bazzi recurrences can describe the running time of
divide-and-conquer algorithms that break a problem into different-
sized subproblems. The master theorem, however, allows you to ignore
floors and ceilings, but the Akra-Bazzi method for solving Akra-Bazzi
recurrences needs an additional requirement to deal with floors and
ceilings.

But before diving into the Akra-Bazzi method itself, let’s understand
the limitations involved in ignoring floors and ceilings in Akra-Bazzi
recurrences. As youre aware, algorithms generally deal with integer-
sized inputs. The mathematics for recurrences is often easier with real
numbers, however, than with integers, where we must cope with floors
and ceilings to ensure that terms are well defined. The difference may
not seem to be much—especially because that’s often the truth with
recurrences—but to be mathematically correct, we must be careful with
our assumptions. Since our end goal is to understand algorithms and
not the vagaries of mathematical corner cases, we’d like to be casual yet
rigorous. How can we treat floors and ceilings casually while still
ensuring rigor?

From a mathematical point of view, the difficulty in dealing with
floors and ceilings is that some driving functions can be really, really
weird. So it’s not okay in general to ignore floors and ceilings in Akra-
Bazzi recurrences. Fortunately, most of the driving functions we
encounter in the study of algorithms behave nicely, and floors and
ceilings don’t make a difference.

The polynomial-growth condition

If the driving function f (n) in equation (4.22) is well behaved in the
following sense, it’s okay to drop floors and ceilings.

A function f (n) defined on all sufficiently large positive reals
satisfies the polynomial-growth condition if there exists a
constant 7i = 0 such that the following holds: for every constant



¢ > 1, there exists a constant d > 1 (depending on ¢) such that f
(m)ld<f(yn)<df(n)foralll <y<@andn =i,

This definition may be one of the hardest in this textbook to get your
head around. To a first order, it says that f (n) satisfies the property that
f (®(n) = O(f (n)), although the polynomial-growth condition is
actually somewhat stronger (see Exercise 4.7-4). The definition also
mmplies that f (n) is asymptotically positive (see Exercise 4.7-3).
Examples of functions that satisfy the polynomial-growth condition

include any function of the form f (n) = O(n* lgﬁ n lg 1gVn), where a, B,
and y are constants. Most of the polynomially bounded functions used
in this book satisfy the condition. Exponentials and superexponentials
do not (see Exercise 4.7-2, for example), and there also exist
polynomially bounded functions that do not.

Floors and ceilings in “nice” recurrences

When the driving function in an Akra-Bazzi recurrence satisfies the
polynomial-growth condition, floors and ceilings dont change the
asymptotic behavior of the solution. The following theorem, which is
presented without proof, formalizes this notion.

Theorem 4.5
Let T (n) be a function defined on the nonnegative reals that satisfies
recurrence (4.22), where f'(n) satisfies the polynomial-growth condition.

Let T '(n) be another function defined on the natural numbers also

satisfying recurrence (4.22), except that each 7 (n/b;) 1s replaced either
with T ([n/b;]) or with T (Ln/b;]). Then we have T (n) = O(T (n)).

|

Floors and ceilings represent a minor perturbation to the arguments

in the recursion. By inequality (3.2) on page 64, they perturb an

argument by at most 1. But much larger perturbations are tolerable. As

long as the driving function f (n) in recurrence (4.22) satisfies the
polynomial-growth condition, it turns out that replacing any term 7T
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(n/b;) with T (n/b; + hfn)), where |h{n)| = O(n/lg1+e n) for some
constant € > 0 and sufficiently large n, leaves the asymptotic solution
unaffected. Thus, the divide step in a divide-and-conquer algorithm can
be moderately coarse without affecting the solution to its running-time
recurrence.

The Akra-Bazzi method

The Akra-Bazzi method, not surprisingly, was developed to solve Akra-
Bazzi recurrences (4.22), which by dint of Theorem 4.5, applies in the
presence of floors and ceilings or even larger perturbations, as just
discussed. The method involves first determining the unique real
number p such that 2i—1@:/b” = 1 Such a p always exists, because when
p — —o, the sum goes to «; it decreases as p increases; and when p — oo,
it goes to 0. The Akra-Bazzi method then gives the solution to the
recurrence as

o [® FCx) .. :
T(n)=0O (;,.f (I - j] P dx )) : (4.23)

As an example, consider the recurrence
Tin)=T(n/5)+T(In/10) +n . (4.24)

We’ll see the similar recurrence (9.1) on page 240 when we study an
algorithm for selecting the ith smallest element from a set of n numbers.
This recurrence has the form of equation (4.22), where a; = a» = 1, by

=5, bp = 10/7, and f (n) = n. To solve it, the Akra-Bazzi method says
that we should determine the unique p satisfying

NP (T7)\?
(5) +(%) =
Solving for p is kind of messy—it turns out that p = 0.83978 ...—but we
can solve the recurrence without actually knowing the exact value for p.

Observe that (1/5)0 + (7/10)% = 2 and (1/5)! + (7/10)! = 9/10, and thus
p lies in the range 0 < p < 1. That turns out to be sufficient for the
Akra-Bazzi method to give us the solution. We’ll use the fact from



calculus that if k # 1, then [ xkdx = x* * 1j(k + 1), which we’ll apply
with k = — p # —1. The Akra-Bazzi solution (4.23) gives us

T(n) = EH)(HP (l —I—f 'ﬂ'x.}rf.r))
. i _x-;:-+1
— H(n" (I -l—f .r_*"rf.r))
X 1
xi=7 7"
= {Q}(np (I + {—} ))
1-p],
1-p
('H")(n”(l—i-(” — | )))
l—p 1-—p

= @ (n?-60(n'7)) (because 1 — p is a positive constant)
= ©(n) (by Problem 3-5(d)) .

Although the Akra-Bazzi method is more general than the master
theorem, it requires calculus and sometimes a bit more reasoning. You
also must ensure that your driving function satisfies the polynomial-
growth condition if you want to ignore floors and ceilings, although
that’s rarely a problem. When it applies, the master method is much
simpler to use, but only when subproblem sizes are more or less equal.
They are both good tools for your algorithmic toolkit.

Exercises

* 4.7-1
Consider an Akra-Bazzi recurrence 7T (n) on the reals as given in

recurrence (4.22), and define T '(n) as

T'(n) =cf(n)+ Z a;T'(n/b;) ,

i=1
where ¢ > 0 is constant. Prove that whatever the mmplicit initial

conditions for 7 (n) might be, there exist initial conditions for T '(n)

such that T '(n) = ¢T (n) for all n > 0. Conclude that we can drop the
asymptotics on a driving function in any Akra-Bazzi recurrence
without affecting its asymptotic solution.
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4.7-2
Show that f'(n) = n? satisfies the polynomial-growth condition but that f

(n) = 2" does not.

4.7-3

Let f (n) be a function that satisfies the polynomial-growth condition.
Prove that /' (n) is asymptotically positive, that is, there exists a constant
ng 2 0 such that /' (n) 2 0 for all n 2 n).

* 4.7-4
Give an example of a function f (n) that does not satisfy the
polynomial-growth condition but for which f (®(n)) = O(f (n)).

4.7-5
Use the Akra-Bazzi method to solve the following recurrences.

a.T(n)=Tn2)+ Tn3)+ T[n6)+nlgn.
b. T (n) = 3T (nl3) + 8T (n/4) + n?/lg n.

c. T(n) = Q213)T (n/3) + (1/3)T (2nl3) + lg .
d. T (n) = (1/3)T (n/3) + 1/n.

e. T(n) = 3T (n/3) + 3T (2nl3) + n2.

* 4.7-6
Use the Akra-Bazzi method to prove the continuous master theorem.

Problems

4-1 Recurrence examples

Give asymptotically tight upper and lower bounds for 7 (n) in each of
the following algorithmic recurrences. Justify your answers.

a. T (n) = 2T (n/2) + n.
b. T (n) =T (8n/11) +n.



c. T(n) = 16T (n/4) + n?.
d. T (n) = 4T (n2) + n? g n.
e. T (n) = 8T (n/3) + n.

£ T () =TT m2) +n?lgn.
g Tn)=2T(n/4) + /n,

h. T(n) =T (n-2) +n2.

4-2  Parameter-passing costs

Throughout this book, we assume that parameter passing during
procedure calls takes constant time, even if an N-element array is being
passed. This assumption is valid in most systems because a pointer to
the array is passed, not the array itself. This problem examines the
implications of three parameter-passing strategies:

1. Arrays are passed by pointer. Time = O(1).

2. Arrays are passed by copying. Time = ®(N), where N is the size
of the array.

3. Arrays are passed by copying only the subrange that might be
accessed by the called procedure. Time = ®(n) if the subarray
contains n elements.

Consider the following three algorithms:

a. The recursive binary-search algorithm for finding a number in a
sorted array (see Exercise 2.3-6).

b. The MERGE-SORT procedure from Section 2.3.1.

c¢. The MATRIX-MULTIPLY-RECURSIVE procedure from Section
4.1.

Give nine recurrences 1,1(N, n), To(N, n), ... , T 3(N, n) for the worst-

case running times of each of the three algorithms above when arrays
and matrices are passed using each of the three parameter-passing
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strategies above. Solve your recurrences, giving tight asymptotic
bounds.

4-3  Solving recurrences with a change of variables

Sometimes, a little algebraic manipulation can make an unknown
recurrence similar to one you have seen before. Lets solve the
recurrence

T(n) = 2T (J/n) + G(lgn) (4.25)
by using the change-of-variables method.

a. Define m = 1g n and S(m) = T (2'"). Rewrite recurrence (4.25) in
terms of m and S(m).

b. Solve your recurrence for S(m).
¢. Use your solution for S(m) to conclude that 7 (n) = ©(lg n 1g 1g n).

d. Sketch the recursion tree for recurrence (4.25), and use it to explain
intuitively why the solution is 7' (n) = O(lg n 1g 1g n).

Solve the following recurrences by changing variables:
e. T(n) =2T(yn) 4+ 6(1),

f T(n) = 3T(¥n)+ O(n)

4-4 More recurrence examples

Give asymptotically tight upper and lower bounds for 7 (n) in each of
the following recurrences. Justify your answers.

a. T (n) =5T (n/3) + nlgn.
b. T (n)=3T (n/3) + nllg n.
c. Tn)=8T(n/2) +n*/n

d. T (n)=2T (n/2-2) +n/2.
e. T'(n)=2T (n/2) + n/lg n.



f.T(n)=Tn/2)+ T nl4)+ T[nl8) + n.
gTm)=Tm-1)+ 1/n
hTn)=Tmn-1)+I1gn.

. T(m)=Tm-2)+ 1/lgn.

j.T(n) = nT(yn) +n

4-5 Fibonacci numbers

This problem develops properties of the Fibonacci numbers, which are
defined by recurrence (3.31) on page 69. We’ll explore the technique of
generating functions to solve the Fibonacci recurrence. Define the
generating function (or formal power series) 7 as

o
F(z) = ZF;:*'
=il
=04+z+2> 422" +32* +52° +82° + 1327 +212° + -+,
where Fj is the ith Fibonacci number.

a. Show that <7(z) = z + z7(z) + 22 F(z).

b. Show that
Fiz) =

(1—a2)(1 —¢z)

o ( L )
S\ —¢z 1-g¢z/)
where ¢ is the golden ratio, and ¢ is its conjugate (see page 69).
¢. Show that
S
F(z)= —(p' — @' )z’ .
g =@ -9
You may use without proof the generating-function version of
equation (A.7) on page 1142, 2i—oX" =1/(1—=x) Because this
equation involves a generating function, x is a formal variable, not a
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real-valued variable, so that you dont have to worry about
convergence of the summation or about the requirement in equation
(A.7) that |x| < 1, which doesn’t make sense here.

d. Use part (c) to prove that £ = ¢'/+/5 for i > 0, rounded to the nearest
integer. (Hint: Observe that @] < L)

e. Prove that Fj49p > ¢! for i > 0.

4-6  Chip testing

Professor Diogenes has n supposedly identical integrated-circuit chips
that in principle are capable of testing each other. The professor’s test
Jig accommodates two chips at a time. When the jig is loaded, each chip
tests the other and reports whether it is good or bad. A good chip
always reports accurately whether the other chip is good or bad, but
the professor cannot trust the answer of a bad chip. Thus, the four
possible outcomes of a test are as follows:

Chip A says Chip B says Conclusion

Bisgood Aisgood both are good, or both are bad
Bis good Aisbad at least one is bad
Bis bad A1is good at least one is bad
Bis bad A 1s bad at least one is bad

a. Show that if at least n/2 chips are bad, the professor cannot
necessarily determine which chips are good using any strategy based
on this kind of pairwise test. Assume that the bad chips can conspire
to fool the professor.

Now you will design an algorithm to identify which chips are good and
which are bad, assuming that more than n/2 of the chips are good.
First, you will determine how to identify one good chip.

b. Show that |n/2] pairwise tests are sufficient to reduce the problem to
one of nearly half the size. That is, show how to use | n/2] pairwise



tests to obtain a set with at most [7/2] chips that still has the property
that more than half of the chips are good.

¢. Show how to apply the solution to part (b) recursively to identify one
good chip. Give and solve the recurrence that describes the number of
tests needed to identify one good chip.

You have now determined how to identify one good chip.

d. Show how to identify all the good chips with an additional O(n)
pairwise tests.

4-7  Monge arrays

An m X n array A of real numbers 1s a Monge array if for all i, j, k, and /
suchthat 1 <i<k<mand1<j</[<n,wehave

Ali, ] + Alk, [] < A[i, [] + Ak, J].

In other words, whenever we pick two rows and two columns of a
Monge array and consider the four elements at the intersections of the
rows and the columns, the sum of the upper-left and lower-right
elements is less than or equal to the sum of the lower-left and upper-
right elements. For example, the following array is Monge:

10 17 13 28 23
17 22 16 29 23
24 28 22 34 24
11 13 6 17 7
45 44 32 37 23
36 33 19 21 6
75 66 51 53 34

a. Prove that an array is Monge if and only if foralli=1,2, ..., m—1
andj=1,2,...,n—1, we have

Al ]+ Ali+ 1, j+ 1] < Ali, j+ 1]+ A[i + 1, ]].

(Hint: For the “if” part, use induction separately on rows and
columns.)
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b. The following array is not Monge. Change one element in order to
make it Monge. (Hint: Use part (a).)

37 23 22 32
21 6 7 10
53 34 30 31
32 139 6
43 21 IS5 8

c. Let (i) be the index of the column containing the leftmost minimum
element of row i. Prove that /(1) < f(2) < +-- < f(m) for any m X n
Monge array.

d. Here is a description of a divide-and-conquer algorithm that
computes the leftmost minimum element in each row of an m X n
Monge array 4:

Construct a submatrix 4 of 4 consisting of the even-numbered
rows of A. Recursively determine the leftmost minimum for

each row of 4. Then compute the leftmost minimum in the
odd-numbered rows of A.

Explain how to compute the leftmost minimum in the odd-numbered
rows of A (given that the leftmost minimum of the even-numbered
rows is known) in O(m + n) time.

e. Write the recurrence for the running time of the algorithm in part (d).
Show that its solution is O(m + n log m).

Chapter notes

Divide-and-conquer as a technique for designing algorithms dates back
at least to 1962 in an article by Karatsuba and Ofman [242], but it might
have been used well before then. According to Heideman, Johnson, and
Burrus [211], C. E Gauss devised the first fast Fourier transform
algorithm in 1805, and Gauss’s formulation breaks the problem into
smaller subproblems whose solutions are combined.



Strassen’s algorithm [424] caused much excitement when it appeared
in 1969. Before then, few imagined the possibility of an algorithm
asymptotically faster than the basic MATRIX-MULTIPLY procedure.
Shortly thereafter, S. Winograd reduced the number of submatrix
additions from 18 to 15 while still using seven submatrix multiplications.
This improvement, which Winograd apparently never published (and
which is frequently miscited in the literature), may enhance the
practicality of the method, but it does not affect its asymptotic
performance. Probert [368] described Winograd’s algorithm and showed
that with seven multiplications, 15 additions is the minimum possible.

Strassen’s ®(n1g 7) = O(n2'81) bound for matrix multiplication held
until 1987, when Coppersmith and Winograd [103] made a significant

advance, improving the bound to O(n2°376) time with a mathematically
sophisticated but wildly impractical algorithm based on tensor
products. It took approximately 25 years before the asymptotic upper
bound was again mmproved. In 2012 Vassilevska Williams [445]

improved it to O(n2°37287), and two years later Le Gall [278] achieved

0(n2'37286), both of them using mathematically fascinating but
impractical algorithms. The best lower bound to date is just the obvious

Q(n2) bound (obvious because any algorithm for matrix multiplication

must fill in the 72 elements of the product matrix).

The performance of MATRIX-MULTIPLY-RECURSIVE can be
improved in practice by coarsening the leaves of the recursion. It also
exhibits better cache behavior than MATRIX-MULTIPLY, although
MATRIX-MULTIPLY can be improved by “tiling.” Leiserson et al.
[293] conducted a performance-engineering study of matrix
multiplication in which a parallel and vectorized divide-and-conquer
algorithm achieved the highest performance. Strassen’s algorithm can
be practical for large dense matrices, although large matrices tend to be
sparse, and sparse methods can be much faster. When using limited-
precision floating-point values, Strassens algorithm produces larger

numerical errors than the ®(n3) algorithms do, although Higham [215]
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demonstrated that Strassen’s algorithm is amply accurate for some
applications.

Recurrences were studied as early as 1202 by Leonardo Bonacci [66],
also known as Fibonacci, for whom the Fibonacci numbers are named,
although Indian mathematicians had discovered Fibonacci numbers
centuries before. The French mathematician De Moivre [108]
introduced the method of generating functions with which he studied
Fibonacci numbers (see Problem 4-5). Knuth [259] and Liu [302] are
good resources for learning the method of generating functions.

Aho, Hopcroft, and Ullman [5, 6] offered one of the first general
methods for solving recurrences arising from the analysis of divide-and-
conquer algorithms. The master method was adapted from Bentley,
Haken, and Saxe [52]. The Akra-Bazzi method is due (unsurprisingly)
to Akra and Bazzi [13]. Divide-and-conquer recurrences have been
studied by many researchers, including Campbell [79], Graham, Knuth,
and Patashnik [199], Kuszmaul and Leiserson [274], Leighton [287],
Purdom and Brown [371], Roura [389], Verma [447], and Yap [462].

The issue of floors and ceilings in divide-and-conquer recurrences,
including a theorem similar to Theorem 4.5, was studied by Leighton
[287]. Leighton proposed a version of the polynomial-growth condition.
Campbell [79] removed several limitations in Leighton’s statement of it
and showed that there were polynomially bounded functions that do
not satisfy Leighton’s condition. Campbell also carefully studied many
other technical issues, including the well-definedness of divide-and-
conquer recurrences. Kuszmaul and Leiserson [274] provided a proof of
Theorem 4.5 that does not involve calculus or other higher math. Both
Campbell and Leighton explored the perturbations of arguments
beyond simple floors and ceilings.

! This terminology does not mean that either 7" (n) or f (n) need be continuous, only that the
domain of 7 (n) is the real numbers, as opposed to integers.



|
5 Probabilistic Analysis and Randomized
Algorithms

This chapter introduces probabilistic analysis and randomized
algorithms. If you are unfamiliar with the basics of probability theory,
you should read Sections C.1-C.4 of Appendix C, which review this
material. We’ll revisit probabilistic analysis and randomized algorithms
several times throughout this book.

5.1  The hiring problem

Suppose that you need to hire a new office assistant. Your previous
attempts at hiring have been unsuccessful, and you decide to use an
employment agency. The employment agency sends you one candidate
each day. You interview that person and then decide either to hire that
person or not. You must pay the employment agency a small fee to
interview an applicant. To actually hire an applicant is more costly,
however, since you must fire your current office assistant and also pay a
substantial hiring fee to the employment agency. You are committed to
having, at all times, the best possible person for the job. Therefore, you
decide that, after interviewing each applicant, if that applicant is better
qualified than the current office assistant, you will fire the current office
assistant and hire the new applicant. You are willing to pay the resulting
price of this strategy, but you wish to estimate what that price will be.
The procedure HIRE-ASSISTANT on the facing page expresses this
strategy for hiring in pseudocode. The candidates for the office assistant
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job are numbered 1 through » and interviewed in that order. The
procedure assumes that after interviewing candidate i, you can
determine whether candidate i is the best candidate you have seen so
far. It starts by creating a dummy candidate, numbered 0, who is less
qualified than each of the other candidates.

The cost model for this problem differs from the model described in
Chapter 2. We focus not on the running time of HIRE-ASSISTANT,
but instead on the fees paid for interviewing and hiring. On the surface,
analyzing the cost of this algorithm may seem very different from
analyzing the running time of, say, merge sort. The analytical techniques
used, however, are identical whether we are analyzing cost or running
time. In either case, we are counting the number of times certain basic
operations are executed.

HIRE-ASSISTANT (1)

1 best =0 |l candidate 0 is a least-qualified dummy candidate
2 fori=1ton

3 Interview candidate i

4 if candidate i i1s better than candidate best

5 best =i

6 hire candidate i

Interviewing has a low cost, say c;, whereas hiring is expensive,
costing cj. Letting m be the number of people hired, the total cost
associated with this algorithm is O(cjn + cpm). No matter how many

people you hire, you always interview n candidates and thus always
incur the cost ¢; associated with interviewing. We therefore

concentrate on analyzing cjm, the hiring cost. This quantity depends on

the order in which you interview candidates.

This scenario serves as a model for a common computational
paradigm. Algorithms often need to find the maximum or minimum
value in a sequence by examining each element of the sequence and
maintaining a current “winner.” The hiring problem models how often a
procedure updates its notion of which element is currently winning.



Worst-case analysis

In the worst case, you actually hire every candidate that you interview.
This situation occurs if the candidates come in strictly increasing order
of quality, in which case you hire n times, for a total hiring cost of
O(cpyn).

Of course, the candidates do not always come in increasing order of
quality. In fact, you have no idea about the order in which they arrive,
nor do you have any control over this order. Therefore, it is natural to
ask what we expect to happen in a typical or average case.

Probabilistic analysis

Probabilistic analysis 1s the use of probability in the analysis of
problems. Most commonly, we use probabilistic analysis to analyze the
running time of an algorithm. Sometimes we use it to analyze other
quantities, such as the hiring cost in procedure HIRE-ASSISTANT. In
order to perform a probabilistic analysis, we must use knowledge of, or
make assumptions about, the distribution of the inputs. Then we
analyze our algorithm, computing an average-case running time, where
we take the average, or expected value, over the distribution of the
possible inputs. When reporting such a running time, we refer to it as
the average-case running time.

You must be careful in deciding on the distribution of inputs. For
some problems, you may reasonably assume something about the set of
all possible inputs, and then you can use probabilistic analysis as a
technique for designing an efficient algorithm and as a means for
gaining insight into a problem. For other problems, you cannot
characterize a reasonable mput distribution, and in these cases you
cannot use probabilistic analysis.

For the hiring problem, we can assume that the applicants come in a
random order. What does that mean for this problem? We assume that
you can compare any two candidates and decide which one is better
qualified, which is to say that there is a total order on the candidates.
(See Section B.2 for the definition of a total order.) Thus, you can rank
each candidate with a unique number from 1 through n, using rank(i) to
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denote the rank of applicant i, and adopt the convention that a higher
rank corresponds to a better qualified applicant. The ordered list
(rank(1), rank(2), ... , rank(n)) 1s a permutation of the list (1, 2, ... , n).
Saying that the applicants come in a random order is equivalent to
saying that this list of ranks is equally likely to be any one of the n!
permutations of the numbers 1 through n. Alternatively, we say that the
ranks form a uniform random permutation, that is, each of the possible !
permutations appears with equal probability.
Section 5.2 contains a probabilistic analysis of the hiring problem.

Randomized algorithms

In order to use probabilistic analysis, you need to know something
about the distribution of the inputs. In many cases, you know little
about the input distribution. Even if you do know something about the
distribution, you might not be able to model this knowledge
computationally. Yet, probability and randomness often serve as tools
for algorithm design and analysis, by making part of the algorithm
behave randomly.

In the hiring problem, it may seem as if the candidates are being
presented to you in a random order, but you have no way of knowing
whether they really are. Thus, in order to develop a randomized
algorithm for the hiring problem, you need greater control over the
order mm which you’ll interview the candidates. We will, therefore,
change the model slightly. The employment agency sends you a list of
the n candidates in advance. On each day, you choose, randomly, which
candidate to interview. Although you know nothing about the
candidates (besides their names), we have made a significant change.
Instead of accepting the order given to you by the employment agency
and hoping that it’s random, you have instead gained control of the
process and enforced a random order.

More generally, we call an algorithm randomized if its behavior is
determined not only by its input but also by values produced by a
random-number generator. We assume that we have at our disposal a
random-number generator RANDOM. A call to RANDOM(a, b)
returns an integer between a and b, inclusive, with each such integer



being equally likely. For example, RANDOM(0, 1) produces 0 with
probability 1/2, and it produces 1 with probability 1/2. A call to
RANDOM(3, 7) returns any one of 3,4, 5, 6, or 7, each with probability
1/5. Each integer returned by RANDOM is independent of the integers
returned on previous calls. You may imagine RANDOM as rolling a (b
—a + 1)-sided die to obtain its output. (In practice, most programming
environments offer a pseudorandom-number generator: a deterministic
algorithm returning numbers that “look” statistically random.)

When analyzing the running time of a randomized algorithm, we
take the expectation of the running time over the distribution of values
returned by the random number generator. We distinguish these
algorithms from those in which the input is random by referring to the
running time of a randomized algorithm as an expected running time. In
general, we discuss the average-case running time when the probability
distribution i1s over the mputs to the algorithm, and we discuss the
expected running time when the algorithm itself makes random choices.

Exercises

5.1-1

Show that the assumption that you are always able to determine which
candidate is best, in line 4 of procedure HIRE-ASSISTANT, implies
that you know a total order on the ranks of the candidates.

* 5.1-2

Describe an implementation of the procedure RANDOM(a, b) that
makes calls only to RANDOM(0, 1). What is the expected running time
of your procedure, as a function of @ and 5?

* 5.1-3

You wish to implement a program that outputs 0 with probability 1/2
and 1 with probability 1/2. At your disposal is a procedure BIASED-
RANDOM that outputs either 0 or 1, but it outputs 1 with some
probability p and 0 with probability 1 — p, where 0 < p < 1. You do not
know what p 1s. Give an algorithm that uses BIASED-RANDOM as a
subroutine, and returns an unbiased answer, returning 0 with
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probability 1/2 and 1 with probability 1/2. What is the expected running
time of your algorithm as a function of p?

5.2 Indicator random variables

In order to analyze many algorithms, including the hiring problem, we
use indicator random variables. Indicator random variables provide a
convenient method for converting between probabilities and
expectations. Given a sample space S and an event A, the indicator
random variable 1 { A} associated with event A is defined as

1 1if A occurs

I1{4} = , ' (5.1)
0 if A does not occur .

As a simple example, let us determine the expected number of heads
obtained when flipping a fair coin. The sample space for a single coin
flipis S = {H, T}, with Pr {H} = Pr {T} = 1/2. We can then define an
indicator random variable Xp7, associated with the coin coming up
heads, which 1s the event H. This variable counts the number of heads
obtained in this flip, and it is 1 if the coin comes up heads and 0
otherwise. We write
Xy = I{H)

| if H occurs ,

0 if T occurs .

The expected number of heads obtained in one flip of the coin is simply
the expected value of our indicator variable X

E[Xy] = E[1 {H}]
=1-Pr{H} +0-Pr{T}
=1-(1/2) +0-(1/2)
=1/2.

Thus the expected number of heads obtained by one flip of a fair coin is
1/2. As the following lemma shows, the expected value of an indicator



random variable associated with an event A4 is equal to the probability
that 4 occurs.

Lemma 5.1
Given a sample space S and an event A4 in the sample space S, let X 4 =

I {A}. Then E[X 4] = Pr {4}.

Proof By the definition of an indicator random variable from equation
(5.1) and the definition of expected value, we have

E[X4] = E[I {4}]
=1-Pr {4} +0 Pr {4}
= Pr {4},

where 4 denotes S — A4, the complement of A.
m

Although indicator random variables may seem cumbersome for an
application such as counting the expected number of heads on a flip of
a single coin, they are useful for analyzing situations that perform
repeated random trials. In Appendix C, for example, indicator random
variables provide a simple way to determine the expected number of
heads in 7z coin flips. One option is to consider separately the probability
of obtaining 0 heads, 1 head, 2 heads, etc. to arrive at the result of
equation (C.41) on page 1199. Alternatively, we can employ the simpler
method proposed in equation (C.42), which uses indicator random
variables mmplicitly. Making this argument more explicit, let X; be the

indicator random variable associated with the event in which the ith flip
comes up heads: X; =1 {the ith flip results in the event H}. Let X be the

random variable denoting the total number of heads in the n coin flips,
so that

"
=% I,
i=1

In order to compute the expected number of heads, take the
expectation of both sides of the above equation to obtain
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E[X]=E {Z t’} ; (5.2)

i=1

By Lemma 5.1, the expectation of each of the random variables is E [X]

= 1/2 for i = 1, 2, ... , n. Then we can compute the sum of the
expectations: 2i=1E[Xi]=7/2 But equation (5.2) calls for the
expectation of the sum, not the sum of the expectations. How can we
resolve this conundrum? Linearity of expectation, equation (C.24) on
page 1192, to the rescue: the expectation of the sum always equals the
sum of the expectations. Linearity of expectation applies even when
there is dependence among the random variables. Combining indicator
random variables with linearity of expectation gives us a powerful
technique to compute expected values when multiple events occur. We
now can compute the expected number of heads:

E[X] = E {Z r}
= ZE[J;:-]
= i 1/2

= n/2.

Thus, compared with the method used in equation (C.41), indicator
random variables greatly simplify the calculation. We use indicator
random variables throughout this book.

Analysis of the hiring problem using indicator random variables

Returning to the hiring problem, we now wish to compute the expected
number of times that you hire a new office assistant. In order to use a
probabilistic analysis, let’s assume that the candidates arrive in a
random order, as discussed in Section 5.1. (We’ll see in Section 5.3 how
to remove this assumption.) Let X be the random variable whose value
equals the number of times you hire a new office assistant. We could



then apply the definition of expected value from equation (C.23) on
page 1192 to obtain

BlX]= ) %Py <x).

x=1
but this calculation would be cumbersome. Instead, let’s simplify the
calculation by using indicator random variables.

To use indicator random variables, instead of computing E [X] by
defining just one variable denoting the number of times you hire a new
office assistant, think of the process of hiring as repeated random trials
and define n variables indicating whether each particular candidate i1s
hired. In particular, let X; be the indicator random variable associated

with the event in which the ith candidate 1s hired. Thus,
X; = I{candidate i is hired}
1 if candidate 7 1s hired ,

0 if candidate 7 is not hired ,

and
X X0, S X (5.3)

Lemma 5.1 gives
E [X]] = Pr {candidate i is hired},

and we must therefore compute the probability that lines 5-6 of HIRE-
ASSISTANT are executed.

Candidate 7 1s hired, in line 6, exactly when candidate i is better than
each of candidates 1 through i — 1. Because we have assumed that the
candidates arrive mm a random order, the first i candidates have
appeared in a random order. Any one of these first i candidates is
equally likely to be the best qualified so far. Candidate i has a
probability of 1/i of being better qualified than candidates 1 through i -
1 and thus a probability of 1/i of being hired. By Lemma 5.1, we
conclude that

E[X,]=1/i. (54)
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Now we can compute E [X]:

E[X] = E [Z k’} (by equation (5.3)) (5.5)
i=1

= Z E[X;] (byequation (C.24), linearity of expectation)
i=l1

n
1
= - (by equation (5.4))

i=1

= Inn 4+ O(1) (by equation (A.9), the harmonic series) . (5.6)

Even though you interview n people, you actually hire only
approximately In n of them, on average. We summarize this result in the
following lemma.

Lemma 5.2
Assuming that the candidates are presented in a random order,
algorithm HIRE-ASSISTANT has an average-case total hiring cost of
O(cp In n).

Proof The bound follows immediately from our definition of the hiring
cost and equation (5.6), which shows that the expected number of hires
1s approximately In 7.

|

The average-case hiring cost is a significant improvement over the
worst-case hiring cost of O(cjn).

Exercises

5.2-1

In HIRE-ASSISTANT, assuming that the candidates are presented in a
random order, what is the probability that you hire exactly one time?
What is the probability that you hire exactly n times?

5.2-2



In HIRE-ASSISTANT, assuming that the candidates are presented in a
random order, what is the probability that you hire exactly twice?

5.2-3
Use indicator random variables to compute the expected value of the
sum of n dice.

5.24

This exercise asks you to (partly) verify that linearity of expectation
holds even if the random variables are not independent. Consider two
6-sided dice that are rolled independently. What 1s the expected value of
the sum? Now consider the case where the first die is rolled normally
and then the second die is set equal to the value shown on the first die.
What is the expected value of the sum? Now consider the case where
the first die 1s rolled normally and the second die is set equal to 7 minus
the value of the first die. What 1s the expected value of the sum?

5.2-5

Use indicator random variables to solve the following problem, which is
known as the hat-check problem. Each of n customers gives a hat to a
hat-check person at a restaurant. The hat-check person gives the hats
back to the customers in a random order. What is the expected number
of customers who get back their own hat?

5.2-6

Let A[l : n] be an array of n distinct numbers. If i < j and A[i] > A[j],
then the pair (i, j) 1s called an inversion of A. (See Problem 2-4 on page
47 for more on inversions.) Suppose that the elements of 4 form a
uniform random permutation of (1, 2, ... , n). Use indicator random
variables to compute the expected number of inversions.

5.3 Randomized algorithms

In the previous section, we showed how knowing a distribution on the
inputs can help us to analyze the average-case behavior of an
algorithm. What if you do not know the distribution? Then you cannot
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perform an average-case analysis. As mentioned in Section 5.1, however,
you might be able to use a randomized algorithm.

For a problem such as the hiring problem, in which it is helpful to
assume that all permutations of the mput are equally likely, a
probabilistic analysis can guide us when developing a randomized
algorithm. Instead of assuming a distribution of inputs, we impose a
distribution. In particular, before running the algorithm, let’s randomly
permute the candidates in order to enforce the property that every
permutation is equally likely. Although we have modified the algorithm,
we still expect to hire a new office assistant approximately In n times.
But now we expect this to be the case for any input, rather than for
inputs drawn from a particular distribution.

Let us further explore the distinction between probabilistic analysis
and randomized algorithms. In Section 5.2, we claimed that, assuming
that the candidates arrive in a random order, the expected number of
times you hire a new office assistant is about In n. This algorithm is
deterministic: for any particular input, the number of times a new office
assistant is hired is always the same. Furthermore, the number of times
you hire a new office assistant differs for different inputs, and it
depends on the ranks of the various candidates. Since this number
depends only on the ranks of the candidates, to represent a particular
input, we can just list, in order, the ranks (rank(1), rank(2), ... , rank(n))
of the candidates. Given the rank list 41 =(1,2,3,4,5,6,7,8,9,10), a

new office assistant is always hired 10 times, since each successive
candidate is better than the previous one, and lines 5-6 of HIRE-
ASSISTANT are executed in each iteration. Given the list of ranks 4»

=(10,9,8,7,6, 5,4, 3,2, 1), a new office assistant is hired only once, in
the first iteration. Given a list of ranks A3 = (5, 2, 1, 8,4, 7, 10, 9, 3, 6),
a new office assistant is hired three times, upon interviewing the
candidates with ranks 5, 8, and 10. Recalling that the cost of our

algorithm depends on how many times you hire a new office assistant,
we see that there are expensive inputs such as 41, inexpensive inputs

such as 4>, and moderately expensive inputs such as A43.



Consider, on the other hand, the randomized algorithm that first
permutes the list of candidates and then determines the best candidate.
In this case, we randomize in the algorithm, not in the input
distribution. Given a particular input, say 43 above, we cannot say how

many times the maximum is updated, because this quantity differs with
each run of the algorithm. The first time you run the algorithm on A3, it

might produce the permutation 4] and perform 10 updates. But the

second time you run the algorithm, it might produce the permutation
A» and perform only one update. The third time you run the algorithm,

it might perform some other number of updates. Each time you run the
algorithm, its execution depends on the random choices made and is
likely to differ from the previous execution of the algorithm. For this
algorithm and many other randomized algorithms, no particular input
elicits its worst-case behavior. Even your worst enemy cannot produce a
bad mput array, since the random permutation makes the input order
irrelevant. The randomized algorithm performs badly only if the
random-number generator produces an “unlucky” permutation.

For the hiring problem, the only change needed in the code is to
randomly permute the array, as done in the RANDOMIZED-HIRE-
ASSISTANT procedure. This simple change creates a randomized
algorithm whose performance matches that obtained by assuming that
the candidates were presented in a random order.

RANDOMIZED-HIRE-ASSISTANT(n)

Irandomly permute the list
of candidates
2HIRE-ASSISTANT(n)

Lemma 5.3
The expected hiring cost of the procedure RANDOMIZED-HIRE-
ASSISTANT is O(c, In n).

Proof Permuting the input array achieves a situation identical to that
of the probabilistic analysis of HIRE-ASSISTANT in Secetion 5.2.
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By carefully comparing Lemmas 5.2 and 5.3, you can see the
difference between probabilistic analysis and randomized algorithms.
Lemma 5.2 makes an assumption about the input. Lemma 5.3 makes no
such assumption, although randomizing the input takes some
additional time. To remain consistent with our terminology, we couched
Lemma 5.2 in terms of the average-case hiring cost and Lemma 5.3 in
terms of the expected hiring cost. In the remainder of this section, we
discuss some issues involved in randomly permuting inputs.

Randomly permuting arrays

Many randomized algorithms randomize the input by permuting a
given input array. We’'ll see elsewhere in this book other ways to
randomize an algorithm, but now, let’s see how we can randomly
permute an array of n elements. The goal is to produce a wuniform
random permutation, that is, a permutation that is as likely as any other
permutation. Since there are n! possible permutations, we want the
probability that any particular permutation is produced to be 1/n!.

You might think that to prove that a permutation is a uniform
random permutation, it suffices to show that, for each element A[7], the
probability that the element winds up in position j is 1/n. Exercise 5.3-4
shows that this weaker condition is, in fact, insufficient.

Our method to generate a random permutation permutes the array
in place: at most a constant number of elements of the input array are
ever stored outside the array. The procedure RANDOMLY-
PERMUTE permutes an array A[l : n] in place in ®(n) time. In its ith
iteration, it chooses the element A[i]] randomly from among elements
A[i] through A[n]. After the ith iteration, A[i] is never altered.

RANDOMLY-PERMUTE(4, n)

1fori=1ton
2 swap A[i] with AIRANDOM(, n)]



We use a loop invariant to show that procedure RANDOMLY-
PERMUTE produces a uniform random permutation. A k-permutation
on a set of n elements is a sequence containing k of the n elements, with
no repetitions. (See page 1180 in Appendix C.) There are n!/(n — k)! such
possible k-permutations.

Lemma 5.4
Procedure RANDOMLY-PERMUTE computes a uniform random
permutation.

Proof We use the following loop invariant:

Just prior to the ith iteration of the for loop of lines 1-2, for
each possible (i — 1)-permutation of the n elements, the
subarray A[l : i — 1] contains this (i — 1)-permutation with
probability (n — i+ 1)!/n!.

We need to show that this invariant is true prior to the first loop
iteration, that each iteration of the loop maintains the invariant, that
the loop terminates, and that the invariant provides a useful property to
show correctness when the loop terminates.

Initialization: Consider the situation just before the first loop iteration,
so that i = 1. The loop invariant says that for each possible O-
permutation, the subarray A[1 : 0] contains this 0-permutation with
probability (n —i + 1)!/n! = n!/n! = 1. The subarray A[1 : 0] is an empty
subarray, and a O-permutation has no elements. Thus, A[1 : 0] contains
any O-permutation with probability 1, and the loop invariant holds
prior to the first iteration.

Maintenance: By the loop invariant, we assume that just before the ith
iteration, each possible (i — 1)-permutation appears in the subarray
A[l : i— 1] with probability (n — i + 1)!/n!. We shall show that after the
ith iteration, each possible i-permutation appears in the subarray A[l :
i] with probability (n — i)!//n!. Incrementing i for the next iteration then
maintains the loop invariant.
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Let us examine the ith iteration. Consider a particular i-permutation,
and denote the elements in it by (x1, x2, ... , x;). This permutation

consists of an (i — 1)-permutation (xq, ... , x;_1) followed by the value
x; that the algorithm places in A[i]. Let E] denote the event in which
the first i — 1 iterations have created the particular (i — 1)-permutation
(x1, .--» xj_1) In A[1 : i — 1]. By the loop invariant, Pr {E1} = (n—1i +
1)!/n!. Let Ep be the event that the ith iteration puts x; in position A[i].
The i-permutation (x1, ... , x;) appears in A[l : i] precisely when both
E1 and E» occur, and so we wish to compute Pr {Ep N Eq}. Using
equation (C.16) on page 1187, we have

Pr{Er N E1} =Pr {Ey| E1} Pr {E1}.

The probability Pr {E5 | E1} equals 1/(n — i + 1) because in line 2 the
algorithm chooses x; randomly from the n — 7 + 1 values in positions
Ali : n]. Thus, we have

Pr{E,NE,} = Pr{E, | E,}Pr{E,}

| (n—i+ 1)
n—i+ 1 !
(n—1i)!

n!

Termination: The loop terminates, since it 1s a for loop iterating n times.
At termination, i = n + 1, and we have that the subarray A[l : n] is a
given n-permutation with probability (n — (n + 1) + 1)!/n! = 0//n! = 1/n!.

Thus, RANDOMLY-PERMUTE produces a uniform random
permutation.
|

A randomized algorithm is often the simplest and most efficient way
to solve a problem.

Exercises

5.3-1



Professor Marceau objects to the loop invariant used in the proof of
Lemma 5.4. He questions whether it holds prior to the first iteration.
He reasons that we could just as easily declare that an empty subarray
contains no O-permutations. Therefore, the probability that an empty
subarray contains a 0-permutation should be 0, thus invalidating the
loop invariant prior to the first iteration. Rewrite the procedure
RANDOMLY-PERMUTE so that its associated loop invariant applies
to a nonempty subarray prior to the first iteration, and modify the
proof of Lemma 5.4 for your procedure.

5.3-2

Professor Kelp decides to write a procedure that produces at random
any permutation except the identity permutation, in which every element
ends up where it started. He proposes the procedure PERMUTE-
WITHOUT-IDENTITY. Does this procedure do what Professor Kelp
intends?

PERMUTE-WITHOUT-IDENTITY (4, n)

1 fori=1ton—1
2 swap A[i] with AIRANDOM(i + 1, n)]

5.3-3

Consider the PERMUTE-WITH-ALL procedure on the facing page,
which instead of swapping element A[i] with a random element from the
subarray A[i : n], swaps it with a random element from anywhere in the
array. Does PERMUTE-WITH-ALL produce a uniform random
permutation? Why or why not?

PERMUTE-WITH-ALL(A, n)

1 fori=1ton
2 swap A[i] with AIRANDOM(1, n)]

5.3-4
Professor Knievel suggests the procedure PERMUTE-BY-CYCLE to
generate a uniform random permutation. Show that each element A[i]
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has a 1/n probability of winding up in any particular position in B. Then
show that Professor Knievel is mistaken by showing that the resulting
permutation is not uniformly random.

PERMUTE-BY-CYCLE(A, n)
1 let B[l : n] be a new array

2 offset = RANDOM(1, n)
3fori=1ton

4  dest =i+ offset

5 if dest > n

6 dest = dest —n
7 Bldest] = A[i]

8 return B

5.3-5

Professor Gallup wants to create a random sample of the set {1, 2, 3, ...
, n}, that is, an m-element subset S, where 0 < m < n, such that each m-
subset is equally likely to be created. One way is to set A[i] =i, for i = 1,
2, 3, ..., n, cal RANDOMLY-PERMUTE(A), and then take just the
first m array elements. This method makes » calls to the RANDOM
procedure. In Professor Gallup’s application, n is much larger than m,

and so the professor wants to create a random sample with fewer calls
to RANDOM.

RANDOM-SAMPLE(m, n)
1 S=0
2fork=n-m+1ton /] iterates m times
i = RANDOMC(1, k)
ifieS
S=8SU {k}
else S=SU {i}
7 return S

AN »n A~ W



Show that the procedure RANDOM-SAMPLE on the previous page
returns a random m-subset S of {1, 2, 3, ... , n}, in which each m-subset
is equally likely, while making only m calls to RANDOM.

% 5.4  Probabilistic analysis and further uses of indicator
random variables

This advanced section further illustrates probabilistic analysis by way of
four examples. The first determines the probability that in a room of &
people, two of them share the same birthday. The second example
examines what happens when randomly tossing balls into bins. The
third investigates “streaks” of consecutive heads when flipping coins.
The final example analyzes a variant of the hiring problem in which you
have to make decisions without actually interviewing all the candidates.

5.4.1 The birthday paradox

Our first example is the birthday paradox. How many people must there
be in a room before there 1s a 50% chance that two of them were born
on the same day of the year? The answer is surprisingly few. The
paradox is that it is in fact far fewer than the number of days in a year,
or even half the number of days in a year, as we shall see.

To answer this question, we index the people in the room with the
integers 1, 2, ... , k, where k is the number of people in the room. We
ignore the issue of leap years and assume that all years have n = 365
days. Fori=1,2, ..., k, let b; be the day of the year on which person i’s

birthday falls, where 1 < b; < n. We also assume that birthdays are
uniformly distributed across the n days of the year, so that Pr {b; =r} =

I/nfori=1,2,...,kandr=1,2,...,n.

The probability that two given people, say i and j, have matching
birthdays depends on whether the random selection of birthdays is
independent. We assume from now on that birthdays are independent,
so that the probability that is birthday and ;s birthday both fall on day
ris
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Pelh = randh; = r} = Prlb, = riPelh; = 1}
1

12

Thus, the probability that they both fall on the same day is

"
Peib =b;} = ZPr {by=randb; =r}

r=1

n
I

e

r=1

|
= —. (5.7)
n

More intuitively, once b; is chosen, the probability that bj is chosen to

be the same day is 1/n. As long as the birthdays are independent, the
probability that i and j have the same birthday is the same as the
probability that the birthday of one of them falls on a given day.

We can analyze the probability of at least 2 out of k people having
matching birthdays by looking at the complementary event. The
probability that at least two of the birthdays match is 1 minus the
probability that all the birthdays are different. The event Bj that k

people have distinct birthdays is
B,'( = m r’i,‘ ¥
i=1

where 4; 1s the event that person /s birthday is different from person ;s
for all j < i. Since we can write By = Aj N Bj_1, we obtain from
equation (C.18) on page 1189 the recurrence

Pr{Bi} = Pr{Br—1}Pr{Ac | Bi-1} . (5.8)

where we take Pr {B]} = Pr {41} = 1| as an initial condition. In other
words, the probability that by, by, ... , bj. are distinct birthdays equals
the probability that b1, by, ..., bj_1 are distinct birthdays multiplied by



the probability that by = b;fori=1, 2, ..., k— 1, given that by, by, ...,
bj._1 are distinct.

If by, by, ..., bj_1 are distinct, the conditional probability that by #
bijtori=1,2,...,k—11sPr {4} | Bi_1} = (n —k + 1)/n, since out of

the n days, n — (k — 1) days are not taken. We iteratively apply the
recurrence (5.8) to obtain

Pr{Bi} = Pr{Bi—1}Pr{Ai | Bg—1}
= Pr{By_»}Pr{As_, | Bx—a} Pridy | Bi—y)

bPr{d, | By}Pr{A; | By} ---Pr{A; | By_1)
- () -(=2)
(- (-9 (-5

Inequality (3.14) on page 66, 1 + x < ¢V, gives us

Pr{ﬂ‘k } < e Vng—2/n (J_[;(_] \n

Yili/n

= g =i

— F—f::k—l:.-"zn

1

=3
when —k(k — 1)/2n < In(1/2). The probability that all £ birthdays are
distinct is at most 1/2 when k(k — 1) > 2n In 2 or, solving the quadratic
equation, when k¥ = (1 + 1+ 8In2)n)/2 For n = 365, we must have k >
23. Thus, if at least 23 people are in a room, the probability is at least
1/2 that at least two people have the same birthday. Since a year on
Mars is 669 Martian days long, it takes 31 Martians to get the same
effect.

An analysis using indicator random variables

Indicator random variables afford a simpler but approximate analysis of
the birthday paradox. For each pair (i, j) of the k people in the room,
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define the indicator random variable X, i for1<i<j<k, by

X;; = I{personi and person j have the same birthday|

| if person i and person j have the same birthday ,

0 otherwise .

By equation (5.7), the probability that two people have matching
birthdays is 1/n, and thus by Lemma 5.1 on page 130, we have
E [X;] =Pr {person i and person j have the same birthday}

= 1/n.

Letting X be the random variable that counts the number of pairs of
individuals having the same birthday, we have

k-1 K
X=% Y Xxy.
i=1 j=i+1

Taking expectations of both sides and applying linearity of expectation,
we obtain

E[X] = E{i Z r}

i=1 j=i+1

= Z Z E‘ [“f-"_."]

i=1 j=i+1

Y

B (2):_:
kik—1)
2n

When k(k — 1) > 2n, therefore, the expected number of pairs of people
with the same birthday is at least 1. Thus, if we have at least v2n+1
individuals in a room, we can expect at least two to have the same
birthday. For n = 365, if k£ = 28, the expected number of pairs with the
same birthday is (28 - 27)/(2 - 365) = 1.0356. Thus, with at least 28
people, we expect to find at least one matching pair of birthdays. On
Mars, with 669 days per year, we need at least 38 Martians.



The first analysis, which used only probabilities, determined the
number of people required for the probability to exceed 1/2 that a
matching pair of birthdays exists, and the second analysis, which used
indicator random variables, determined the number such that the
expected number of matching birthdays is 1. Although the exact
numbers of people differ for the two situations, they are the same
asymptotically: © (/7).

5.4.2 Balls and bins

Consider a process in which you randomly toss identical balls into b
bins, numbered 1, 2, ... , b. The tosses are independent, and on each
toss the ball is equally likely to end up in any bin. The probability that a
tossed ball lands in any given bin is 1/b. If we view the ball-tossing
process as a sequence of Bernoulli trials (see Appendix C4), where
success means that the ball falls in the given bin, then each trial has a
probability 1/b of success. This model is particularly useful for analyzing
hashing (see Chapter 11), and we can answer a variety of interesting
questions about the ball-tossing process. (Problem C-2 asks additional
questions about balls and bins.)

o How many balls fall in a given bin? The number of balls that fall in
a given bin follows the binomial distribution b(k;n, 1/b). 1If you
toss n balls, equation (C41) on page 1199 tells us that the
expected number of balls that fall in the given bin 1s #/b.

o How many balls must you toss, on the average, until a given bin
contains a ball? The number of tosses until the given bin receives a
ball follows the geometric distribution with probability 1/ and, by
equation (C.36) on page 1197, the expected number of tosses until
success is 1/(1/b) = b.

o How many balls must you toss until every bin contains at least one
ball? Let us call a toss in which a ball falls into an empty bin a
“hit.” We want to know the expected number 7 of tosses required
to get b hits.

Using the hits, we can partition the »n tosses into stages. The ith
stage consists of the tosses after the (i — 1)st hit up to and
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including the ith hit. The first stage consists of the first toss, since
you are guaranteed to have a hit when all bins are empty. For
each toss during the ith stage, i — 1 bins contain balls and b —i + 1
bins are empty. Thus, for each toss in the ith stage, the probability
of obtaining a hitis (b —i + 1)/b.

Let n; denote the number of tosses in the ith stage. The number of

: . b :
tosses required to get b hits is # = 2_i=1"i. Each random variable
n; has a geometric distribution with probability of success (b —i +

1)/b and thus, by equation (C.36), we have

b
T

By linearity of expectation, we have

b
E[r] = E |:Z H,:j|
i=1
b
s ZE[H,:]
i=1
o
 =h—i+]
=9
= ] - by ion (A.14 age 1144
}; :' (by equation ( } on page )

= b(lnb + O(1)) (byequation (A.9) on page 1142) .

It therefore takes approximately b In b tosses before we can
expect that every bin has a ball. This problem is also known as the
coupon collector’s problem, which says that if you are trying to
collect each of b different coupons, then you should expect to
acquire approximately b In b randomly obtained coupons in order
to succeed.

5.4.3 Streaks



Suppose that you flip a fair coin »n times. What is the longest streak of
consecutive heads that you expect to see? We’ll prove upper and lower
bounds separately to show that the answer is O(lg n).

We first prove that the expected length of the longest streak of heads
1s O(Ig n). The probability that each coin flip is a head 1s 1/2. Let 4;; be

the event that a streak of heads of length at least k& begins with the ith
coin flip or, more precisely, the event that the k consecutive coin flips i, i
+1,...,i+k—1yield only heads, where ] <k <mand 1 <i<n—k + 1.
Since coin flips are mutually independent, for any given event A4;i, the

probability that all &£ flips are heads is

|
Pr{dix} = 5. (5.9)

Fork = 2[lgn],
|
Ezrlgn]
1

2213??

1

n?

Pt‘ 1:4.,: 2 e ,r.|'|} =

I A

and thus the probability that a streak of heads of length at least 2 [1g n]
begins in position i is quite small. There are at most n — 2 [lg n] + 1
positions where such a streak can begin. The probability that a streak
of heads of length at least 2 [Ig n] begins anywhere is therefore
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n—2[lan]+1
P]:‘ % U ..-'1.,5‘2[]3”"

i=1

n—2[len]+1

< Z Pr{Aianen1} (by Boole's inequality (C.21) on page 1190)
i=1

n—2lgn]+1

[ A
-...MI

- (5.10)

We can use inequality (5.10) to bound the length of the longest
streak. For j =0, 1, 2, ... , n, let Lj be the event that the longest streak

of heads has length exactly j, and let L be the length of the longest
streak. By the definition of expected value, we have

n
E[L] =) jPr{L;}. (5.11)

_,"=U

We could try to evaluate this sum using upper bounds on each Pr {Lj}

similar to those computed in inequality (5.10). Unfortunately, this
method yields weak bounds. We can use some intuition gained by the
above analysis to obtain a good bound, however. For no individual term
in the summation in equation (5.11) are both the factors j and Pr {Lj}

large. Why? When j > 2 [Ig n], then Pr {Lj} 1s very small, and when j <2
[1g n], then j is fairly small. More precisely, since the events L; for j =0,
1, ..., n are disjoint, the probability that a streak of heads of length at
least 2 [1g n] begins anywhere is 2 j=angat PriLy}, Inequality (5.10) tells us
that the probability that a streak of heads of length at least 2 [Ig n]

" G
begins anywhere is less than 1/n, which means that D j—anem PEAL} < 1/n,

5

. n _ 2[lzn]—1 s
Also, noting that 2 j=oPril;} = ', we have that 2-j=0  Pril;j =1 Thus,
we obtain



n
ElL] = > jPr{L;}
i=n

2Mlgn]—1 n
= Y JPe{L;}+ ) jPr{L;}
j=10 Ji=2[lgn]

2lgn]—1 n
Z (2[1gn])PeiLl;} + Z nPr{L;}
J=0 J=z[lgn]

2flgmn]—1 n
= 2[lgn] E PrilL;} +n E Pr{L;}

Jj=0 J=2[lgn]

."'\-

1
< 2[lgn]-14n--=

n
= O(lgn) .

The probability that a streak of heads exceeds r [lg n] flips
diminishes quickly with r. Let’s get a rough bound on the probability
that a streak of at least r [lIg n] heads occurs, for r > 1. The probability
that a streak of at least r [1g n] heads starts in position i is

1
2rlen]

I

n"

Pl" {z"l.-'_r 1z n] } =

=

A streak of at least r [1g n] heads cannot start in the last n — r [Ig n] + 1
flips, but let’s overestimate the probability of such a streak by allowing it
to start anywhere within the n coin flips. Then the probability that a
streak of at least r [Ig n] heads occurs is at most

n "
PT%UA,,,HM% < Y Pr{d;,pem} (by Boole’s inequality (C.21))
i=1 =1

n
1
< E o
: n"
=1

1

nr—1 :
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Equivalently, the probability is at least 1 — 1/n" ~1 that the longest streak
has length less than r [Ig n].

As an example, during n» = 1000 coin flips, the probability of
encountering a streak of at least 2 [Ig n] = 20 heads is at most 1/n =
1/1000. The chance of a streak of at least 3 [Ig n] = 30 heads is at most

1/n? = 1/1,000,000.

Let’s now prove a complementary lower bound: the expected length
of the longest streak of heads in n coin flips is Q(Ilg n). To prove this
bound, we look for streaks of length s by partitioning the » flips into
approximately n/s groups of s flips each. If we choose s = | (Ig n)/2], we’ll
see that it 1s likely that at least one of these groups comes up all heads,
which means that it’s likely that the longest streak has length at least s =
Q(lg n). We’ll then show that the longest streak has expected length Q(lg
n).

Let’s partition the n coin flips into at least |n/ | (g n)/2]] groups of
|(Ig n)/2] consecutive flips and bound the probability that no group
comes up all heads. By equation (5.9), the probability that the group
starting in position i comes up all heads is

Pl'ifi.:.ulgm.-'zj}' = m
1
= ﬁ
The probability that a streak of heads of length at least |(Ig n)/2] does
not begin in position i is therefore at most ! —1/v". Since the |n/ |(Ig

n)/2]] groups are formed from mutually exclusive, independent coin
flips, the probability that every one of these groups fails to be a streak
of length | (Ig n)/2] is at most

{| i f J'E) [n/ [Qgn)/2]] < (| =] ﬁ}n,-"[[lg.r.l],-"lj—l
< (l - |,-'f ﬁ}zrr.-'lgn—l

i P e
—(2nflgn—1)/./n

s {){{:J—]un}
= O(1/n). (5.12)



For this argument, we used inequality (3.14), 1 + x < e, on page 66 and
the fact, which you may verify, that (2n/ 127 — 1)//n = Inn for sufficiently
large n.

We want to bound the probability that the longest streak equals or
exceeds | (Ig n)/2]. To do so, let L be the event that the longest streak of
heads equals or exceeds s = |(lg n)/2]. Let L be the complementary
event, that the longest streak of heads is strictly less than s, so that Pr
{L} +Pr {L} = 1. Let F be the event that every group of s flips fails to
be a streak of s heads. By inequality (5.12), we have Pr {F} = O(1/n). If
the longest streak of heads is less than s, then certainly every group of s
flips fails to be a streak of s heads, which means that event L implies
event F. Of course, event F could occur even if event L does not (for
example, if a streak of s or more heads crosses over the boundary
between two groups), and so we have Pr {L} < Pr {F} = O(1/n). Since
Pr {L} + Pr {L} = 1, we have that

Pr{L} =1-Pr{L}
> 1-Pr {F}
=1-0(1/n).

That is, the probability that the longest streak equals or exceeds [(Ig
n)/2] is

> Pr{Li}=1-0(/n). (5.13)
JF=llgr)/ 2]

We can now calculate a lower bound on the expected length of the
longest streak, beginning with equation (5.11) and proceeding in a
manner similar to our analysis of the upper bound:
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E[L] = _Zj?r{af:-

Lilgmiiz]—1
= Z jPeiL;} + Z FPeil
J=0 J=lllgnijz]

lilgmiz]—1 "

3 0-PefLi}+ > L(gn)/2]Pr{L;}

|

i=0 J=egn)2]
lzn)iz]—1
=0- Y Pr{L;}+ [(gn)/2] E Pr{L;}
J=0 J=|llgn) 2]
> 04 |(Ign)/2| (1 —0(1/n)) (by inequality (5.13))
= ﬂ{lgﬂ} .

As with the birthday paradox, we can obtain a simpler, but
approximate, analysis using indicator random variables. Instead of
determining the expected length of the longest streak, we’ll find the
expected number of streaks with at least a given length. Let X = 1

{Aji} be the indicator random variable associated with a streak of

heads of length at least k beginning with the ith coin flip. To count the
total number of such streaks, define

n—K+1

¥,!( - Z .¥|.'g( .
i=1

Taking expectations and using linearity of expectation, we have



E [.r,',:] = E |:”f1 .Xl:,',::|

n—K+1
= E [.-YI:,!(]
i=1

n—k-41
—_ E Fdqd..1
—_ P]:' '.';‘1..._,!,: i
i=1

n—rk+1 ]
2k
1
n—k+1
2k '

>

=

By plugging in various values for k£, we can calculate the expected
number of streaks of length at least k. If this expected number is large
(much greater than 1), then we expect many streaks of length k& to
occur, and the probability that one occurs is high. If this expected
number is small (much less than 1), then we expect to see few streaks of
length k&, and the probability that one occurs is low. If k = ¢ lg n, for
some positive constant ¢, we obtain
n—clgn+1

zrlgn
n—clgn +1

ne
l (clgn—1)/n

E [‘1{(‘1_2 n] =

l”i'_l f!{‘_l
i |
= BO(l/n"").

If ¢ 1s large, the expected number of streaks of length ¢ Ig n is small, and
we conclude that they are unlikely to occur. On the other hand, if ¢ =

1/2, then we obtain E [X(1/2) 1g nl = @(I/nl/z_l) = ®(n1/2), and we

expect there to be numerous streaks of length (1/2) Ig n. Therefore, one
streak of such a length is likely to occur. We can conclude that the
expected length of the longest streak is @(lg n).

5.4.4 The online hiring problem
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As a final example, let’s consider a variant of the hiring problem.
Suppose now that you do not wish to interview all the candidates in
order to find the best one. You also want to avoid hiring and firing as
you find better and better applicants. Instead, you are willing to settle
for a candidate who is close to the best, in exchange for hiring exactly
once. You must obey one company requirement: after each interview
you must either immediately offer the position to the applicant or
immediately reject the applicant. What is the trade-off between
minimizing the amount of interviewing and maximizing the quality of
the candidate hired?

We can model this problem in the following way. After meeting an
applicant, you are able to give each one a score. Let score(i) denote the
score you give to the ith applicant, and assume that no two applicants
receive the same score. After you have seen j applicants, you know
which of the j has the highest score, but you do not know whether any
of the remaining n — j applicants will receive a higher score. You decide
to adopt the strategy of selecting a positive integer k < n, interviewing
and then rejecting the first & applicants, and hiring the first applicant
thereafter who has a higher score than all preceding applicants. If it
turns out that the best-qualified applicant was among the first k
interviewed, then you hire the nth applicant—the last one interviewed.
We formalize this strategy in the procedure ONLINE-MAXIMUM(k,
n), which returns the index of the candidate you wish to hire.

ONLINE-MAXIMUM(k, 1)

1 best-score = —oo

2fori=1tok
3 if score(i) > best-score
4 best-score = score(i)

Sfori=k+1ton

6  if score(i) > best-score
7 return i

8 return n



If we determine, for each possible value of k, the probability that you
hire the most qualified applicant, then you can choose the best possible
k and implement the strategy with that value. For the moment, assume
that k is fixed. Let M(j) = max {score(i) : 1 <i<j} denote the maximum
score among applicants 1 through j. Let S be the event that you succeed
in choosing the best-qualified applicant, and let S; be the event that you

succeed when the best-qualified applicant is the ith one interviewed.
Since the various S; are disjoint, we have that PriS} = X, Pr{S},
Noting that you never succeed when the best-qualified applicant is one
of the first k, we have that Pr {S;} = 0 fori =1, 2, ... , k. Thus, we

obtain

PriS) = Z Pr{S;} . (5.14)

F=k41

We now compute Pr {S;}. In order to succeed when the best-

qualified applicant is the ith one, two things must happen. First, the
best-qualified applicant must be in position i, an event which we denote
by B;. Second, the algorithm must not select any of the applicants in

positions k£ + 1 through i — 1, which happens only if, for each j such that
k+1<j<i—-1,line 6 finds that score(j) < best-score. (Because scores
are unique, we can ignore the possibility of score(j) = best-score.) In
other words, all of the values score(k + 1) through score(i — 1) must be
less than M(k). If any are greater than M(k), the algorithm instead
returns the index of the first one that is greater. We use O; to denote the

event that none of the applicants in position k + 1 through i — 1 are
chosen. Fortunately, the two events B; and O; are independent. The

event O; depends only on the relative ordering of the values in positions
1 through i — 1, whereas B; depends only on whether the value in

position 7 is greater than the values in all other positions. The ordering
of the values in positions 1 through i — 1 does not affect whether the
value in position i is greater than all of them, and the value in position i
does not affect the ordering of the values in positions 1 through i — 1.
Thus, we can apply equation (C.17) on page 1188 to obtain
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Pr {S;} =Pr {B; N O;} =Pr {B;} Pr {O}}.

We have Pr {B;} = 1/n since the maximum is equally likely to be in any
one of the n positions. For event O; to occur, the maximum value in

positions 1 through i —1, which is equally likely to be in any of these i — 1
positions, must be in one of the first k positions. Consequently, Pr {O;}

= kl/(i—1) and Pr {S;} = k/(n(i—1)). Using equation (5.14), we have

Pr{S} = Z Pr{S;)
i=k+1
oy
- I:=H]H|[f— 1)
ko 1

k1! =

_nl

i=

We approximate by integrals to bound this summation from above and
below. By the inequalities (A.19) on page 1150, we have

” 1 n—1q
f —(h f —a'\
k

Evaluating these definite integrals gives us the bounds

ke k
—1111H —Ink) =Pr{S} < ;{lnm —1)=Ink-=1)).

which provide a rather tight bound for Pr {S}. Because you wish to
maximize your probability of success, let us focus on choosing the value
of k that maximizes the lower bound on Pr {S}. (Besides, the lower-
bound expression 1is easier to maximize than the upper-bound
expression.) Differentiating the expression (k/n)(In n — In k) with respect
to k, we obtain

1
—(lnn —Ink —1).
7



Setting this derivative equal to 0, we see that you maximize the lower
bound on the probability when In £ = In n — 1 = In(n/e) or, equivalently,
when k& = n/e. Thus, if you implement our strategy with k = n/e, you
succeed in hiring the best-qualified applicant with probability at least
1/e.

Exercises

5.4-1

How many people must there be in a room before the probability that
someone has the same birthday as you do is at least 1/2? How many
people must there be before the probability that at least two people have
a birthday on July 4 is greater than 1/2?

5.4-2

How many people must there be in a room before the probability that
two people have the same birthday is at least 0.99? For that many
people, what 1s the expected number of pairs of people who have the
same birthday?

5.4-3

You toss balls into b bins until some bin contains two balls. Each toss is
independent, and each ball is equally likely to end up in any bin. What is
the expected number of ball tosses?

* 5.4-4

For the analysis of the birthday paradox, is it important that the
birthdays be mutually independent, or i1s pairwise independence
sufficient? Justify your answer.

* 5.4-5
How many people should be invited to a party in order to make it likely
that there are three people with the same birthday?

* 5.4-6
What is the probability that a k-string (defined on page 1179) over a set
of size n forms a k-permutation? How does this question relate to the
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birthday paradox?

* 5.4-7

You toss #n balls into n bins, where each toss 1s independent and the ball
is equally likely to end up in any bin. What is the expected number of
empty bins? What is the expected number of bins with exactly one ball?

* 5.4-8

Sharpen the lower bound on streak length by showing that in n flips of a
fair coin, the probability is at least 1 — 1/n that a streak of length Ig n — 2
lg Ig n consecutive heads occurs.

Problems

5-1 Probabilistic counting

With a b-bit counter, we can ordinarily only count up to 2b _ 1. With R.
Morris’s probabilistic counting, we can count up to a much larger value
at the expense of some loss of precision.

We let a counter value of 7 represent a count of n; fori=0, 1, ..., 2b
— 1, where the n; form an increasing sequence of nonnegative values. We

assume that the initial value of the counter is 0, representing a count of
ng = 0. The INCREMENT operation works on a counter containing

the value i in a probabilistic manner. If i = L 1, then the operation
reports an overflow error. Otherwise, the INCREMENT operation
increases the counter by 1 with probability 1/(n; + | — n;), and 1t leaves

the counter unchanged with probability 1 — 1/(n; + 1 — n;).
If we select n; =i for all i > 0, then the counter is an ordinary one.

More interesting situations arise if we select, say, n; = 2i=1gori>0or
n; = Fj (the ith Fibonacci number—see equation (3.31) on page 69).

For this problem, assume that 72+ is large enough that the
probability of an overflow error 1s negligible.



a. Show that the expected value represented by the counter after n
INCREMENT operations have been performed is exactly 7.

b. The analysis of the variance of the count represented by the counter
depends on the sequence of the n;. Let us consider a simple case: n; =

100 for all i > 0. Estimate the variance in the value represented by the
register after n INCREMENT operations have been performed.

5-2  Searching an unsorted array

This problem examines three algorithms for searching for a value x in
an unsorted array A consisting of n elements.

Consider the following randomized strategy: pick a random index i
into A4. If A[i] = x, then terminate; otherwise, continue the search by
picking a new random index into A. Continue picking random indices
into A until you find an index j such that A[j] = x or until every element
of A has been checked. This strategy may examine a given element more
than once, because it picks from the whole set of indices each time.

a. Write pseudocode for a procedure RANDOM-SEARCH to
implement the strategy above. Be sure that your algorithm terminates
when all indices into 4 have been picked.

b. Suppose that there is exactly one index i such that A[i{] = x. What is
the expected number of indices into 4 that must be picked before x is
found and RANDOM-SEARCH terminates?

c. Generalizing your solution to part (b), suppose that there are k > 1
indices i such that A[i] = x. What is the expected number of indices
into A that must be picked before x is found and RANDOM-
SEARCH terminates? Your answer should be a function of » and k.

d. Suppose that there are no indices i such that A[i] = x. What is the
expected number of indices into 4 that must be picked before all

elements of A4 have been checked and RANDOM-SEARCH
terminates?

Now consider a deterministic linear search algorithm. The algorithm,
which we call DETERMINISTIC-SEARCH, searches A4 for x in order,
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considering A[1], A4[2], A[3], ... , A[n] until either it finds A[i] = x or it
reaches the end of the array. Assume that all possible permutations of
the input array are equally likely.

e. Suppose that there is exactly one index i such that A[i] = x. What is
the average-case running time of DETERMINISTIC-SEARCH?
What is the worst-case running time of DETERMINISTIC-
SEARCH?

f. Generalizing your solution to part (e), suppose that there are £ > 1
indices i such that A[i] = x. What is the average-case running time of
DETERMINISTIC-SEARCH? What is the worst-case running time
of DETERMINISTIC-SEARCH? Your answer should be a function
of n and k.

g. Suppose that there are no indices i such that A[i] = x. What is the
average-case running time of DETERMINISTIC-SEARCH? What is
the worst-case running time of DETERMINISTIC-SEARCH?

Finally, consider a randomized algorithm SCRAMBLE-SEARCH that
first randomly permutes the input array and then runs the deterministic
linear search given above on the resulting permuted array.

h. Letting k& be the number of indices i such that A[i] = x, give the worst-
case and expected running times of SCRAMBLE-SEARCH for the
cases in which k& = 0 and k = 1. Generalize your solution to handle the
case in which £ > 1.

i. Which of the three searching algorithms would you use? Explain your
answer.

Chapter notes

Bollobas [65], Hofri [223], and Spencer [420] contain a wealth of
advanced probabilistic techniques. The advantages of randomized
algorithms are discussed and surveyed by Karp [249] and Rabin [372].
The textbook by Motwani and Raghavan [336] gives an extensive
treatment of randomized algorithmes.



The RANDOMLY-PERMUTE procedure is by Durstenfeld [128§],
based on an earlier procedure by Fisher and Yates [143, p. 34].

Several variants of the hiring problem have been widely studied.
These problems are more commonly referred to as “secretary
problems.” Examples of work in this area are the paper by Ajtai,
Meggido, and Waarts [11] and another by Kleinberg [258], which ties
the secretary problem to online ad auctions.
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Part Il Sorting and Order Statistics



Introduction

This part presents several algorithms that solve the following sorting
problem:

Input: A sequence of n numbers (a{, ap, ..., ap).

Output: A permutation (reordering) (@i @5. ... a@,} of the input sequence
such that @) = a3 =--- = a,

The mput sequence is usually an n-element array, although it may be

represented in some other fashion, such as a linked list.

The structure of the data

In practice, the numbers to be sorted are rarely isolated values. Each is
usually part of a collection of data called a record. Each record contains
a key, which 1s the value to be sorted. The remainder of the record
consists of satellite data, which are usually carried around with the key.
In practice, when a sorting algorithm permutes the keys, it must
permute the satellite data as well. If each record includes a large
amount of satellite data, it often pays to permute an array of pointers
to the records rather than the records themselves in order to minimize
data movement.

In a sense, it is these implementation details that distinguish an
algorithm from a full-blown program. A sorting algorithm describes the
method to determine the sorted order, regardless of whether what’s
being sorted are individual numbers or large records containing many
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bytes of satellite data. Thus, when focusing on the problem of sorting,
we typically assume that the input consists only of numbers. Translating
an algorithm for sorting numbers into a program for sorting records is
conceptually straightforward, although in a given engineering situation
other subtleties may make the actual programming task a challenge.

Why sorting?

Many computer scientists consider sorting to be the most fundamental
problem in the study of algorithms. There are several reasons:

Sometimes an application inherently needs to sort information.
For example, in order to prepare customer statements, banks
need to sort checks by check number.

Algorithms often use sorting as a key subroutine. For example, a
program that renders graphical objects which are layered on top
of each other might have to sort the objects according to an
“above” relation so that it can draw these objects from bottom to
top. We will see numerous algorithms in this text that use sorting
as a subroutine.

We can draw from among a wide variety of sorting algorithms,
and they employ a rich set of techniques. In fact, many important
techniques used throughout algorithm design appear in sorting
algorithms that have been developed over the years. In this way,
sorting is also a problem of historical interest.

We can prove a nontrivial lower bound for sorting (as we’ll do in
Chapter 8). Since the best upper bounds match the lower bound
asymptotically, we can conclude that certain of our sorting
algorithms are asymptotically optimal. Moreover, we can use the
lower bound for sorting to prove lower bounds for various other
problems.

Many engineering issues come to the fore when implementing
sorting algorithms. The fastest sorting program for a particular
situation may depend on many factors, such as prior knowledge
about the keys and satellite data, the memory hierarchy (caches



and virtual memory) of the host computer, and the software
environment. Many of these issues are best dealt with at the
algorithmic level, rather than by “tweaking” the code.

Sorting algorithms
We introduced two algorithms that sort n real numbers in Chapter 2.

Insertion sort takes G)(nz) time in the worst case. Because its inner loops
are tight, however, it is a fast sorting algorithm for small input sizes.
Moreover, unlike merge sort, it sorts in place, meaning that at most a
constant number of elements of the input array are ever stored outside
the array, which can be advantageous for space efficiency. Merge sort
has a better asymptotic running time, O(n lg n), but the MERGE
procedure it uses does not operate in place. (We’'ll see a parallelized
version of merge sort in Section 26.3.)

This part introduces two more algorithms that sort arbitrary real
numbers. Heapsort, presented in Chapter 6, sorts » numbers in place in
O(n Ig n) time. It uses an important data structure, called a heap, which
can also implement a priority queue.

Quicksort, in Chapter 7, also sorts » numbers in place, but its worst-

case running time is @(nz). Its expected running time is O(n lg n),
however, and it generally outperforms heapsort in practice. Like
insertion sort, quicksort has tight code, and so the hidden constant
factor in its running time 1s small. It is a popular algorithm for sorting
large arrays.

Insertion sort, merge sort, heapsort, and quicksort are all
comparison sorts: they determine the sorted order of an input array by
comparing elements. Chapter 8 begins by introducing the decision-tree
model in order to study the performance limitations of comparison
sorts. Using this model, we prove a lower bound of Q(n Ig n) on the
worst-case running time of any comparison sort on n inputs, thus
showing that heapsort and merge sort are asymptotically optimal
comparison sorts.

Chapter 8 then goes on to show that we might be able to beat this
lower bound of Q(n 1g n) if an algorithm can gather information about
the sorted order of the input by means other than comparing elements.
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The counting sort algorithm, for example, assumes that the input
numbers belong to the set {0, 1, ... , k}. By using array indexing as a
tool for determining relative order, counting sort can sort » numbers in
O(k + n) time. Thus, when k& = O(n), counting sort runs in time that is
linear in the size of the input array. A related algorithm, radix sort, can
be used to extend the range of counting sort. If there are » integers to
sort, each integer has d digits, and each digit can take on up to k
possible values, then radix sort can sort the numbers in O(d(n + k))
time. When d is a constant and & 1s O(n), radix sort runs in linear time.
A third algorithm, bucket sort, requires knowledge of the probabilistic
distribution of numbers in the input array. It can sort n real numbers
uniformly distributed in the half-open interval [0, 1) in average-case
O(n) time.

The table on the following page summarizes the running times of the
sorting algorithms from Chapters 2 and 6-8. As usual, n denotes the
number of items to sort. For counting sort, the items to sort are
integers in the set {0, 1, ... , k}. For radix sort, each item is a d-digit
number, where each digit takes on k possible values. For bucket sort, we
assume that the keys are real numbers uniformly distributed in the half-
open interval [0, 1). The rightmost column gives the average-case or
expected running time, indicating which one it gives when it differs from
the worst-case running time. We omit the average-case running time of
heapsort because we do not analyze it in this book.

Worst-case Average-case/expected
Algorithm| running time running time
Insertion @(n2) @(1’22)
sort
Merge O(n 1g n) O(n lg n)
sort
Heapsort | O(n lg n) —
Quicksort @(n2) O(n Ig n) (expected)
Counting | O(k + n) Ok + n)
sort




Radix O(d(n + k)) O(d(n + k))

sort

Bucket @(HZ) O(n) (average-case)
sort

Order statistics

The ith order statistic of a set of » numbers is the ith smallest number in
the set. You can, of course, select the ith order statistic by sorting the
input and indexing the ith element of the output. With no assumptions
about the input distribution, this method runs in Q(n Ig n) time, as the
lower bound proved in Chapter 8 shows.

Chapter 9 shows how to find the ith smallest element in O(n) time,
even when the elements are arbitrary real numbers. We present a

randomized algorithm with tight pseudocode that runs in ®(n2) time in
the worst case, but whose expected running time is O(n). We also give a
more complicated algorithm that runs in O(n) worst-case time.

Background

Although most of this part does not rely on difficult mathematics, some
sections do require mathematical sophistication. In particular, analyses
of quicksort, bucket sort, and the order-statistic algorithm use
probability, which is reviewed in Appendix C, and the material on
probabilistic analysis and randomized algorithms in Chapter 5.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] lk-'q-k!rP'E'ml:ﬁE m



https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

6 Heapsort

This chapter introduces another sorting algorithm: heapsort. Like
merge sort, but unlike insertion sort, heapsort’s running time is O(n Ig
n). Like insertion sort, but unlike merge sort, heapsort sorts in place:
only a constant number of array elements are stored outside the input
array at any time. Thus, heapsort combines the better attributes of the
two sorting algorithms we have already discussed.

Heapsort also introduces another algorithm design technique: using
a data structure, in this case one we call a “heap,” to manage
information. Not only is the heap data structure useful for heapsort,
but it also makes an efficient priority queue. The heap data structure
will reappear in algorithms in later chapters.

The term “heap” was originally coined in the context of heapsort,
but it has since come to refer to “garbage-collected storage,” such as
the programming languages Java and Python provide. Please don’t be
confused. The heap data structure is not garbage-collected storage. This
book is consistent in using the term “heap” to refer to the data
structure, not the storage class.

6.1 Heaps

The (binary) heap data structure is an array object that we can view as
a nearly complete binary tree (see Section B.5.3), as shown in Figure
6.1. Each node of the tree corresponds to an element of the array. The
tree is completely filled on all levels except possibly the lowest, which is



filled from the left up to a point. An array A[l : n] that represents a heap
is an object with an attribute A.heap-size, which represents how many
elements in the heap are stored within array A. That is, although A[1 : x]
may contain numbers, only the elements in A[1 : A.heap-size], where 0 <
A.heap-size < n, are valid elements of the heap. If A.heap-size = 0, then
the heap is empty. The root of the tree is A[1], and given the index i of a
node, theres a simple way to compute the indices of its parent, left
child, and right child with the one-line procedures PARENT, LEFT,
and RIGHT.

16
2/ \ 3
14 10
4/ \5 5/ \? }_L,\if_i_i 6 7 B 910
e,
8 7) (8 3 l16]14]10{8 [ 7[9]3]|2]4]|1]|
8/ \9 10 e — ———
3y (1) (1
(a) ()]

Figure 6.1 A max-heap viewed as (a) a binary tree and (b) an array. The number within the
circle at each node in the tree is the value stored at that node. The number above a node is the
corresponding index in the array. Above and below the array are lines showing parent-child
relationships, with parents always to the left of their children. The tree has height 3, and the
node at index 4 (with value 8) has height 1.

PARENT()
Ireturn | /2]

LEFT())

lreturn 2/

RIGHT(i)

Ireturn 27 + 1

On most computers, the LEFT procedure can compute 2i in one
instruction by simply shifting the binary representation of i left by one
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bit position. Similarly, the RIGHT procedure can quickly compute 2i +
1 by shifting the binary representation of i left by one bit position and
then adding 1. The PARENT procedure can compute |i/2] by shifting i
right one bit position. Good implementations of heapsort often
implement these procedures as macros or inline procedures.

There are two kinds of binary heaps: max-heaps and min-heaps. In
both kinds, the values in the nodes satisfy a heap property, the specifics
of which depend on the kind of heap. In a max-heap, the max-heap
property is that for every node i other than the root,

A[PARENT()] > A[d,

that is, the value of a node is at most the value of its parent. Thus, the
largest element in a max-heap is stored at the root, and the subtree
rooted at a node contains values no larger than that contained at the
node itself. A min-heap 1s organized in the opposite way: the min-heap
property is that for every node i other than the root,

A[PARENT(9)] < A[i].

The smallest element in a min-heap is at the root.

The heapsort algorithm uses max-heaps. Min-heaps commonly
implement priority queues, which we discuss in Section 6.5. We’ll be
precise in specifying whether we need a max-heap or a min-heap for any
particular application, and when properties apply to either max-heaps
or min-heaps, we just use the term “heap.”

Viewing a heap as a tree, we define the height of a node in a heap to
be the number of edges on the longest simple downward path from the
node to a leaf, and we define the height of the heap to be the height of
its root. Since a heap of n elements 1s based on a complete binary tree,
its height is ®(lg n) (see Exercise 6.1-2). As we’ll see, the basic
operations on heaps run in time at most proportional to the height of
the tree and thus take O(lg n) time. The remainder of this chapter
presents some basic procedures and shows how they are used i a
sorting algorithm and a priority-queue data structure.

e The MAX-HEAPIFY procedure, which runs in O(lg n) time, is
the key to maintaining the max-heap property.



e The BUILD-MAX-HEAP procedure, which runs in linear time,
produces a max-heap from an unordered input array.

e The HEAPSORT procedure, which runs in O(n Ig n) time, sorts an
array in place.

e The procedures MAX-HEAP-INSERT, MAX-HEAP-
EXTRACT-MAX, MAX-HEAP-INCREASE-KEY, and MAX-
HEAP-MAXIMUM allow the heap data structure to implement
a priority queue. They run in O(lg n) time plus the time for
mapping between objects being inserted into the priority queue
and indices in the heap.

Exercises

6.1-1
What are the minimum and maximum numbers of elements in a heap of
height /?

6.1-2
Show that an n-element heap has height [1g n].

6.1-3
Show that in any subtree of a max-heap, the root of the subtree
contains the largest value occurring anywhere in that subtree.

6.1-4
Where in a max-heap might the smallest element reside, assuming that
all elements are distinct?

6.1-5
At which levels in a max-heap might the kth largest element reside, for 2
< k <|n/2], assuming that all elements are distinct?

6.1-6
Is an array that is in sorted order a min-heap?

6.1-7
Is the array with values (33, 19, 20, 15, 13, 10, 2, 13, 16, 12) a max-heap?
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6.1-8
Show that, with the array representation for storing an n-element heap,
the leaves are the nodes indexed by [#/2] + 1, |n/2] + 2, ... , n.

6.2  Maintaining the heap property

The procedure MAX-HEAPIFY on the facing page maintains the max-
heap property. Its inputs are an array 4 with the heap-size attribute and
an index 7 into the array. When it is called, MAX-HEAPIFY assumes
that the binary trees rooted at LEFT(i) and RIGHT(i) are max-heaps,
but that A[i] might be smaller than its children, thus violating the max-
heap property. MAX-HEAPIFY lets the value at A[i] “float down” in
the max-heap so that the subtree rooted at index i obeys the max-heap
property.

Figure 6.2 illustrates the action of MAX-HEAPIFY. Each step
determines the largest of the elements A[i], A[LEFT(i)], and
A[RIGHT(7)] and stores the index of the largest element in largest. If
A[f] 1s largest, then the subtree rooted at node i 1s already a max-heap
and nothing else needs to be done. Otherwise, one of the two children
contains the largest element. Positions i and largest swap their contents,
which causes node i and its children to satisfy the max-heap property.
The node indexed by largest, however, just had its value decreased, and
thus the subtree rooted at largest might violate the max-heap property.
Consequently, MAX-HEAPIFY calls itself recursively on that subtree.
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Figure 6.2 The action of MAX-HEAPIFY(4, 2), where A.heap-size = 10. The node that
potentially violates the max-heap property is shown in blue. (a) The initial configuration, with
A[2] at node i = 2 violating the max-heap property since it is not larger than both children.
The max-heap property is restored for node 2 in (b) by exchanging A[2] with A[4], which
destroys the max-heap property for node 4. The recursive call MAX-HEAPIFY (4, 4) now has
i = 4. After A[4] and A[9] are swapped, as shown in (c¢), node 4 is fixed up, and the recursive
call MAX-HEAPIFY (A4, 9) yields no further change to the data structure.

MAX-HEAPIFY(4, i)

1/ = LEFT()

2r = RIGHT(i)

3if [ < A.heap-size and A[l] > A[i]

4 largest =1

Selse largest = i

6if r < A.heap-size and A[r] > A[largest]
7 largest =r
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8if largest # i
9 exchange A[i] with A[largest]
10 MAX-HEAPIFY(A, largest)

To analyze MAX-HEAPIFY, let T (n) be the worst-case running
time that the procedure takes on a subtree of size at most n. For a tree
rooted at a given node i, the running time is the ®(1) time to fix up the
relationships among the elements A[i], A[LEFT(7)], and A[RIGHT(7)],
plus the time to run MAX-HEAPIFY on a subtree rooted at one of the
children of node i (assuming that the recursive call occurs). The
children’s subtrees each have size at most 2n/3 (see Exercise 6.2-2), and
therefore we can describe the running time of MAX-HEAPIFY by the
recurrence

Tn) =T2n/3)+ 6(1). (6.1)

The solution to this recurrence, by case 2 of the master theorem
(Theorem 4.1 on page 102), is T (n) = O(lg n). Alternatively, we can
characterize the running time of MAX-HEAPIFY on a node of height
h as O(h).

Exercises

6.2-1
Using Figure 6.2 as a model, illustrate the operation of MAX-
HEAPIFY(A, 3) on the array 4 = (27,17, 3,16, 13,10, 1, 5,7, 12, 4, 8,
9, 0).

6.2-2

Show that each child of the root of an n-node heap is the root of a
subtree containing at most 2n/3 nodes. What is the smallest constant a
such that each subtree has at most o n nodes? How does that affect the
recurrence (6.1) and its solution?

6.2-3
Starting with the procedure MAX-HEAPIFY, write pseudocode for the
procedure MIN-HEAPIFY (A4, i), which performs the corresponding



manipulation on a min-heap. How does the running time of MIN-
HEAPIFY compare with that of MAX-HEAPIFY?

6.2-4
What is the effect of calling MAX-HEAPIFY(A, i) when the element
A[i] 1s larger than its children?

6.2-5
What is the effect of calling MAX-HEAPIFY (A4, i) for i > A.heap-
sizel2?

6.2-6

The code for MAX-HEAPIFY is quite efficient in terms of constant
factors, except possibly for the recursive call in line 10, for which some
compilers might produce inefficient code. Write an efficient MAX-
HEAPIFY that uses an iterative control construct (a loop) instead of
recursion.

6.2-7

Show that the worst-case running time of MAX-HEAPIFY on a heap
of size n 1s Q(lg n). (Hint: For a heap with n nodes, give node values that
cause MAX-HEAPIFY to be called recursively at every node on a
simple path from the root down to a leaf.)

6.3  Building a heap

The procedure BUILD-MAX-HEAP converts an array A[l : n] into a
max-heap by calling MAX-HEAPIFY in a bottom-up manner. Exercise
6.1-8 says that the elements in the subarray A[|n/2] + 1 : n] are all leaves
of the tree, and so each is a 1-element heap to begin with. BUILD-
MAX-HEAP goes through the remaining nodes of the tree and runs
MAX-HEAPIFY on each one. Figure 6.3 shows an example of the
action of BUILD-MAX-HEAP.

BUILD-MAX-HEAP(A, n)

1 A.heap-size = n
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2 for i = |n/2| downto 1
3 MAX-HEAPIFY(A4, i)

To show why BUILD-MAX-HEAP works correctly, we use the
following loop invariant:

At the start of each iteration of the for loop of lines 2-3, each
nodei+ 1,i+2,...,nis the root of a max-heap.

We need to show that this invariant is true prior to the first loop
iteration, that each iteration of the loop maintains the invariant, that
the loop terminates, and that the invariant provides a useful property to
show correctness when the loop terminates.

Initialization: Prior to the first iteration of the loop, i = |n/2]. Each node
|n/2] + 1, [n/2] + 2, ..., nis a leaf and is thus the root of a trivial
max-heap.

Maintenance: To see that each iteration maintains the loop invariant,
observe that the children of node i are numbered higher than i. By the
loop invariant, therefore, they are both roots of max-heaps. This is
precisely the condition required for the call MAX-HEAPIFY(4, i) to
make node i a max-heap root. Moreover, the MAX-HEAPIFY call
preserves the property that nodes i + 1,7 + 2, ... , n are all roots of
max-heaps. Decrementing i in the for loop update reestablishes the
loop invariant for the next iteration.

1
4 4
3/ \3 :/ \J
1 3 1 3
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2 i|l6 9 10 2 16 9 10
g/ NY 10/ 8/ \9 10,/
14 B 1 14 8 i
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Figure 6.3 The operation of BUILD-MAX-HEAP, showing the data structure before the call
to MAX-HEAPIFY in line 3 of BUILD-MAX-HEAP. The node indexed by i in each iteration
is shown in blue. (a) A 10-element input array A and the binary tree it represents. The loop
index i refers to node 5 before the call MAX-HEAPIFY(4, i). (b) The data structure that
results. The loop index i for the next iteration refers to node 4. (¢)—(e) Subsequent iterations of
the for loop in BUILD-MAX-HEAP. Observe that whenever MAX-HEAPIFY is called on a
node, the two subtrees of that node are both max-heaps. (f) The max-heap after BUILD-
MAX-HEAP finishes.

Termination: The loop makes exactly [n/2] iterations, and so it
terminates. At termination, i = 0. By the loop invariant, each node 1,
2, ..., nis the root of a max-heap. In particular, node 1 is.

We can compute a simple upper bound on the running time of
BUILD-MAX-HEAP as follows. Each call to MAX-HEAPIFY costs
O(Ig n) time, and BUILD-MAX-HEAP makes O(n) such calls. Thus, the
running time is O(n 1g n). This upper bound, though correct, is not as
tight as it can be.
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We can derive a tighter asymptotic bound by observing that the time
for MAX-HEAPIFY to run at a node varies with the height of the node
in the tree, and that the heights of most nodes are small. Our tighter
analysis relies on the properties that an n-clement heap has height |1g ]

(see Exercise 6.1-2) and at most [n/Zh * 11 nodes of any height / (see
Exercise 6.3-4).

The time required by MAX-HEAPIFY when called on a node of
height 4 1s O(h). Letting ¢ be the constant implicit in the asymptotic
notation, we can express the total cost of BUILD-MAX-HEAP as

being bounded from above by >y [1/2"] As Exercise 6.3-2 shows,
we have [n/2" T 11> 12 for0 < h < |lg n]. Since [x] < 2x for any x > 1/2,

we have [n/2h + 1] < n/2"" We thus obtain

1z | -
Z |71Jr+] —‘ ch

h=0

|l'I'
1

1/2
(1—1/2)2
= C¥n):

(by equation (A.11) on page 1142 withx = 1/2)

= cn

Hence, we can build a max-heap from an unordered array in linear time.

To build a min-heap, use the procedure BUILD-MIN-HEAP, which
is the same as BUILD-MAX-HEAP but with the call to MAX-
HEAPIFY in line 3 replaced by a call to MIN-HEAPIFY (see Exercise
6.2-3). BUILD-MIN-HEAP produces a min-heap from an unordered
linear array in linear time.



Exercises

6.3-1

Using Figure 6.3 as a model, illustrate the operation of BUILD-MAX-
HEAP on the array 4 = (5, 3,17, 10, 84, 19, 6, 22, 9).

6.3-2

Show that [#/2" ¥ 11> 1/2 for 0 < h < |lg n).

6.3-3

Why does the loop index i in line 2 of BUILD-MAX-HEAP decrease
from [n/2] to 1 rather than increase from 1 to |n/2]?

6.3-4

Show that there are at most [#/2" ¥ 1] nodes of height /4 in any n-
element heap.

6.4  The heapsort algorithm

The heapsort algorithm, given by the procedure HEAPSORT, starts by
calling the BUILD-MAX-HEAP procedure to build a max-heap on the
input array A[1 : n]. Since the maximum element of the array is stored at
the root A[1], HEAPSORT can place it into its correct final position by
exchanging it with A[n]. If the procedure then discards node n from the
heap—and it can do so by simply decrementing A.heap-size—the
children of the root remain max-heaps, but the new root element might
violate the max-heap property. To restore the max-heap property, the
procedure just calls MAX-HEAPIFY(A, 1), which leaves a max-heap in
A[l : n — 1]. The HEAPSORT procedure then repeats this process for
the max-heap of size n — 1 down to a heap of size 2. (See Exercise 6.4-2
for a precise loop invariant.)

HEAPSORT(4, n)

1 BUILD-MAX-HEAP(A, n)
2 for i = n downto 2
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3 exchange A[1] with A[i]
4  A.heap-size = A.heap-size — 1
MAX-HEAPIFY(4, 1)

Figure 6.4 shows an example of the operation of HEAPSORT after
line 1 has built the mitial max-heap. The figure shows the max-heap
before the first iteration of the for loop of lines 2-5 and after each
iteration.
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Figure 6.4 The operation of HEAPSORT. (a) The max-heap data structure just after BUILD-
MAX-HEAP has built it in line 1. (b)-(j) The max-heap just after each call of MAX-
HEAPIFY in line 5, showing the value of 7 at that time. Only blue nodes remain in the heap.
Tan nodes contain the largest values in the array, in sorted order. (k) The resulting sorted
array 4.

The HEAPSORT procedure takes O(n Ig n) time, since the call to
BUILD-MAX-HEAP takes O(n) time and each of the n — 1 calls to
MAX-HEAPIFY takes O(lg n) time.

Exercises
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6.4-1
Using Figure 6.4 as a model, illustrate the operation of HEAPSORT on
the array 4 = (5, 13, 2, 25,7, 17, 20, 8, 4).

6.4-2
Argue the correctness of HEAPSORT using the following loop
invariant:

At the start of each iteration of the for loop of lines 2-5, the
subarray A[l : i] is a max-heap containing the i smallest
elements of A[1 : n], and the subarray A[i + 1 : n] contains the »
— i largest elements of A[l : n], sorted.

6.4-3

What is the running time of HEAPSORT on an array 4 of length » that
1s already sorted in increasing order? How about if the array is already
sorted in decreasing order?

6.4-4
Show that the worst-case running time of HEAPSORT is Q(n 1g n).

* 6.4-5
Show that when all the elements of 4 are distinct, the best-case running
time of HEAPSORT is (7 1g n).

6.5 Priority queues

In Chapter 8, we will see that any comparison-based sorting algorithm
requires Q(n lg n) comparisons and hence Q(n g n) time. Therefore,
heapsort 1s asymptotically optimal among comparison-based sorting
algorithms. Yet, a good mmplementation of quicksort, presented in
Chapter 7, usually beats it in practice. Nevertheless, the heap data
structure itself has many uses. In this section, we present one of the
most popular applications of a heap: as an efficient priority queue. As
with heaps, priority queues come in two forms: max-priority queues and
min-priority queues. We’ll focus here on how to implement max-priority



queues, which are in turn based on max-heaps. Exercise 6.5-3 asks you
to write the procedures for min-priority queues.

A priority queue is a data structure for maintaining a set S of
elements, each with an associated value called a key. A max-priority
queue supports the following operations:

INSERT(S, x, k) inserts the element x with key k into the set S, which is
equivalent to the operation S = S J {x}.

MAXIMUM(S) returns the element of S with the largest key.

EXTRACT-MAX(S) removes and returns the element of S with the
largest key.

INCREASE-KEY(S, x, k) increases the value of element x’s key to the
new value k, which i1s assumed to be at least as large as x’s current key
value.

Among their other applications, you can use max-priority queues to
schedule jobs on a computer shared among multiple users. The max-
priority queue keeps track of the jobs to be performed and their relative
priorities. When a job is finished or interrupted, the scheduler selects
the highest-priority job from among those pending by calling
EXTRACT-MAX. The scheduler can add a new job to the queue at any
time by calling INSERT.

Alternatively, a min-priority queue supports the operations INSERT,
MINIMUM, EXTRACT-MIN, and DECREASE-KEY. A min-priority
queue can be used in an event-driven simulator. The items in the queue
are events to be simulated, each with an associated time of occurrence
that serves as its key. The events must be simulated in order of their
time of occurrence, because the simulation of an event can cause other
events to be simulated in the future. The simulation program calls
EXTRACT-MIN at each step to choose the next event to simulate. As
new events are produced, the simulator inserts them into the min-
priority queue by calling INSERT. We’ll see other uses for min-priority
queues, highlighting the DECREASE-KEY operation, in Chapters 21
and 22.
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When you use a heap to implement a priority queue within a given
application, elements of the priority queue correspond to objects in the
application. Each object contains a key. If the priority queue is
implemented by a heap, you need to determine which application object
corresponds to a given heap element, and vice versa. Because the heap
elements are stored in an array, you need a way to map application
objects to and from array indices.

One way to map between application objects and heap elements uses
handles, which are additional information stored in the objects and heap
elements that give enough information to perform the mapping.
Handles are often implemented to be opaque to the surrounding code,
thereby maintaining an abstraction barrier between the application and
the priority queue. For example, the handle within an application object
might contain the corresponding index into the heap array. But since
only the code for the priority queue accesses this index, the index is
entirely hidden from the application code. Because heap eclements
change locations within the array during heap operations, an actual
implementation of the priority queue, upon relocating a heap element,
must also update the array indices in the corresponding handles.
Conversely, each element in the heap might contain a pointer to the
corresponding application object, but the heap element knows this
pointer as only an opaque handle and the application maps this handle
to an application object. Typically, the worst-case overhead for
maintaining handles is O(1) per access.

As an alternative to incorporating handles in application objects, you
can store within the priority queue a mapping from application objects
to array indices in the heap. The advantage of doing so is that the
mapping 1s contained entirely within the priority queue, so that the
application objects need no further embellishment. The disadvantage
lies in the additional cost of establishing and maintaining the mapping.

One option for the mapping is a hash table (see Chapter 11).1 The
added expected time for a hash table to map an object to an array index
is just O(1), though the worst-case time can be as bad as O(n).

Let’s see how to implement the operations of a max-priority queue
using a max-heap. In the previous sections, we treated the array



elements as the keys to be sorted, implicitly assuming that any satellite
data moved with the corresponding keys. When a heap implements a
priority queue, we instead treat each array element as a pointer to an
object in the priority queue, so that the object is analogous to the
satellite data when sorting. We further assume that each such object has
an attribute key, which determines where in the heap the object belongs.
For a heap implemented by an array A4, we refer to A[i].key.

The procedure MAX-HEAP-MAXIMUM on the facing page
implements the MAXIMUM operation in O(1) time, and MAX-HEAP-
EXTRACT-MAX implements the operation EXTRACT-MAX. MAX-
HEAP-EXTRACT-MAX is similar to the for loop body (lines 3-5) of
the HEAPSORT procedure. We implicitly assume that MAX-HEAPIFY
compares priority-queue objects based on their key attributes. We also
assume that when MAX-HEAPIFY exchanges elements in the array, it
is exchanging pointers and also that it updates the mapping between
objects and array indices. The running time of MAX-HEAP-
EXTRACT-MAX is O(lg n), since it performs only a constant amount
of work on top of the O(lg n) time for MAX-HEAPIFY, plus whatever
overhead 1s incurred within MAX-HEAPIFY for mapping priority-
queue objects to array indices.

The procedure MAX-HEAP-INCREASE-KEY on page 176
implements the INCREASE-KEY operation. It first verifies that the
new key k will not cause the key in the object x to decrease, and if there
is no problem, it gives x the new key value. The procedure then finds the
index 7 in the array corresponding to object x, so that A[i] is x. Because
increasing the key of A[i]] might violate the max-heap property, the
procedure then, in a manner reminiscent of the insertion loop (lines 5—
7) of INSERTTION-SORT on page 19, traverses a simple path from this
node toward the root to find a proper place for the newly increased key.
As MAX-HEAP-INCREASE-KEY traverses this path, it repeatedly
compares an element’s key to that of its parent, exchanging pointers
and continuing if the element’s key is larger, and terminating if the
element’s key is smaller, since the max-heap property now holds. (See
Exercise 6.5-7 for a precise loop invariant.) Like MAX-HEAPIFY when
used in a priority queue, MAX-HEAP-INCREASE-KEY updates the
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information that maps objects to array indices when array elements are
exchanged. Figure 6.5 shows an example of a MAX-HEAP-
INCREASE-KEY operation. In addition to the overhead for mapping
priority queue objects to array indices, the running time of MAX-
HEAP-INCREASE-KEY on an n-element heap is O(lg n), since the
path traced from the node updated in line 3 to the root has length O(lg

n).

MAX-HEAP-MAXIMUM(A)

1 if A.heap-size <1
2 error “heap underflow”
3 return A[1]

MAX-HEAP-EXTRACT-MAX(A)

1 max = MAX-HEAP-MAXIMUM(A)
2 A[l] = A[A.heap-size]

3 A.heap-size = A.heap-size — 1

4 MAX-HEAPIFY(4, 1)

5 return max

The procedure MAX-HEAP-INSERT on the next page implements
the INSERT operation. It takes as inputs the array 4 implementing the
max-heap, the new object x to be inserted into the max-heap, and the
size n of array 4. The procedure first verifies that the array has room
for the new element. It then expands the max-heap by adding to the
tree a new leaf whose key is —e. Then it calls MAX-HEAP-
INCREASE-KEY to set the key of this new element to its correct value
and maintain the max-heap property. The running time of MAX-
HEAP-INSERT on an n-element heap is O(lg n) plus the overhead for
mapping priority queue objects to indices.

In summary, a heap can support any priority-queue operation on a
set of size n in O(lg n) time, plus the overhead for mapping priority
queue objects to array indices.

MAX-HEAP-INCREASE-KEY (4, x, k)



if £ < x.key
error “new key is smaller than current key”
x.key =k
find the index i in array A where object x occurs
while i > 1 and A[PARENT(i)].key < A[i].key
exchange A[i] with A[PARENT(i)], updating the information that
maps priority queue objects to array indices
7 i=PARENTY())

AN »n B~ W N =

MAX-HEAP-INSERT (A4, x, n)
1 if A.heap-size == n

2 error “heap overflow”

3 A.heap-size = A.heap-size + 1

4 k= x.key

5 x.key = —o0

6 A[A.heap-size] = x

7 map X to index heap-size in the array

8 MAX-HEAP-INCREASE-KEY(4, x, k)

Exercises

6.5-1

Suppose that the objects in a max-priority queue are just keys. Illustrate
the operation of MAX-HEAP-EXTRACT-MAX on the heap 4 = (15,
13,9,5,12,8,7,4,0,6, 2, 1).

6.5-2

Suppose that the objects in a max-priority queue are just keys. Illustrate
the operation of MAX-HEAP-INSERT(A, 10) on the heap 4 = (15, 13,
9,5,12,8,7,4,0,6,2,1).

6.5-3

Write pseudocode to implement a min-priority queue with a min-heap
by writing the procedures MIN-HEAP-MINIMUM, MIN-HEAP-
EXTRACT-MIN, MIN-HEAP-DECREASE-KEY, and MIN-HEAP-
INSERT.
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6.5-4

Write pseudocode for the procedure MAX-HEAP-DECREASE-
KEY(A4, x, k) im a max-heap. What is the running time of your
procedure?

].-1/ \lﬂ l-l/ \lﬂ
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Figure 6.5 The operation of MAX-HEAP-INCREASE-KEY. Only the key of each element in
the priority queue is shown. The node indexed by 7 in each iteration is shown in blue. (a) The
max-heap of Figure 6.4(a) with 7/ indexing the node whose key is about to be increased. (b)
This node has its key increased to 15. (¢) After one iteration of the while loop of lines 5-7, the
node and its parent have exchanged keys, and the index i moves up to the parent. (d) The max-
heap after one more iteration of the while loop. At this point, A[PARENT(7)] > A[i]. The max-
heap property now holds and the procedure terminates.

6.5-5

Why does MAX-HEAP-INSERT bother setting the key of the inserted
object to —o 1n line 5 given that line 8 will set the object’s key to the
desired value?



6.5-6

Professor Uriah suggests replacing the while loop of lines 5-7 in MAX-
HEAP-INCREASE-KEY by a call to MAX-HEAPIFY. Explain the
flaw 1 the professor’s idea.

6.5-7
Argue the correctness of MAX-HEAP-INCREASE-KEY using the
following loop invariant:

At the start of each iteration of the while loop of lines 5-7:

a. If both nodes PARENT(7) and LEFT(i) exist, then
A[PARENT(i)].key > A[LEFT(i)].key.

b. If both nodes PARENT(7) and RIGHT(j) exist, then
A[PARENT(i)].key > A[RIGHT(i)].key.

c. The subarray A[1 : A.heap-size] satisfies the max-heap property,
except that there may be one violation, which is that A[i].key may
be greater than A[PARENT(7)].key.

You may assume that the subarray A[l : A.heap-size] satisfies the max-
heap property at the time MAX-HEAP-INCREASE-KEY is called.

6.5-8

Each exchange operation on line 6 of MAX-HEAP-INCREASE-KEY
typically requires three assignments, not counting the updating of the
mapping from objects to array indices. Show how to use the idea of the
mner loop of INSERTION-SORT to reduce the three assignments to
just one assignment.

6.5-9

Show how to implement a first-in, first-out queue with a priority queue.
Show how to implement a stack with a priority queue. (Queues and
stacks are defined in Section 10.1.3.)

6.5-10
The operation MAX-HEAP-DELETE(A, x) deletes the object x from
max-heap A. Give an implementation of MAX-HEAP-DELETE for an

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir] HoLOlS IS Q)



https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

n-element max-heap that runs in O(lg n) time plus the overhead for
mapping priority queue objects to array indices.

6.5-11

Give an O(n lg k)-time algorithm to merge k sorted lists into one sorted
list, where 7 1s the total number of elements in all the input lists. (Hint:
Use a min-heap for k-way merging.)

Problems

6-1 Building a heap using insertion

One way to build a heap is by repeatedly calling MAX-HEAP-INSERT
to insert the elements into the heap. Consider the procedure BUILD-
MAX-HEAP' on the facing page. It assumes that the objects being
inserted are just the heap elements.

BUILD-MAX-HEAP' (4, n)

1 A.heap-size = 1

2 fori=2ton

3 MAX-HEAP-INSERT(A, A[i], n)

a. Do the procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP’
always create the same heap when run on the same input array? Prove
that they do, or provide a counterexample.

b. Show that in the worst case, BUILD-MAX-HEAP' requires ®(n Ig n)
time to build an n-element heap.

6-2  Analysis of d-ary heaps

A d-ary heap is like a binary heap, but (with one possible exception)
nonleaf nodes have d children instead of two children. In all parts of
this problem, assume that the time to maintain the mapping between
objects and heap elements is O(1) per operation.

a. Describe how to represent a d-ary heap in an array.



b. Using ®-notation, express the height of a d-ary heap of n elements in
terms of n and d.

c. Give an efficient implementation of EXTRACT-MAX in a d-ary max-
heap. Analyze its running time in terms of 4 and n.

d. Give an efficient implementation of INCREASE-KEY in a d-ary
max-heap. Analyze its running time in terms of d and .

e. Give an efficient implementation of INSERT in a d-ary max-heap.
Analyze its running time in terms of d and .

6-3 Young tableaus

An m X n Young tableau is an m X n matrix such that the entries of each
row are in sorted order from left to right and the entries of each column
are in sorted order from top to bottom. Some of the entries of a Young
tableau may be o, which we treat as nonexistent elements. Thus, a
Young tableau can be used to hold r < mn finite numbers.

a. Draw a 4 X 4 Young tableau containing the elements {9, 16, 3, 2, 4, 8,
5,14, 12}.

b. Argue that an m X n Young tableau Yis empty if Y [1, 1] = «. Argue
that Yis full (contains mn elements) if Y [m, n] < oo.

c¢. Give an algorithm to implement EXTRACT-MIN on a nonempty m
X n Young tableau that runs in O(m + n) time. Your algorithm should
use a recursive subroutine that solves an m X n problem by recursively
solving either an (m — 1) X n or an m X (n — 1) subproblem. (Hint.:
Think about MAX-HEAPIFY.) Explain why your implementation of
EXTRACT-MIN runs in O(m + n) time.

d. Show how to insert a new element into a nonfull m X n Young tableau
in O(m + n) time.
e. Using no other sorting method as a subroutine, show how to use an n

2 humbers in O(n3) time.

X n Young tableau to sort n
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f. Give an O(m + n)-time algorithm to determine whether a given
number is stored in a given m X n Young tableau.

Chapter notes

The heapsort algorithm was invented by Williams [456], who also
described how to implement a priority queue with a heap. The BUILD-
MAX-HEAP procedure was suggested by Floyd [145]. Schaffer and
Sedgewick [395] showed that in the best case, the number of times
elements move in the heap during heapsort is approximately (»/2) lg n
and that the average number of moves is approximately » Ig n.

We use min-heaps to implement min-priority queues in Chapters 15,
21, and 22. Other, more complicated, data structures give better time
bounds for certain min-priority queue operations. Fredman and Tarjan
[156] developed Fibonacci heaps, which support INSERT and
DECREASE-KEY in O(1) amortized time (see Chapter 16). That is, the
average worst-case running time for these operations is O(1). Brodal,
Lagogiannis, and Tarjan [73] subsequently devised strict Fibonacci
heaps, which make these time bounds the actual running times. If the
keys are unique and drawn from the set {0, 1, ... , n — 1} of nonnegative
integers, van Emde Boas trees [440, 441] support the operations
INSERT, DELETE, SEARCH, MINIMUM, MAXIMUM,
PREDECESSOR, and SUCCESSOR in O(lg Ig n) time.

If the data are b-bit integers, and the computer memory consists of
addressable b-bit words, Fredman and Willard [157] showed how to
implement MINIMUM in O(1) time and INSERT and EXTRACT-

MIN in ©(v127) time. Thorup [436] has improved the ¢(v127) bound to
O(lg lIg n) time by using randomized hashing, requiring only linear
space.

An important special case of priority queues occurs when the
sequence of EXTRACT-MIN operations is monotone, that is, the values
returned by successive EXTRACT-MIN operations are monotonically
increasing over time. This case arises in several important applications,
such as Dijkstra’s single-source shortest-paths algorithm, which we
discuss in Chapter 22, and in discrete-event simulation. For Dijkstra’s



algorithm it is particularly important that the DECREASE-KEY
operation be implemented efficiently. For the monotone case, if the data
are integers in the range 1, 2, ... , C, Ahuja, Mehlhorn, Orlin, and
Tarjan [8] describe how to implement EXTRACT-MIN and INSERT in
O(lg C) amortized time (Chapter 16 presents amortized analysis) and
DECREASE-KEY in O(1) time, using a data structure called a radix

heap. The O(lg C) bound can be improved to @(v12C) using Fibonacci
heaps in conjunction with radix heaps. Cherkassky, Goldberg, and

Silverstein [90] further improved the bound to O(Igl/ 3+e () expected
time by combining the multilevel bucketing structure of Denardo and
Fox [112] with the heap of Thorup mentioned earlier. Raman [375]

further improved these results to obtain a bound of O(min {lgl/ a+e C,

lgl/3+6 n}), for any fixed € > 0.
Many other variants of heaps have been proposed. Brodal [72]
surveys some of these developments.

I'm Python, dictionaries are implemented with hash tables.
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7 Quicksort

The quicksort algorithm has a worst-case running time of @(nz) on an
input array of n numbers. Despite this slow worst-case running time,
quicksort is often the best practical choice for sorting because it is
remarkably efficient on average: its expected running time is ®(n 1g n)
when all numbers are distinct, and the constant factors hidden in the
®(n lg n) notation are small. Unlike merge sort, it also has the
advantage of sorting in place (see page 158), and it works well even in
virtual-memory environments.

Our study of quicksort is broken into four sections. Section 7.1
describes the algorithm and an important subroutine used by quicksort
for partitioning. Because the behavior of quicksort is complex, we’ll
start with an intuitive discussion of its performance in Section 7.2 and
analyze it precisely at the end of the chapter. Section 7.3 presents a

randomized version of quicksort. When all elements are distinct,1 this
randomized algorithm has a good expected running time and no
particular input elicits its worst-case behavior. (See Problem 7-2 for the
case In which elements may be equal.) Section 7.4 analyzes the

randomized algorithm, showing that it runs in @(nz) time in the worst
case and, assuming distinct elements, in expected O(n 1g n) time.

7.1  Description of quicksort



Quicksort, like merge sort, applies the divide-and-conquer method
introduced in Section 2.3.1. Here is the three-step divide-and-conquer
process for sorting a subarray A[p : r]:

Divide by partitioning (rearranging) the array A[p : r] into two (possibly
empty) subarrays A[p : g — 1] (the low side) and A[q + 1 : r] (the high
side) such that each element in the low side of the partition is less than
or equal to the pivor A[q], which is, in turn, less than or equal to each
element in the high side. Compute the index g of the pivot as part of
this partitioning procedure.

Conquer by calling quicksort recursively to sort each of the subarrays
Alp:qg—1]and A[g + 1 : 7].

Combine by doing nothing: because the two subarrays are already
sorted, no work is needed to combine them. All elements in A[p : ¢ — 1]
are sorted and less than or equal to A[g], and all elements in A[g + 1 :
r] are sorted and greater than or equal to the pivot A[g]. The entire
subarray A[p : r] cannot help but be sorted!

The QUICKSORT procedure implements quicksort. To sort an
entire n-element array A[l : ], the initial call is QUICKSORT (4, 1, n).

QUICKSORT(4, p, r)

Lifp<r

2 [l Partition the subarray around the pivot, which ends up in A[q].
3 ¢ =PARTITION(A, p, r)

4  QUICKSORT(4, p,q—1) Il recursively sort the low side

5 QUICKSORT(4,q +1,r) Il recursively sort the high side

Partitioning the array

The key to the algorithm is the PARTITION procedure on the next
page, which rearranges the subarray A[p : r] in place, returning the
index of the dividing point between the two sides of the partition.
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Figure 7.1 shows how PARTITION works on an 8-element array.
PARTITION always selects the element x = A[r] as the pivot. As the
procedure runs, each element falls into exactly one of four regions,
some of which may be empty. At the start of each iteration of the for
loop in lines 3-6, the regions satisfy certain properties, shown in Figure
7.2. We state these properties as a loop invariant:

PARTITION(A4, p, r)

1 x = A[r] Il the pivot

2i=p-1 Il highest index into the low side

3forj=ptor—1 Il process each element other than the

pivot

4 ifA[f]< x Il does this element belong on the low
side?

5 i=i+1 Il index of a new slot in the low side

6 exchange A[i{] with// put this element there

Alj]
7 exchange A[i + 1] with/l pivot goes just to the right of the low

Alr] side
return; + 1 Il new index of the pivot

(o<]

At the beginning of each iteration of the loop of lines 3-6, for
any array index k, the following conditions hold:

1.1f p < k < i, then A[k] < x (the tan region of Figure 7.2);
2.1fi+ 1<k <j—1,then A[k] > x (the blue region);
3.1f k = r, then A[k] = x (the yellow region).
We need to show that this loop invariant is true prior to the first
iteration, that each iteration of the loop maintains the invariant, that

the loop terminates, and that correctness follows from the invariant
when the loop terminates.

Initialization: Prior to the first iteration of the loop, we have i = p — 1
and j = p. Because no values lie between p and i and no values lie



between i + 1 and j — 1, the first two conditions of the loop invariant
are trivially satisfied. The assignment in line 1 satisfies the third
condition.

Maintenance: As Figure 7.3 shows, we consider two cases, depending on
the outcome of the test in line 4. Figure 7.3(a) shows what happens
when A[j] > x: the only action in the loop is to increment j. After j has
been incremented, the second condition holds for A[j — 1] and all
other entries remain unchanged. Figure 7.3(b) shows what happens
when A[j] < x: the loop increments i, swaps A[i] and A[j], and then
increments j. Because of the swap, we now have that A[i] < x, and
condition 1 is satisfied. Similarly, we also have that A[j — 1] > x, since
the item that was swapped into A[j — 1] is, by the loop invariant,
greater than x.

Termination: Since the loop makes exactly » — p iterations, it terminates,
whereupon j = r. At that point, the unexamined subarray A[j: r — 1] is
empty, and every entry in the array belongs to one of the other three
sets described by the invariant. Thus, the values in the array have
been partitioned into three sets: those less than or equal to x (the low
side), those greater than x (the high side), and a singleton set
containing x (the pivot).
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(a) 2|3?1|3|5|5 4|
pi

(b) 25?1|3|5|5 1|
Pl i 7

(c) |23?|1|3|5|5 4|
B J

(d) |2 3|?1|3|5|5 4|
p i i r

(e) [2]1]7]8]3]5]|6]4]
P - ) r

(D |2|1|3s|7!5|5 4|
P i

@ [2]|1]3]8]7]|5]s]4]|
_,D i

(h) [2]1]3]8[7]5]6]4]
D i r

(i) |2|1|34?|5|5|8

Figure 7.1 The operation of PARTITION on a sample array. Array entry A[r] becomes the
pivot element x. Tan array elements all belong to the low side of the partition, with values at
most x. Blue elements belong to the high side, with values greater than x. White elements have
not yet been put into either side of the partition, and the yellow element is the pivot x. (a) The
initial array and variable settings. None of the elements have been placed into either side of the
partition. (b) The value 2 is “swapped with itself” and put into the low side. (¢c)—(d) The values
8 and 7 are placed into to high side. (¢) The values 1 and 8 are swapped, and the low side
grows. (f) The values 3 and 7 are swapped, and the low side grows. (g)—(h) The high side of the
partition grows to include 5 and 6, and the loop terminates. (i) Line 7 swaps the pivot element
so that it lies between the two sides of the partition, and line 8 returns the pivot’s new index.

The final two lines of PARTITION finish up by swapping the pivot
with the leftmost element greater than x, thereby moving the pivot into
its correct place in the partitioned array, and then returning the pivot’s
new index. The output of PARTITION now satisfies the specifications
given for the divide step. In fact, it satisfies a slightly stronger condition:



after line 3 of QUICKSORT, A4[q] is strictly less than every element of
Alg +1:r]

P i J

,
EEEE | HEEENE

B il e ot g

=X =X unknown

Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray A[p : r].
The tan values in A[p : i] are all less than or equal to x, the blue values in A[i + 1 :j— 1] are all
greater than x, the white values in A[j : r — 1] have unknown relationships to x, and A[r] = x.

r i r

@ [ [T TVTTTTTITIR] T[] ]
=X >X

Jol i j 7

EEEE | | HEEENA
= T >X

Jol i 7

& -+ | [ | I

NN

Figure 7.3 The two cases for one iteration of procedure PARTITION. (a) If A[j] > x, the only
action is to increment j, which maintains the loop invariant. (b) If A[j] < x, index i is
incremented, A[/] and A[j] are swapped, and then j is incremented. Again, the loop invariant is
maintained.

Exercise 7.1-3 asks you to show that the running time of
PARTITION on a subarray A[p : r]of n =r —p + 1 elements is O(n).

Exercises

7.0-1
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Using Figure 7.1 as a model, illustrate the operation of PARTITION on
the array 4 =(13,19,9,5,12,8,7,4,21,2,6,11).

7.1-2
What value of ¢ does PARTITION return when all elements in the
subarray A[p : r] have the same value? Modify PARTITION so that ¢ =
[(p + r)/2] when all elements in the subarray A[p : r] have the same
value.

7.1-3
Give a brief argument that the running time of PARTITION on a
subarray of size n is O(n).

7.1-4
Modify QUICKSORT to sort into monotonically decreasing order.

7.2  Performance of quicksort

The running time of quicksort depends on how balanced each
partitioning is, which in turn depends on which elements are used as
pivots. If the two sides of a partition are about the same size—the
partitioning is balanced—then the algorithm runs asymptotically as fast
as merge sort. If the partitioning is unbalanced, however, it can run
asymptotically as slowly as insertion sort. To allow you to gain some
intuition before diving into a formal analysis, this section informally
investigates how quicksort performs under the assumptions of balanced
versus unbalanced partitioning.

But first, let’s briefly look at the maximum amount of memory that
quicksort requires. Although quicksort sorts in place according to the
definition on page 158, the amount of memory it uses—aside from the
array being sorted—is not constant. Since each recursive call requires a
constant amount of space on the runtime stack, outside of the array
being sorted, quicksort requires space proportional to the maximum
depth of the recursion. As we’ll see now, that could be as bad as ®(n) in
the worst case.



Worst-case partitioning

The worst-case behavior for quicksort occurs when the partitioning
produces one subproblem with # — 1 elements and one with 0 elements.
(See Section 7.4.1.) Let us assume that this unbalanced partitioning
arises in each recursive call. The partitioning costs ®(n) time. Since the
recursive call on an array of size 0 just returns without doing anything,
T (0) = O(1), and the recurrence for the running time is

T(n) =T (- 1)+ T(0) + O(n)
=T(n-1)+06(@).

By summing the costs incurred at each level of the recursion, we obtain
an arithmetic series (equation (A.3) on page 1141), which evaluates to

®(n2). Indeed, the substitution method can be used to prove that the

recurrence 7' (n) = T (n — 1) + O(n) has the solution T (n) = G)(nz). (See
Exercise 7.2-1.)
Thus, if the partitioning is maximally unbalanced at every recursive

level of the algorithm, t